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Abstract. We study the asymptotic behavior of two mutation-selection genetic algorithms
in random environments. First, the state space is a supercritical Galton-Watson tree condi-
tioned upon non-extinction and the objective function is the distance from the root. In the
second case, the state space is a regular tree and the objective function is a sample of a
tree-indexed random walk. We prove that, after n steps, the algorithms find the maximum
possible value of the objective function up to a finite random constant.

1. Introduction

1.1. Motivation

Genetic algorithms are popular stochastic optimization methods, formally intro-
duced by J. Holland [8] and based on a biological analogy. One seeks to maximize
the objective function f : S → R, defined on the state space S. The mutation-
selection genetic algorithms we consider evolve a finite population of particles in
S under the following iterated two-stages procedure:

1. Mutation: each particle moves at random to a neighboring element of S, a
convenient graph structure on S being given.

2. Selection: a new population of particles is created by resampling. Particles with
low relative values of f tend to be eliminated, particles with large relative values
of f are more often replicated.

Mutation allows for the discovery of new, possibly better, feasible solutions to
the maximization of f , and selection concentrates the exploration of S around good,
already discovered solutions. Note that the algorithms we study do not include the
mating operator, since it is difficult to define it in our context. Moreover, genetic
algorithms that include mating are in general harder to analyze than mutation-selec-
tion ones.

Despite the successes of this approach in the applications and numerous experi-
mental studies, few rigorous mathematical results are available, that would explain
how genetic algorithms work. In particular, the interaction between mutation, selec-
tion and population size remains poorly understood, even for simple examples.
Among the exceptions is the paper by R. Cerf [4], which gives general asymptotic
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convergence results in the context of Markov chains with rare transitions. See the
papers byY. Rabinovich and A. Wigderson [13], G. Rudolph [14] and J. Bérard and
A. Bienvenüe [2], [3] where simple examples are worked out, and C. Mazza and
D. Piau [11] for results in the infinite-population case.

In this paper, we study the asymptotic behavior of two mutation-selection ge-
netic algorithms defined on trees in random contexts. First, the state space is a
random supercritical Galton-Watson tree conditioned upon non-extinction, see for
instance the paper [10] by R. Lyons, R. Pemantle and Y. Peres. The objective func-
tion f (x) at a vertex x of the tree is the distance between x and the root of the tree.
In the second case, the state space is a regular tree, and the objective function is a
sample of a tree-indexed simple random walk, see [12].

Both situations display randomness, since either the graph structure of the state
space or the objective function itself is random. In our opinion, this makes inter-
esting the study of these simple optimization algorithms.

In both cases, the objective function is unbounded. We are looking for the
asymptotic growth speed of the objective function values that the algorithm dis-
covers, rather than for convergence rates to a finite maximum value. As explained
by D. Aldous in [1], the study of the transient, in the Markov chain sense, behav-
ior of infinite-state algorithms is intended as a toy model for the pre-equilibrium
behavior of randomized optimization algorithms on large finite sets. Our second
case is precisely the situation that Aldous analyses for the Metropolis algorithm.

A second motivation comes from the study of diffusion phenomena in random
environments, see for instance the book by B. Hughes [9]. The biased random walk
on Galton-Watson trees, studied in [10], corresponds to the Metropolis algorithm
on these trees with our objective function f (x). Thus, it is natural to ask for the
behavior of genetic algorithms in the same context.

Our results show that, at least under some restrictions on the parameters, part of
which are believed to be purely technical, the algorithms perform very well for the
two examples considered. See below for a detailed formulation.Yet another motiva-
tion is the study of the approximation of infinite-population genetic algorithms by
finite-population ones, that are the only computationally realistic algorithms. This
is an important theoretical question since infinite-population genetic algorithms
are often used to model the behavior of large population ones, see the paper by
P. Del Moral, L. Kallel and J. Rowe [5], and the book by M. Vose [15]. From the
results below, our two specific examples display such an approximation property,
in a strong sense.

1.2. Description of the model and notations

We use proportional selection with Boltzmann weights, see [4], and mutation steps
given by simple random walks on the state space. Instead of being kept constant as
is usually the case, see [8], the population size pn at time n, goes to infinity as n
goes to infinity, at a possibly slow rate.

We use the same notations for the two cases, the case under consideration being
clear from the context.
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Galton-Watson case
Let T denote a random Galton-Watson tree, with root r . For x ∈ T, |x| is the

tree-distance between r and x, and the objective function f is f (x) = |x|. The
reproduction law of the Galton-Watson tree is q, andQ is a random variable of law
q. We assume that q has bounded support, Q ≤ q∗ say, and we set

θ = E(Q/(Q+ 1)).

Random objective function case
Fixm ≥ 2, and let T denote a rooted regularm−ary tree, with root r . For every

edge e of T, choose v(e) ∈ {+1,−1}. Then, let f (r) = 0, and, for every vertex
x �= r of T,

f (x) =
∑

e∈{r→x}
v(e),

where {r → x} denotes the set of edges on the unique injective path from r to x.
We assume that (v(e))e is a collection of i.i.d. random variables of law

ρ δ1 + (1 − ρ) δ−1.

In both cases, we fix β > 0 and a deterministic sequence (pn)n of positive integers.
The genetic algorithm is a time-inhomogeneous Markov chain

Xn = (X(i)n )1≤i≤pn,

such that Xn ∈ T
pn , with initial state X0 = (r, . . . , r) ∈ T

p0 , defined by the
following transitions.

1. Mutation step: Xn −→ Yn

Each particle X(i)n evolves independently of the others, and performs one step
of a simple random walk on T, symmetric and to the nearest neighbors.
In the random objective function case, the probability of staying at the same
vertex is µ > 0. In the Galton-Watson case, we assume that µ = 0. The new
positions are Y (i)n , 1 ≤ i ≤ pn.

2. Selection step: Yn −→ Xn+1

Each X(i)n+1 for 1 ≤ i ≤ pn+1 is chosen randomly and independently of the

others in the set
{
Y
(i)
n , 1 ≤ i ≤ pn

}
, according to the probability law

1

S′
n

pn∑

i=1

exp
(
βf (Y (i)n )

)
δ
Y
(i)
n
, where S′

n =
pn∑

i=1

exp
(
βf (Y (i)n )

)
.

The particles X(1)n , . . . , X
(pn)
n compose the population at time n. Note that, at

a given time, several particles may be located at the same vertex. Let Nn denote
the counting measure ofXn, andZn the counting measure of the objective function
values:

Nn =
pn∑

i=1

δ
X
(i)
n
, Zn =

pn∑

i=1

δ
f (X

(i)
n )
.

For x1, . . . , xp ∈ T, let
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f ∗(x1, . . . , xp) = sup{f (xi) ; 1 ≤ i ≤ p}.

1.3. Statement of the results

We use the following assumptions.

– A1: limn→+∞ pn(log n)−2 = +∞
– A2: limn→+∞ pn+1/pn = 1

Galton-Watson case

– A3: θ > 1/2
– A4: expβ > 1/θ

Random objective function case

– A5: mρ ≥ 1
– A6: expβ > [(1 − µ) ρ ]−1(1 + 1/m)
– A7: expβ > 1/µ

Theorem A. Assume that A1, A2, A3 and A4 hold. Then, almost surely on the
non-extinction of the underlying Galton-Watson tree T, and almost surely on the
realization of the algorithm,

f ∗(Xn) = n−O(1).

Moreover, the empirical law of f (Xn) concentrates around its maximum value
f ∗(Xn), in the following sense. There exists c > 0 such that, for all a ≥ 1, and for
all n ≥ ka , where ka is random and almost surely finite,

p−1
n Zn([0, f

∗(Xn)− a]) ≤ c exp (−βa).
Theorem B. Assume that A1, A2, A5, A6 and A7 hold. Then, almost surely on the
random objective function f and on the realization of the algorithm,

f ∗(Xn) = n−O(1).

Moreover, the empirical law of f (Xn) concentrates around its maximum value
f ∗(Xn), in the sense of Theorem A:

p−1
n Zn((−∞, f ∗(Xn)− a]) ≤ c exp (−βa).

We now comment upon these results and the hypotheses. Note that trivially
f ∗(Xn) ≤ n. Thus, in both cases, up to a finite random constant, the cloud of
particlesXn contains the largest possible value of f after n steps, and the empirical
distribution of the particles is concentrated, in the sense of an exponentially decreas-
ing tail, around this maximum value. The interesting case in Theorem A is when
P [Q = 0] > 0, so that the tree contains many dead-ends, while having a positive
probability of being infinite. Theorem A proves that, despite the many dead-ends
in the tree, there is no slowdown of the genetic algorithm. On the other hand, let
Sn denote the distance from the root of the Metropolis algorithm with temperature
β after n steps (in our specific context, the Metropolis algorithm is nothing but the
outward biased simple random walk defined in [10]). Let also S∗

n denote the supre-
mum ofpn independent copies ofSn. Comparison ofSnwith a biased simple random
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walk on N easily yields that, almost surely on non-extinction, P [Sn ≥ (1 − ε)n]
decreases exponentially with n, for small enough ε. Since pn increases only slowly
(subexponentially) with n according to A2, P

[
S∗
n ≥ (1 − ε)n

]
also decreases expo-

nentially with n. Moreover, for large enough β (see [10]), the Metropolis algorithm
has zero asymptotic speed, that is, limn→+∞ n−1Sn = 0 a.s. and it can easily
be shown that, for such β, almost surely on non-extinction, for every ε > 0,
P [Sn ≥ εn], whence P

[
S∗
n ≥ εn

]
, decreases exponentially with n. We refer to the

paper by A. Dembo, N. Gantert,Y. Peres and O. Zeitouni [6] for general large devi-
ations results concerning biased random walks on Galton-Watson trees, although
they do not cover the case P [Q = 0] > 0. Hence, the genetic algorithm can be
considered as more efficient than the Metropolis algorithm in this context. In the
random objective function case, the algorithm finds the exponentially small part of
the state space where f takes values of order n. In both cases, our proof of the effi-
ciency of the interaction between mutation and selection relies upon the averaging
effect produced by the growth of pn.

Remark 1. The behavior stated in Theorems A and B is easily seen to be shared by
the infinite-population versions of our algorithms. Since assumption A1 allows for
a slow growth rate of the population size with time, our results may be interpreted
as a strong approximation of the infinite-population behavior by finite-population
algorithms. See [5] and [15] for an account on these questions.

Assumption A3 implies that the average number E(Q) of children under q,
is strictly greater than one, so that the non-extinction of T occurs with positive
probability and the conditioning in the theorem is trivially defined. We note that
A3 is in general strictly stronger than the condition E(Q) > 1, so our result does
not include every supercritical Galton-Watson tree. However, the conclusion of
Theorem A may hold as soon as E(Q) > 1.

When A3 is satisfied, A4 is satisfied as soon as β > log(2), so β has not to be
very large for the theorem to be valid. Whether the behavior for small values of β
is different from the one stated in Theorem A is an open question.

Assumption A5 says that, given a vertex x, the average number of children
y of x such that f (y) = f (x) + 1 is strictly greater than 1, so this condition is
analogous to A3. In fact, there is a critical value ρcr ∈ (0, 1/m), see [12], such
that, if ρ < ρcr, there is almost surely only a finite number of vertices x such that
f (x) ≥ −c, for any c. When ρ > ρcr, there exist infinite rays R in T and c > 0
such that f (R(i)) ≥ ci for all i. From A5, ρ is far away from ρcr, and indeed
we have the stronger property that there exist infinite rays R in T and c > 0 such
that f (R(i)) ≥ i − c for all i. However, when m ≥ 3, this includes non-trivial
optimization situations since, as soon as ρ < 1/2, the typical behavior of f along a
ray is to go to −∞ at a positive speed. Note that, even when ρ > 1/2, the result of
Theorem B is not trivial: even though large positive values of f of order (2ρ− 1)n
are easy to find, values of order n are still exponentially rare at the n− th level of
the tree.

Theorems A and B still hold for more general mutation processes than those
described above, with similar proofs, under suitable restrictions on the range of the
parameters. For instance, we could allow the holding probabilityµ to be positive in
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the Galton-Watson case, or allow the walk to have unequal transition probabilities
for different neighbours. However, the assumption µ > 0 is needed in the random
objective function case, to prove that there is a.s. an infinite number of record epochs
(see Proposition 8 below).

The two cases considered have different structures, but the methods that we
use for proving the results are so close that we give the full proof only in the Gal-
ton-Watson case. We sketch the slight modifications that are needed in the random
function case.

2. Preliminaries on the Galton-Watson case

From now on, we assume that A1 to A4 are satisfied.

2.1. Additional notations and definitions

Let Mn = Zn(f
∗(Xn)) be the number of particles maintained by Xn at the top

level. DefineN ′
n,Z′

n andM ′
n in the same way asNn,Zn andMn, where Yn replaces

Xn.
We use the standard construction for random diffusion processes in random

environments. Thus, the Galton-Watson tree is progressively sampled as the algo-
rithm explores it, rather than being fixed once for all. A standard result is that, if
a property of the algorithm holds almost surely with respect to this construction,
then it holds for almost every realization of the environment, and for almost every
realization of the algorithm conditional on this environment. In this context, Tn

denotes the subtree uncovered by the algorithm up to time n.

Remark 2. In all the proofs, we work on unconditioned Galton-Watson trees, and
condition upon non-extinction only at the end.

The σ -algebra Fn is generated by Xk , Yk and Tk+1, for 0 ≤ k ≤ n − 1, and
Xn. The σ -algebra Gn is generated by Fn, Tn+1 and Yn.

Let x1, x2, . . . , xLn , with Ln ≥ 1, denote the distinct vertices of the tree main-
tained by Xn at the level f ∗(Xn). Note that Ln ≤ Mn. Each xi has a random,
possibly zero, number zi of children and, if zi ≥ 1, we denote these children by
xi(1), . . . , xi(zi). Let Tn,i = Nn(xi) denote the number of particles maintained by
the algorithm at xi . Thus, Mn = ∑Ln

i=1 Tn,i . Let

T ∗
n = sup{Tn,i ; 1 ≤ i ≤ Ln}.

Definition 1. Say that Hn(�) holds if T ∗
n ≤ Mn/�.

Remark 3. Hn(1) is the certain event.

2.2. Record epochs

Definition 2. Call n a record epoch if f ∗(Xn) > f ∗(Xp) for all 1 ≤ p ≤ n− 1.
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Record epochs are a fundamental tool. Indeed, in the construction above, fresh
random decisions, that is independent from the past, are made concerning the num-
ber of children of x1, . . . , xLn , at each record epoch n.

Proposition 4. Conditional upon non-extinction of the tree, there exists almost
surely an infinite number of record epochs.

In other words, the sequence f ∗(Xn) is unbounded from above almost surely
conditional on the tree being infinite.

Proof of Proposition 4. Assume that the mutation steps of the algorithm are defined
as follows. Set � = (q∗ + 1)!. First, for every d ≤ q∗ + 1, fix a partition Pd of
the set {1, . . . , �} into d equal parts. Then, let di be the number of neighbors
of X(i)n , di ≤ q∗ + 1. We draw a random integer ui(n) according to the uniform
law on {1, . . . , �}, and choose the next position Y (i)n among the neighbors of X(i)n
according to the element of Pdi to which ui(n) belongs.

Consider an arbitrary vertex x ∈ T, a positive integer r , and a sequence
ξ(0), . . . , ξ(r − 1) in {1, . . . , �}. Introduce the event


n(x) = {x ∈ Xn and f (x) = f ∗(Xn)}.
On 
n(x), let i denote the smallest index j ≤ pn such that X(j)n = x. Say that the
event �n(x) occurs if there exists a sequence (ik)0≤k≤r such that i0 = i and, for all
0 ≤ k ≤ r − 1,

uik (n+ k) = ξ(k) and X(ik+1)

n+k+1 = Y
(ik)
n+k.

Finally, define


(x) = {
n(x) occurs infinitely often}
and

�(x) = {�n(x) occurs infinitely often}.
A particle Y (j)n such that f (Y (j)n ) ≥ f ∗(Yn)− b has a probability greater than

1 −
(

1 − exp (−βb)p−1
n

)pn+1

of being kept by the selection step, conditional on Gn. After r mutation steps, the
distance between the current maximum and a particle initially located on the maxi-
mum cannot exceed 2r (in the worst case, the particle performs r downward steps,
and the maximum performs r upward steps). Moreover, for a given mutation step,
ξ(k) is drawn with probability �−1. Hence, on 
n(x),

P [�n(x) | Fn] ≥ �−r
(

1 −
(

1 − exp (−β2r)p−1
n

)pn+1
)r
.

This expression being bounded away from zero independently fromn, by Lemma 13,

P [
(x) \ �(x)] = 0. (1)
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Call B the event that f ∗(Xn) is bounded from above. If B occurs, there is at least
one vertex x ∈ T such that 
(x) occurs. Hence, according to (1) and Lemma 13,
for every finite sequence ξ(0), . . . , ξ(r − 1), �(x) occurs almost surely on B. But
the non-extinction of T implies that, for all C > 0, there is a positive integer r
and a path of length r connecting x to another vertex at distance greater than C
from the root. This path is associated with at least one sequence of mutation deci-
sions ξ(0), . . . , ξ(r − 1). Since this holds for all C, we get that, conditional on
non-extinction, B has zero probability. 	


3. Proof in the Galton-Watson case

The theorem is a simple consequence of Propositions 6 and 7. The technical lemmas
needed are stated in section 5. Lemma 5 below contains our basic estimates on the
one-step transitions of the algorithm. We start with the following definition.

Definition 3. For λ > 0, define the event D1(n) by:

– f ∗(Xn+1) = f ∗(Xn)+ 1
– Mn+1 ≥ λpn+1 if Mn ≥ λpn and Mn+1 ≥ ν2Mn if Mn ≤ λpn

For � ≥ 1, set

D2(n, �) = D1(n) ∩Hn+1(ν �).

Throughout the proofs, we use a pair of parameters (ψ, ν) chosen as follows.
Let ψ ∈ (1/θ, exp(β)) (from A4, θ exp(β) > 1). Let ν > 1 such that ν2 < ψθ

and ν < 2θ (from A3, θ > 1/2).

Lemma 5. There exist λ > 0, K > 0 , n0 ≥ 1 and g > 0, such that, for all
n ≥ n0,

– if n is a record epoch,

P [D1(n) | Fn] ≥ g,

– if n is a record epoch, ifMn ≥ K , and ifHn(�n) occurs with �n ≤ (Mn)
1/2, then

P [D2(n, �n) | Fn] ≥ 1 − C1 exp (−C2(Mn)
1/2)− exp (−C3�n).

(recall that the definitions of D1(n) and D2(n, �) involve a parameter λ.)

Proof of Lemma 5. Set Bn = {n is a record epoch} ∩ Hn(�n). We put �n = 1 for
the proof of the first assertion of the lemma. Let tn = Mn/�n. Let ε ∈ (0, 1), whose
value will be fixed later. Denote by Cr(expression), any positive constant that
depends only on expression and on the law q.

Random sampling of the tree
Conditionally to Fn and Bn, n is a record epoch and the numbers of children

zi, 1 ≤ i ≤ Ln of the vertices xi, 1 ≤ i ≤ Ln are i.i.d. random variables with law
q. Let

Jn =
Ln∑

i=1

Tn,i zi/(zi + 1), E1 = {Jn ≥ (1 − ε)θMn}.
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From Lemma 10, on Bn,

P
[
Ec1

∣∣ Fn
] ≤ exp (−C1(ε)Mn/T

∗
n ).

Hence,

P
[
Ec1

∣∣ Fn
] ≤ exp (−C1(ε)�n) = e1.

Mutation
Conditionally to Fn and Tn+1, the number of particles I1, . . . , ILn that move

by mutation from each vertex xi to the children of xi are independent random
variables, with respective binomial laws B(Tn,i , zi/(zi + 1)). Let

E2 = {M ′
n ≥ (1 − ε)2θMn, f

∗(Yn) = f ∗(Xn)+ 1}.
The fact that I1 +· · ·+ ILn ≥ (1− ε)2θMn implies that f ∗(Yn) = f ∗(Xn)+1 and
that M ′

n = I1 + · · · + ILn since (1 − ε)2θMn > 0. Thus, E1 and I1 + . . .+ ILn ≥
(1 − ε)Jn imply E2. By Lemma 11, on E1,

P
[
Ec2

∣∣ Fn,Tn+1
] ≤ exp (−C2(ε)Jn)

so that on E1,

P
[
Ec2

∣∣ Fn,Tn+1
] ≤ exp (−C3(ε)Mn) = e2

Let us define the set of indices An by:

An = {1 ≤ i ≤ Ln | Tn,i ≥ (1/2)tn, zi ≥ 1}.
Fix i ∈ An and 1 ≤ j ≤ zi . The number N ′

n(xj ) of particles that move by
mutation from xi to xi(j), follows, conditionally to Fn and Tn+1, a binomial law
B(Tn,i , (zi + 1)−1). Let

E3(i, j) = {N ′
n(xi(j)) ≤ (1 + ε)Tn,i(zi + 1)−1}.

We have by Lemma 12

P
[
(E3(i, j))

c
∣∣ Fn,Tn+1

] ≤ exp (−C4(zi, ε)Tn,i).

Using the fact that zi ≤ q∗, and that Tn,i ≥ (1/2)tn since i ∈ An, we get

P
[
E3(i, j)

c
∣∣ Fn,Tn+1

] ≤ exp (−C5(ε)tn).

Let

E3 =
⋂

i∈An

zi⋂

j=1

E3(i, j).

The above intersection runs over at most q∗Mn events. Hence

P
[
Ec3

∣∣ Fn,Tn+1
] ≤ q∗Mn exp (−C5(ε)tn) = e3.

Selection
Define E4 by:
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– on {Mn > λpn},
Mn+1 ≥ ψθ(1 − ε)4λpn+1, f ∗(Xn+1) = f ∗(Yn),

– on {Mn ≤ λpn},
Mn+1 ≥ ψθ(1 − ε)4Mn, f ∗(Xn+1) = f ∗(Yn).

From now on, we assume that ε is small enough so that: ψθ(1 − ε)4 ≥ ν2,
and we choose λ as in Lemma 9. By Lemma 9, conditionally to Gn, the number
Zn+1(f

∗(Yn)) of particles at level f ∗(Yn) contained in Xn+1 follows a binomial
law B(pn+1, µn+1), with

µn+1 ≥ ψ inf(λ,M ′
np

−1
n ) = h.

Let

G = {Zn+1(f
∗(Yn)) ≥ (1 − ε)hpn+1}.

Since h > 0, G implies that Mn+1 = Zn+1(f
∗(Yn)). Moreover, one can easily

check that forn sufficiently large (that is, such thatpn+1/pn ≥ 1−ε)),G∩E2 ⊂ E4.
On the other hand, we have h ≤ ψλ, and by Lemma 12, on E2,

P
[
Ec4

∣∣ Gn
] ≤ exp (−C6(λ, ε)Mn) = e4.

Conditionally to Gn,Mn+1 and f ∗(Xn+1), the number Nn+1(y) of particles put by
selection on a vertex y at level f ∗(Xn+1) follows a binomial law B(Mn+1, N

′
n(y)

(Z′
n(f

∗(Xn+1)))
−1). Assume that E4 occurs, so that f ∗(Xn+1) = f ∗(Yn). Hence

Z′
n(f

∗(Xn+1)) = M ′
n. For i ∈ An and 1 ≤ j ≤ zi , E3 implies that N ′

n(xi(j)) ≤
(1 + ε)(1/2)T ∗

n , and E2 implies thatM ′
n ≥ (1 − ε)2θMn. Thus, on Bn ∩E2 ∩E3 :

N ′
n(y)(M

′
n)

−1 ≤ (2θ)−1(1 + ε)(1 − ε)−2(�n)
−1.

Let

E5(i, j) = {Nn+1(xi(j))(Mn+1)
−1 ≤ (2θ)−1(1 + ε)2(1 − ε)−2(�n)

−1}.
From now on, we assume that ε is small enough so that (2θ)−1(1+ε)2(1−ε)−2 ≤
ν−1. By lemma 12, on Bn ∩ E2 ∩ E3 ∩ E4,

P
[
E5(i, j)

c
∣∣ Gn,Mn+1, f

∗(Xn+1)
] ≤ exp (−C8(ε)Mn+1�

−1
n ).

Note that, on E4, we have (easily) Mn+1 ≥ λMn since λ < 1. Let

E5 =
⋂

i∈An

zi⋂

j=1

E5(i, j).

On Bn ∩ E2 ∩ E3 ∩ E4,

P
[
Ec5

∣∣ Gn,Mn+1, f
∗(Xn+1)

] ≤ q∗Mn exp (−C9(ε, λ)Mn/�n) = e5.
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When y’s parent is one of the xi, i /∈ An, we have, N ′
n(y) ≤ (1/2)tn. Let

E6(i, j) = {Nn+1(xi(j))(Mn+1)
−1 ≤ (1/2)θ−1(1 + ε)(1 − ε)−2(�n)

−1}
and

E6 =
⋂

i /∈An

zi⋂

j=1

E6(i, j).

Using the same argument as for E5, we get that, on E2 ∩ E4,

P
[
Ec6

∣∣ Gn,Mn+1, f
∗(Xn+1)

] ≤ q∗Mn exp (−C11(ε, λ)Mn/�n) = e6.

Set Un = E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 ∩ E6 and Wn = E1 ∩ E2 ∩ E4.
Let us summarize the properties of Xn+1 contained in Bn ∩ Un.

– f ∗(Xn+1) = f ∗(Xn)+ 1 and so n+ 1 is a record epoch.
– Mn+1 ≥ λpn if Mn ≥ λpn, and Mn+1 ≥ ν2Mn if Mn ≤ λpn
– T ∗

n+1M
−1
n+1 ≤ ν−1�−1

n and so Hn+1(ν�n) occurs

The two first properties are also consequences ofBn∩Wn. Note that the ei are mea-
surable with respect to Fn, and that e1, e2, e4 < 1. Moreover, assuming �n ≤ M

1/2
n

and Mn ≥ K for K large enough, we get that: e7 = e1 + e2 + e3 + e4 + e5 +
e6 < 1. Indeed, e1 ≤ exp (−C1(ε)�n), and all the other terms are bounded from
above by an expression of the form C12Mn exp (−C13(ε, λ)Mn/�n). The inequal-
ity �n ≤ (Mn)

1/2 entails that this expression is itself bounded from above by
C12Mn exp (−C13(ε, λ)M

1/2
n ), hence by C14 exp (−C15(ε, λ)M

1/2
n ), and this last

expression goes to zero as Mn → +∞.
Conditioning P

[
Un | Gn,Mn+1, f

∗(Xn+1)
]
, we get that, if �n ≤ (Mn)

1/2, on
Bn ∩ {Mn ≥ K},

P [Un | Fn] ≥ (1 − e6 − e5)(1 − e4)(1 − e3 − e2)(1 − e1) ≥ 1 − e7,

and, on Bn, without restrictions on �n or Mn,

P [Wn | Fn] ≥ (1 − e4)(1 − e2)(1 − e1).

	

Proposition 6 below is the key result in our proof of the main theorem. The idea

of its proof is the following: starting at a record epoch, Mn has a positive (condi-
tional) probability of growing exponentially fast untilMn ≥ λpn and then to remain
greater than λpn forever. Such a regular growth is made possible by maintaining
many different vertices at level f ∗(Xn), no vertex containing too many particles,
so that an averaging phenomenon occurs.

Proposition 6. Conditional on the non-extinction of the tree, there exists λ > 0
such that there exists almost surely a time k such that, for all n ≥ k, Mn ≥ λpn
and f ∗(Xn) = f ∗(Xn−1)+ 1.
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Proof of Proposition 6. We take λ, K ≥ 1, n0 as they were defined in the proof of
Lemma 5. Let n1 ≥ n0 be such that, for all n ≥ n1, λpn ≥ K , pn+1/pn ≤ ν2.
(Such an n1 exists thanks to assumptions A1 and A2.) Assume throughout that r
is a record epoch greater than n1. Let r1 be such that ν2r1 ≥ K (remember that
ν > 1). Let

R1 = {r + r1 is a record epoch,Mr+r1 ≥ K}.
Note that

r+r1−1⋂

i=r
D1(i) ⊂ R1.

By Lemma 5,

P [R1 | Fr ] ≥ gr1 .

Let r2 = inf{k ≥ 0 | ν2kK ≥ λpr+r1+k} (r2 is well-defined thanks to A2.) Let

R2 = {r + r1 + r2 is a record epoch} ∩ {Mr+r1+r2 ≥ λpr+r1+r2} ∩Hr+r1+r2(νr2).
We set D3(r, r1,−1) = � and, for k ≥ 0,

D3(r, r1, k) =
r+r1+k⋂

i=r+r1
D2(i, ν

i−r−r1).

According to the definition of r2:

D3(r, r1, r2 − 1) ∩ R1 ⊂ R2.

For 0 ≤ k ≤ r2 − 1,

P
[
D3(r, r1, k)

∣∣ Fr+r1+k
] = P

[
D2(r + r1 + k, νk)

∣∣∣ Fr+r1+k
]

1D3(r,r1,k−1).

OnD3(r, r1, k−1)∩R1,Mr+r1+k≥ν2kK thanks to the definition of r2,Hr+r1+k(νk)
occurs, and, in particular,Mr+r1+k ≥ K , and νk ≤ M

1/2
r+r1+k . By Lemma 5, on R1,

P
[
D3(r, r1, k)

∣∣ Fr+r1+k
] ≥ v(k)1D3(r,r1,k−1),

where we put:

v(k) = 1 − C1 exp (−C2(ν
2kK)1/2)− exp (−C3ν

k).

We conclude that, on R1,

P
[
R2
∣∣ Fr+r1

] ≥
r2−1∏

k=0

v(k).

Let

R3 = {∀n ≥ r + r1 + r2, f
∗(Xn+1) = f ∗(Xn)+ 1,Mn ≥ λpn}.
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For n < r + r1 + r2, we set D4(r, r1, r2, n) = �. For n ≥ r + r1 + r2,

D4(r, r1, r2, n) =
n⋂

i=r+r1+r2
D2(i, (λK

−1pi)
1/2).

We have

D4(r, r1, r2,+∞) ∩ R2 ⊂ R3.

P [D4(r, r1, r2, n) | Fn] = P
[
D2(n, (λK

−1pn)
1/2)

∣∣∣ Fn
]

1D4(r,r1,r2,n−1).

On D4(r, r1, r2, n − 1) ∩ R2, Mn ≥ λpn, Hn
(
(λK−1pn)

1/2
)

occurs, and in

particular Mn ≥ K , and (λK−1pn)
1/2 ≤ M

1/2
n , so that, by Lemma 5, on R2,

P [D4(r, r1, r2, n) | Fn] ≥ w(n)1D4(r,r1,r2,n−1),

where we put:

w(n) = 1 − C1 exp (−C2(λpn)
1/2)− exp (−C3(λK

−1pn)
1/2).

We conclude that, on R2,

P
[
R3
∣∣ Fr+r1+r2

] ≥
∏

i≥r+r1+r2
w(i),

the above infinite product being well-defined and positive according to A1. Setting

�1 =
∏

k≥0

v(k) , �2 =
∏

i≥n1

w(i),

we get that, if r is a record epoch,

P [R1 ∩ R2 ∩ R3 | Fr ] ≥ gr1 ×�1 ×�2 > 0.

Let

R = {∃ r , ∀n ≥ r f ∗(Xn+1) = f ∗(Xn)+ 1
}

We have:

R1 ∩ R2 ∩ R3 ⊂ R.

By Proposition 4, there is, conditional on non-extinction, an infinite number of
record epochs. We conclude, thanks to Lemma 13, that conditional on non-extinc-
tion, R occurs almost surely. 	

Proposition 7. Conditional on non-extinction, there exists λ > 0 such that, for all
a ≥ 1, and all n ≥ ka (ka is random),

p−1
n Zn([0, f

∗(Xn)− a]) ≤ 4(θλ)−1 exp (−βa).
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Proof of Proposition 7. We use Proposition 6 and its proof. Conditional on non-
extinction, there exists almost surely k such that, for all n ≥ k, Mn ≥ λpn and
Hn((λK

−1pn)
1/2) occurs. For such an n, Zn+1([0, f ∗(Xn+1)− a]) follows, con-

ditionally to Gn, a binomial law B(pn+1, φn), where

φn ≤ exp (−βa)pn(M ′
n)

−1.

One can easily check that, conditional on Gn, Mn ≥ λpn and Hn((λK−1pn)
1/2),

{M ′
n ≥ (1/2)θλpn, Zn+1([0, f

∗(Xn+1)− a]) ≤ 2λφn}
occurs with probability greater than 1 − C14pn exp (−C15(pn)

1/2). The second
Borel-Cantelli lemma (see [7] p.240) implies the result, according to A1. 	


4. The random objective function case

We keep the same notations as before. Record epochs are defined exactly as in the
Galton-Watson case. Here, Fn is the σ -algebra generated by Xk , Yk and f (Tk+1),
for 0 ≤ k ≤ n − 1, and Xn. The σ−algebra Gn is generated by Fn, f (Tn+1) and
Yn. The analog of Proposition 4 is

Proposition 8. Almost surely on the random objective function f and on the real-
ization of the algorithm, there is an infinite number of record epochs.

Proof of Proposition 8 (sketch). We have to prove that f ∗(Xn) is not bounded from
above. The difference from the Galton-Watson case is that f ∗ may take arbitrarily
large negative values, so we have to work a bit more. For a fixed λ > 0, we define
an as the largest integer a such that:

Zn([a, f
∗(Xn)]) ≥ λpn.

We first prove that an cannot decrease more than an almost surely finite number
of times. Conditionally to Fn, the number of particles that are fixed by mutation
is greater than (1 − ε)µλpn with probability greater than 1 − exp (−C(ε)λpn). A
result analogous to Lemma 9 shows that, conditionally to Gn and to the inequality
above, Zn+1([an, f ∗(Xn+1)]) follows a binomial law B(pn+1, φn) with φn ≥ ζλ,
where ζ > 1 for ε and λ small enough, thanks to A7. Thus, the probability that
an+1 < an is less than exp (−C1pn). The Borel-Cantelli lemma proves the stated
result. As a consequence, f ∗(Xn) is almost surely bounded from below. Thus, if
f ∗(Xn) is bounded from above with positive probability, two situations may occur.
Either there exists x ∈ T such that f (x) = lim supn f

∗(Xn), and such that x ∈ Xn
and f ∗(Xn) = f (x) an infinite number of times. In which case an argument sim-
ilar to the proof in the Galton-Watson case works to get a contradiction. Or there
is an infinite number of times n such that Xn contains a newly discovered vertex y
in T such that f (y) = lim supn f

∗(Xn). Conditional on this, the probability that
f (y(1)) = f (y)+ 1 and that y(1) ∈ Xn+1 is bounded from below by a constant.
By Lemma 13, this occurs an infinite number of times and we get a contradiction
as well. 	
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Lemma 5 holds as in the Galton-Watson case. A sketch of the proof follows.
Conditionally to Fn andBn,n is a record epoch and the incrementsf (xi(j))−f (xi)
form a collection of i.i.d. ±1 random variables. Let

Jn =
Ln∑

i=1

m∑

j=1

1{f (xi (j))=f ∗(Xn)+1}Nn(xi)

and let

E1 = {Jn ≥ (1 − ε)mρMn}.
Lemma 10 shows that, on Bn,

P
[
Ec1

∣∣ Fn
] ≤ exp (−C1(ε)Mn/T

∗
n ).

Define now

E2 = {M ′
n ≥ (1 − ε)2(1 − µ)ρm(m+ 1)−1Mn, f

∗(Yn) = f ∗(Xn)+ 1}.
Lemma 11 shows that, on Bn ∩ E1,

P
[
Ec2

∣∣ Fn, f (Tn+1)
] ≤ exp (−C2(ε)Jn).

The end of the proof is similar to the Galton-Watson case. With the two above
results, that is, the existence of an infinite number of record epochs, and Lemma 5,
we can prove propositions 6 and 7 exactly as in the Galton-Watson case.

5. Technical lemmas

Lemma 9. The number of particles at level f ∗(Yn) put by selection in Xn+1 fol-
lows, conditionally to Yn, a binomial law B(pn+1, µn+1). For all ψ < expβ, there
exists λ0 > 0 such that, for all 0 < λ < λ0,

µn+1 ≥ ψ inf
(
λ,M ′

np
−1
n

)
.

Proof. By definition of the proportional selection, the number of particles at level
f ∗(Yn) put by selection in Xn+1 follows, conditionally to Yn, a binomial law
B(pn+1, µn+1), with

µn+1 = M ′
n exp (βf ∗(Yn))

(
pn∑

i=1

expβf
(
Y (i)n

))−1

.

Denote by Hn the set of indices 1 ≤ i ≤ pn such that f
(
Y
(i)
n

)
= f ∗(Yn). For all

i /∈ Hn, we have, by definition, f
(
Y
(i)
n

)
≤ f ∗(Yn)− 1. Thanks to this remark,

∑

i /∈Hn

exp
(
βf

(
Y (i)n

))
≤ exp (−β) exp (βf ∗(Yn))(pn −M ′

n).
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Simplifying by exp (βf ∗(Yn)) in the expression of µn+1, we conclude that:

µn+1 ≥ M ′
n

(
M ′
n + (pn −M ′

n) exp (−β))−1
.

The assertions stated in the lemma is an easy consequence of this inequality. 	


Lemma 10. Let χ1, . . . , χk be k nonnegative real numbers, χ∗ be the maximum
of the χi . Let s1, . . . , sk be i.i.d. random variables with common law supported by
[0, a]. Let θ = Es1. Then, for all δ > 0, all γ ∈ (0, δ), there exists η > 0 such that:

P

[
k∑

i=1

siχi ≤ (1 − δ)θ

k∑

i=1

χi

]
≤ exp

(
−η(δ − γ )θ(χ∗)−1

k∑

i=0

χi

)
.

Proof. By the exponential Chebyshev bound, this probability is bounded from
above, for all t ≥ 0, by:

E

(
exp

(
−t

k∑

i=1

siχi

))
exp

(
t (1 − δ)θ

k∑

i=1

χi

)
.

By independence,

E

(
exp

(
−t

k∑

i=1

siχi

))
= exp

(
k∑

i=1

log E(exp (−tsiχi))
)
.

For u near zero, E(exp (−us1)) = 1 −uθ + o(u). In particular, for all γ > 0, there
exists η > 0 such that, for all t ∈ (0, η/χ∗),

log E(exp (−tsiχi)) ≤ −(1 − γ )tθχi.

Hence an upper bound for the original probability is:

exp

(
−tθ(δ − γ )

k∑

i=1

χi

)
.

	


Lemma 11. Let χ1, . . . , χk be k nonnegative integers, and s1, . . . , sk in [0, 1].
Let V = ∑k

i=1 siχi . Consider now Z1, . . . , Zk independent binomial random
variables with respective binomial laws B(χi, si). Then, for all δ ∈ (0, 1), there
exists C(δ) > 0 such that:

P

[
k∑

i=1

Zi ≤ (1 − δ)V

]
≤ exp (−C(δ)V ).
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Proof. The Laplace transform is given by:

E

(
exp

(
−t

k∑

i=1

Zi

))
= exp

(
k∑

i=1

χi log (1 + si(e
−t − 1))

)
.

For all 0 < γ ′ < 1, there exists φ > 0 such that, for all 0 ≤ t ≤ φ,

exp

(
k∑

i=1

χi log (1 + si(e
−t − 1))

)
≤ exp

(
−t (1 − γ ′)

k∑

i=1

siχi

)
.

We conclude by an argument similar to the one used in the previous lemma. 	

Lemma 12. Let 0 < p < 1, and let S be a random variable with binomial law
B(n, p). For all all 0 < ε < 1, we have:

P [S ≤ n(1 − ε)p] ≤ exp (−(1/2)ε2np).

P [S ≥ n(1 + ε)p] ≤ exp (−(1/2)ε2np).

Proof. We use the exponential Chebyshev bound, valid for every t > 0:

P [S ≤ n(1 − ε)p] ≤ exp (n(1 − ε)pt)× Eexp (−tS),
with t = ε. The inequality:

exp (−ε)− 1 ≤ ε2/2 − ε

yields the first stated inequality. We proceed likewise to get the second inequality.
	


Lemma 13. Let (�,F,P) be a probability space with a filtration (Fp)p≥0, an
event A ∈ σ(Fp, p ≥ 0), and (τi)i≥1 a family of not necessarily finite stopping
times. We assume that for all i and k

P [A | Fk] 1{τi=k} ≥ γ 1{τi=k},

where γ is a positive constant. Let

B = {∀n, ∃i , n ≤ τi < +∞}.
Then P [B \ A] = 0.

Proof. Define, for n ≥ 0, sn = inf{τi : τi ≥ n}, with the convention inf ∅ = +∞.
Note that sn is a (Fp)p≥0− stopping time. On B, each sn is finite, hence

1B ≤
+∞∑

u=n
1{sn=u} ≤ 1. (2)

For all u ≥ n, we have:

E
(

1{sn=u}1A
∣∣ Fu

) ≥ γ 1{sn=u}.
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Conditioning by Fn and summing, (2) implies that:

E (1A | Fn) ≥ γE (1B | Fn) .
Thanks to the Lévy theorem, see [7] p.263, and to the obvious fact that B ∈
σ(Fp, p ≥ 0), taking the limit n → +∞ in the above inequality yields:

1A ≥ γ 1BP − a.s.

	


Acknowledgements. We gratefully acknowledge D. Piau for useful comments.
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