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Abstract. A new probabilistic representation is presented for solutions of the incompress-
ible Navier-Stokes equations in R3 with given forcing and initial velocity. This representation
expresses solutions as scaled conditional expectations of functionals of a Markov process
indexed by the nodes of a binary tree. It gives existence and uniqueness of weak solutions for
all time under relatively simple conditions on the forcing and initial data. These conditions
involve comparison of the forcing and initial data with majorizing kernels.

1. Introduction

The 3-dimensional Navier-Stokes equations governing the velocity of incompress-
ible fluids with viscosity ν and initial velocity u0 are given by

∂u

∂t
+ u · ∇u = ν�u − ∇p + g

∇ · u = 0 (1)

u0(x) = u(x, 0)

Here u : R3 × [0, ∞) → R3 is the velocity vector, p : R3 × [0, ∞) → R is
the pressure and g : R3 × [0, ∞) → R3 is the external forcing. Although these
equations have been studied extensively over the last century important open ques-
tions remain concerning existence and uniqueness of smooth solutions. Extensive
background and development of results can be found in Temam [18], Doering
and Gibbon [6], Foias, Manley, Rosa and Temam [8], and Lemarié-Rieusset [14].
Ladyzhenskaya [12] provides a recent interesting and accessible review of results.

There are two classes of existence and uniqueness results for solutions to the
Navier-Stokes equations; existence and uniqueness for all time if the forcing and
initial data are small enough in some specified function space, or existence and
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uniqueness for a short time for larger initial data. This paper falls into the former
camp in giving a probabilistic representation in physical space of the solutions of (1)
when a smallness condition is satisfied by the given forcing and initial velocity. This
results in a method of demonstrating existence and uniqueness of weak solutions
(in the sense of Lemarié-Rieusset [14]) for all time under straightforward bounds
on forcing and initial data. The focus is strictly on the Navier-Stokes equations in
R3. Indeed the method developed relies heavily on an integral formulation of the
Navier-Stokes equations in R3 incorporating Leray’s projection onto the subspace
of divergence free vector fields.

The stochastic representation given here has parallels with the representations
given by McKean [15] for solutions of the Kolmogorov-Petrovskii-Piskunov equa-
tion and Le Jan and Sznitman [13] for solutions of the Fourier transformed Navier-
Stokes equations. In the seminal paper [15] McKean gives the solution of the KPP
equation

∂u

∂t
= 1

2

∂2u

∂x2 + u2 − u

with initial data u(x, 0) = f (x), 0 ≤ f (x) ≤ 1 for all x ∈ R, as

u(x, t) = Ex

N(t)∏

i=1

f (W(i)(t))

where W = {W(i) : i ≥ 1} is a branching Brownian motion in R with initial value
x. Roughly here one can think of the Laplacian term 1

2
∂2u
∂x2 as producing the Brown-

ian motion, the u2 term yielding the binary branching, and the −u term resulting
in the exponential waiting time between branches. The existence of the solution is
a consequence of the bound imposed on the initial data.

LeJan and Sznitman in [13] give the solution of the Fourier transformed
Navier-Stokes equations in R3

û(ξ, t) = e−ν|ξ |2t û0(ξ) +
∫ t

s=0
e−ν|ξ |2s

×
{
−i(2π)−3/2Pξ

∫

R3
û(η, t−s) ξ · û(ξ−η, t−s)dη + Pξ ĝ(ξ, t−s)

}
ds

(2)

in the form of a scaled expectation

û(ξ, t) = H(ξ)Eξ,tM

if both

|û0(ξ)|
H(ξ)

and
|ĝ(ξ, t)|
|ξ |2H(ξ)

(3)

are uniformly small enough. Here M is a multiplicative functional of a stochas-
tic cascade rooted at ξ at time t = 0 with inputs derived from initial data and
forcing scaled as in (3) above. The scalar function H : R3 → (0, ∞] is given
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by either H(ξ) = |ξ |−2 or H(ξ) = α|ξ |−1e−α|ξ | for some α > 0. The vector
projection Pξ onto the plane perpendicular to ξ has eliminated the pressure p. The
term û(η, t − s) ξ · û(ξ − η, t − s) yields binary branching in space according to
the normalized Markovian kernel H(η)H(ξ−η)

|ξ |H(ξ)
and the coefficients e−ν|ξ |2t result in

exponential waiting times between branches. This general framework is elaborated
and extended via the introduction of Fourier multiplier majorizing kernels in Bhat-
tacharya et al [2] and [3]. Again the existence of solutions is a consequence of the
functional bounds imposed on the forcing and initial data.

The goal of this article is to construct a binary branching process with jumps
that corresponds naturally to a formulation of solutions in physical space to the
Navier-Stokes equations. It is not too surprising that this stochastic representation
is more complicated than representations of solutions to the KPP equation or the
Fourier transformed Navier-Stokes equations. Majorizing kernel pairs (h, h̃) are
introduced to be used as scaling multipliers. As such they both dominate the forc-
ing and velocity and allow the construction of transition densities. Additionally,
combined with the Laplacian term ν�u, their presence can give rise to a h-Brown-
ian motion. The binary nature of the branching derives from the term u · ∇u. In
this representation, the waiting time between branches is related to first passage
times for Brownian motion rather than being exponential in nature. This somewhat
complicated relationship is in part due to the incompressibility constraint. This
leads to the construction of a Markov process indexed by the binary tree rather
than a Markov process in time. Analogous to the work of LeJan and Sznitman [13]
and Bhattacharya et al [2], [3], the existence of solutions is a consequence of the
bounds imposed on the forcing and initial data via majorizing kernel domination.
The following theorem is representative.

Theorem 1.1. Let h : R3 → (0, ∞] and h̃ : R3 → [0, ∞] with h locally square
integrable and h, h̃ jointly satisfying

∫

R3
h2(x − y)|y|−2dy ≤ h(x) and

∫

R3
h̃(x − y)|y|−1dy ≤ h(x) for all x ∈ R3.

(4)

If for all x ∈ R3 and t > 0,

(4πνt)−3/2|
∫

R3
u0(x − y)e−|y|2/4νt dy| < πνh(x)/11 and |g(x, t)| < (πν)2h̃(x)/11,

then there exists a collection of probability measures {Px : x ∈ R3} defined on a
common measurable space (�, F), a measurable function 	 : (0, ∞)×� → R3,
and a weak solution u(x, t) to the Navier-Stokes equations (1) with

Px({ω : |	(t, ω)| < 2πν/11 for all t > 0}) = 1 for all x ∈ R3

and

u(x, t) = h(x)

∫

�

	(t, ω)dPx(ω) for all x ∈ R3, t > 0.

Furthermore, the solution u is unique in the class {v ∈ (S ′(R3 × (0, ∞)))3 :
|v(x, t)| < 2πνh(x)/11 for all x ∈ R3, t > 0}.
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The probabilistic representation gives the scaled solution of the Navier-Stokes
equations as the expectation of {	(t) : t ≥ 0}, which is defined in Sections 4
and 5 as a function of a Markov process indexed by the nodes of a binary tree.
The scaling, h, is a non-negative majorizing kernel that controls the magnitude of
the initial data u0. The kernel h is paired with a second kernel h̃ that controls the
magnitude of the forcing g. The conditions stipulated by (4) allow the definition
of stochastic transition probabilities for an underlying branching Markov random
walk while controlling the magnitude of the function 	. For example, two majoriz-
ing kernel pairs satisfying (4) are (h(x), h̃(x)) = (π−3|x|−1, (2π2|x|(1 +|x|))−2)

and (h(x), h̃(x)) = (π−3(1 + |x|)−1, (4π4|x|(1 + |x|)3)−1). This representation
also gives a connection between Brownian motion in R3 and solutions to the Na-
vier-Stokes equations.

The results of this paper are largely self-contained. The organization is as fol-
lows. Section 2 gives a definition of the solution space involved along with the
derivation of an integral formulation of the incompressible Navier-Stokes equa-
tions incorporating Leray’s projection. The integral formulation is given explicitly
in terms of the transition density of Brownian motion in R3. Majorizing kernel
pairs are defined and some important properties of classes of majorizing kernels
are derived in Section 3. Section 4 gives a probabilistic representation of the scaled
weak solution to (1) in the case of excessive majorizing kernels. This representation
involves Doob’s h-Brownian motion in R3. This section also contains existence and
uniqueness results in the case that the initial data u0 is dominated appropriately by
an excessive kernel h. An alternate probabilistic representation for general classes
of majorizing kernels is given in Section 5. The existence and uniqueness results
given in this section are consequently more general as well. The proof of Theorem
1.1 is included in Section 5. Section 6 contains a few concluding remarks.

2. An integral reformulation of the incompressible Navier-Stokes equations

The delineation of the definition of solutions and the function spaces in which solu-
tions exist is as follows. Throughout elements of R3 are treated as 3 × 1 vectors.
The usual vector dot product and Euclidean norm | · | are used. D(R3) = C∞

0 (R3)

and D(R3 × (0, ∞)) = C∞
0 (R3 × (0, ∞)) where C∞

0 is the space of C∞ functions
with compact support. S ′(R3 × (0, ∞)) is the space of tempered distributions on
R3 × (0, ∞).

Definition 2.1. A weak solution of the Navier-Stokes equations with initial veloc-
ity u(x, 0) = u0(x) is a vector field u(x, t) ∈ (S ′(R3 × (0, ∞)))3 satisfying the
following:

(i) u is locally square integrable on R3 × (0, ∞),
(ii) ∇ · u = 0, and

(iii) there exists p ∈ S ′(R3 × (0, ∞)) with ∂u
∂t

+ u · ∇u = ν�u − ∇p + g.

After incorporating incompressibility via the Leray projection P and apply-
ing Duhamel’s principle, the pressure term can be dropped and the Navier-Stokes
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equations written in integral form as

u = eνt�u0 −
∫ t

0
eν(t−s)�P∇· (u ⊗ u)(s)ds +

∫ t

0
eν(t−s)�Pg(s)ds (5)

∇ · u0 = 0

where the Leray projection P onto the space of divergence free vector fields of a
vector-valued function v is defined as

Pv = v − ∇ · �−1(∇v).

See Foias et al [8] or Lemarié-Rieusset [14] for discussion. The integral formulation
above is expressed explicitly in Proposition 2.1 that follows.

Definition 2.2. A function h : R3 → R is uniformly locally square integrable if
for all ϕ ∈ D(R3),

sup
x∈R3

∫

R3
|ϕ(x − y) h(y)|2dy < ∞.

Definition 2.3. A weak solution u of the Navier-Stokes equations on R3 × (0, ∞)

is uniformly locally square integrable if for all ϕ ∈ D(R3 × (0, ∞))

sup
x∈R3

∫

R3

∫

(0,∞)

|ϕ(x − y, t) u(y, t)|2dydt < ∞.

The following equivalence theorem can be found in Lemarié-Rieusset [14].

Theorem 2.1. If u is uniformly locally square integrable, then u is a weak solution
of (1) if and only if u is a solution of (5).

The following definitions are useful in stating Propostion 2.1. Let

K(y, t) = (2πt)−3/2e−|y|2/2t , t > 0, y ∈ R3

denote the transition density of a 3-dimensional Brownian motion starting at the
origin at time t = 0. For y ∈ R3 with |y| > 0, let ey = y/|y| denote the unit vector
in the direction of y and let Py denote the 3 by 3 matrix that projects vectors onto
the space perpendicular to y; so that the entries of Py are

(Py)i,j = δi,j − (ey)i(ey)j .

Define the bilinear forms b1 and b2 on R3 \ {(0, 0, 0)} × (R3)2 via

b1(y; u, v) = (u · ey)Pyv + (v · ey)Pyu

and

b2(y; u, v) = b1(y; u, v) + u · (I − 3eye
t
y)v ey.
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Proposition 2.1. If u : R3×(0, ∞) → R3 is locally square integrable and satisfies

u(x, t) =
∫

R3
u0(x − y)K(y, 2νt)dy +

∫ t

s=0

∫

R3

{ |z|
4νs

K(z, 2νs)

×b1(z; u(x − z, t − s), u(x − z, t − s))

+
( 1

|z|K(z, 2νs) − 3

4π |z|4
∫

{y:|y|≤|z|}
K(y, 2νs)dy

)

×b2(z; u(x − z, t − s), u(x − z, t − s))

+
(
K(z, 2νs)Pz − 1

4π |z|3 (I − 3eze
t
z)

∫

{y:|y|≤|z|}
K(y, 2νs)dy

)

×g(x − z, t − s)

}
dzds, (6)

then u is a weak solution to (1).

This integral formulation incorporating incompressibility is key to the proof of
Theorem 1.1 and the other existence and uniqueness results given in Sections 4 and
5. The following lemmas are used in the proof of the proposition. Throughout the
Fourier transform on R3 is defined as

f̂ (ξ) = (2π)−3/2
∫

R3
e−ix·ξ f (x)dx

and understood in a distributional sense. Then also

f (x) = (2π)−3/2
∫

R3
eix·ξ f̂ (ξ)dξ.

The bilinear forms b1 and b2 defined above and the matrix I − 3eze
t
z can be

bounded as follows.

Lemma 2.1. For any y ∈ R3 with |y| 	= 0 and u, v ∈ R3,

|b1(y; u, v)| ≤ |u| |v|, (7)

|b2(y; u, v)| ≤ 2|u| |v|, (8)

and

|(I − 3eye
t
y)u| ≤ 2|u|. (9)

Proof. Fix y, u, v ∈ R3 with |y| 	= 0. Let α = eu · ey , β = ev · ey , and γ = eu · ev .
For a, b ∈ [0, 1], f (a, b) := a(1 − b2)1/2 + b(1 − a2)1/2 ≤ 1 with equality for
a2 + b2 = 1. The triangle inequality gives

|b1(y; u, v)| = |u |v| |αPyev + βPyeu| ≤ |u| |v|f (|α|, |β|) ≤ |u| |v|.
To derive (8), first notice that

|b1(y; u, v)|2 = |u|2|v|2(α2(1 − β2) + 2αβ(γ − αβ) + β2(1 − α2))
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and

|γ − αβ| = |eu · Pyev| ≤ |Pyeu| |Pev| = (1 − α2)1/2(1 − β2)1/2.

Then

|b2(y; u, v)|2 = |b1(y; u, v)|2 + (u · (I − 3eye
t
y)v)2

= |u|2 |v|2 (α2 + β2 + α2β2 + (γ − 2αβ)2)

≤ |u|2 |v|2 (α2 + β2 + α2β2 + ((1 − α2)1/2(1 − β2)1/2 + |αβ|)2)

= |u|2 |v|2 (1 + α2β2 + 2|αβ|f (|α|, (1 − β2)1/2))

≤ |u|2 |v|2 (1 + |αβ|)2

≤ (2|u| |v|)2.

To verify (9) note that

|(I − 3eye
t
y)u|2 = u · (I + 3eye

t
y)u = |u|2(1 + 3α2) ≤ 4|u|2.


�
Lemma 2.2. Suppose that for each fixed s > 0, �(·, s) : R3 → R3×3 has Fourier
transform

�̂(ξ, s) = (2π)−3/2e−ν|ξ |2sPξ .

Then for x ∈ R3 with |x| 	= 0,

�(x, s) = K(x, 2νs)Px − (4π)−1|x|−3(I − 3exe
t
x)

∫

{y:|y|≤|x|}
K(y, 2νs)dy.

The result presented in Lemma 2.2 is not new; it goes back at least to Solonnikov
[17], who used it to calculate estimates of solutions of the linearized Navier-Stokes
equations. It appears again in Koch and Solonnikov [11] in a study of the Stokes
problem. More recently, Thomann and Guenther [19] use it to compute an explicit
formula for the fundamental solution of the linearized Navier-Stokes equation in
terms of special functions. The representation given here is more explicitly stated
in terms of K , the transition density for Brownian motion, than that of Solonnikov
[17], Koch and Solonnikov [11] or Thomann and Guenther [19]. The derivation is
included for completeness.

Proof. Fix s > 0 and notice that K̂(ξ, s) = (2π)−3/2e−ν|ξ |2s . Suppose that
γ̂0(ξ) = (2π)−3/2|ξ |−2e−ν|ξ |2s . Some computation gives

γ0(x) = (2π)−3/2(2νs)−1/2|x|−1
∫ |x|

ρ=0
e−ρ2/4νsdρ. (10)

(For computational details of the Fourier transform for radial functions, see Folland
[9], page 247.) If γi,j : R3 → R is defined via

γ̂i,j (ξ) = −(2π)−3/2 ξiξj

|ξ |2 e−ν|ξ |2s ,
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then

γi,j (x) = ∂2

∂xi∂xj

γ0(x)

= (2π)−3/2(2νs)−1/2
{
δi,j

(
|x|−2e−|x|2/4νs − |x|−3

∫ |x|

ρ=0
e−ρ2/4νsdρ

)

+xixj |x|−2
(

3|x|−3
∫ |x|

ρ=0
e−ρ2/4νsdρ

−(3|x|−2 + (2νs)−1)e−|x|2/4νs
)}

. (11)

Combining (10) and (11) gives

�i,j (x, s) = K(x, 2νs)δi,j + γi,j (x)

= K(x, 2νs)(Px)i,j − (2π)−3/2(2νs)−1/2|x|−3

×
( ∫ |x|

ρ=0
e−ρ2/4νsdρ − |x|e−|x|2/4νs

) (
δi,j − 3xixj |x|−2

)

To complete the proof note that

∫

{y:|y|≤|x|}
K(y, 2νs)dy = (πνs)−1/2

( ∫ |x|

ρ=0
e−ρ2/4νsdρ − |x|e−|x|2/4νs

)
. (12)


�
The following lemma is given without proof.

Lemma 2.3. Suppose that V : R3 → R3 has Fourier transform

V̂ (ξ) = i(2π)−3/2
∫

R3
v̂(η) ξ · v̂(ξ − η)dη.

Then V is given by

Vk(x) =
3∑

j=1

∂

∂xj

(vk(x)vj (x)).

Lemma 2.4. For V as defined in Lemma 2.3,
∫

R3
�(y, s)V (x − y)dy

= −
∫

R3

{
(4νs)−1|y|K(y, 2νs)b1(y; v(x − y), v(x − y)) +

(
|y|−1K(y, 2νs)

−3(4π)−1|y|−4
∫

{z:|z|≤|y|}
K(z, 2νs)dz

)
b2(y; v(x−y), v(x−y))

}
dy.
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Proof. Lemma 2.2 gives

�i,j (y, s) = δi,j g1(|y|) + yiyjg2(|y|)
where for r > 0

g1(r) = (4πνs)−3/2e−r2/4νs − (4π)−1r−3
∫

{y:|y|≤r}
K(y, 2νs)dy

and

g2(r) = 3(4π)−1r−5
∫

{y:|y|≤r}
K(y, 2νs)dy − (4πνs)−3/2r−2e−r2/4νs .

A term by term integration by parts leads to the vector-valued function
∫

R3
�(y, s)V (x − y)dy

=
∫

R3

{
(2νs)−1K(y, 2νs)

(
(ey · v(x − y))2 y − y · v(x − y) v(x − y)

)

+g2(|y|)
(
2(y · v(x − y))v(x − y)+(|v(x − y)|2−5(ey · v(x − y))2)y

)}
dy

=
∫

R3

{
− (4νs)−1|y|K(y, 2νs) b1(y; v(x−y), v(x−y))

+|y|g2(|y|) b2(y; v(x − y), v(x − y))
}
dy.


�
Proof of Proposition 2.1:. The incorporation of Leray’s projection into the Fourier
transformed Navier-Stokes equations as seen in (2) gives a convenient formulation
for weak solutions u of (1). For fixed s, apply the inverse Fourier transform to the
Fourier Navier-Stokes equations (2), letting V represent the vector-valued function
with Vk(x, s) = ∑3

j=1
∂

∂xj
(uk(x, s)uj (x, s)), and use Lemmas 2.2, 2.3 and 2.4 to

see that

u(x, t) =
∫

R3
u0(x − y)K(y, 2νt)dy +

∫ t

s=0

{
−

∫

R3
�(y, s)V (x − y, t − s)dy

+
∫

R3
�(y, s)g(x − y, t − s)dy

}
ds

=
∫

R3
u0(x − y)K(y, 2νt)dy +

∫ t

s=0

{ ∫

R3

(
(4νs)−1|y|K(y, 2νs)

×b1(y; u(x − y, t − s), u(x − y, t − s)

)

+
(
|y|−1K(y, 2νs) − 3(4π)−1|y|−4

∫

{z:|z|≤|y|}
K(z, 2νs)dz

)

×b2(y; u(x − y, t − s), u(x − y, t − s))

)
dy

+
∫

R3
�(y, s)g(x − y, t − s)dy

}
ds.


�
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3. Navier-Stokes majorizing kernel pairs

The majorizing kernel pairs defined below are used to control the magnitude of the
forcing and the initial velocity in a way that allows the control of the magnitude
of the velocity over time. The first component of the pair, h, dominates the veloc-
ity. The second component, h̃, dominates the forcing in a way tailored to maintain
the velocity domination. The conditions specifying the majorizing kernels allow
construction of transition probabilities based on the integral representation of the
Navier-Stokes equations given in Proposition 2.1 above. These kernels play a role
in physical space analogous to the role played in Fourier space by the scaling func-
tions of Le Jan and Sznitman [13] and the Fourier multiplier majorizing kernels
introduced by Bhattacharya et al in [2].

Definition 3.1. The pair (h, h̃) : R3 ×R3 → (0, ∞]× [0, ∞] is a majorizing ker-
nel pair with constant pair (γ, γ̃ ) ∈ (0, ∞)× [0, ∞) if h is lower semi-continuous
and uniformly locally square integrable,

sup
x∈R3

∫
R3 h2(x − y)|y|−2dy

h(x)
= γ < ∞, (13)

and

sup
x∈R3

∫
R3 h̃(x − y)|y|−1dy

h(x)
= γ̃ < ∞.

If γ = γ̃ = 1, we say that (h, h̃) is a standard majorizing kernel pair.

Notice that both h and h̃ are finite a.e. with respect to Lebesgue measure and
h̃(x) = 0 a.e. if and only if γ̃ = 0. A simple scaling argument shows that if a major-
izing kernel pair (h, h̃) has constant pair (γ, γ̃ ) with γ̃ > 0, then (γ −1h, (γ γ̃ )−1h̃)

is a standard majorizing kernel pair.
Recall from potential theory that an excessive function h : R3 → (0, ∞] satis-

fies both

sup
x∈R3,t>0

∫
R3 h(y)K(x − y, 2νt)dy

h(x)
≤ 1 and lim

t↓0

∫

R3
h(y)K(x − y, 2νt)dy = h(x).

See Bass [1] or Doob [7] for background. Majorizing kernel pairs of particular
interest are those with the first member h being excessive.

Definition 3.2. A majorizing kernel pair (h, h̃) is an excessive majorizing kernel
pair if h is excessive.

The initial data u0 and the forcing g will be compared, respectively, to h and h̃.

Definition 3.3. The pair (u0, g) = (u0, {g(·, t) : t ≥ 0}) is (h, h̃)-admissible if

sup
x∈R3

|u0(x)|
h(x)

< ∞ and sup
x∈R3,t≥0

|g(x, t)|
h̃(x)

< ∞.
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Example 1. Leth0(x)=|x|−1 and let h̃(x)= h̃0(|x|)with
∫

R3 h̃(x)dx = 4π
∫ ∞
r=0 r2

h̃0(r)dr < ∞. Then (h0, h̃) is an excessive majorizing kernel pair with constant
pair (π3, 4π2

∫ ∞
r=0 r2h̃0(r)dr). This can be seen by observing that h0 is uniformly

locally square integrable and for x 	= 0,

∫

R3
|y|−1K(x − y, t)dy = |x|−1 P(|Z| < |x|/√t),

where Z is a standard normal r.v.,
∫

R3
|y|−2|x − y|−2dy = π3|x|−1,

and

|x|
∫

R3
|y|−1h̃(x − y)dy = 4π

∫ ∞

r=0
min{r, |x|} r h̃0(r)dr.

The value on the left above increases to 4π
∫ ∞
r=0 r2h̃0(r)dr = ∫

R3 h̃0(|y|)dy as
|x| → ∞. As an example, let h̃0(r) = r−2(1+r)−(1+ε) for some fixed ε > 0. Then
(u0, g) is (h0, h̃)-admissible if supx∈R3 |x||u0(x)| < ∞ and supx∈R3,t>0 |x|2(1 +
|x|)1+ε|g(x, t)| < ∞.

The Fourier transform of the function h0 given here is the Le Jan-Sznitman scal-
ing function |ξ |−2 that arises naturally in the study of the Fourier Navier-Stokes
equations. See Le Jan and Sznitman [13] for the original study. See also Bhattach-
arya et al [2] for refinement of the Fourier space majorizing kernel method. See
also the remark following Example 4.

The following propositions illustrate some of the structure of the class of maj-
orizing kernel pairs.

Proposition 3.1. Let (h, h̃) be a standard (excessive) majorizing kernel pair.

(a) Then

(h(· − µ), h̃(· − µ)), µ ∈ R,

(σh(σ ·), σ 3h̃(σ ·)), σ > 0,

and

(h(A·), h̃(A·)), A a 3 by 3 matrix with AtA = I,

are also standard (excessive) majorizing kernel pairs.
(b) Let F denote a probability distribution function on R3. Then

(∫

R3
h(· − y)dF (y),

∫

R3
h̃(· − y)dF (y)

)

is also a (excessive) majorizing kernel pair with constant pair (γ, γ̃ ) ∈ (0, 1]×
(0, 1].
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Proof. Part (a) is easily checked via the appropriate change of variables. Part (b) fol-
lows from an application of the Cauchy-Schwartz inequality followed by Fubini’s
Theorem. 
�
Proposition 3.2. Let {(hj , h̃j ) : j ≥ 1} be a sequence of (excessive) majorizing
kernel pairs with corresponding constant pairs {(γj , γ̃j ) : j ≥ 1}.
(a) Then (h1 ∧ h2, h̃1 ∧ h̃2) is a (excessive) majorizing kernel pair with constant

pair (γ, γ̃ ) ∈ (0, γ1 ∧ γ2] × [0, γ̃1 ∧ γ̃2].
(b) For any p ∈ (0, 1)

(h
p
1 h

1−p
2 , h̃

p
1 h̃

1−p
2 )

is a (excessive) majorizing kernel pair with constant pair (γ, γ̃ ) ∈ (0, γ
p
1 γ

1−p
2 ]

× [0, γ̃
p
1 γ̃

1−p
2 ].

(c) For {pj : j ≥ 1} with
∑∞

j=1 pj = 1 and pj ≥ 0 for each j ≥ 1

( ∞∑

j=1

pjhj ,

∞∑

j=1

pj h̃j

)

is a (excessive) majorizing kernel pair with constant pair (γ, γ̃ )

∈ (0,
∑∞

j=1 pjγj ] × [0,
∑∞

j=1 pj γ̃j ].

Proof. Part (a) is obvious. Apply Hölder’s inequality to deduce (b). Part (c) again
follows from the Cauchy-Schwartz inequality and Fubini’s Theorem. 
�
Definition 3.4. The functions hj : R3 → (0, ∞], j = 1, 2 are equivalent if for
some c ∈ (1, ∞),

c−1h1(x) ≤ h2(x) ≤ ch1(x) f or all x ∈ R3.

Proposition 3.3. If h1 and h2 are equivalent and (h1, h̃) is a majorizing kernel
pair, then (h2, h̃) is also a majorizing kernel pair.

Proof. The proof follows easily from the definitions. 
�
Example 2. The majorizing kernel h0 of Example 1 has a singularity at the ori-
gin. Propositions 3.1 and 3.2, can be used to construct a kernel with a countable
number of singularities as follows. Take {µj : j ≥ 1} to be a sequence in R3 and
{pj : j ≥ 1} with

∑∞
j=1 pj = 1 and pj ≥ 0 for each j ≥ 1. Let

h(x) =
∞∑

j=1

pj |x − µj |−1

and

h̃(x) =
∞∑

j=1

pj h̃0(|x − µj |)

for some h̃0 : [0, ∞) → [0, ∞] with
∫ ∞
r=0 r2h̃0(r)dr < ∞. Note that if h̃0 has a

singularity, then h̃ itself will have a countable number of singularities as well. (h, h̃)

is a majorizing kernel pair with constant pair (γ, γ̃ ) ∈ (0, π3]×(0,
∫

R3 h̃0(|x|)dx].
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Example 3. The operations of Propositions 3.1 and 3.2 can also be used to produce
bounded kernels based on h0. For example, convolving h0 with the probability
density f (y) = (2π |y|)−1(1 + |y|)−3 yields the bounded kernel

h1(x) = (1 + |x|)−1.

Taking h̃(x) = ∫
R3 h̃0(|x−y|)f (y)dy yields a majorizing kernel pair with constant

pair (γ, γ̃ ) ∈ (0, π3] × (0,
∫

R3 h̃0(|x|)dx].
Using Proposition 3.3 we see that any radial function h that decreases as |x|

increases with lim|x|→0 |x|h(x) = c ∈ [0, ∞) and lim|x|→∞ |x|h(x) = C ∈
(0, ∞) can be used as a majorizing kernel when paired with an appropriate h̃.
Indeed kernels h of this description are in the Marcinkiewicz space L3,∞; see
Cannone and Karch [5] for a related study of stability results for Navier-Stokes
equations.

Example 4. Let H(x) = (1+|x|2)−1. Although H is not excessive, it is uniformly
locally square integrable and

∫

R3
H(y)K(x − y, t)dy ≤ (1 + 3e−2/3)H(x) for all x ∈ R3.

Additionally,
∫

R3
H 2(y)|x − y|−2dy = π2H(x) for all x ∈ R3.

However, it is not difficult to show that for any h̃ with
∫

R3 h̃(y)dy > 0,

sup
x∈R3

(H(x))−1
∫

R3
|y|−1h̃(x − y)dy = ∞.

This gives the majorizing kernel pair (H, 0) with constant pair (π2, 0). Thus (u0, g)

being (H, 0)-admissible corresponds to supx∈R3(1 + |x|2)|u0(x)| < ∞ and the
forcing g being identically 0. Note that Ĥ (ξ) = √

π/2|ξ |−1e−|ξ |. This is the sec-
ond of the two Fourier Navier-Stokes majorizing kernels introduced by Le Jan and
Sznitman [13].

Remark. Although Examples 1 and 4 are suggestive, it is not generally true that the
Fourier transform of a majorizing kernel h satisfying (13) is a Fourier multiplier
majorizing kernel or vice versa. The key to the correspondence in Examples 1 and
4 is the equality

∫
h2(x − y)|y|−2dy = γ h(x).

On the Fourier side, this becomes

ĥ ∗ ĥ(ξ) = cγ |ξ |ĥ(ξ)

for a fixed constant c. The condition H ∗ H(ξ) ≤ C|ξ |H(ξ) is that required by
Bhattacharya et al [2] for Fourier multiplier majorizing kernels for the Fourier
transformed Navier-Stokes equations.
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Example 5. For p ∈ (1, 2], let Hp(x) = (1 + |x|)−p. Then (Hp, 0) is a majoriz-
ing kernel pair with constant pair (γ, 0), γ ≤ π4−p(1 + 1/

√
2)p−1. This can be

deduced by first noting that H as defined in Example 4 is equivalent to (1 + |x|)−2

with c = 1+1/
√

2 and then applying (b) of Proposition 3.2 using H and the kernel
(1 + |x|)−1 of Example 3.

4. Construction of the stochastic representation and existence
and uniqueness with excessive kernels.

This section opens by introducing the notation necessary to define tree-indexed
Markov processes. After defining some crucial transition densities, the integral
equation (6) of Proposition 2.1 is reformulated in terms of the transition densities
and the velocity and forcing scaled respectively by h and h̃ for a majorizing kernel
pair (h, h̃). The underlying tree-indexed Markov process and stochastic recursion
are then defined and described. The existence and uniqueness results for excessive
kernels follow.

Let V := ∪∞
n=0{0, 1}n denote the full binary tree with root φ = {0, 1}0. Let

∂V := {0, 1}N denote the boundary of V . For v =< v1, ..., vn >∈ {0, 1}n, we say
that the magnitude of v, |v| = n. For v ∈ V define v|0 = φ and for v 	= φ and
n ≥ 1, v|n =< v1, ..., vn >. If for some n < |v|, v|n = w, we say that w is an
ancestor of v and, conversely, that v is a descendant of w. For v ∈ V with |v| = n,
0 ≤ n < ∞, set v̄ = v|(|v| − 1) and v ∗ k =< v1, ..., vn, k >, k = 0, 1. Thus v

is the child of v̄ and has children v ∗ 0 and v ∗ 1. Although it may currently seem
nonsensical, it is convenient in the sequel to interpret φ̄ as the precursor of the root
φ. For v, w ∈ V with v 	= w, denote the last common ancestor of v and w as v ∧w.
This is defined as follows. Let nv,w = max{m ≥ 0 : v|m = w|m} and then take
v ∧ w = v|nv,w. We say that W ⊂ V is a rooted binary sub-tree if φ ∈ W , for
any v ∈ W , v|k ∈ W for all k < |v|, and for any v ∗ j ∈ W , j = 0, 1, then
v ∗ (1− j) ∈ W as well. For a finite rooted binary sub-tree W , define the boundary
of W , ∂W , as the elements of W which have no descendants in W; that is

∂W = {v ∈ W : v ∗ 0 	∈ W}.

The interior of W , W◦ = W \ ∂W , consists of the elements of W that have
descendants in W . For example, a Galton-Watson tree with a single progenitor and
offspring distribution concentrated on 0 and 2 is a rooted binary sub-tree. If the
expected number of offspring is less than or equal to 1, then the binary sub-tree is
finite with probability 1.

Let (B, B) be a measurable space and let X = {Xv : v ∈ V} be a V-indexed col-
lection of B-valued random variables defined on a common probability space. Let
Fv = σ(Xv), Gv = σ({Xv|n : n ≤ |v|}) denote the σ -field generated by the collec-

tion of r.v.’s indexed by v and v’s ancestors, and Hv = σ({Xw : w

∣∣∣|v| = v}) denote

the σ -field generated by the collection of r.v.’s indexed by v and v’s descendants.
Let Fφ̄ denote the trivial σ -field.
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Definition 4.1. X is a V-indexed Markov process if for any v ∈ V with |v| < ∞,
Hv∗0 and Hv∗1 are conditionally independent given Fv , so that

P(A1 ∩ A2|Fv) = P(A1|Fv)P (A2|Fv) a.s. P for Ak ∈ Hv∗k, k = 0, 1,

and for any v, w ∈ V and any Hw-measurable random variable Y with E|Y | <

∞,

E(Y
∣∣Gv) = E(Y

∣∣Fv∧w) a.s. P .

The distribution of a V-indexed Markov process is completely specified by the
conditional distributions of the Xv given Fv̄ for v ∈ V .

The integral form of the incompressible Navier-Stokes equation will be ex-
pressed in terms of an expectation of a functional of a V-indexed Markov process.
The following conditional densities involving the majorizing kernel pairs will be
used to specify the transition probabilities and thus the distribution. Let (h, h̃) be
a majorizing kernel pair. Fix x ∈ R3 and define a probability density on R3 × R3

via

f (y, z|x) = |y|−1|z|−4h2(x − z)1[|z| > |y|]
2π

∫
R3 |z|−2h2(x − z)dz

. (14)

If h̃ is not identically 0, likewise define

f̃ (y, z|x) = |y|−1|z|−3h̃(x − z)1[|z| > |y|]
2π

∫
R3 |z|−1h̃(x − z)dz

. (15)

The above densities will provide spatial transition densities for our V-indexed Mar-
kov process. Define two conditional waiting time densities for s > 0 and y ∈ R3

via

f0(s|y) = (2π)−1/2(2ν)−3/2s−5/2|y|3e−|y|2/4νs = 2πs−1|y|3K(y, 2νs) (16)

and

f1(s|y) = (4πν)−1/2s−3/2|y|e−|y|2/4νs = 4πν|y|K(y, 2νs). (17)

Adjoin a trap state θ to R3, and define

J (y, t |x) =






(h(x))−1h(y)K(x − y, 2νt) if x, y ∈ R3, h(x) < ∞;
1 − (h(x))−1

∫
R3 h(y)K(x − y, 2νt)dy if x ∈ R3, y = θ;

1 if x = y = θ

0 otherwise.
(18)

If h is excessive, this is the transition density of a h-Brownian motion on R3 ∪
{θ}.

For a majorizing kernel pair (h, h̃) and x ∈ R3 ∪ {θ}, define

χ0(x) =
{

(h(x))−1u0(x) if x ∈ R3

0 if x = θ
(19)
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and

ϕ(x, t) = g(x, t)

h̃(x)
. (20)

Also let

m(x) =
∫

R3 |y|−2h2(x − y)dy

8πνh(x)
, (21)

and

m̃(x) =
∫

R3 |y|−1h̃(x − y)dy

8πνh(x)
. (22)

Proposition 4.1. Suppose that the majorizing kernel pair (h, h̃) is used to define
f , f̃ , f0, f1, J , χ0, ϕ, m, and m̃ as given in (14) through (22). If h(x)χ(x, t) is
locally square integrable and χ satisfies

χ(x, t) =
∫

R3
χ0(y)J (y, t |x)dy

+
∫ t

s=0

∫

y∈R3

∫

z∈R3

{
m(x)

(
f0(s|z)f (y, z|x)

×b1(z; χ(x − z, t − s), χ(x − z, t − s))

+
(

2f1(s|z)f (y, z|x) − 3f1(s|y)f (y, z|x)
)

×b2(z; χ(x − z, t − s), χ(x − z, t − s))

)

+m̃(x)
(

2f1(s|z)f̃ (y, z|x)Pzϕ(x − z, t − s)

−f1(s|y)f̃ (y, z|x)(I − 3eze
t
z)ϕ(x − z, t − s)

)}
dzdyds (23)

then u(x, t) = h(x)χ(x, t) is a weak solution to (1).

Proof. Suppose that χ(x, t) satisfies (23) above and define u(x, t) = h(x)χ(x, t).
Note that

∫

y∈R3
f (y, z|x)dy = |z|−2h2(x − z)∫

R3 |y|−2h2(x − y)dy

and

∫

y∈R3
f̃ (y, z|x)dy = |z|−1h̃(x − z)

∫
R3 |y|−1h̃(x − y)dy

.
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Then

u(x, t) =
∫

y∈R3
u0(y)K(x − y, 2νt)dy

+
∫ t

s=0

∫

z∈R3

{
h(x)m(x)∫

R3 |y|−2h2(x − y)dy

×
(

f0(s|z)
|z|2 b1(z; u(x − z, t − s), u(x − z, t − s))

+
(2f1(s|z)

|z|2 −
∫

|y|≤|z|
3f1(s|y)

2π |y||z|4 dy
)

b2(z; u(x−z, t−s), u(x−z, t−s))

)

+ h(x)m̃(x)
∫

R3 |y|−1h̃(x − y)dy

(
2f1(s|z)

|z| Pzg(x − z, t − s)

−
∫

|y|≤|z|
f1(s|y)

2π |y||z|3 dy (I − 3eze
t
z)g(x − z, t − s)

)}
dzds

=
∫

y∈R3
u0(y)K(x − y, 2νt)dy

+
∫ t

s=0

∫

z∈R3

{( |z|K(z, 2νs)

4νs
b1(z; u(x − z, t − s), u(x − z, t − s))

×
(K(z, 2νs)

|z| − 3

4π |z|4
∫

|y|≤|z|
K(y, 2νs)dy

)

×b2(z; u(x − z, t − s), u(x − z, t − s))

)

+
(

K(z, 2νs) Pzg(x − z, t − s)

− 1

4π |z|3
∫

|y|≤|z|
K(y, 2νs)dy (I − 3eze

t
z)g(x − z, t − s)

)}
dzds.

The result then follows from Proposition 2.1. 
�
It is helpful to combine the spatial and temporal transition densities f , f̃ , f0

and f1 given in equations (14) through (17) via the following randomization. Let
{pk : 1 ≤ k ≤ 5} satisfy pk > 0 and

∑5
k=1 pk = 1. To appropriately balance the

randomization, fix p ∈ (0, 1/2] and take p1 = p/11, p2 = 4p/11, p3 = 6p/11,
and p4 = p5 = (1 − p)/2. Note that p1 + p2 + p3 = p ≤ 1/2. For fixed x ∈ R3

let

f (y, z, s, k|x) =






p1f0(s|z)f (y, z|x) if k = 1
p2f1(s|z)f (y, z|x) if k = 2
p3f1(s|y)f (y, z|x) if k = 3
p4f1(s|z)f̃ (y, z|x) if k = 4
p5f1(s|y)f̃ (y, z|x) if k = 5.

(24)

This can be thought of as the joint conditional density of a quadruple (Y, Z, τ, κ)

taking values in R3 × R3 × (0, ∞) × {1, 2, 3, 4, 5}.
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We now define the tree-indexed Markov process that underlies our probabi-
listic representation. Let X = {({Vv(t) : t ≥ 0}, Xv, Yv, Zv, τv, κv) : v ∈ V}
be a V-indexed Markov process with the following transition probabilities. First
assume that, given that Xv̄ = x, {Vv(t) : t ≥ 0} is a h-Brownian motion with
initial value x and transition density J as defined in (18) above. Note that each Vv

is itself a Markov process which can be assumed to be continuous with probability
1; see Doob [7], Part 2, Chapter X for background. Take the transition density of
(Yv, Zv, τv, κv) given that Xv̄ = x to be given by f (y, z, s, k|x) as defined in (24),
and then set

Xv = Xv̄ − Zv.

Finally assume that for all v ∈ V , the process {Vv(t) : t ≥ 0} and the ensemble
(Xv, Yv, Zv, τv, κv) are conditionally independent given Xv̄ .

Notice that the distribution of ({Vv(t) : t ≥ 0}, Xv, Yv, Zv, τv, κv) only de-
pends on the ensemble ({Vv̄(t) : t ≥ 0}, Xv̄, Yv̄, Zv̄, τv̄, κv̄) through the r.v. Xv̄ .
The ensemble {Xv : v ∈ V} is itself a branching Markov random walk. The distri-
bution of X then depends on the initial value Xφ̄ . Denote the probability measure
corresponding to Xφ̄ = x by Px and the expectation with respect to this probability
measure by Ex .

For v ∈ V , define the random functional ϒv as follows. Let Bv denote the
random bilinear operator

Bv( · , · ) =
{

b1(Zv; · , · ) if κv = 1
(−1)κv b2(Zv; · , · )/2 if κv = 2, 3

(25)

and Cv denote the random matrix

Cv =
{

PZv if κv = 4
−(I − 3eZve

t
Zv

)/2 if κv = 5.
(26)

Then set

ϒv(t) = χ0(Vv(t))

+11m(Xv̄)

p
Bv(ϒv∗0(t − τv), ϒv∗1(t − τv))1[κv = 1, 2, 3] ∩ [τv ≤ t]

+4m̃(Xv̄)

1 − p
Cvϕ(Xv, t − τv)1[κv = 4, 5] ∩ [τv ≤ t]. (27)

Notice that the recursion implicit in the definition of ϒv terminates if τv > t or
κv = 4 or 5. That is

ϒv(t)1[τv > t] = χ0(Vv(t)) (28)

and

ϒv(t)1[κv = 4, 5]1[τv ≤ t] = χ0(Vv(t)) + 4m̃(Xv̄)

1 − p
Cvϕ(Xv, t − τv). (29)
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The random space-time branching mechanism giving rise to ϒφ can be ex-
plained as follows. Initialize the Markov process X by taking Xφ̄ = x ∈ R3.
Activate the h-Brownian motion Vφ(t) starting at Xφ̄ at time t = 0. This motion
will run until time t with χ0(Vφ(t)) being used in calculating the first term of ϒφ(t).
If Vφ has entered the trap state θ this term has value 0. Although the process Vφ

runs until time t , if τφ is less than t the path is deactivated at time τφ . If deactivation
occurs before time t , there are two possibilities. If κφ = 4 or 5, the forcing is input
into ϒφ by evaluating Cφϕ at location Xφ and time t − τφ . If κφ = 1, 2 or 3, two
new active paths V0 and V1 are started at location Xφ at time τφ . The distributions of
these newly activated paths are conditionally independent given Xφ . If the paths V0
and V1 have been activated, then the process repeats on each of them with Xφ taking
the place of Xφ̄ and t −τφ taking the place of t . This is illustrated in Figure 1. Notice
that all paths activated by time t are used in calculating ϒφ(t), even though they
may be deactivated before time t . For example evaluating the stochastic recursion
for Figure 1 gives

ϒφ(t) = χ0(Vφ(t)) + 11m(Xφ̄)

p
Bφ(ϒ0(t − τφ), ϒ1(t − τφ))

with

ϒ0(t − τφ) = χ0(V0(t − τφ)) + 4m̃(Xφ)

1 − p
C0ϕ(X0, t − τφ − τ0)

and

ϒ1(t − τφ) = χ0(V1(t − τφ))

+11m(Xφ)

p
B1(χ0(V1,0(t − τφ − τ1)), χ0(V1,1(t − τφ − τ1))).

Here t is evaluated at the end of the time interval illustrated.

Remark. Although it is not obvious from the construction above, the waiting times
τv can be tied to first passage times for Brownian motion. Here’s a sketch of an
alternate construction that highlights the relationship. For simplicity, just consider
a single v ∈ V . Let {W(t) : t ≥ 0} be a Brownian motion in R3 with W(0) = 0 and
transition density K(y, 2νt), independent of Xv̄ and the ensemble ({Vv(t) : t ≥
0}, Xv, Yv, Zv, κv). Write W(t) = (W(1)(t), W(2)(t), W(3)(t)) and for a > 0 let

T (i)(a) = inf{s > 0 : W(i)(s) = a} for i = 1, 2, 3.

The T (i)(a)’s are independent stopping times with individual densities (4πν)−1/2×
s−3/2ae−a2/4νs . Let

T (0)(a) =
( 3∑

i=1

(T (i)(a))−1
)−1

.
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Fig. 1. An illustration of an initial segment of the random process X with κφ = 1, 2 or 3,
κ0 = 4 or 5, and κ1 = 1, 2 or 3. The deactivated paths are represented by dotted lines

It is easy to check that T (0)(a) has density (2π)−1/2(2ν)−3/2s−5/2a3e−a2/4νs . Note
that T (0) is not a stopping time with respect to the usual filtration associated with
the Brownian motion W . Let

τ̃v =





T (0)(|Zv|) if κv = 1
T (1)(|Zv|) if κv = 2, 4
T (1)(|Yv|) if κv = 3, 5.

It is easy to check that, conditioned on the value of Xv̄ , the joint distribution
of ({Vv(t) : t ≥ 0}, Xv, Yv, Zv, τ̃v, κv), is the same as that of ({Vv(t) : t ≥
0}, Xv, Yv, Zv, τv, κv). This allows us to think of the τv’s as waiting times that
reflect excursion levels in orthogonal directions of a hidden independent Brownian
motion in R3.

Theorem 4.1. Let (h, h̃) be an excessive majorizing kernel pair. If ϒφ is as defined
in (27) and Ex |ϒφ(t)| ≤ M < ∞ for all x and t , then

u(x, t) = h(x)Exϒφ(t)

is a weak solution to the Navier-Stokes equations.
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Proof. ϒ0(t − τφ) and ϒ1(t − τφ) are conditionally independent given Fφ , giving

Ex(ϒφ(t)|Fφ) = χ0(Vφ(t))

+m(x)

{
p−1

1 b1(Zφ; Ex(ϒ0(t − τφ)|Fφ), Ex(ϒ1(t − τφ)|Fφ))

1 × [κφ = 1] +
(

2p−1
2 1[κφ = 2] − 3(p3)

−11[κφ = 3]
)

b2(Zφ; Ex(ϒ0(t − τφ)|Fφ), Ex(ϒ1(t − τφ)|Fφ))

}
1[τφ ≤ t]

+m̃(x)

{
2p−1

4 1[κφ =4]PZφ − (p5)
−11[κφ = 5](I − 3eZφ et

Zφ
)

}

ϕ(x − Zφ, t − τφ)1[τφ ≤ t].

Since also

Ex(ϒi(t − τφ)|Fφ)1[Zφ = z, τφ = s] = Ex−zϒφ(t − s) for i = 0, 1, (30)

Exϒφ(t) = Ex(Ex(ϒφ(t)|Fφ))

=
∫

R3
J (y, t |x)χ0(y)dy

+
∫ t

s=0

∫

y∈R3

∫

z∈R3

{
m(x)

(
f0(s|z)f (y, z|x)b1(z; Ex−zϒφ(t − s),

Ex−zϒφ(t − s))

+
(

2f1(s|z)f (y, z|x) − 3f1(s|y)f (y, z|x)
)

b2(z; Ex−zϒφ(t − s),

Ex−zϒφ(t − s))

)

+m̃(x)

(
2f1(s|z)f̃ (y, z|x)Pzϕ(x − z, t − s)

−f1(s|y)f̃ (y, z|x)(I − 3eze
t
z)ϕ(x − z, t − s)

)}
dzdyds.

Then u(x, t) is uniformly locally square integrable since |u(x, t)| = h(x)|Exϒφ(t)|
≤ Mh(x). From Proposition 4.1 the function h(x)Exϒφ(t) is a weak solution
to (1). 
�

Theorem 4.2. (Existence and Uniqueness) Let (h, h̃) be an excessive majorizing
kernel pair with constant pair (γ, γ̃ ) ∈ (0, 8πνp/11] × [0, 2πν(1 − p)] for some
p ∈ (0, 1/2]. If (u0, g) is (h, h̃)-admissible with

sup
x∈R3

|u0(x)|
h(x)

≤ αε and sup
x∈R3,t≥0

|g(x, t)|
h̃(x)

≤ βε
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for some α ∈ [0, 1) and ε, β ∈ (0, 1 − α), then u(x, t) = h(x)Exϒφ(t) is a weak
solution to the Navier-Stokes equations with

sup
x∈R3,t≥0

|u(x, t)|
h(x)

≤ ε.

Furthermore, this solution is unique in the class {v ∈ (S ′(R3 × (0, ∞)))3 :
supx∈R3,t≥0

|v(x,t)|
h(x)

≤ ε}.
The conditions of Theorem 4.2 are sometimes more easily checked in the fol-

lowing form.

Corollary 4.3. Let (h, h̃) be an excessive majorizing kernel pair with constant pair
(γ, γ̃ ), γ̃ > 0, and suppose that (u0, g) is (h, h̃)-admissible with

sup
x∈R3

|u0(x)|
h(x)

≤ 8πνpαε

11γ
and sup

x∈R3,t≥0

|g(x, t)|
h̃(x)

≤ (4πν)2p(1 − p)βε

11γ γ̃

for some p ∈ [0, 1/2], α ∈ [0, 1) and ε, β ∈ (0, 1 − α), then u(x, t) =
h(x)Exϒφ(t) is a weak solution to the Navier-Stokes equations with

sup
x∈R3,t≥0

|u(x, t)|
h(x)

≤ 8πνpε

11γ
.

This solution is unique in the class {v ∈ (S ′(R3×(0, ∞)))3 : supx∈R3,t≥0
|v(x,t)|
h(x)

≤
8πνpε

11γ
}.

Proof of Corollary 4.3. Rescale (h, h̃) and consider the majorizing kernel pair
(

8πν

11γ
h,

(4πν)2p(1 − p)

11γ γ̃
h̃

)

with constant pair (8πνp/11, 2πν(1 − p)). 
�
The next corollary treats the case of no forcing.

Corollary 4.4. Let (h, 0) be an excessive majorizing kernel pair with constant pair
(γ, 0) and suppose that

sup
x∈R3

|u0(x)|
h(x)

≤ 4πναε

11γ

for some α ∈ [0, 1) and ε ∈ (0, 1 − α), then u(x, t) = h(x)Exϒφ(t) is a weak
solution to the Navier-Stokes equations with

sup
x∈R3,t≥0

|u(x, t)|
h(x)

≤ 4πνε

11γ
.

This solution is unique in the class {v ∈ (S ′(R3×(0, ∞)))3 : supx∈R3,t≥0
|v(x,t)|
h(x)

≤
4πνε
11γ

}.
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The proof of Theorem 4.2 depends upon Proposition 4.2 that follows.

Proposition 4.2. Let (h, h̃) be an excessive majorizing kernel pair with constant
pair (γ, γ̃ ) ∈ (0, 8πνηp/11] × [0, 2πνη(1 − p)] for some p ∈ (0, 1/2] and
η > 0. Suppose that for some α ∈ [0, 1) and ε, β ∈ (0, (1 − α)/η), (u0, g) is
(h, h̃)-admissible with

sup
x∈R3

|u0(x)|
h(x)

≤ αε and sup
x∈R3,t≥0

|g(x, t)|
h̃(x)

≤ βε.

Then for all x ∈ R3 and t > 0

|ϒφ(t)| ≤ ε a.s. Px.

The following lemma is used in the proof of the proposition.

Lemma 4.1. Let W ⊂ V be a finite binary sub-tree. Suppose that {bv : R3×R3 →
R3 : v ∈ W} has

sup
v∈W

|bv(x, y)| ≤ |x| |y| for all x, y ∈ R3,

and {(yv, zv, ηv, σv) ∈ R3 × R3 × [0, ∞) × {0, 1} : v ∈ W} satisfies

sup
v∈W

ηv ≤ η < ∞

and

sup
v∈W

|yv| ≤ αε and sup
v∈∂W

|zv| ≤ βε for some α ∈ [0, 1)

and ε, β ∈ (0, (1 − α)/η].

Then xv defined iteratively on W via

xv =
{

yv + σvηvzv if v ∈ ∂W
yv + ηvbv(xv∗0, xv∗1) if v ∈ W◦.

satisfies

sup
v∈W

|xv| ≤ ε.

Proof. The result follows by induction starting on ∂W . If v ∈ ∂W , then

|xv| ≤ |yv| + ηv|zv| ≤ αε + ηβε ≤ ε.

If v ∈ W◦ and |xv∗k| ≤ ε for k = 0, 1, then

|xv| ≤ |yv| + ηv|bv(xv∗0, xv∗1)| ≤ αε + ηε2 ≤ ε. 
�
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Proof of Proposition 4.2. Let W = {v ∈ V : κvj
= 1, 2, 3 for all j < |v|}.

Then W is a random binary sub-tree. Indeed, W corresponds to a Galton-Wat-
son tree with each individual having either 0 or 2 offspring. The probability of
2 offspring is p = P(κv = 1, 2, 3) ≤ 1/2 and the probability of 0 offspring is
1−p = P(κv = 4, 5). With probability 1, W is finite; see for example Harris [10].
Set Xφ̄ = x ∈ R3 and Sφ = 0. For v ∈ W with |v| > 0, let Sv = ∑|v|−1

k=0 τv|k . For
fixed t < ∞, ϒφ(t) is a functional of the random ensembles indexed by the nodes
of the a.s. finite binary sub-tree W(t) ⊂ W defined by

W(t) = {v ∈ W : Sv < t}. (31)

Recalling (28) and (29), if v ∈ ∂W(t),

ϒv(t − Sv) = χ0(Vv(t − Sv)) + 4m̃(Xv̄)

1 − p
Cvϕ(Xv, t − Sv − τv)

×1[κv = 4, 5] ∩ [τv ≤ t − Sv].

From (27), for v ∈ W◦(t)

ϒv(t − Sv) = χ0(Vv(t − Sv))

+11m(Xv̄)

p
Bv(ϒv∗0(t − Sv − τv), ϒv∗1(t − Sv − τv))

×1[κv = 1, 2, 3]1[τv ≤ t − Sv].

This is the setting of Lemma 4.1 with yv = χ0(Vv(t − Sv)), bv = Bv , zv =
Cvϕ(Xv, t − Sv − τv),

ηv =






4m̃(Xv̄)
1−p

if v ∈ ∂W(t)

11m(Xv̄)
p

if v ∈ W◦(t)

and σv = 1[κv = 4, 5]. Lemma 2.1 gives |Bv(x, y)| < |x||y| for all x, y ∈ R3.
By assumption we have |χ0(Vv(s))| ≤ αε for all s, and again using Lemma 4.1,
|Cvϕ(Xv, s)| ≤ βε for all s. The multipliers ηv are bounded as follows:

11m(x)

p
= 11

∫
R3 |y|−2h2(x − y)dy

8πνph(x)
≤ 11γ

8πνp
≤ η

and

4m̃(x)

1 − p
=

∫
R3 |y|−1h̃(x − y)dy

2πν(1 − p)h(x)
≤ γ̃

2πν(1 − p)
≤ η

for all x ∈ R3. Lemma 4.1 gives |ϒφ(t)| ≤ ε a.s. Px . From Theorem 4.1 then

|u(x, t)| = h(x)|Exϒφ(t)| ≤ h(x)Ex |ϒφ(t)| ≤ εh(x).


�
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Proof of Theorem 4.2. The existence of the weak solution u(x, t) = h(x)Exϒφ(t)

follows immediately from Theorem 4.1 and Proposition 4.2 with η = 1. Unique-
ness is derived using a martingale argument as follows. Suppose that v is a solution
to (6) with

sup
x∈R3,t>0

|v(x, t)|
h(x)

≤ ε.

Set ρ(x, t) = v(x, t)/h(x). Take Xφ̄ = x ∈ R3 fixed, fix t > 0 and let

W(n)(t) = {v ∈ W(t) : |v| ≤ n} (32)

where W(t) is as defined in (31). For n ≥ 0 and v ∈ W(t), define the random
functionals �

(n)
v via the iterative construction

�(0)
v (t) = χ0(Vv(t))

+11m(Xv̄)

p
Bv(ρ(Xv, t − τv), ρ(Xv, t − τv))1[κv = 1, 2, 3] ∩ [τv ≤ t]

+4m̃(Xv̄)

1 − p
Cvϕ(Xv, t − τv)1[κv = 4, 5] ∩ [τv ≤ t]

and, for n ≥ 1,

�(n)
v (t) = χ0(Vv(t)) + 11m(Xv̄)

p
Bv(�

(n−1)
v∗0 (t − τv), �

(n−1)
v∗1 (t − τv))

×1[κv = 1, 2, 3] ∩ [τv ≤ t]

+4m̃(Xv̄)

1 − p
Cvϕ(Xv, t − τv)1[κv = 4, 5] ∩ [τv ≤ t].

Notice that for each n, �
(n)
φ (t) depends only on those ensembles in X indexed by

v ∈ W(n)(t). If W(n)(t) = W(t), then �
(n)
φ (t) = ϒφ(t). Since v(x, t) is a solution

to (6),

v(x, t) = h(x)ρ(x, t) = h(x)Ex�
(0)
φ (t)

and for all v,

Ex(�
(0)
v (t − Sv)|Gv̄)1[t − Sv ≥ 0] = ρ(Xv̄, t − Sv)1[t − Sv ≥ 0].

If for some n ≥ 1 and all v ∈ V , Ex(�
(n−1)
v (t − Sv)|Gv̄) = ρ(Xv̄, t − Sv) on the

set [t − Sv ≥ 0], then

Ex(�
(n)
v (t − Sv)|Gv)1[t − Sv ≥ 0]

= χ0(Vv(t − Sv))

+
{
(11m(Xv̄)/p)Bv(Ex(�

(n−1)
v∗0 (t − Sv − τv)|Gv),

Ex(�
(n−1)
v∗1 (t − Sv − τv)|Gv))1[κv = 1, 2, 3]

+(4m̃(Xv̄)/(1 − p))Cvϕ(Xv, t − Sv − τv)1[κv = 4, 5]
}

1[τv ≤ t − Sv]
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= χ0(Vv(t − Sv))

+
{
(11m(Xv̄)/p)Bv(ρ(Xv, t−Sv−τv), ρ(Xv, t − Sv − τv))1[κv = 1, 2, 3]

+(4m̃(Xv̄)/(1 − p))Cvϕ(Xv, t − Sv − τv)1[κv = 4, 5]
}

1[τv ≤ t − Sv].

and, on the set [t − Sv ≥ 0],

Ex(�
(n)
v (t − Sv)|Gv̄)

= Ex(Ex(�
(n)
v (t − Sv)|Gv)|Gv̄)

=
∫

R3
J (y, t − Sv|Xv̄)χ0(y)dy

+
∫ t−Sv

s=0

∫

R3

∫

R3

{
m(Xv̄)

(
f0(s|z)f (y, z|Xv̄)

×b1(z; ρ(Xv̄ − z, t − Sv − s), ρ(Xv̄ − z, t − Sv − s)))

+
(

2f1(s|z)f (y, z|Xv̄) − 3f1(s|y)f (y, z|Xv̄)
)

×b2(z; ρ(Xv̄ − z, t − Sv − s), ρ(Xv̄ − z, t − Sv − s))

)

+m̃(Xv̄)
(

2f1(s|z)f̃ (y, z|Xv̄)Pzϕ(Xv̄ − z, t − Sv − s)

−f1(s|y)f̃ (y, z|Xv̄)(I − 3eze
t
z)ϕ(Xv̄ − z, t − Sv − s)

)}
dzdyds

= ρ(Xv̄, t − Sv).

By induction then, Ex(�
(n)
v (t−Sv)|Gv̄)1[t−Sv ≥ 0] = ρ(Xv̄, t−Sv)1[t−Sv ≥ 0]

for all n and v. In particular, Ex�
(n)
φ (t) = ρ(x, t) for all n. Since W(t) is finite

a.s. Px , there exists with probability 1 some random N with W(n)(t) = W(t)

and �
(n)
φ (t) = ϒφ(t) for all n ≥ N. The random functionals ϒφ and �

(n)
φ are all

bounded by ε in magnitude, so

|ρ(x, t) − χ(x, t)| = |Ex�
(n)
φ (t) − Exϒφ(t)|

≤ Ex |�(n)
φ (t) − ϒφ(t)| ≤ 2εPx(W(n)(t) 	= W(t)).

This probability goes to 0 as n goes to ∞. 
�

Example 1. Take p = α = 1/2 to see that if

sup
x∈R3

|x||u0(x)| < ν/11π2and sup
t>0

|g(x, t)| < h̃0(|x|) for all x ∈ R3

for some h̃0 : [0, ∞) → [0, ∞] with
∫

R3 h̃0(|x|)dx ≤ ν2/11π , then there exists a
unique weak solution u(x, t) to (1) with supx,t |x||u(x, t)| < 2ν/11π2.
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Example 2. Again take p = α = 1/2. If there exists {µj : j ≥ 1} in R3 and
{pj : j ≥ 1}, pj > 0,

∑
pj = 1 with

|u0(x)| < (ν/11π2)
∑

pj |x − µj |−1

and sup
t

|g(x, t)| <
∑

pj h̃0(|x − µj |) for all x ∈ R3

for some h̃0 with
∫

R3 h̃0(|x|)dx ≤ ν2/11π , then there exists a unique weak solution
u(x, t) to (1) with supt |u(x, t)| < (2ν/11π2)

∑
pj |x − µj |−1 for all x ∈ R3.

Example 3. If

sup
x∈R3

(1 + |x|)|u0(x)| < ν/11π2 and sup
t>0

|g(x, t)| < h̃(x) for all x ∈ R3

for some h̃ with 0 ≤ h̃(x) ≤ ∫
R3 h̃0(|x − y|)(2π |y|)−1(1 + |y|)−3dy where∫

R3 h̃0(|x|)dx ≤ ν2/11π , then there exists a unique weak solution u(x, t) to (1)
with supx,t (1 + |x|)|u(x, t)| < 2ν/11π2.

Notice that Examples 1, 2 and 3 all give existence and uniqueness in a sub-space
of the Marcinkiewicz space L3,∞; c.f. Cannone and Karch [5].

5. Non-excessive kernels and an alternate probabilistic representation

The following representation can be used with both non-excessive and exces-
sive majorizing kernels. Let (h, h̃) be a majorizing kernel pair and let X(1) =
{(Xv, Yv, Zv, τv, κv) : v ∈ V} be the V-indexed Markov process with the transi-
tion density of (Yv, Zv, τv, κv), given that Xv̄ = x, as defined in (24) and again let
Xv = Xv̄ − Zv . To define the stochastic recursion, let

m0(x, t) =
∫

R3 u0(x − y)K(y, 2νt)dy

h(x)

and let χ0, ϕ, m, and m̃ be as defined in equations (19) through (22). We will also
use the random operators Bv and Cv as defined in (25) and (26). Now define the
random recursive functional 	 on V via

	v(t) = m0(Xv̄, t)

+11m(Xv̄)

p
Bv(	v∗0(t − τv), 	v∗1(t − τv))1[κv = 1, 2, 3] ∩ [τv ≤ t]

+4m̃(Xv̄)

1 − p
Cvϕ(Xv, t − τv)1[κv = 4, 5] ∩ [τv ≤ t].

If (h, h̃) is excessive, this random recursion essentially replaces the first term of
ϒv , χ0(Vv(t)), with m0(Xv̄, t), the conditional expectation of χ0(Vv(t)) given Gv̄ .
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Proposition 5.1. Let (h, h̃) be a majorizing kernel pair with constant pair (γ, γ̃ ) ∈
(0, 8πνηp/11]× [0, 2πνη(1−p)] for some p ∈ (0, 1/2] and η > 0. Suppose that
for some α ∈ [0, 1) and ε, β ∈ (0, (1 − α)/η), (u0, g) is (h, h̃)-admissible with

sup
x∈R3,t≥0

| ∫R3 u0(x − y)K(y, 2νt)dy|
h(x)

≤ αε and sup
x∈R3,t≥0

|g(x, t)|
h̃(x)

≤ βε.

Then for all x ∈ R3 and t > 0

|	φ(t)| ≤ ε a.s. Px.

Proof. The proof of this proposition exactly parallels that of Proposition 4.2. Here
the yv of Lemma 4.1 is equal to m0(Xv̄, t − Sv), so by assumption, |yv| ≤ αε. The
proof is then identical. 
�

The conditions appearing in the following corollary are somewhat simpler.

Corollary 5.1. Let (h, h̃) be a majorizing kernel pair with constant pair (γ, γ̃ ) ∈
(0, 8πνηp/11] × [0, 2πνη(1 − p)] for some p ∈ (0, 1/2] and η > 0 and

sup
x∈R3,t>0

∫
R3 h(x − y)K(y, 2νt)dy

h(x)
≤ M < ∞.

Suppose that for some α ∈ [0, 1) and ε, β ∈ (0, (1−α)/η), (u0, g) is (h, h̃)-admis-
sible with

sup
x∈R3

|u0(x)|
h(x)

≤ αε/M and sup
x∈R3,t>0

|g(x, t)|
h̃(x)

≤ βε.

Then for all x ∈ R3 and t > 0

|	φ(t)| ≤ ε a.s. Px.

The proofs of the following theorems are omitted due to their similarity to
proofs appearing in the previous section.

Theorem 5.2. Let (h, h̃) be a majorizing kernel pair. If Ex |	φ(t)| ≤ M < ∞ for
all x and t , then

u(x, t) = h(x)Ex	φ(t)

is a weak solution to the Navier-Stokes equations.

Theorem 5.3. (Existence and Uniqueness) Let (h, h̃) be a majorizing kernel pair
with constant pair (γ, γ̃ ) ∈ (0, 8πνp/11]×[0, 2πν(1−p)] for some p ∈ (0, 1/2].
If (u0, g) is (h, h̃)-admissible with

sup
x∈R3,t≥0

| ∫R3 u0(x − y)K(y, 2νt)dy|
h(x)

≤ αε and sup
x∈R3,t≥0

|g(x, t)|
h̃(x)

≤ βε. (33)
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for some α ∈ [0, 1) and some ε, β ∈ (0, 1 − α), then u(x, t) = h(x)Ex	φ(t) is a
weak solution to the Navier-Stokes equations with

sup
x∈R3,t≥0

|u(x, t)|
h(x)

≤ ε.

This solution is unique in the class {v ∈ (S ′(R3×(0, ∞)))3 : supx∈R3,t≥0
|v(x,t)|
h(x)

≤
ε}.

Three useful corollaries follow. The first imposes separate bounds on the mag-
nitude of the initial velocity relative to h and the size of h ∗ K relative to h. In the
last two corollaries a single bound is imposed on the magnitude of u0 ∗ h relative
to h. The last corollary treats the case of no forcing. This is of particular interest in
regards to regularity; see remark (4) in the following section.

Corollary 5.4. Let (h, h̃) be a majorizing kernel pair with

sup
x∈R3,t>0

∫
R3 h(x − y)K(y, 2νt)dy

h(x)
≤ M < ∞. (34)

and constant pair (γ, γ̃ ) ∈ (0, 8πνp/11]× [0, 2πν(1−p)] for some p ∈ (0, 1/2].
If (u0, g) is (h, h̃)-admissible with

sup
x∈R3

|u0(x)|
h(x)

≤ αε/M and sup
x∈R3,t≥0

|g(x, t)|
h̃(x)

≤ βε (35)

for some α ∈ [0, 1) and ε, β ∈ (0, 1 −α). Then u(x, t) = h(x)Ex	φ(t) is a weak
solution to the Navier-Stokes equations with

sup
x∈R3,t≥0

|u(x, t)|
h(x)

≤ ε.

This solution is unique in the class {v ∈ (S ′(R3×(0, ∞)))3 : supx∈R3,t≥0
|v(x,t)|
h(x)

≤
ε}.
Proof of Corollary 5.4. Combining (34) and (35) gives (33). 
�

The next corollary relies on the rescaling seen in the derivation of Corollary
4.3.

Corollary 5.5. Let (h, h̃) be a majorizing kernel pair with constant pair (γ, γ̃ ),
γ̃ > 0, and suppose that (u0, g) is (h, h̃)-admissible with

sup
x∈R3,t≥0

| ∫R3 u0(x − y)K(y, 2νt)dy|
h(x)

≤ 8πνpαε

11γ

and sup
x∈R3,t≥0

|g(x, t)|
h̃(x)

≤ (4πν)2p(1 − p)βε

11γ γ̃
(36)
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for some p ∈ [0, 1/2], α ∈ [0, 1) and ε, β ∈ (0, 1 − α), then u(x, t) =
h(x)Ex	φ(t) is a weak solution to the Navier-Stokes equations with

sup
x∈R3,t≥0

|u(x, t)|
h(x)

≤ 8πνpε

11γ
. (37)

This solution is unique in the class {v ∈ (S ′(R3×(0, ∞)))3 : supx∈R3,t≥0
|v(x,t)|
h(x)

≤
8πνpε

11γ
}.

Proof of Theorem 1.1. Equation (4) guarantees that (36) is satisfied with γ = γ̃ =
1 and p = α = 1/2. Then (37) holds for any ε < 1/2. 
�
Corollary 5.6. Let (h, 0) be a majorizing kernel pair with constant pair (γ, 0) and
suppose that

sup
x∈R3,t≥0

| ∫R3 u0(x − y)K(y, 2νt)dy|
h(x)

≤ 4πναε

11γ

for some α ∈ [0, 1) and ε ∈ (0, 1 − α). Then u(x, t) = h(x)Ex	φ(t) is a weak
solution to the Navier-Stokes equations with

sup
x∈R3,t≥0

|u(x, t)|
h(x)

≤ 4πνε

11γ
. (38)

This solution is unique in the class {v ∈ (S ′(R3×(0, ∞)))3 : supx∈R3,t≥0
|v(x,t)|
h(x)

≤
4πνε
11γ

}.

Example 4. If supx(1 + |x|2)|u0(x)| ≤ 11π/16ν(1 + 3e−2/3) and the forcing g

is identically 0, then there exists a unique weak solution to (1) with supx,t (1 +
|x|2)|u(x, t)| < 11π/8ν.

Example 5. Taking Hp(x) = (1 + |x|)−p for p ∈ (1, 2] fixed,
∫

R3
Hp(x − y)K(y, 2νt)dy ≤ (1 + 3e−2/3)p/2(1 + 1/

√
2)p/2Hp(x)

for all x ∈ R3 and t > 0. Then, if supx(1+|x|)p|u0(x)| ≤ πp−3ν(1+3e−2/3)−p/2

(1 + 1/
√

2)1−3p/2/11 and the forcing g is identically 0, there exists a unique weak
solution to (1) with supx,t (1 + |x|)p|u(x, t)| < 2πp−3ν(1 + 1/

√
2)1−p/11.

6. Remarks

(1) It appears that the integral formulation on which the probabilistic representa-
tion is based can also be used as the basis for Picard iteration. The advantage of
the probabilistic approach as it appears here is that it allows, with probability
1, the assumption that there are a finite number of iterates. This permits easy
derivation of bounds via inductive arguments.
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(2) The probabilistic representations of the Fourier transformed Navier-Stokes
equations given by Bhattacharya et al [2] give both short time existence and
uniqueness of solutions for large initial data and decay over time of the Fou-
rier transformed solution. It is possible that a physical space representation
related to the ones given in this paper will also indicate short time existence
and uniqueness as well as the time decay of solutions.

(3) A semi-group approach underlies this probabilistic representation. Montgom-
ery-Smith [16] uses such an approach to demonstrate blow-up in finite time of an
equation related to the Navier-Stokes equations. A more complete understand-
ing of the integration of the bilinear forms b1 and b2 may aid in understanding
possible blow-up of the Navier-Stokes equations in R3.

(4) In some cases the results given in this paper can be used to demonstrate regular-
ity and consequently uniqueness in a larger class of functions. The argument is
as follows: assume that u0 ∈ L3

2(R
3) is regular and take the forcing to be iden-

tically 0. Take (h, 0) to be a majorizing kernel pair with h ∈ L2(R3)∩Lq(R3)

for some q > 3. If supx,t | ∫ u0(x − y)K(y, 2νt)dy|/h(x) is small enough,
then supx,t |u(x, t)|/h(x) < ε for suitable ε > 0 and for any r > 0 and T < ∞

∫ T

0

(∫
|u(x, t)|qdx

)r

dt < εqr

∫ T

0

(∫
hq(x)dx

)r

dt < ∞.

That is, the Ladyzhenskaya-Prodi-Serrin condition is satisfied, and the solution
u is regular and unique in a larger function space; c.f. Temam [18], Chapter III.
A suitable kernel here is h = Hp of Example 5 with p ∈ (3/2, 2].
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