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Abstract. The paper is concerned with completing “unfinished business” on a robust rep-
resentation formula for the conditional expectation operator of nonlinear filtering. Such a
formula, robust in the sense that its dependence on the process of observations is continuous,
was stated in [2] without proof. The main purpose of this paper is to repair this deficiency.

The formula is “almost obvious” as it can be derived at a formal level by a process
of integration-by-parts applied to the stochastic integrals that appear in the integral repre-
sentation formula. However, the rigorous justification of the formula is quite subtle, as it
hinges on a measurability argument the necessity of which is easy to miss at first glance.
The continuity of the representation (but not its validity) was proved by Kushner [9] for a
class of diffusions.

1. Introduction

Let (�, F, P ) be a probability space and let (X, Y ) be a system of partially observed
random processes, where X is the unobserved component and Y is the observable
one. Let (Xt )t≥0 and (Yt )t≥0 be the filtrations generated by X and respectively Y ,

Xt = σ (Xs, 0 ≤ s ≤ t) , Yt = σ (Ys, 0 ≤ s ≤ t) .

The problem of stochastic filtering for the partially observed system (X, Y ) com-
prises the construction of πt (F ), the optimal mean square estimate of any Xt ∨Yt -
measurable random variable F , on the basis of the data collected by observing Y

in the time interval [0, t].1 If we assume that F is square integrable, then

πt (F ) = E [F |Yt ] , P − almost surely,

where E [F |Yt ] is the conditional expectation of F given Yt .
At such a level of generality this is all that can be said about the solution of

the stochastic filtering problem. However, by adding additional assumptions on
X, Y and F one can obtain further, more amenable, representations. To fix the
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1 Here we follow the definition given in [11].
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ideas we will assume that X and Y are continuous R
d -valued, respectively R

m-
valued, processes. Further, throughout the paper, we will fix the parameter t and
denote by y· and Y· the respective continuous path and path-valued random variables
(y (s) ; 0 ≤ s ≤ t) and (Ys; 0 ≤ s ≤ t).

The purpose of this paper is to obtain a robust representation of πt (F ). Using the
above notation, a robust representation of πt (F ) (following [2]) is a representation
of the form

πt (F ) = f̂ (Y·) , (1)

where f̂ : CRm [0, t] → R is a continuous function (with respect to the supremum
norm on CRm [0, t]) and (1) holds P -almost surely.

The need for this type of representation arises when the filtering framework is
used to model and solve “real-life” problems. As explained in a substantial number
of papers (cf [2], [3], [4], [5], [6], [9], [10]) the model Y chosen for the “real-life”
observation process Ȳ may not be a perfect one. However, as long as the distribution
of Ȳ· is close in a weak sense to that of Y·( and some integrability assumptions hold),
the estimate f̂

(
Ȳ·
)

computed on the actual observation will still be reasonable, as

E[(F − f̂ (Ȳ·))2] is well approximated by the idealized error E[(F − f̂ (Y·))2].
Even when Y and Ȳ coincide, one is never able to obtain and exploit a continuous

stream of data as modelled by the continuous path Y· (ω). Instead the observation
arrives and is processed at discrete moments in time

0 = t0 < t1 < t2 < · · · < tn = t.

However the continuous path Ŷ· (ω)obtained from the discrete observations (Yti (ω))ni=1
by linear interpolation is close to Y· (ω) (with respect to the supremum norm on
CRm [0, t]); hence, by the same argument, f̂ (Ŷ·) will be a sensible approximation
of πt (F ) .

Finally, if PY positively charges all open sets in CRm [0, t] (as is the case in
what follows), a continuous f̂ has the virtue of uniqueness: Though there are many
measurable functions � on CRm [0, t] for which �(Y·) is a version of E[F |Yt ], there
is only one which is also continuous.

Our main results are presented in Theorems 1 and 2.A version of Theorem 1 has
previously been proved by Kushner [9] in its application to diffusion processes. His
argument relied on the weak approximation of diffusions by continuous time Mar-
kov chains. We present an alternative argument, which, being more direct, allows
for greater generality.

In the next section we introduce the main results of the paper together with the
required additional notation and assumptions.

2. Assumptions and statement of the main results

The rôle of the unobserved component X is essential in the statement of the fil-
tering problem. However, for the purpose of the robustness results, it only enters
the framework and the analysis as the generator of the filtration (Xt )t≥0.2 As such,

2 This observation was pointed out to us by an anonymous referee, to whom we are
grateful.
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unless otherwise stated, we will assume from now on that (Xt )t≥0 is an arbitrary
filtration, not necessarily generated by a continuous process X. We will also assume
that Y is given by

Ys =
∫ s

0
Ardr + Ws, s ≥ 0, (2)

where W is a Brownian motion independent of
∨

s≥0 Xs and A = (
Ai
)m
i=1 is an

(Xs)s≥0-adapted continuous semimartingale.We will denote byAm = (Am,i
)d
i=1the

martingale part of A (with Am
0 = 0) and Af v = (

Af v,i
)d
i=1 is the finite variation

part. Both Am
s and A

f v
s are assumed to be continuous (Xs)s≥0-adapted processes

satisfying, for all positive k > 0,

E

[

exp

(

k

d∑

i=1

∫ t

0
d
〈
Am,i

〉

s

)]

< ∞, E

[

exp

(

k

d∑

i=1

∫ t

0

∣
∣
∣dA

f v,i
s

∣
∣
∣

)]

< ∞. (3)

Here 〈Am〉is the quadratic variation of Am.
In order to obtain a representation of the form (1) we introduce a new probabil-

ity measure P̃ absolutely continuous with respect to P (and vice versa) such that
the Radon-Nikodym derivative of P̃ with respect to P is given by (A�

t represents
the row vector

(
A1

t , . . . , A
m
t

)
)

dP̃

dP

∣∣∣∣∣Xt∨Yt

= exp

(
−
∫ t

0
A�

s dWs − 1

2

∫ t

0
A�

s Asds

)
. (4)

Condition (3) implies that A satisfies the Novikov condition

E

[
exp

(
1

2

∫ t

0
A�

s Asdt

)]
< ∞;

hence, by Girsanov’s theorem, Y is a Brownian motion under P̃ , independent of X.

As stated in the introduction, F is an Xt ∨ Yt -measurable random variable.
Hence F (ω) = ϕ(ω, Y· (ω)) for some Xt ⊗ B (CRm [0, t]) -measurable function
ϕ : � × CRm [0, t] → R (B (CRm [0, t])is the Borel σ -field on CRm [0, t]). We
will assume that ϕ is locally Lipschitz in the second component. Further, we will
assume that for any R > 0

K
F,1
R (ω) � sup

||y1· ||,||y2· ||≤R,y1· 
=y2·

∣∣ϕ(ω, y1· ) − ϕ(ω, y2· )
∣∣

∣
∣
∣
∣y1· − y2·

∣∣∣∣ < ∞, P -a.s. (5)

and

K
F,2
R (ω) � sup

||y·||≤R

|ϕ(ω, y·)| < ∞, P -a.s.. (6)
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In (5) and (6) K
F,1
R and K

F,2
R are Xt -measurable random variables. Further we

assume that they are square integrable and we denote by M
F,1
R , respectively, MF,2

R ,
their L2-norms:

M
F,1
R � E

[(
K

F,1
R

)2
] 1

2

< ∞, M
F,2
R � E

[(
K

F,2
R

)2
] 1

2

< ∞. (7)

We also assume that F is square-integrable under the modified measure P̃ :

Ẽ
[
F 2
]

< ∞. (8)

However, if ϕ has a square-integrable global Lipschitz constant; that is,

MF,1 =
(

E

[(
sup
R>0

K
F,1
R

)2
]) 1

2

< ∞,

then (8) is automatically satisfied as

|ϕ(ω, y·)| ≤ |ϕ(ω, y·) − ϕ(ω, 0·)| + |ϕ(ω, 0·)|
≤ sup

R>0
K

F,1
R (ω)

∣∣∣
∣∣∣y1

·
∣∣∣
∣∣∣+ K

F,2
1 (ω),

where 0 : [0, t] → R is the constant path 0 (s) = 0 for all s ∈ [0, t] and

Ẽ
[
F 2
] 1

2 ≤ MF,1Ẽ

[(
max

s∈[0,t]
Ys

)2
] 1

2

+ M
F,2
1 < ∞. (9)

In (9), Ẽ
[(

maxs∈[0,t] Ys

)2] is finite, since the running maximum of the Brownian

motion Y has finite second moment and, as the change of measure does not affect the
law of any Xt -measurable random variable, in particular the laws of supR>0 K

F,1
R

and K
F,2
1 ,

Ẽ

[(
sup
R>0

K
F,1
R

)2
]

= E

[(
sup
R>0

K
F,1
R

)2
]

=
(
MF,1

)2

Ẽ

[(
K

F,2
1

)2
]

= Ẽ

[(
K

F,2
1

)2
]

=
(
M

F,2
1

)2
.

Note that if F is independent of Y, that is, F is just an Xt -measurable random
variable, then conditions (5) and (6) are trivially satisfied with K

F,1
R ≡ 0 and

K
F,2
R ≡ F. Also, since Ẽ

[
F 2
] = E

[
F 2
]
, condition (7) is satisfied as well (we

assumed in the introduction that F is square integrable with respect to the original
probability measure P ). In other words, in the language of filtering theory, if F

is a function of the unobservable component only, no additional conditions are
required.
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The following representation is due, in its full generality, to Kallianpur and
Striebel [7], though special versions occur in the papers of Bucy [1], Kushner [8],
Wonham [13] and Zakai [14]:

πt (F ) = ρt (F )

ρt (1)
, (10)

where

ρt (F ) = Ẽ

[
F exp

(∫ t

0
A�

s dYs − 1

2

∫ t

0
A�

s Asds

)∣∣
∣
∣Yt

]
.

Now let � (y·) be the following random variable

� (y·) � exp

(
A�

t yt − I (y·) − 1

2

∫ t

0
A�

s Asds

)
, (11)

where I (y·) is a “well behaved” version of the stochastic integral
∫ t

0 y�
s dAs, the

definition of which will be specified at the end of the section. The exponent of
� (y·) will be recognized as a formal integration-by-parts of the exponent in the
version of the Kallianpur-Striebel formula given above.

Finally, let ĝϕ, ĝ1, f̂ : CRm [0, t] → R be the following functions

ĝϕ (y·) = Ẽ [ϕ (ι, y·) � (y·)] , ĝ1 (y·) = Ẽ [� (y·)] , f̂ (y·) = ĝϕ (y·)
ĝ1 (y·)

,

where ι is the identity function on �, ι (ω) = ω. The function f̂ is our candidate
for the robust form of πt (F ). More precisely:

Theorem 1. The function f̂ is locally Lipschitz. In other words, for any R > 0,
there exists a constant KR such that

∣∣∣f̂
(
y1
·
)

− f̂
(
y2
·
)∣∣∣ ≤ KR

∣∣∣
∣∣∣y1

· − y2
·
∣∣∣
∣∣∣

for any two paths y1· , y2· such that
∣∣∣∣y1·

∣∣∣∣ ,
∣∣∣∣y2·

∣∣∣∣ ≤ R.

Theorem 2. The random variable f̂ (Y·) is a version of πt (F ); that is πt (F ) =
f̂ (Y·) , P -almost surely. Hence f̂ (Y·) is the unique robust representation of πt (F ).

The choice of the version of
∫ t

0 y�
s dAs used in defining f̂ is irrelevant in the

proof of the continuity of f̂ , but it is important in justifying that f̂ (Y·) is a version
of πt (F ).

Some form of condition on the continuity of the function (ω, y·) → ϕ (ω, y·) in
the second component appears to be required for Theorem 1 to hold. For instance,
if ϕ is the function ϕ (ω, y·) = 1{yt≥0}, then there is no continuous f̂ for which f̂

(Y·) is a version of E[F |Yt ].
However, there are many tantalizing examples that show that the continuity is

not strictly necessary. For example, take X to be a constant process Xs = X0, for
all s ≥ 0, where X0 is a Gaussian variable of zero mean and unit variance and let
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As = X0. Then Ys = sX0 + Ws . It is easily shown that the law of X0 conditioned
on Y1 can be expressed as a Gaussian law with mean 1

2Y1 and variance 1
2 . The

probability ρ (a, y1) = P (X0 > a|Y1 = y1) is jointly continuous in (a, y1). Then
ρ (Y1, Y1) is a robust version of P (X0 > Y1|Y1).

The theorems can be extended to (Xs ∨ Ys)s≥0-adapted semimartingales A.
For example, let X be a semimartingale and assume that there exists a continu-
ously differentiable function 
 : R

d × R
m → R and a Borel measurable function

β = (βi
)m
i=1 : R

m → R
m such that A = (Ai

)m
i=1 and

Ai
s = αi (Xs, Ys) + βi (Ys) ,

where

αi (x1, . . . , xd, y1, . . . , ym) = d


dyi

(x1, . . . , xd, y1, . . . , ym) .

Let F be an Xt ∨ Yt -measurable random variable ((Xs)s≥0 is the filtration
generated by X), hence F = ϕ(X·, Y·) for some Borel measurable function ϕ :
CRd [0, t] × CRm [0, t] → R. In this case the unique robust representation of
πt (F ) has the form

f̂ (y·) = Ẽ [ϕ (X·, y·) � (y·)]
Ẽ [� (y·)]

,

where

� (y·) � exp

(


 (Xt , yt ) −
d∑

i=1

∫ t

0

d


dxi

(Xs, ys) dXi
s − 1

2

∫ t

0
A�

s Asds

)

.

Note that the representation is independent of β as the terms corresponding to β

cancel out due to the normalization.
Finally let us remark that, following the rough paths theory of Lyons [12], there

will be no robustness result for general Xs ∨ Ys-adapted semimartingales A. We
illustrate this by means of the following simple example: Let X be the constant
process

Xs = X0 =
{

1 with probability 1
2

0 with probability 1
2

.

Again, let (Xs)s≥0 be the filtration generated by X and let Y = (
Y 1, Y 2

)�
be the

solution of the equation

dY 1
s = XsY

2
s ds + dW 1

s

dY 2
s = dW 2

s

and choose F = Xt . Then

πt (F ) =
(

1 + e− ∫ t
0 Y 2

s dY 1
s + 1

2

∫ t
0

(
Y 2

s

)2
ds

)−1

,

which is not a continuous functional over CR2 [0, t] due to the discontinuity of the
stochastic integral

∫ t

0 Y 2
s dY 1

s .
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We specify now the version of the stochastic integral
∫ t

0 y�
s dAs that we choose

in order to define I (y·). Denote by If v (y·) the Stieltjes integral with respect to
Af v . If v (y·) is defined unambiguously pathwise. More precisely for arbitrary
y· ∈ CRm [0, t] and all ω ∈ �

If v (y·) (ω) = lim
n→∞

(
n−1∑

i=0

y�
it
n

(
A

f v
(i+1)t

n

(ω) − A
f v
it
n

(ω)

))

.

Hence defining I (y·) only depends on selecting the version of
∫ t

0 y�
s dAm

s , the sto-
chastic integral with respect to the martingale part of A, which we will denote by
Im (y·). Let H 1

3
be the following subset of CRm [0, t]

H 1
3

=
{

y· ∈ CRm [0, t]

∣
∣
∣
∣
∣
K (y·) � sup

s1,s2∈[0,t]

∣
∣
∣
∣ys1 − ys2

∣
∣
∣
∣

|s1 − s2| 1
3

< ∞ ,

}

,

where
∣
∣
∣
∣ys1 − ys2

∣
∣
∣
∣ is the Euclidean distance between the two points ys1 , ys2 ∈ R

m

and let

Im
n (y·) �

n−1∑

i=0

y�
it
n

(
Am

(i+1)t
n

(
ω̂
)− Am

it
n

(
ω̂
))

.

Since, for y· ∈ H 1
3
,

Ẽ

[(
Im

2k (y·) −
∫ t

0
y�
s dAm

s

)2
]

= Ẽ




(

d∑

i=1

∫ t

0

(
yi (s) − yi

([
s2k

t

]
t

2k

))
dAm,i

s

)2



≤ d

d∑

i=1

Ẽ

[∫ t

0

(
yi (s) − yi

([
s2k

t

]
t

2k

))2

d
〈
Am,i

〉

s

]

≤ dK (y·)2

2
2k
3

d∑

i=1

Ẽ

[(
A

m,i
t

)2
]

,

it follows that, for y ∈ H 1
3
, Im

2k (y·) converges to
∫ t

0 y�
s dAm

s , P̃ -almost surely. We

define Im (y·) to be the limit

Im (y·) (ω) = lim sup
k→∞

Im
2k (y·) (ω)

on the set H 1
3

× � and any version of
∫ t

0 y�
s dAm

s on CRm [0, t] \H 1
3

× �. Though

the resulting map is generally non-measurable with respect to B (CRm [0, t])
⊗F ,

where B (CRm [0, t]) is the Borel σ -field on CRm [0, t], it is equal on H 1
3

× � to
the following jointly measurable function

Jm (y·) � lim sup
k→∞

Im
2k (y·) (12)

defined on the whole of CRm [0, t] × �.
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3. Proofs of the main results

The proof of Theorem 1 uses the following two lemmas

Lemma 3. For any R > 0 and p ≥ 1 there exists a positive constant M�
R,p such

that

sup
||y·||≤R

E
[
� (y·)p

] 1
p ≤ M�

R,p. (13)

Also, for any R > 0 there exists a constant M�
R such that

√

E
[(

�
(
y1·
)− �

(
y2·
))2] ≤ M�

R

∣
∣
∣
∣
∣
∣y1

· − y2
·
∣
∣
∣
∣
∣
∣ (14)

for any two paths y1· , y2· such that
∣
∣
∣
∣y1·
∣
∣
∣
∣ ,
∣
∣
∣
∣y2·
∣
∣
∣
∣ ≤ R. In particular, (14) implies

that ĝ1 is locally Lipschitz; more precisely
∣
∣
∣ĝ1
(
y1
·
)

− ĝ1
(
y2
·
)∣∣
∣ ≤ M�

R

∣
∣
∣
∣
∣
∣y1

· − y2
·
∣
∣
∣
∣
∣
∣

for any two paths y1· , y2· such that
∣∣∣∣y1·

∣∣∣∣ ,
∣∣∣∣y2·

∣∣∣∣ ≤ R.

Proof. We have first that

� (y·)p ≤ exp



2pR

d∑

i=1

∫ t

0

∣∣∣dA
f v,i
s

∣∣∣+4R2p2
d∑

i,j=1

∫ t

0
d

∣∣∣
〈
Am,i, Am,j

〉

s

∣∣∣



�′
t (y·) ,

where

�′
r (y·) � exp

(∫ r

0
p (yt − ys)

� dAm
s

−
d∑

i,j=1

∫ r

0
p2
(
yi
t − yi

s

) (
y

j
t − y

j
s

)
d
〈
Am,i, Am,j

〉

s

)
.

We note now that the process r −→
(
�

′
r (y·)

)2
is a martingale; so

E

[(
�

′
r (y·)

)2
]

= 1.

Hence, by the Cauchy-Schwarz inequality and the fact that
∫ t

0
d

∣∣∣
〈
Am,i, Am,j

〉

s

∣∣∣ ≤ 1

2

∫ t

0
d
〈
Am,i

〉

s
+ 1

2

∫ t

0
d
〈
Am,j

〉

s
,

(13) follows with

M�
R,p � E

[

exp

(

2pR

d∑

i=1

∫ t

0

∣∣∣dA
f v,i
s

∣∣∣+ 4R2p2d

d∑

i=1

∫ t

0
d
〈
Am,i

〉

s

)] 1
2p

.
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Note that M�
R,pis finite by virtue of condition (3).

Now if two paths y1· , y2· are such that
∣∣∣∣y1·

∣∣∣∣ ,
∣∣∣∣y2·

∣∣∣∣ ≤ R, then

∣∣∣�
(
y1
·
)

− �
(
y2
·
)∣∣∣ ≤ �

(
y1
·
) ∣∣∣∣

∫ t

0

(
y12
t − y12

s

)�
dAs

∣∣∣∣ ,

where y12· is the difference path y12· � y1· −y2· . Then, using again the Cauchy-Sch-
warz inequality

√

E
[(

�
(
y1·
)− �

(
y2·
))2] ≤ (M�

R,4

)
√√
√
√E

[(∫ t

0

(
y12
t − y12

s

)�
dAs

)4
]

. (15)

Finally, since
∣
∣
∣
∣y12·

∣
∣
∣
∣ = ∣

∣
∣
∣y1· − y2·

∣
∣
∣
∣ ≤ 2R, a standard argument based on Doob’s

maximal inequality shows that the expectation on the right hand side of (15) is

bounded by a constant M ′
R . Hence (14) holds true with M�

R = M�
R,4

√
M ′

R . ��

Lemma 4. The function ĝϕ is locally Lipschitz and locally bounded.

Proof. We have first

Ẽ
[∣∣∣ϕ
(
ι, y1

·
)

− ϕ
(
ι, y2

·
)∣∣∣�

(
y1
·
)]

≤ MF
R

∣∣∣
∣∣∣y1

· − y2
·
∣∣∣
∣∣∣ , (16)

where

MF
R = Ẽ

[
K

F,1
R �

(
y1
·
)]

≤ M
F,1
R M�

R,2

and MF
R is finite from (7) and (13). Then, using (7) and (14), we have that

Ẽ
[∣∣∣ϕ
(
ι, y2

·
)∣∣∣
∣∣∣�
(
y1
·
)

− �
(
y2
·
)∣∣∣
]

≤ M
F,2
R M�

R

∣∣∣
∣∣∣y1

· − y2
·
∣∣∣
∣∣∣ . (17)

The Lipschitz property of ĝϕ then follows from (16), (17) and the identity

ĝϕ
(
y1
·
)

− ĝϕ
(
y2
·
)

= Ẽ
[(

ϕ
(
ι, y1

·
)

− ϕ
(
ι, y2

·
))

�
(
y1
·
)]

+Ẽ
[
ϕ
(
ι, y2

·
) (

�
(
y1
·
)

− �
(
y2
·
))]

.

Again, from (7) and (13)

sup
||y·||≤R

∣∣ĝϕ (y·)
∣∣ = sup

||y·||≤R

∣
∣∣Ẽ
[
ϕ (ι, y·) �

(
y1
·
)]∣∣∣ ≤ M

F,2
R M�

R,2.

Hence ĝϕ is locally bounded. ��
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Proof of Theorem 1. The ratio ĝϕ

ĝ1 of the two locally Lipschitz functions ĝϕ and ĝ1

(Lemma 3 and Lemma 4) is locally Lipschitz provided both ĝϕ and 1
ĝ1
t

are locally

bounded. The local boundedness property of ĝϕ is shown in Lemma 4 and that of
1
ĝ1
t

follows from the following simple argument: If ||y·|| ≤ R, Jensen’s inequality

implies that

Ẽ [� (y·)] ≥ exp

(
E

[ ∫ t

0
(yt − ys)

� dAm
s +

∫ t

0
(yt − ys)

� dA
f v
s

−1

2

∫ t

0
A�

s Asds

])

≥ exp

(

−2R

d∑

i=1

E

[∫ t

0

∣
∣
∣dA

f v,i
s

∣
∣
∣
]

− 1

2
E

[∫ t

0
A�

s Asds

])

. (18)

Note that both expectations in (18) are finite, again by virtue of condition (3). ��
We turn now to the proof of Theorem 2. First let us remark that it suffices to prove
that, P -almost surely (or, equivalently, P̃ -almost surely),

ρt (F ) = ĝϕ (Y·) and ρt (1) = ĝ1 (Y·) .

We need only prove the first identity as the second is just a special case. For this,
it is useful to ‘decouple’ the two filtrations (Xs)s≥0 and (Ys)s≥0. Let (�̂, F, P̃ ) be
an identical copy of (�, F, P̃ ) and let (X̂s)s≥0 be the copy of (Xs)s≥0 within the
new space (�̂, F, P̃ ). Let Â, Âm and Âf v be the processes within the new space
(�̂, F, P̃ ) corresponding to the original A, Am and Af v . Then the function ĝϕ has
the following representation

ĝϕ (y·) = Ê

[
ϕ
(
ι̂, y·
)

exp

(
Â�

t yt − Î (y·) − 1

2

∫ t

0
Â�

s Âsds

)]
, (19)

where Ê [·] denotes integration on (�̂, F, P̃ ), ι̂ is the identity function on �̂ and
Î (y·) is the version of the stochastic integral

∫ t

0 y�
s dÂs corresponding to I (y·).

Denote by Îm (y·) the respective version of the stochastic integral with respect to the
martingale Âmand by Î f v (y·) the Stieltjes integral with respect to Âf v . Let Ĵ m (y·)
be the function corresponding to Jm (y·) as defined in (12). Then, for y· ∈ H 1

3
, (19)

can be written as

ĝϕ (y·) = Ê

[
ϕ
(
ι̂, y·
)

exp

(
Â�

t yt − Î f v (y·) − Ĵ m (y·) − 1

2

∫ t

0
Â�

s Âsds

)]
.

(20)

Finally, let (�̄, F̄, P̄ ) be the product space

(�̄, F̄, P̄ ) = (� × �̂, F
⊗

F, P̃
⊗

P̃ )

on which we ‘lift’ the processes Â and Y from the component spaces. In other
words, Y

(
ω, ω̂

) = Y (ω) and Â
(
ω, ω̂

) = Â
(
ω̂
)
for all

(
ω, ω̂

) ∈ � × �̂.
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Lemma 5. There exists a null set N ∈ F such that mapping
(
ω, ω̂

) ∈ �̄ −→
Î (Y (ω))

(
ω̂
)

coincides on (�\N ) × �̂ with an F̄-measurable mapping.

Proof. First let us remark that
(
ω, ω̂

) −→ Î f v (Y (ω))
(
ω̂
)

is equal to

Î f v (Y· (ω))
(
ω̂
) = lim

n→∞

(
n−1∑

i=0

Y�
it
n

(ω)

(
Â

f v
it
n

(
ω̂
)− Â

f v
(i−1)t

n

(
ω̂
))
)

(21)

and since

(
ω, ω̂

) ∈ �̄ −→
n−1∑

i=0

Y�
it
n

(ω)

(
Â

f v
it
n

(
ω̂
)− Â

f v
(i−1)t

n

(
ω̂
)
)

is F̄-measurable so is its limit. Define N �
{
ω ∈ �|Y· (ω) 
∈ H 1

3

}
. Then N ∈ F

and P̃ (N ) = 0. Following the definition of Im (y·), the mapping
(
ω, ω̂

) −→
Îm (Y (ω))

(
ω̂
)

coincides with the mapping
(
ω, ω̂

) −→ Ĵ m (Y (ω))
(
ω̂
)

on (�\N )×
�̂. Ĵ m is an F̄ -measurable random variable, since

Ĵ m (Y (ω))
(
ω̂
) = lim sup

k→∞

(
nk−1∑

i=0

Y�
i

nk
t
(ω)

(
Âm

(i+1)t
nk

(
ω̂
)− Âm

it
nk

(
ω̂
))
)

(22)

Combining this with the measurability of Î f v (Y·) gives us the lemma. ��
Lemma 6. P̄ −almost surely,

∫ t

0
Y�

s dÂs = Î f v (Y·) + Ĵ m (Y·) . (23)

Proof. We have
∫ t

0
Y�

s dÂs =
∫ t

0
Y�

s dÂm
t +

∫ t

0
Y�

s dÂ
f v
t .

Following (21) it is obvious that
∫ t

0 Y�
s dÂ

f v
t = Î f v (Y·) . Hence, following the

proof of the previous lemma, it suffices to prove that, P̄ −almost surely,
∫ t

0 Y�
s dÂm

t =
Ĵ m (Y·) where Ĵ m (Y·) is the function defined in (22). Without loss of generality
we will assume that m = 1 (the general case follows by treating each of the m

components in turn) and we note that we only need to prove that, for arbitrary
K > 0, P̄ –almost surely,

∫ t

0
YK

s dÂm
t = Ĵ m

(
YK

·
)

, (24)

where YK
s = sgn (Ys) min (|Ys | , K) , s ≥ 0. In turn, (24) follows from the proof

of

lim
n→∞ Ē




(

n−1∑

i=0

(
YK

it
n

)� (
Âm

(i+1)t
n

− Âm
it
n

)
− Ĵ m

(
YK

·
)
)2

 = 0.
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By Fubini, we have that (using the F̄-measurability of Ĵ m
(
YK·
)

and the fact that

Îm
(
YK·
)

coincide with Ĵ m
(
YK·
)

on (�\N ) × �̂)

Ē




(

n−1∑

i=0

(
YK

it
n

)� (
Âm

(i+1)t
n

− Âm
it
n

)
− Ĵ m

(
YK

·
))2



=
∫

�\N
Ê

[(
Îm
n

(
YK

· (ω)
)

− Ĵ m
(
YK

·
))2
]

dP̃ (ω)

=
∫

�\N
Ê

[(
Îm
n

(
YK

· (ω)
)

− Îm
(
YK

·
))2
]

dP̃ (ω)

Now since s → YK
s (ω) is a continuous function and Îm

(
YK· (ω)

)
is a version of

the stochastic integral
∫ t

0

(
YK

s

)�
(ω) dÂm

s , it follows that

lim
n→∞ Ê

[(
Îm
n

(
YK

· (ω)
)

− Îm
(
YK

· (ω)
))2
]

= 0

for all ω ∈ �\N . Also, we have the following upper bound

Ê

[(
Îm
n

(
YK

· (ω)
)

− Îm
(
YK

· (ω)
))2
]

≤ 4K2Ê

[(
Âm

t

)2
]

< ∞.

Hence, by the Dominated Convergence Theorem,

lim
n→∞ Ē




(

n−1∑

i=0

(
YK

it
n

)� (
Âm

(i+1)t
n

− Âm
it
n

)
− Îm

(
YK

·
))2



=
∫

�\N
lim

n→∞ Ê

[(
Îm
n

(
YK

· (ω)
)

− Îm
(
YK

· (ω)
))2
]

dP̃ (ω) = 0.

��
Proof of Theorem 2. To prove Theorem 2 it suffices to show that

Ẽ [ρt (F ) ϒ (Y·)] = Ẽ
[
ĝϕ (Y·) ϒ (Y·)

]
, (25)

where ϒ is an arbitrary continuous bounded function ϒ : CRm [0, t] → R. Since
A and Y are independent under P̃ , it follows that the pair processes (A, Y ) (under
P̃ ) and (Â, Y ) (under P̄ ) have the same distribution. Hence, the left hand side of
(25) has the following representation

Ẽ [ρt (F ) ϒ (Y·)]= Ẽ

[
ϕ (ι, Y·) exp

(∫ t

0
A�

s dYs − 1

2

∫ t

0
A�

s Asds

)
ϒ (Y·)

]

= Ē

[
ϕ
(
ι̂, Y·

)
exp

(∫ t

0
Â�

s dYs − 1

2

∫ t

0
Â�

s Âsds

)
ϒ (Y·)

]

= Ē

[
ϕ
(
ι̂·, Y·

)
exp

(
Â�

t Yt −
∫ t

0
Y�

s dÂs − 1

2

∫ t

0
Â�

s Âsds

)
ϒ (Y·)

]
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On the other hand, using (20), the right hand side of (25) has the representation

Ẽ
[
ĝϕ (Y·) ϒ (Y·)

]

= Ẽ

[
Ê

[
ϕ
(
ι̂, Y·

)
exp

(
Â�

t Yt − Î f v (Y·) − Îm (Y·) − 1

2

∫ t

0
Â�

s Âsds

)]
ϒ (Y·)

]

= Ẽ

[
Ê

[
ϕ
(
ι̂·, Y·

)
exp

(
Â�

t Yt − Î f v (Y·) − Ĵ m (Y·) − 1

2

∫ t

0
Â�

s Âsds

)]
ϒ (Y·)

]
.

Hence by Fubini’s theorem (using, again, the F̄ -measurability of Ĵ m (Y·))

Ẽ
[
ĝϕ (Y·) ϒ (Y·)

]

= Ē

[
ϕ
(
ι̂·, Y·

)
exp

(
Â�

t Yt − Î f v (Y·) − Ĵ m (Y·) − 1

2

∫ t

0
Â�

s Âsds

)
ϒ (Y·)

]
.

Finally, from Lemma (6), the two representations coincide. ��
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