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Abstract. We prove that the sequence of finite reflecting branching Brownian motion forests
defined by Burdzy and Le Gall ([1]) converges in probability to the “super-Brownian motion
with reflecting historical paths.” This solves an open problem posed in [1], where only tight-
ness was proved for the sequence of approximations. Several results on path behavior were
proved in [1] for all subsequential limits–they obviously hold for the unique limit found in
the present paper.

1. Introduction

The goal of this paper is to complete the main stage of a research project started
by Burdzy and Le Gall in [1]. The authors of that paper set out to define and study
a “super-Brownian motion with reflecting historical paths.” They constructed a
sequence of branching particle systems which they believed converged to a limit
representing, in the intuitive sense, the process named above. However, the main
result of [1] proves only tightness for the sequence of approximations. This will
be remedied in this paper—we will prove the convergence. Moreover, we will
construct a sequence of approximations which converges not only in the sense of
distribution but also in probability. This will allow us to complete the definition
of a “super-Brownian motion with reflecting historical paths” in the sense that our
main result will identify a single probability distribution on an appropriate space.
A rigorous statement of our main result is given as Theorem 2.1 in Section 2—it
requires a fair amount of notation.

We would like to mention that some path properties have been already estab-
lished for the super-Brownian motion with reflecting historical paths in [1]. The
properties have been proved for every subsequential limit of the approximating
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sequence of branching particle systems, so those theorems obviously apply to the
process constructed in this paper.

Our approach is closely related to and heavily dependent on techniques devel-
oped in [1], and that paper in turn uses many tools presented in [7], in particular
the “Brownian snake” originally introduced by Le Gall. For an introduction to the
theory of superprocesses see, for example, [4].

We will now describe our main ideas. Just as in [1], we start with a sequence of
branching particle systems approximating the historical super-Brownian motion.
The accuracy of the approximation is determined by a parameter ε > 0. The
sequence of approximations is consistent in the sense that ε-particle system may
be obtained from a δ-particle system by pruning some branches, for any δ < ε.
Then paths of every ε-particle system are relabelled so that the paths in the new
system are reflecting. The problem with this approach is that the reflecting systems
are no longer consistent, i.e., after relabelling, the distance (in an appropriate met-
ric) between reflecting ε-particle system and reflecting δ-particle system may be
large, at least for some ω. To tackle this problem, we will first consider two reflect-
ing super-Brownian motions. In this model, particles of one system reflect with
the particles of the other system, and since the model is non-historical, reflections
between particles of the same system are irrelevant to the evolution of two reflecting
super-Brownian motions. Intuitively speaking, the “number” of reflections is much
smaller in this model than in the fully reflecting historical super-Brownian motion.
This allows us to prove convergence of appropriate finite particle system approx-
imations in this model. The result generalizes to any finite number of reflecting
super-Brownian motions (again, in the non-historical setting reflections between
the particles of the same particle system are irrelevant). Finally, the super-Brown-
ian motion with reflecting historical paths is obtained as the limit of families of
reflecting historical Brownian motions, with larger and larger numbers of particle
systems in the families.

Section 2 contains the construction of a finite particle system and the state-
ments of our main results. Section 3 is a review of some relevant facts on lo-
cal times and excursions. Section 4 presents a construction of a pair (“coupling”)
of finite particle systems reflecting with each other. It also contains the proof of
convergence of such approximations. The main result of this paper is proved in
Section 5.

Notation. We will adopt the following notation conventions.
Let E be a Polish space.
MF(E) (MF ) — finite measures on E (on R).
DE[a, b) (DE) — Skorohod space of cadlagE-valued paths on [a, b) (on [0,∞)).
CE[a, b) (CE) — the space of continuous E-valued paths on [a, b) (on [0,∞)).
Cu(E)— the space of bounded, real-valued, uniformly continuous functions onE.
B(E) — the space of bounded Borel measurable real-valued functions on E.
〈µ, f 〉 = ∫

f dµ for any measure µ and function f .
We will try to use as much as possible of the notation from [1] to help the reader

follow our arguments, as we will often refer to that paper.
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2. Finite branching particle systems and the statement of main results

We will be brief in our presentation of super-Brownian motion, historical processes,
finite particle systems, Brownian snake, etc. The reader is asked to consult [1] and
[7] for more details.

First we are going to introduce the historical super-Brownian motion based on
Le Gall’s Brownian snake construction. Consider µ ∈ MF and assume, to simplify
the proofs, that it has a compact support and that it is absolutely continuous with
respect to the Lebesgue measure. Let β/2 be the reflecting Brownian motion, i.e.,

{βs, s ≥ 0}dist= {2|Bs |, s ≥ 0}, stopped at time τ = inf{t : L0
t = 〈µ, 1〉}, where

Bs is the standard Brownian motion with B0 = 0 and (Lxs , x ≥ 0, s ≥ 0) denotes
the jointly continuous family of local times of β normalized in such a way that, for
every nonnegative Borel function φ on R+ and t > 0,

∫ t

0
φ(βs) ds =

∫

R+
φ(x)Lxt dx.

Let {Ws , s ≥ 0} be the Brownian snake driven by the process β and such that

µ =
∫ τ

0
dL0

s δWs(0) . (2.1)

Recall that for any fixed s ≥ 0, {Ws(t), t ≥ 0} is a Brownian motion stopped at time
βs . In usual definitions of the Brownian snake, Ws(0) is a constant. The Brown-
ian snake satisfying (2.1) can be obtained as the limit of processes Wε — discrete
snakes constructed in Section 2.4 of [1]. The existence of such a processW is stated
at the beginning of Section 5.3 of [1]. We can also obtain W by concatenating a
Poisson point process of Brownian snake excursions with intensity

∫
µ(dy)Ny , in

the notation of Theorem IV.4 of Le Gall [7] (see that theorem for more details). The
historical super-Brownian motion connected to W is defined in Section 5.3 of [1]
via the formula

Yt =
∫ τ

0
dLts δWs .

The corresponding MF -valued process (super-Brownian motion) is defined by

Xt =
∫ τ

0
dLtsδWs(t) .

Next we will define finite branching particle systems approximating the histor-
ical super-Brownian motion. Fix an arbitrary ε > 0. For any s ≥ 0, t ≥ 2ε, let
Wt−2ε
s be the path of the Brownian snake with index s stopped at time t − 2ε. Let

Hε
t ≡

∫ τ

0
dLts δWt−2ε

s
, t ≥ 2ε.

In other words,Hε
t is the family of trajectories of those particles whose descendants

are alive at time t , but the paths in Hε
t are stopped at time t − 2ε. The measure
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Hε
t is purely atomic. Note that, by definition, any atom y(·) of Hε

t is a path whose
values are defined for all times, and

y(s) = y(t − 2ε), ∀s ≥ t − 2ε. (2.2)

Next we redefine the masses of these atoms—we give mass ε to each atom ofHε
t for

any t ≥ 2ε. The resulting measure-valued process will be denoted by {Y εt , t ≥ 2ε}.
Note that in the original superprocess setting, for any t ≥ 2ε, Y εt records positions
and historical paths (up to time t − 2ε) of the particles having descendants at time
t . On the other hand, Y ε represents binary branching historical Brownian motions
with branching rate ε−1 such that, for any t ≥ 2ε, Y εt records the position of this
system at time t − 2ε. The difference of 2ε between the time of the original su-
perprocess and the time of corresponding ε-particle system is counterintuitive but
it is actually meant to simplify some proofs in the last part of the paper. We will
frequently use the following “convention” in verbal descriptions of the process Y ε

and analogous processes introduced later on.

Convention 1. For any t ≥ 2ε, Y εt records historical paths of the particles of ε-
system which are alive at time t − 2ε. Sometimes, with a little abuse of notation,
we will also identify the measure-valued process with the particle system whose
evolution it records.

The initial positions of the particles are distributed according to the Poisson
measure on R with intensity ε−1µ (see Proposition 3.5 of [2]). The MF -valued
process corresponding to Y ε is defined by

〈Xεt , φ〉 =
∫
φ(y(t))Y εt (dy), ∀φ ∈ C(R),

where y(t) = y(t − 2ε), according to (2.2).
It was explained in Section 2.2 of [1] how any finite branching particle system

can be coded as a marked forest consisting of the set T ε of edges (i.e., particles)
which is a subset of

{1, 2, . . . } ×
∞⋃

n=0

{1, 2}n,

and the family (lεu , u ∈ T ε) of lengths of edges (i.e., lifetimes of particles). Let
(T ε, (lεu, u ∈ T ε)) be a marked forest representing the genealogical structure of Y ε

and let (βε , s ∈ [0, τ ε]) be the random walk corresponding to this marked forest
(see Section 2.2 of [1]). Note that the spatial positions of the particles are irrelevant
for the construction of βε—what matters is β itself. By (2.3) of [1] we get

lim
ε↓0

βε = β, a.s. (2.3)

We can use the process βε and a collection of historical paths of the particles to
construct a convenient representation of the ε-branching Brownian motions known
as discrete snake. For any s ∈ [0, τ ε] we can associate with s a unique edge in
T ε . Then we let Wε

s (·) to be the historical path of the particle in the ε-system that
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corresponds to this edge and is stopped at time βεs . In other words, Wε
s (·) records

the historical path up to time βεs of one of the particles which is alive at time βεs .
For more details on the construction of Wε see Section 2.4 of [1]. Now let

Lε,tu = Lε,tu (β
ε) = εCard{r ∈ [0, u) : βεr = t and βεv > t,

for v∈(r, r+ δ], for some δ>0}. (2.4)

In other words, ε−1L
ε,t
s is the number of upcrossings of βε above level t before

time s. The definition of the process {Wε
s , s ∈ [0, τ ε]} immediately implies that

(see Section 2.5 of [1] and recall our 2ε shift),

Y εt+2ε =
∫ τ ε

0
dLε,ts δWε

s
. (2.5)

This gives us a representation of the process Y ε in terms of the Brownian snake.
It easily follows from the definition of Y ε and Theorem 3.10 of [2] that as

ε → 0,

Y εt → Yt , in MF(C), P − a.s., ∀t > 0,

and

Y ε· → Y· , in DMF (C) ,

in probability (see Remark 2 after Theorem 3.10 of [2]). Also

Xε· → X· , in DMF
,

in probability.
We will now discuss reflecting binary branching Brownian motions. The closed

support of a measure ν on R will be denoted supp(ν), i.e., supp(ν) is the smallest
closed setA such that ν(Ac) = 0. Recallµ and τ from the beginning of this section.
Fix arbitrary positive measuresµ1 andµ2 which satisfy the following assumptions:

1. µ1 + µ2 = µ.
2. The support of µ1 lies to the left of the support of µ2, that is, for any
xi ∈ supp(µi), i = 1, 2, we have x1 ≤ x2.

Let

τ1 = inf{t : L0
t = 〈µ1, 1〉},

Y 1
t =

∫ τ1

0
dLts δWs , Y 2

t =
∫ τ

τ1

dLts δWs .

Then Y 1 and Y 2 are two historical super-Brownian motions starting at µ1 and µ2
respectively. We define their approximations Y 1,ε and Y 2,ε in the same way as Y ε

was defined for the process Y. Note that

Y = Y 1 + Y 2,

Y ε = Y 1,ε + Y 2,ε .
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The process {Y i,εt , t ≥ 2ε} represents the historical branching particle system with
the initial positions of particles distributed according to the Poisson random mea-
sure with intensity µi/ε, i = 1, 2. Let βi,ε be the corresponding random walk
defined in the same way as βε was defined for Y ε . By (2.3) and our construction
we get

lim
ε↓0

βi,ε = βi, a.s., i = 1, 2, (2.6)

where β1
s = βs∧τ1 , β

2
s = β(τ1+s)∧τ .

Arguing as in Section 3 of [1], we relabel the paths of Y ε to obtain a reflecting
branching particle system Ỹ ε . For any t ≥ 2ε, if w̃ and w̃′ are atoms of Ỹ εt then
we either have w̃(r) ≥ w̃′(r) for all r ∈ [0, t] or w̃(r) ≤ w̃′(r) for all r ∈ [0, t].
Define

Ỹ
i,ε
t (dy) = 1{y(0)∈supp(µi)}Ỹ

ε
t (dy), ∀t ≥ 2ε, i = 1, 2.

That is, the branching particle system Ỹ i,ε (recall Convention 1) represents the
subsystem of Ỹ ε consisting of those trees in Ỹ ε which start at time 0 from the same
points as Y i,ε . Hence,

Ỹ ε ≡ Ỹ 1,ε + Ỹ 2,ε .

It follows from the definition that the paths inside of each of Ỹ i,ε, i = 1, 2, are
reflecting. The corresponding MF -valued processes are defined by

〈X̃i,εt , φ〉 =
∫
φ(y(t))Ỹ

i,ε
t (dy), ∀φ ∈ C(R), i = 1, 2.

The aim of this paper is to prove the following result.

Theorem 2.1. There exists a process Ỹ ∈ CMF (C)[0,∞) such that

Ỹ ε → Ỹ, as ε ↓ 0, in DMF (C)[0,∞),

in probability.

The crucial step in the proof will be the following theorem.

Theorem 2.2. There exists a process
(
X̃1, X̃2

) ∈ CMF×MF
[0,∞) such that

(
X̃1,ε, X̃2,ε

)
→
(
X̃1, X̃2

)
, as ε ↓ 0, in DMF×MF

[0,∞),

in probability.
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3. Review of local times and excursions

Fix an arbitrary a > 0. Recall that β has the distribution of the twice of reflecting
Brownian motion, β0 = 0, and Lxt is the family of local times of β. Here we will
assume that β is stopped at time

τ = τa = inf{t : L0
t = a}.

For any s ≥ 0 and ν > 0 let

ην1(s) =
{

sup{t : Lsτ − Lst ≥ ν}, Lsτ ≥ ν,

0, otherwise,

ην2(s) =
{

inf{t : Lst ≥ ν}, Lsτ ≥ ν,

τ, otherwise,

Ls,t,j (β, ν) =
{
Ltτ − Lt

ην1(s)
, j = 1,

Lt
ην2(s)

, j = 2,

Ls,j (β, ν) = sup
t≥s

Ls,t,j (β, ν), j = 1, 2,

Lj (β, ν) = sup
s≥0

Ls,j (β, ν), j = 1, 2.

In other words,L1(β, ν) is the maximum local time accumulated at any level t ≥ s,
over the interval [ην1(s),∞), for any s ≥ 0, and L2(β, ν) has the similar meaning,
with [ην1(s),∞) replaced by [0, ην2(s)).

For any s ≥ 0, denote by (asi , b
s
i ), i = 1, 2, . . . the excursion intervals of β

above level s, where the ordering of this countably infinite set of intervals is arbi-
trary, for example, it may be the ordering according to the decreasing length. For
any i denote by esi the corresponding excursion

esi (u) = β(asi+u)∧bsi − s, u ≥ 0.

For t > s ≥ 0 let Ls,ti (β) be the local time of excursion esi at level t . Note that

Ltτ (β) =
∑

i

L
s,t
i (β).

Let I ν,1s be the set of indices of excursions originating at level s in the interval
[ην1(s),∞). More precisely

I ν,1s = {i : asi ≥ ην1(s)}.

Analogously

I ν,2s = {i : bsi ≤ ην2(s)}.
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It is easy to check that, for s < t , Ls,t,j (β, ν) satisfies

Ls,t,j (β, ν) =
∑

i∈I ν,js

L
s,t
i (β), j = 1, 2.

In the following, Pa will refer to the law of β starting at 0 and stopped at τa . If
there is no ambiguity, we will suppress the dependence on β in the notation.

Lemma 3.1. For any a > 0 and arbitrary small p, α > 0 there exists ν∗ =
ν∗(p, α) > 0 such that

sup
i=1,2

sup
b≤a

P b
(
Li(ν) ≥ α

)
≤ p/8, ∀ν ≤ ν∗.

Proof. The random variables L1(ν) and L2(ν) have the same distribution, by the
invariance of the reflected Brownian motion β under time reversal at the stopping
time τ . Hence, it will suffice to prove the lemma for i = 2 only.

The quantity Pb
(
L2(ν) ≥ α

)
is a non-decreasing function of b so it is enough

to prove that for some ν∗ > 0 and all ν ≤ ν∗ we have Pa
(
L2(ν) ≥ α

) ≤
p/8. The function ν → L2(ν) is non-decreasing so it will suffice to show that
limν→0 L

2(ν) = 0, Pa-a.s. Suppose that limν→0 L
2(ν) �= 0 with positive proba-

bility. We will show that this assumption leads to a contradiction. Fix an ω such
that limk→∞ L2(1/k) = c > 0 and find sequences of levels {tk} and {sk} such that
tk > sk andLsk,tk,2(1/k) ≥ c for all k. This implies that for each k, there exist rk, uk
and qk such that rk < uk < qk ≤ η

1/k
2 (sk), β(rk) = β(qk) = sk , β(uk) = tk and

L
tk
qk ≥ c/2. By compactness, we may assume that sk → s∞, tk → t∞, rk → r∞,
uk → u∞ and qk → q∞. Recall thatLxt is jointly continuous in t and x, a.s. Hence,

Ls∞q∞ ≤ lim inf
k→∞

Lskqk ≤ lim inf
k→∞

L
sk

η
1/k
2 (sk)

≤ lim inf
k→∞

1/k = 0.

For the same reason,

Lt∞q∞ ≥ lim sup
k→∞

Ltkqk ≥ c/2,

so t∞ > s∞. Note that u∞ ≤ q∞ and soLs∞u∞ ≤ L
s∞
q∞ = 0. Let Tx denote the hitting

time of x by β. By the Ray-Knight theorem, simultaneously for all rational x and
y such that s∞ < x < y < t∞, we have Ls∞Ty ≥ infz∈[0,x] L

z
Ty
> 0, a.s. By the

continuity of β, β(u∞) = t∞, so Ty ≤ u∞ for y < t∞. Hence, Ls∞u∞ ≥ L
s∞
Ty
> 0,

contradicting our earlier assertion that Ls∞u∞ = 0. ��
Recall the process βε, a continuous time random walk corresponding to β

and introduced in Section 2 (see also Section 2.2 of [1]). Also recall the process
{Lε,tu , t ≥ 0, u ≥ 0} defined in (2.4). Then, for any s ≥ 0 and ν > 0 let

η
ε,ν
1 (s) =

{
sup{t : Lε,sτ ε − L

ε,s
t ≥ ν}, Lε,sτ ε ≥ ν,

0, otherwise,

η
ε,ν
2 (s) =

{
inf{t : Lε,st ≥ ν}, Lε,sτ ε ≥ ν,

τ ε, otherwise.
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For any s ≥ 0, denote by (as,εi , b
s,ε
i ), i = 1, 2, . . . the excursion intervals of βε

above level s, and denote by es,εi the corresponding excursions. For t ≥ s ≥ 0 let
L
s,t,ε
i (βε) be the rescaled number of upcrossings of excursion es,εi above level t .

Let

I ν,1,εs = {i : as,εi ≥ η
ε,ν
1 (s)}.

Analogously

I ν,2,εs = {i : bs,εi ≤ η
ε,ν
2 (s)}.

Denote

Lj,ε(βε, ν) = sup
t≥s≥0

∑

i∈I ν,j,εs

L
s,t,ε
i (βε, ν), j = 1, 2.

Lemma 3.2. Let βε, β be as above. Let p, α, ν∗ be as in the previous lemma. Then
there exists ε1 sufficiently small such that for all ε ≤ ε1 and ν ≤ ν∗/2,

sup
i=1,2

sup
b≤a

P b
(
Li,ε(βε, ν) ≥ 2α

)
≤ p/4.

Remark 3.3. It is legitimate to use notation Pb in the above lemma since βε is a
function of β.

Proof of Lemma 3.2. We will prove the lemma only in the case i = 2. The case
i = 1 can be treated similarly. Since Pb

(
Li,ε(βε, ν) ≥ 2α

)
is a non-decreasing

function of b and ν, it is enough to prove that

Pa
(
L2,ε(βε, ν∗/2) ≥ 2α

)
≤ p/4,

for all ε < ε1.
By Lemma 2.1 of [1],

lim
ε↓0

sup
s≥0,t≥0

∣
∣Lε,ts − Lts

∣
∣ = 0, P a − a.s.

Hence, we may fix ε1 < ν∗/8 sufficiently small, such that for any ε < ε1,

Pa

(

sup
s≥0,t≥0

∣
∣Lε,ts − Lts

∣
∣ ≤ ν̄/4

)

≥ 1 − p/8, (3.1)

where ν̄ ≡ min(ν∗/2, α). Let

Aε ≡
{

ω : sup
s≥0,t≥0

∣
∣Lε,ts − Lts

∣
∣ ≤ ν̄/4

}

.

We claim that

Lt
η
ε,ν∗/2
2 (s)

≤ Lt
ην

∗
2 (s)

, ∀t ≥ s ≥ 0,∀ε ≤ ε1, ω ∈ Aε. (3.2)
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We will prove (3.2) in two steps. First let s be an arbitrary time such that Lsτ < ν∗.
Then, since the process is stopped at time τ , we get

Lt
η
ε,ν∗/2
2 (s)

≤ Ltτ

= Lt
ην

∗
2 (s)

, ∀s : Lsτ < ν∗, (3.3)

where the second line follows from the definition of ην
∗

2 (s). Define

J = {s ≥ 0 : Lsτ ≥ ν∗}.
As a second step in the proof of (3.2) we need to prove the following:

η
ε,ν∗/2
2 (s) ≤ ην

∗
2 (s), ∀s ∈ J ,∀ε ≤ ε1, ω ∈ Aε. (3.4)

We will prove (3.4) by contradiction. Suppose, there exist ε < ε1, ω ∈ Aε and
s ≥ 0, such that

η
ε,ν∗/2
2 (s) > ην

∗
2 (s).

Then on Aε we get
L
ε,s

η
ε,ν∗/2
2 (s)

≥ L
ε,s

ην
∗

2 (s)

≥ Ls
ην

∗
2 (s)

− ν̄/4

≥ ν∗ − ν∗/8
= 7ν∗/8,

where in the third inequality we use the identity Ls
ην

∗
2 (s)

= ν∗ which is trivial for

s ∈ J . Now recall, that by the definition,Lε,s
η
ε,ν∗/2
2 (s)

≤ ν∗/2+ε, and since ε < ν∗/8
we get

5ν∗/8 ≥ L
ε,s

η
ε,ν∗/2
2 (s)

≥ 7ν∗/8

which is the required contradiction. Now (3.4) and (3.3) imply (3.2).
Let A ≡ {

ω : L2(ν∗) ≤ ᾱ
}

and fix an arbitrary ε ≤ ε1. It follows from (3.2)
that for any ω ∈ A ∩ Aε ,

L
ε,t

η
ε,ν∗/2
2 (s)

≤ Lt
η
ε,ν∗/2
2 (s)

+ ν̄/4

≤ Lt
ην

∗
2 (s)

+ ν̄/4

≤ ᾱ + ᾱ/4

≤ 2ᾱ, ∀t ≥ s ≥ 0.

In other words, Aε ∩ A ⊂ {L2,ε(βε, ν∗/2) ≤ 2α}. By Lemma 3.1 and (3.1),
Pa(Aε ∩ A) ≥ 1 − p/4, and we are done. ��

Let Xε be the MF -valued process constructed in Section 2 and set

B(x, r) ≡ {y ∈ R : |y − x| < r} .
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Lemma 3.4. Fix ν, p arbitrary small.

(i) There exist α = α(ν, p), ε2 = ε2(ν, p) > 0, such that

P

(

sup
t≥2ε,x∈R

Xεt ([x, x + α]) ≤ ν/2

)

≥ 1 − p/4, ∀ε ≤ ε2.

(ii) For any α arbitrary small, there exists ε3 = ε3(α, p) such that

P

(

sup
t≥2 max(ε′,ε′′)

sup
x∈R,r≥0

∣
∣
∣Xε

′
t (B(x, r))−Xε

′′
t (B(x, r))

∣
∣
∣ ≥ α

)

≤ p/2, ∀ε′, ε′′ ≤ ε3.

Proof. Recall from Section 2 that Xε → X, in DMF
, in probability, as ε ↓ 0. For

each t ≥ 0, define the distribution functions of the measures Xt and Xεt :

Ft(x) ≡ Xt((−∞, x]), x ∈ R,

F εt (x) ≡ Xεt ((−∞, x]), x ∈ R.

It is well known (see e.g. [6], [12]) thatXt(dx) is absolutely continuous with respect
to the Lebesgue measure for every t , and its density is jointly continuos in (t, x).
Hence Ft(x) is also jointly continuous in (t, x). By Theorems X.10, X.11 of [3] we
obtain that for each t > 0,

sup
x

∣
∣Fεt (x)− Ft(x)

∣
∣ → 0, as ε ↓ 0,

in probability. Now we can use the fact that convergence in the Skorohod space
to a continuous limit is equivalent to uniform convergence on compacts (see e.g.
Lemma 3.10.1 of [5]) to get

sup
t≤T

sup
x∈R

∣
∣Fεt (x)− Ft(x)

∣
∣ → 0, as ε ↓ 0,

in probability, for any T > 0. From the above convergence and the fact that with
probability 1, Xt = 0 for all t sufficiently large, we get

sup
t≥2ε

sup
x∈R,r≥0

∣
∣Xεt (B(x, r))−Xt(B(x, r))

∣
∣ → 0, as ε ↓ 0, (3.5)

in probability.
The lemma follows easily from (3.5). ��

Lemma 3.5.

(a) lim
δ↓0

sup
s,t

|Ws(t + δ)−Ws(t)| = 0, P − a.s.,

(b) lim
δ↓0

(

lim sup
ε↓0

P

(

sup
s≥2ε

sup
|t−t ′|≤δ

sup
ỹ∈supp(Ỹ εs )

∣
∣̃y(t)− ỹ(t ′)

∣
∣ > η

))

= 0, ∀η > 0. P − a.s.

Proof. (a) is a well known fact, see, for example, (2.7) of [1]. For (b) see Theo-
rem 4.1 of [1]. ��
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The last lemma easily implies the following.

Corollary 3.6. For any α, p > 0, there exists ε4 = ε4(α, p) > 0 such that

(a) P

(

sup
s≥0,t≥2ε

sup
u≤2ε

|Ws(t − 2ε)−Ws(t − u)| ≥ α/4

)

≤ p/8, ∀ε ≤ ε4,

(b) P

(

sup
s≥2ε

sup
|t−t ′|≤2ε

sup
ỹ∈supp(Ỹ εs )

∣
∣̃y(t)− ỹ(t ′)

∣
∣ > α/4

)

≤ p/8, ∀ε ≤ ε4 .

4. Construction of a pair of reflecting super-Brownian motions

Recall from Section 2 that (T ε, (lεu , u ∈ T ε)) is the marked genealogical forest
corresponding to the ε-branching particle system Y εt . Each element u ∈ T ε corre-
sponds to a particle with the lifetime lεu = ζ εu − ξεu , where ζ εu and ξεu are the death
and birth times of the particle u respectively. The spatial motion of u is assumed to
be a continuous function fu : [ξεu , ζ

ε
u ] → R and, moreover, fu′(ξ ε

u′) = fu(ζ
ε
u ) if u′

is an offspring of u. Of course, in this paper, {fu, u ∈ T ε} are Brownian paths. The
historical path of u is the continuous functionwu : [0, ζ εu ) → R such that for every
t ∈ [0, ζ εu ), wu(t) is the position at time t of the ancestor of u alive at that time.
Let lε(T ε) = ζ ε(T ε) be the lifetime of the ε-particle system Y εt . For ε, t > 0, Y εt
records the paths of (some) individuals up to time t − 2ε. Hence,

ζ ε(T ε) =
(

sup
s≤τ

βs − 2ε

)

+
.

We will need a truncation operator Tu acting on the forest. We define TuT δ to be
the subtree of T δ starting from the particle u.

We will use the “erasure of branches” idea of Neveu [8] to construct appropri-
ately related ε- and δ-branching particle systems for any δ < ε. These in turn will
be used to construct a δ-particle system with reflection from an ε-particle system
with reflection.

Fix arbitrary ε > δ > 0. First we will just consider ε- and δ-marked branching
forests corresponding to the particle systems without reflection—we will ignore the
spatial motion of the particles. The following is the essence of Neveu’s construction,
but it can be also deduced from our historical process description. To pass from the
δ-branching forest to the ε-branching forest one should erase each edge with no
offspring (leaf) of the δ-forest from its endpoint to a point on the branch located
at the distance 2(ε − δ) from the endpoint towards the root of the corresponding
tree. If the length of that branch is more than 2(ε − δ) we cut it off by exactly
2(ε − δ). If the length of that edge is less than 2(ε − δ) we erase it completely
and we proceed to the parent edge only when the neighboring edge (recall that the
branching is binary) is also completely erased. The edges that have not been erased
are then relabelled (edges with null lifetimes are excluded—this may change some
marks) and this defines a marked ε-forest. More precisely, if u ∈ T δ satisfies

lδ(TuT δ) > 2(ε − δ) (4.1)
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then u belongs to the ε-forest after erasure and relabelling but it may have a different
lifetime. Otherwise this particle and all its descendants are completely erased. For
any u ∈ T δ define

l∗,δu ≡ min
(
lδu , (l

δ(TuT δ)− 2(ε − δ))+
)

and

U1 ≡ {
u ∈ T δ : l∗,δu > 0, l∗,δu = lδ(TuT δ)− 2(ε − δ)

}
.

Note that l∗,δu depends on ε but we will suppress this dependence in the notation.
After relabelling, for any particle u ∈ U1 there is a particle vu ∈ T ε with

death time ζ εvu = ξδu+ l∗,δu . Now recall (see Neveu-Pitman [9], [10]) that each death
time of a particle without offspring vu ∈ T ε corresponds to a local 2ε-maximum of
the Brownian motion β. The branch u ∈ U1 is associated with a unique excursion
eδu of β on an interval (au, bu), such that β(au) = β(bu) = ξδu + l

∗,δ
u and

sup
au≤s≤bu

β(s) = ξδu + l∗,δu + sup
0≤s≤bu−au

eδu(s)

= ξδu + l∗,δu + 2ε.

For u, v ∈ T δ , let v < u mean that v is an ancestor of u, and

U2 ≡ {
u ∈ T δ : ξδu > 0, l∗,δu = 0, l∗,δv = lδv, ∀v < u

}

⋃ {
u ∈ T δ : l∗,δu = 0, ξ δu = 0

}
.

The first subset in the definition of U2 consists of the particles which are completely
erased up to the parent level, but the subtree corresponding to their cousins is not
completely erased, and hence their parents are not affected by the erasure. The
second subset in the definition of U2 consists of the particles which are born at time
zero and completely erased up to time zero (so, they do not have parents).

Again for any particle u ∈ U2 there is a subtree TuT δ with life duration
lδ(TuT δ) < 2(ε − δ). Hence there is a particle vu ∈ T δ with the death time
ξδu + lδ(TuT δ). Then again (by Neveu-Pitman [9], [10]) there is a unique local 2δ-
maximum of the Brownian motion β corresponding to the death time ξδu+lδ(TuT δ)

of the particle vu. Let eδu be the unique excursion of β on an interval (au, bu) cor-
responding to this local maximum, such that β(au) = β(bu) = ξδu and

sup
au≤s≤bu

β(s) = ξδu + sup
0≤s≤bu−au

eδu(s)

= ξδu + lδ(TuT δ)+ 2δ.

Let M = ∣
∣U1 ∪ U2

∣
∣ be the total number of elements in U1 ∪ U2 and let

si = β(aui ), i = 1, . . .M,

be the “erasure levels” corresponding to the elements ui of U1 ∪ U2 .
Recall from Section 3.1 of [1] that for any T ε there exists a forest T̃ ε represent-

ing the reflecting particle system. The historical paths w̃ṽ are defined for ṽ ∈ T̃ ε in
the same way as wu are defined for u ∈ T ε . Similarly, ξ̃ εṽ and ζ̃ εṽ denote the times
of birth and death of ṽ.
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Lemma 4.1. For every i = 1, . . . ,M , with si > 0, there exists a unique ṽi ∈ T̃ ε

such that ξ̃ εṽi < si ≤ ζ̃ εṽi and

w̃ṽi (si) = Waui
(si).

The proof of the lemma is elementary but tedious so it is left to the reader.
Next we will redefine the Brownian snake W on excursion intervals (aui , bui ).

For any s ∈ (aui , bui ) let

Ŵ i,δ
s (t) =

{
Ws(t), 0 ≤ si ≤ t ≤ βs,

w̃ṽi (t), si > 0, t ≤ si ,
(4.2)

and let Ŵ i,δ,t
s be the path of Ŵ i,δ

s stopped at time t . For any s ∈ (aui , bui ) one can
think of the path Ŵ i,δ

s as a path of a particle which up to time si follows the path of
ε-reflecting particle ṽi from Lemma 4.1 (if si > 0), and on the time interval [si, βs]
follows the path of a particle from “non-reflecting” system (this path is encoded in
the Brownian snake path in (4.2)).

For any i = 1, . . . ,M , let

�Hi,δ
t ≡ 1{t≥si+2δ}

∫ bui

aui

δ
Ŵ
i,δ,t−2δ
s

Lt (ds).

Denote by (aik, b
i
k), k = 1, 2, . . . the excursion intervals of β on (aui , bui ) starting

from the level t − 2δ and reaching the level t . We will denote the number of such
excursions by �Mi,δ

t and for each k = 1, . . . , �Mi,δ
t choose arbitrary sik ∈ (aik, b

i
k)

such that β(sik) = t . Trivially, Ŵ i,δ,t−2δ
s = Ŵ

i,δ,t−2δ
sik

for all s ∈ (aik, b
i
k), k =

1, . . . , �Mi,δ
t , and hence, we can write

�Hi,δ
t = 1{t≥si+2δ}

�Mi,δ
t∑

k=1

∫ bik

aik

δ
Ŵ
i,δ,t−2δ
s

Lt (ds)

=
�Mi,δ
t∑

k=1

(
Lt(bik)− Lt(aik)

)
δ
Ŵ
i,δ,t−2δ

si
k

. (4.3)

Hence, by the previous discussion we see that the atoms of �Hi,δ
t (whenever t ≥

si + 2δ and �Hi,δ
t (1) > 0) record the historical paths of the particles which up to

time si coincide with the path of ṽi . On the time interval [si , t − 2δ] each of these
particles follows a path of a δ-particle which is a descendant of ui (or ui itself) and
which survived up to time t−2δ. In what follows we will call all the particles whose
evolution is recorded by

∑M
i=1

�Hi,δ
t — “extra” non-reflecting δ-particles (however

keep in mind that they are non-reflecting only on the time intervals [si , t − 2δ]!).
Now we are ready to define the “historical” process representing the δ-particle

system built on the top of the ε-reflecting particle system by adding some extra
branches without reflection. Let

Ĥ δ
t = Ỹ εt+2(ε−δ) +

M∑

i=1

�Hi,δ
t , t ≥ 2δ. (4.4)
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Next we give mass δ−1 to each atom of Ĥ δ
t ; this defines a historical measure val-

ued process Ŷ δt . The “historical” process Ŷ δ records the evolution of the δ-particle
system with a special recipe for reflection. For any t ≥ 2δ, Ŷ δt records the evolution
up to time t − 2δ of two types of particles (recall our Convention 1):

(i) particles corresponding to the atoms of Ỹ εt+2(ε−δ) — those are ε-reflecting
particles which are alive at time t − 2δ;

(ii) “extra” non-reflecting δ-particles (see discussion below (4.3)).

Note that the particles in (ii) do not reflect with each other and do not reflect with
particles in (i) on the time intervals [si, t − 2δ].

Let X̂δt be the measure valued processes corresponding to Ŷ δt in the same way
as Xεt corresponds to Y εt . Then it is easy to check that

X̂δt = Xδt , t ≥ 2δ. (4.5)

Define

Ŷ
i,δ
t (dω) = 1{ω(0)∈supp(µi)}Ŷ

δ
t (dω), i = 1, 2.

Assumption. In what follows we fix 0 < p, α < 1 arbitrary small and a = 〈µ, 1〉.
Then we choose ν∗ ≤ α as in Lemma 3.1. For those p, α, ν∗ we choose ε1 as in
Lemma 3.2. Then we choose α = α(ν∗, p), ε2 = ε2(ν

∗, p) and ε3 = ε3(α, p) as
in Lemma 3.4. Finally we choose ε4 = ε4(α, p) as in Corollary 3.6. Now fix some
ε ≤ min(εi, i = 1, 2, 3, 4).

It is easy to see from our construction that if 〈Ỹ i,εt , 1〉 > 0 then 〈Ŷ i,δt , 1〉 > 0,
i = 1, 2. Define

σ i,ε ≡ inf{t ≥ 2ε : 〈Ỹ i,εt , 1〉 = 0}.

Let X̂i,δt and X̃i,εt be the measure valued processes corresponding to Ŷ i,δt and Ỹ i,εt
in the same way asXεt corresponds to Y εt . For t < σ 1,ε let r̂ δ(t) (resp. r̃ ε(t)) be the
right boundary of supp(X̂1,δ

t ) (resp. supp(X̃1,ε
t )) and for t < σ 2,ε let l̂ δ(t) (resp.

l̃ε (t)) be the left boundary of supp(X̂2,δ
t ) (resp. supp(X̃2,ε

t )).

Lemma 4.2. For every δ ≤ ε,

P

(

sup
2ε≤t<σ 1,ε

∣
∣̂r δ(t)− r̃ ε(t)

∣
∣ ≤ α/4

)

≥ 1 − p/4,

P

(

sup
2ε≤t<σ 2,ε

∣
∣̂l δ(t)− l̃ε (t)

∣
∣ ≤ α/4

)

≥ 1 − p/4,

P

(

sup
2ε≤t<σ 1,ε∧σ 2,ε

(̂r δ(t)− l̂δ(t)) ≤ α/2

)

≥ 1 − p/2.

Proof. By (4.4), the quantity sup2ε≤t<σ 1,ε

∣
∣̂rδ(t)− r̃ ε(t)

∣
∣ is bounded by the max-

imum of oscillations of the paths in the support of Ỹ εt , t ≥ 2ε over time intervals
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of length 2(ε − δ) (described in Corollary 3.6 (b)), and the maximum of oscilla-
tions of extra paths added to the reflecting ε-branching system. The oscillations
of the extra paths are bounded by oscillations of the Brownian snake paths (again
over time intervals of length 2(ε − δ)) described in Corollary 3.6 (a). Hence, the
first inequality follows from Corollary 3.6. The second inequality is analogous,
and the third one follows from the first two and the fact that, by construction,
l̃ε (t) ≥ r̃ ε(t). ��

For each i = 1, 2, we relabel the paths of Ŷ i,δt to create a new “historical”

process Y
i,δ

t whose paths are reflecting from each other. Note that the paths are

reflecting within each Y
i,δ

t , but the paths of Y
1,δ
t are not reflecting from those in

Y
2,δ
t . The corresponding measure-valued processes will be denotedX

i,δ

t . Obviously

X
i,δ

t = X̂
i,δ
t , i = 1, 2. Let rδ(t) be the right boundary of supp(X

1,δ
t ) and l

δ
(t) be

the left boundary of supp(X
2,δ
t ). Since X

i,δ

t = X̂
i,δ
t , we immediately have

rδ(t) = r̂ δ(t), l
δ
(t) = l̂ δ(t), (4.6)

and Lemma 4.2 implies that

P

(

sup
2ε≤t<σ 1,ε∧σ 2,ε

(rδ(t)− l
δ
(t)) ≤ α/2

)

≥ 1 − p/2, ∀δ ≤ ε. (4.7)

Let (T i,δ
, (lu, u ∈ T i,δ

)) be the marked tree corresponding to the genealogical

structure of Y
i,δ
, and β

i,δ
, i = 1, 2, be the corresponding random walks. Note that

by independence of the motion and the branching, the total mass of X
i,δ

is the

critical Galton-Watson branching process with the rate of branching δ−1, and β
i,δ

has the same distribution as βi,δ, i = 1, 2. We use (2.6) to get

β
i,δ → βi, i = 1, 2,

in distribution. By Lemma 3.2,

sup
i=1,2

P
(
L
i,δ
(β
i,δ
, ν∗/2) ≥ 2α

)
≤ p/4, ∀δ ≤ ε, (4.8)

where L
i,δ

is defined relative to β
i,δ

in the same way as Li,ε was defined relative to

βε in Section 3. In fact, recalling that Y
i,δ
, i = 1, 2, records evolution of reflecting

particle system, one can easily check that in this case L
i,δ
, i = 1, 2, satisfies the

following inequalities

L
1,δ
(β

1,δ
, ν∗/2) ≥ sup

t≥2δ
Y

1,δ
t

(
y : X

1,δ
s ([y(s),∞)) ≤ ν∗/2, for some s ≤ t

)
, (4.9)

L
2,δ
(β

2,δ
, ν∗/2) ≥ sup

t≥2δ
Y

2,δ
t

(
y : X

2,δ
s ((−∞, y(s)]) ≤ ν∗/2, for some s ≤ t

)
. (4.10)

In other words if z1
s = inf{x ∈ supp(X

1,δ
s ) : X

1,δ
s ([x,∞)) ≤ ν∗/2}, then the quan-

tity L
1,δ
(β

1,δ
, ν∗/2) is greater than or equal to the maximum mass in the reflecting
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particle system recorded by Y
1,δ

that may “descend” from the particles in [zs,∞)

for any s ≥ 0. One can give an analogous interpretation to (4.10).
Let

Ti ≡
{
t ≥ 2ε : 〈X̃i,εt , 1〉 ≥ 4α

}
, i = 1, 2,

ηα1 (t) =
{

sup{x :
∫∞
x
X̃

1,ε
t (dy) ≥ 4α}, ∀t ∈ T1,

−∞, ∀t �∈ T1,

ηα2 (t) =
{

inf{x :
∫ x
−∞ X̃

2,ε
t (dy) ≥ 4α}, ∀t ∈ T2,

∞, ∀t �∈ T2,

1,δ,ε =
{
ω : X

2,δ
t

(
(−∞, r̃ε(t)− α/2)

) = 0, ∀t < σ 1,ε
}

∩
{

ω : sup
t≥2ε

sup
x∈R,r≥0

∣
∣Xεt (B(x, r))−Xδt (B(x, r))

∣
∣ ≤ α

}

∩
{
ω : Xεt

(
[̃rε(t)− α/2, r̃ε(t)]

) ≤ ν∗/2, ∀t ∈ T1
}

≡ 
1,δ,ε
1 ∩ 1,δ,ε

2 ∩ 1,δ,ε
3 , (4.11)

2,δ,ε =
{
ω : X

1,δ
t

(
(̃lε(t)+ α/2,∞)

) = 0, ∀t < σ 2,ε
}

∩
{

ω : sup
t≥2ε

sup
x∈R,r≥0

∣
∣Xεt (B(x, r))−Xδt (B(x, r))

∣
∣ ≤ α

}

∩
{
ω : Xεt

(
[̃lε(t), l̃ε(t)+ α/2]

) ≤ ν∗/2, ∀t ∈ T2
}

≡ 
2,δ,ε
1 ∩ 2,δ,ε

2 ∩ 2,δ,ε
3 . (4.12)

Note that

Xεt = X̃εt = X̃
1,ε
t + X̃

2,ε
t , t ≥ 2ε. (4.13)

Hence it follows easily from the definition of ηα1 (t) and the assumption ν∗ ≤ α,
that for any ω ∈ 1,δ,ε

X̃
1,ε
t

(
[ηα1 (t), r̃

ε(t)]
)
> X̃

1,ε
t

(
[̃rε(t)− α/2, r̃ε(t)]

)
, ∀t ∈ T1.

Therefore

ηα1 (t) < r̃ε(t)− α/2, ∀t ∈ T1, ∀ω ∈ 1,δ,ε . (4.14)

In the same way we get

ηα2 (t) > l̃ε(t)+ α/2, ∀t ∈ T2, ∀ω ∈ 2,δ,ε . (4.15)

By Lemma 3.4 we obtain for i = 1, 2,

P
((

i,δ,ε
2

)c)+ P
((

i,δ,ε
3

)c) ≤ p/2 + p/4. (4.16)
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Moreover,
(


1,δ,ε
1

)c =
{
X

2,δ
t

(
(−∞, r̃ε(t)− α/2)

)
> 0, for some t ∈ [2ε, σ 1,ε)

}

⊂
{
l
δ
(t) < r̃ε(t)− α/2 for some t ∈ [2ε, σ 1,ε)

}

⊂
{
l̂δ(t) < l̃ε(t)− α/2 for some t ∈ [2ε, σ 1,ε)

}
,

where the second inclusion follows by (4.6) and the inequality l̃ε (t) ≥ r̃ ε(t). Now
apply Lemma 4.2 to get

P
((


1,δ,ε
1

)c) ≤ p/4. (4.17)

Similarly we obtain

P
((


2,δ,ε
1

)c) ≤ p/4. (4.18)

Combine (4.16), (4.17), (4.18) to get

P
(
i,δ,ε

)
≥ 1 − p/4 − p/2 − p/4 (4.19)

= 1 − p.

Let X
δ

t = X
1,δ
t +X

2,δ
t . Since X

δ

t = X̂δt , t ≥ 2δ, we get by (4.5) that

X
δ

t = Xδt , t ≥ 2δ. (4.20)

It follows from (4.11) and (4.20) that for any ω ∈ 1,δ,ε and t ∈ T1,

X
1,δ
t

(
[ηα1 (t),∞)

)
≥ X

1,δ
t

(
[ηα1 (t), r̃

ε(t)− α/2)
)

= X
δ

t

(
[ηα1 (t), r̃

ε(t)− α/2)
)

= Xδt

(
[ηα1 (t), r̃

ε(t)− α/2)
)

≥ Xεt

(
[ηα1 (t), r̃

ε(t)− α/2)
)

− α

= Xεt

(
[ηα1 (t), r̃

ε(t)]
)
−Xεt

(
[̃rε(t)−α/2, r̃ε(t)])−α. (4.21)

Again by (4.11)

Xεt
(
[̃rε(t)− α/2, r̃ε(t)]

) ≤ ν∗/2, ∀ω ∈ 1,δ,ε, t ∈ T1. (4.22)

Use (4.13) to obtain

Xεt

(
[ηα1 (t), r̃

ε(t)]
)

≥ X̃
1,ε
t

(
[ηα1 (t), r̃

ε(t)]
)

≥ 4α , t ∈ T1, (4.23)
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where the second inequality follows by the definitions of r̃ ε(·) and ηα1 (·). Recall
that ν∗ ≤ α, and combine (4.21), (4.22), (4.23) to get that for any ω ∈ 1,δ,ε and
t ∈ T1

X
1,δ
t

(
[ηα1 (t),∞)

)
≥ 2α. (4.24)

In a similar way we get that for any ω ∈ 2,δ,ε and t ∈ T2,

X
2,δ
t

(
(−∞, ηα2 (t)]

)
≥ 2α.

We proceed to do one more (final!) relabelling of the particles. We relabel the

particles of supp(Y
1,δ
)∪ supp(Y

2,δ
) in such a way that all paths are reflecting from

each other. We group the relabelled paths into two families Ỹ 1,δ and Ỹ 2,δ so that

the roots of trees in Ỹ i,δ are the same as in Y
i,δ

. Note that we are using the same
notation Ỹ i,δ as in Section 2. This is no coincidence—the pair of processes just
defined is the same as (Ỹ 1,δ, Ỹ 2,δ) of Section 2, since the intermediate labelling

scheme of Y
i,δ

has no effect on the final result.
Define S̃i,δ(t) (resp. S

i,δ
(t)) to be the collection of atoms of Ỹ i,δt (resp. Y

i,δ

t ),
i = 1, 2. Also let

S̃1,δ,α(t) =
{
ỹ(·) ∈ S̃1,δ(t) : ỹ(t) ≤ ηα1 (t)

}
,

S̃2,δ,α(t) =
{
ỹ(·) ∈ S̃2,δ(t) : ỹ(t) ≥ ηα2 (t)

}
,

S
1,δ,α

(t) =
{
y(·) ∈ S1,δ

(t) : y(t) ≤ ηα1 (t)
}
,

S
2,δ,α

(t) =
{
y(·) ∈ S2,δ

(t) : y(t) ≥ ηα2 (t)
}
,

A1,δ ≡
{
∀t ∈ T1,∀y ∈ S1,δ,α

(t) : y(s) ≤ r̃ ε(s)− 3α/4,∀s ≤ t
}
,

A2,δ ≡
{
∀t ∈ T2,∀y ∈ S2,δ,α

(t) : y(s) ≥ l̃ε (s)+ 3α/4,∀s ≤ t
}
.

Lemma 4.3. We have for i = 1, 2,

P
(
Ai,δ ∩ i,δ,ε

)
≥ 1 − 7

4
p.

Proof.

P
(
1,δ,ε ∩ (A1,δ

)c)

= P

(

1,δ,ε ∩
{

∃t ∈ T1, y ∈ S1,δ,α
(t) : y(s) > r̃ε(s)− 3α/4, for some s ≤ t

})

≤ P

(

1,δ,ε ∩
{

∃t ∈ T1, y ∈ S1,δ,α
(t) : y(s) > rδ(s)− α, for some s ≤ t

})

+ p/4

≤ P

(

1,δ,ε ∩
{

∃t ∈ T1, y ∈ S1,δ,α
(t) : y(s) > rδ(s)− α, for some s ≤ t

}

∩
{

X
1,δ
u

(
[rδ(u)− α, rδ(u)]

) ≤ ν∗/2, ∀u ≥ 2δ

})

+ p/2

≡ P
(
1,δ,ε ∩D1,δ ∩D2,δ

)+ p/2. (4.25)
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The first inequality follows by Lemma 4.2 and (4.6), the second by Lemma 3.4.
Now suppose that D1,δ holds, that is there exists

t ∈ T1, y ∈ S1,δ,α
(t) : y(s) > rδ(s)− α, for some s ≤ t.

For such t we have on 1,δ,ε :

Y
1,δ
t

(
y : y(s)>rδ(s)−α, for some s ≤ t

) ≥ Y
1,δ
t

(
y : y(t)≥ηα1 (t)

)

= X
1,δ
t

(
[ηα1 (t),∞)

)

≥ 2α, (4.26)

where the first inequality follows by definition ofS
1,δ,α

(t) and the last one by (4.24).
If in addition we assume that D2,δ holds we easily get from (4.26) that (for the
same t)

Y
1,δ
t

(
y : X

1,δ
s ([y(s),∞)) ≤ ν∗/2, for some s ≤ t

)
≥ 2α, (4.27)

This and (4.9) immediately imply that

1,δ,ε ∩D1,δ ∩D2,δ ⊂
{
L

1,δ
(
β

1,δ
, ν∗/2

)
≥ 2α

}
. (4.28)

Hence by (4.25) and (4.8) we obtain

P
(
1,δ,ε ∩

(
A1,δ

)c) ≤ P
(
L

1,δ
(
β

1,δ
, ν∗/2

)
≥ 2α

)
+ p/2

≤ p/4 + p/2 = 3p/4.

The inequalityP
(
2,δ,ε ∩ (A2,δ

)c) ≤ 3p/4 follows along the same lines. This

and (4.19) yield the desired result. ��
Lemma 4.4. For any ω ∈ ⋂i=1,2(

i,δ,ε ∩ Ai,δ),

X̃
1,δ
t

(
[ηα2 (t),∞)

)
= 0, ∀t ≥ 2ε (4.29)

X̃
2,δ
t

(
(−∞, ηα1 (t)]

)
= 0, ∀t ≥ 2ε. (4.30)

Proof. Let ω ∈ ⋂
i=1,2(

i,δ,ε ∩ Ai,δ). Fix an arbitrary t ∈ T1 and y ∈ S1,δ,α
(t).

Recall that all the paths inside S
1,δ,α

(t) are reflecting. Hence y is not crossed by

any path from any family S
1,δ,α

(s), for any s ≤ t . If after the final relabelling

y �∈ S̃1,δ,α(t), it means that y is intersected by a path in the family
⋃
s≤t S

2,δ,α
(s).

This combined with the first line in the definition of 1,δ,ε shows that

∃s : y(s) ≥ r̃ ε(s)− α/2.

This however contradicts the fact that ω ∈ A1,δ . Therefore

S
1,δ,α

(t) ⊂ S̃1,δ,α(t), ∀t ∈ T1, ω ∈
⋂

i=1,2

(i,δ,ε ∩ Ai,δ).
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Hence for any t ∈ T1 we get

X
1,δ
t

(
(−∞, ηα1 (t)]

)
≤ X̃

1,δ
t

(
(−∞, ηα1 (t)]

)
≤ Xδt

(
(−∞, ηα1 (t)]

)
, (4.31)

where the last inequality follows by

Xδt = X̃δt = X̃
1,δ
t + X̃

2,δ
t , t ≥ 2δ. (4.32)

(Note that that (4.32) is just (4.13) with ε = δ.) On the other hand, (4.14) and the

first line in the definition of 1,δ,ε imply that X
2,δ
t

(
(−∞, ηα1 (t)]

) = 0. From this
and (4.20) we obtain

X
1,δ
t

(
(−∞, ηα1 (t)]

)
= X

δ

t

(
(−∞, ηα1 (t)]

)

= Xδt

(
(−∞, ηα1 (t)]

)
. (4.33)

By (4.31) and (4.33) we obtain

X̃
1,δ
t

(
(−∞, ηα1 (t)]

)
= Xδt

(
(−∞, ηα1 (t)]

)
. (4.34)

Then the above equation together with (4.32) immediately imply (4.30) for t ∈ T1.
For t �∈ T1, (4.30) follows immediately by definition of ηα1 (t).

Analogously we get

S
2,δ,α

(t) ⊂ S̃2,δ,α(t), ∀t ∈ T2, ω ∈
⋂

i=1,2

(i,δ,ε ∩ Ai,δ),

and derive (4.29) along the same lines as we derived (4.30). ��
Lemma 4.5.

P

(

sup
t≥2ε

∣
∣
∣〈X̃i,εt , 1〉 − 〈X̃i,δt , 1〉

∣
∣
∣ ≥ 14α

)

≤ 14

4
p, i = 1, 2.

Proof. Consider the case i = 1. Assume that ω ∈ ⋂
i=1,2

(
i,δ,ε ∩ Ai,δ) and fix

arbitrary t ≥ 2ε. Then
∣
∣
∣〈X̃1,ε

t , 1〉 − 〈X̃1,δ
t , 1〉

∣
∣
∣ ≤

∣
∣
∣X̃1,ε

t

(
(−∞, ηα1 (t)]

)
− X̃

1,δ
t

(
(−∞, ηα1 (t)]

)∣∣
∣

+
∣
∣
∣X̃1,ε

t

(
(ηα1 (t),∞)

)∣∣
∣+

∣
∣
∣X̃1,δ

t

(
(ηα1 (t),∞)

)∣∣
∣ .

(4.35)

By the definition of ηα1 (t) and Lemma 4.4 we get
∣
∣
∣X̃1,ε

t

(
(−∞, ηα1 (t)]

)
− X̃

1,δ
t

(
(−∞, ηα1 (t)]

)∣∣
∣

≤
∣
∣
∣X̃εt

(
(−∞, ηα1 (t)]

)
− X̃δt

(
(−∞, ηα1 (t)]

)∣∣
∣

=
∣
∣
∣Xεt

(
(−∞, ηα1 (t)]

)
−Xδt

(
(−∞, ηα1 (t)]

)∣∣
∣

≤ α (4.36)
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where the equality follows by (4.13), (4.32), and the last inequality follows by the
second line in the definition of 1,δ,ε .

We will bound the second term on the right hand side of (4.35). By the definition
of ηα1 (t) we get

X̃
1,ε
t

(
(ηα1 (t),∞)

)
≤ 4α. (4.37)

Consider the last term on the right hand side of (4.35). First by Lemma 4.4 we get

X̃
1,δ
t

(
(ηα1 (t),∞)

)
= X̃

1,δ
t

(
(ηα1 (t), η

α
2 (t))

)
. (4.38)

Then we obtain

X̃
1,δ
t

(
(ηα1 (t), η

α
2 (t))

)
≤ Xδt

(
(ηα1 (t), η

α
2 (t))

)

≤ α +Xεt

(
(ηα1 (t), η

α
2 (t))

)

≤ 9α,

where the first inequality follows by (4.32), the second one follows by the second
line of the definition of 1,δ,ε , and the last one by the definition of ηαi (t), i = 1, 2.
Hence from (4.38) we get

X̃
1,δ
t

(
(ηα1 (t),∞)

)
≤ 9α. (4.39)

Combine (4.35), (4.36), (4.37), (4.39) to get
∣
∣
∣〈X̃1,ε

t , 1〉 − 〈X̃1,δ
t , 1〉

∣
∣
∣ ≤ 14α,

A similar inequality holds for i = 2. The result follows now from Lemma 4.3.
��

Proof of Theorem 2.2. Let

F̃
i,ε
t (x) = X̃

i,ε
t ((−∞, x]) , i = 1, 2,

F εt (x) = Xεt ((−∞, x]) ,

be the distribution functions of X̃i,εt and Xεt (respectively) defined for every t ≥ 0.
Since the support of X̃1,ε

t lies to the left of the support of X̃2,ε
t andXε = X̃1,ε+X̃2,ε

we get

F̃
1,ε
t (x) = min

(
Fεt (x), 〈X̃1,ε

t , 1〉
)
, (4.40)

F̃
2,ε
t (x) = max

(
Fεt (x)− 〈X̃1,ε

t , 1〉, 0
)
. (4.41)

By Lemma 4.5, {(〈X̃1,ε, 1〉, 〈X̃2,ε, 1〉), ε ≤ 1} is a Cauchy family, in the sense of
convergence in probability. Moreover Xε = X̃1,ε + X̃2,ε converges in DMF

to
X ∈ CMF

, in probability. This, and (4.40), (4.41) imply that F̃ i,ε, i = 1, 2, con-
verge uniformly on the compacts of R+ ×R, in probability, and hence (X̃1,ε, X̃2,ε)

converges in DMF×MF
in probability, as ε ↓ 0. ��
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Next we are going to extend the above result to define reflecting super-Brownian
motions starting at any time s ≥ 0. Fix an arbitrary s ≥ 0, and let X̃1,s

s and X̃2,s
s

be any random measures in MF such that

1. X̃1,s
s + X̃

2,s
s = Xs .

2. If 〈X̃1,s
s , 1〉 > 0, 〈X̃2,s

s , 1〉 > 0 then the support of X̃1,s
s lies to the left of the

support of X̃2,s
s , that is for any xi ∈ supp(X̃i,ss ), i = 1, 2, we have x1 ≤ x2.

3. (X̃1,s
s , X̃

2,s
s ) ∈ FsX := σ {Xt , t ≤ s}.

We will consider truncations of all superprocesses, historical processes with and
without reflection, etc. to the time interval [s,∞) (the related ε-approximations
of superprocesses and historical processes will be truncated to the time interval
[s + 2ε,∞)). Let {Y s,εt , t ≥ s + 2ε} be the natural truncation of {Y εt , t ≥ 2ε}, and
note that it is the same as the approximating branching system constructed on the
basis of the historical process {Yt , t ≥ 0} truncated to the interval [s,∞). In other
words, one obtains the same process {Y s,εt , t ≥ s+ 2ε}, no matter which operation
is performed first on {Yt , t ≥ 0} — truncation to the interval [s,∞) or passing to
the semi-discrete approximation. Let {(X̃1,s,ε

t , X̃
2,s,ε
t ), t ≥ s + 2ε} be a pair of

approximating reflecting super-Brownian motions defined as in Section 2 but this
time relative to {Y s,εt , t ≥ s + 2ε}. The processes start at time t = s + 2ε at

X̃
i,s,ε
s+2ε(dx) = 1{x∈supp(X̃i,ss )}X

ε
s+2ε(dx), i = 1, 2.

Proposition 4.6. There exists a pair of processes {(X̃1,s
t , X̃

2,s
t ), t ≥ s} in

CMF×MF
[s,∞) (“reflecting super-Brownian motions”) such that

(X̃1,s,ε, X̃2,s,ε) → (X̃1,s , X̃2,s),

as ε ↓ 0, in probability in DMF×MF
[s,∞).

Proof. Note that Xs is absolutely continuous with respect to Lebesgue measure
P -a.s.. Also, it is well-known (see e.g. Corollary III.1.7 of [11]) that the range
of X is compact, P -a.s.. Hence Xs satisfies the same assumptions as X0 = µ

before. Moreover, P -a.s., X̃1,s
s , X̃

2,s
s also satisfy the same assumptions as µ1 , µ2.

Therefore, for any α > 0, for P -a.s. ω,

lim
ε,δ↓0,ε>δ

P

(

sup
t≥s+2ε

∣
∣
∣〈X̃i,s,εt , 1〉−〈X̃i,s,δt , 1〉

∣
∣
∣≥α

∣
∣
∣X̃1,s

s , X̃2,s
s

)

(ω) = 0, i=1, 2,

by Lemma 4.5. Hence, by dominated convergence we obtain that

lim
ε,δ↓0,ε>δ

P

(

sup
t≥s+2ε

∣
∣
∣〈X̃i,s,εt , 1〉 − 〈X̃i,s,δt , 1〉

∣
∣
∣ ≥ α

)

= 0, i = 1, 2,

and then we can proceed as in the proof of Theorem 2.2. ��
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We will generalize the last result even further by passing from pairs to families
of reflecting super-Brownian motions. For a real s ≥ 0 and integers i ∈ Z, n ≥ 1,
let µi,s,n ∈ MF be the truncation of Xs to [i2−n, (i + 1)2−n), i.e.,

µi,s,n(A) = Xs(A ∩ [i2−n, (i + 1)2−n)), A ⊂ R.

For a fixed s ≥ 0 and ε > 0, let {(X̃i,s,ε,nt , t ≥ s + 2ε, i ∈ Z} be the family
of approximating reflecting super-Brownian motions constructed from {Y s,εt , t ≥
s + 2ε} in a way similar to that in Section 2, with different processes starting at
time t = s + 2ε from

X̃
i,s,ε,n
s+2ε (dx) = 1{x∈supp(µi,s,n)}X

ε
s+2ε(dx), i ∈ Z.

Let J εs ≡
{
i : 〈X̃i,s,ε,ns+2ε , 1〉 > 0

}
, and

∣
∣J εs

∣
∣ be the total number of elements in J εs .

As we have mentioned at the beginning of the proof of Proposition 4.6, the range
of X is compact, P -a.s., and hence

sup
0<ε≤1

sup
s≥0

∣
∣J εs

∣
∣ < ∞, P − a.s.. (4.42)

Theorem 4.7. Fix an s ≥ 0. For each n ≥ 1 there exists a family of reflecting
super-Brownian motions {X̃i,s,nt , t ≥ s, i ∈ Z} such that

(a) X̃i,s,ns = µi,s,n, ∀i ∈ Z.
(b) lim

ε↓0

(
X̃i,s,ε,n

)
i∈Z

= (
X̃i,s,n

)
i∈Z

, in
(
DMF

[s,∞)
)∞

, in probability.

(c) For any t ≥ s, i ∈ Z, such that 〈X̃i,s,nt , 1〉 > 0 and 〈X̃i+1,s,n
t , 1〉 > 0, the

support of X̃i,s,nt lies to the left of the support of X̃i+1,s,n
t .

Proof. Fix arbitrary s ≥ 0 and n ≥ 1. For each j ∈ Z define

X̃
1,j,s,ε
t ≡

∑

i:i≤j
X̃
i,s,ε,n
t , t ≥ s + 2ε,

X̃
2,j,s,ε
t ≡

∑

i:i≥j+1

X̃
i,s,ε,n
t , t ≥ s + 2ε.

By Proposition 4.6

(X̃1,j,s,ε, X̃2,j,s,ε) → (X̃1,j,s , X̃2,j,s),

as ε ↓ 0, in probability inDMF×MF
[s,∞) for every j ∈ Z. Hence for anyK ≥ 1,

(X̃1,j,s,ε, X̃2,j,s,ε)j∈{−K,... ,K} → (X̃1,j,s , X̃2,j,s)j∈{−K,... ,K},

as ε ↓ 0, in probability in (DMF×MF
[s,∞))2K+1. Now recall that

X̃
j,s,ε,n
t ≡ X̃

1,j,s,ε
t − X̃

1,j−1,s,ε
t , t ≥ s + 2ε.

Hence for any K ≥ 1,

(X̃j,s,ε,n)j∈{−K+1,... ,K} → (X̃j,s,n)j∈{−K+1,... ,K},
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as ε ↓ 0, in (DMF
[s,∞))2K , in probability. Now recall that, by (4.42) the number

of non identically zero processes X̃j,s,ε,n , j ∈ Z, is finite, P -a.s. Therefore we
immediately get

lim
ε↓0

(
X̃i,s,ε,n

)

i∈Z
=
(
X̃i,s,n

)

i∈Z
in
(
DMF

[s,∞)
)∞
,

in probability, and the result follows. ��

5. Proof of Theorem 2.1

Recall our conventions from the “Notation” section at the end of the Introduction.
For any x ∈ R define [x]n = [x2n]

2n . For any k, n ≥ 1 consider the following family
of functions:

Dk,n = {
ψ ∈ B (Rk

)
: ψ(x1 , . . . , xk) = ψ([x1]n , . . . , [xk]n), ∀(x1 , . . . , xk) ∈ R

k
}
.

In words,Dk,n consists of functions which are constant on rectangles (or cubes) of
the form [ i12n ,

i1+1
2n )× · · · × [ ik2n ,

ik+1
2n ). Next we define some families of functions

on CR[0,∞):

Dt = {
ψ ∈ C(CR[0,∞)) : ψ(y) = ψ(y(t1), . . . , y(tk))

for some ψ ∈ Cu(Rk), 0 ≤ t1 < · · · < tk < t, k ≥ 1
}
,

D
k,n
t = {

ψ ∈ B(CR[0,∞)) : ψ(y) = ψ(y(t1), . . . , y(tk))

for some ψ ∈ Dk,n, 0 ≤ t1 < · · · < tk < t
}
.

The following two auxiliary lemmas will help us complete the proof of Theorem 2.1.

Lemma 5.1. Fix arbitrary t > 0. Let {Zε, 0 < ε ≤ 1} be a family ofMF(C[0, t])-
valued random variables, whose laws are tight in the space of all probability mea-
sures on MF(C[0, t]). Suppose for each k, n ≥ 1 and ψ ∈ D

k,n
t there exists a

random variable Zψ such that 〈Zε,ψ〉 → Zψ , as ε ↓ 0, in probability. Then
there exists a random measure Z ∈ MF(C[0, t]) such that

Zε → Z , as ε ↓ 0,

in MF(C[0, t]), in probability.

Lemma 5.2. Let {Ỹ ε, 0 < ε ≤ 1} be a family of processes in DMF (C)[0,∞)

whose laws are tight in the space of all probability measures on DMF (C)[0,∞),
and any limit law is supported by CMF (C)[0,∞). If for each t > 0, Ỹ εt converges
in MF(C), in probability, then there exists a process Ỹ ∈ CMF (C)[0,∞) such that

Ỹ ε → Ỹ, as ε ↓ 0,

in DMF (C)[0,∞), in probability.
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Proof of Lemma 5.1. We adopt the argument which is used for the proof of
LemmaA.5 of [2]. Let d be a metric onMF(C[0, t]). It will suffice to show that {Zε}
is a Cauchy sequence in the metric d , in probability. We will argue by contradiction.
Suppose that {Zε} is not Cauchy, that is, there existη > 0,M > 0, {εm , δm ,m ≥ 1}
such that εm , δm ↓ 0, as m → ∞, and

P
(
d(Zεm, Zδm) ≥ η

) ≥ η, ∀m ≥ M.

By our assumptions we can choose a subsequence (Zε
′
m, Zδ

′
m) which converges in

MF(C[0, t])×MF(C[0, t]) in law. Let (Z′, Z′′) be its limit point defined possibly
on another probability space. Now note that the set of functions {Dk,nt , k, n ≥ 1}
is dense in Dt in the uniform topology. Hence we easily see that,

lim
m→∞P

(∣∣
∣〈Zε′m, ψ〉 − 〈Zδ′m, ψ〉

∣
∣
∣ ≥ γ

)
= 0, ∀ψ ∈ Dt , γ > 0.

Since the functions inDt are continuous onMF(C[0, t]) andDt separates measures
in MF(C[0, t]) we immediately get that

Z′ = Z′′, P − a.s..

But this implies that

lim
m→∞P

(
d(Zε

′
m, Zδ

′
m) ≥ η

)
= 0,

yielding the contradiction and we are done. ��
Proof of Lemma 5.2. We again adopt the argument which is used for the proof of
Lemma A.5 of [2]: some changes are required, therefore we give the proof here.

Let d be a metric onMF(C) and �d be a metric onDMF (C). It is enough to show
that {Ỹ ε} is a Cauchy sequence in �d in probability. We will argue by contradiction.
Suppose that {Ỹ ε} is not Cauchy, i.e., there exist η > 0,M > 0, {εm , δm ,m ≥ 1}
such that εm , δm ↓ 0, as m → ∞, and

P
(

�d(Ỹ εm, Ỹ δm) ≥ η
)

≥ η, ∀m ≥ M.

By our assumptions we can choose a subsequence (Ỹ ε
′
m, Ỹ δ

′
m) which converges

in DMF (C) × DMF (C) in law. Let (Ỹ ′, Ỹ ′′) ∈ CMF (C) × CMF (C) be its limit point
defined possibly on another probability space. On the other hand by our assumption
that Ỹ εt converges in MF(C), in probability, for each t > 0, we get

P
(
d(Ỹ

ε′m
t , Ỹ

δ′m
t ) ≥ η

)
→ 0, ∀t ≥ 0.

Hence,

Ỹ ′
t = Ỹ ′′

t , P − a.s., ∀t ≥ 0.

Since (Ỹ ′, Ỹ ′′) ∈ CMF (C) × CMF (C), we immediately obtain

Ỹ ′
t = Ỹ ′′

t , ∀t ≥ 0, P − a.s. (5.1)
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Let Ỹ = Ỹ ′
t = Ỹ ′′

t . Then we have

(Ỹ ε
′
m, Ỹ δ

′
m) → (Ỹ, Ỹ)

in law. However this means that

P
(

�d(Ỹ ε′m, Ỹ δ′m) ≥ η
)

→ 0,

yielding the contradiction and we are done. ��
Fix arbitrary t > 0, n ≥ 1, and 0 ≤ s1 < · · · < sK < t . Let {X̃i,sk,ns , s ≥ sk ,

i ∈ Z, k = 1, . . . , K} be the family of reflecting super-Brownian motions con-
structed in Theorem 4.7. Let l̃k,i,n,t (̃rk,i,n,t ) be the left (right) endpoint of the
support of X̃i,sk,nt defined whenever 〈X̃i,sk,nt , 1〉 > 0. Note that we always have
r̃k,i,n,t ≤ l̃k,i+1,n,t but not necessarily r̃k,i,n,t = l̃k,i+1,n,t . Define

Ik ≡ {i ∈ Z : 〈X̃i,sk,nt , 1〉 > 0}
and let |Ik| be the total number of elements in Ik . Let Mn,t be the set of all real
numbers l̃k,i,n,t and r̃k,i,n,t for k = 1, 2, . . . , K , i ∈ Ik .
Lemma 5.3. With probability 1, only a finite number of processes in the family
{X̃i,sk,n(s), s ≥ sk, i ∈ Z, k = 1, . . . , K} survive up to time t > sK , that is,

K∑

k=1

|Ik| < ∞, P − a.s.

Proof. As we have mentioned in the proof of Proposition 4.6 (see also Corol-
lary III.1.4 of [11]), the support of Xt is compact for any t ≥ 0, P -a.s.; note that
for t = 0 this is the consequence of our assumption on X0 = µ. Therefore for any
time sk , k = 1, . . . , K,

|Jk| ≡
∣
∣
∣
{
i : 〈X̃i,sk,nsk

, 1〉 > 0
}∣∣
∣ < ∞, P − a.s.

Clearly, by construction of our processes Ik ⊂ Jk , k = 1, . . . , K, and the result
follows immediately. ��
Proposition 5.4. Let Ỹ ε be as in Theorem 2.1. For anyK, n ≥ 1, t > 0,ψ ∈ DK,nt ,

P
(∣∣〈Ỹ ε1

t , ψ〉 − 〈Ỹ ε2
t , ψ〉∣∣ > η

) → 0, as ε1 , ε2 ↓ 0, ∀η > 0. (5.2)

Proof. Fix an arbitrary ψ ∈ DK,n , and let

ψ(y) = ψ(y(s1), . . . , y(sK)). (5.3)

Since n ≥ 1, s1 < · · · < sK were arbitrary it is enough to show (5.2) for this ψ .
Fix η, p > 0 arbitrary small. Let A(γ ) = {x ∈ R : dist(x,Mn,t ) > γ }. Recall that
Xt has a continuous density and hence, by Lemma 5.3, we can find γ > 0 so small
that

P(Xt(A(γ )
c) > η/(4 ‖ψ‖∞)) < p.
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We will fix such γ till the end of the proof of the proposition. By Theorem 4.7 and
reflection properties of X̃i,sk,ε,n we immediately get that for each k = 1, . . . , K
and i ∈ Z,

lim
ε↓0
P
(
X̃
j,sk,ε,n
t ((̃lk,i,n,t + γ, r̃k,i,n,t − γ )) > 0

∣
∣
∣〈X̃i,sk,nt , 1〉 > 0

)
= 0, ∀j �= i.

Apply Lemma 5.3 to show that there exists ε∗ > 0 so small that for ε < ε∗

P
(
X̃
j,sk ,ε,n
t ((̃lk,i,n,t + γ, r̃k,i,n,t − γ )) > 0, for some j �= i, i ∈ Ik , k = 1, . . . K

)
< p/2.

Hence for any ε1 , ε2 < ε∗, we can define ε1 ,ε2 ⊂ � such that P(ε1 ,ε2) ≥ 1 −p
and for any ω ∈ ε1 ,ε2

X̃
j,sk ,εm,n
t ((̃lk,i,n,t + γ, r̃k,i,n,t − γ )) = 0, ∀ j �= i, i ∈ Ik , k = 1, . . . K,m = 1, 2. (5.4)

In other words for any ω ∈ ε1 ,ε2 , we have

X
εm
t ((̃l

k,i,n,t + γ, r̃k,i,n,t − γ )) = X̃
i,sk,εm,n
t ((̃lk,i,n,t + γ, r̃k,i,n,t − γ )),

∀i ∈ Ik, k = 1, . . . K,m = 1, 2.

Fix an arbitrary ω ∈ ε1 ,ε2 , and any ỹ1, ỹ2 ∈ supp(Ỹ ε1
t ) ∪ supp(Ỹ ε2

t ) such that
for every k = 1, . . . , K , and some ik ∈ Ik , we have ỹ1(t), ỹ2(t) ∈ (̃lk,ik,n,t +
γ, r̃k,ik,n,t − γ ). Such choice of ỹ1(t), ỹ2(t) and (5.4) imply that

[̃y1(sk)]n = [̃y2(sk)]n = ik

2n
, ∀k = 1, . . . , K. (5.5)

Since ψ is given by (5.3), it follows from (5.5) that

ψ(ỹ1) = ψ(ỹ2), (5.6)

for above ỹ1, ỹ2.
Now we can represent the set A(γ ) as follows:

A(γ ) =
∞⋃

l=1

Al(γ ),

where Al(γ ) are open connected intervals such that Al(γ ) ∩ Am(γ ) = ∅, for all
l �= m. In fact, by Lemma 5.3, there is only a finite number of non-empty sets
Al(γ ). Now, for any l ≥ 1 such that Xt(Al(γ )) > 0, and k = 1, . . . , K , there
exists a unique j (l, k) such that

Al(γ ) ⊂ (̃lk,j (l,k),n,t + γ, r̃k,j (l,k),n,t − γ ). (5.7)

By (5.6) and (5.7) we get that ψ is constant on each of the sets

{ỹ ∈ supp(Ỹ ε1
t ) ∪ supp(Ỹ ε2

t ) : ỹ(t) ∈ Al(γ )}, l ≥ 1.

Hence for any l ≥ 1 we can define

ψl ≡
{
ψ(ỹ), for {ỹ ∈ supp(Ỹ ε1

t ) ∪ supp(Ỹ ε2
t ) : ỹ(t) ∈ Al(γ )}, if Xt(Al(γ )) > 0,

0, otherwise,
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and we have
∫
ψ(ỹ)1{ỹ(t)∈Al(γ )}Ỹ

εm
t (dỹ) = X

εm
t (A

l(γ ))ψl , ∀l ≥ 1, m = 1, 2,

for any ω ∈ ε1 ,ε2 . By combining all our estimates, we obtain

P
(∣∣〈Ỹ ε1

t , ψ〉 − 〈Ỹ ε2
t , ψ〉∣∣ > η

)

≤ P

({∣∣
∣
∣
∣

∞∑

l=1

(X
ε1
t (A

l(γ ))−X
ε2
t (A

l(γ )))ψl

∣
∣
∣
∣
∣
> η/2

}
⋂
ε1 ,ε2

)

+ p

+ P
(
(X

ε1
t (A(γ )

c)+X
ε2
t (A(γ )

c)) ‖ψ‖∞ > η/2
)

→ p + P
(
(Xt (A(γ )

c) > η/(4 ‖ψ‖∞)
)

(as ε1 , ε2 ↓ 0)

≤ 2p,

and since p was arbitrary the proof is complete. ��
Proof of Lemma 2.1. It follows immediately from Proposition 5.4 that for any K ,
n ≥ 1, t > 0, ψ ∈ DK,nt , 〈Ỹ εt , ψ〉 converges in probability. By Theorem 1.1 of [1],
any limit law of Ỹ εt belongs to CMF (C)[0,∞). Hence by Lemmas 5.1 and 5.2 we
see that there exists a process Ỹ ∈ CMF (C)[0,∞) such that

Ỹ ε → Ỹ, as ε ↓ 0,

in DMF (C)[0,∞), in probability, and the proof is complete. ��
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