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Abstract. We study the asymptotics of the p-mapping model of random mappings on [n] as
n gets large, under a large class of asymptotic regimes for the underlying distribution p. We
encode these random mappings in random walks which are shown to converge to a functional
of the exploration process of inhomogeneous random trees, this exploration process being
derived (Aldous-Miermont-Pitman 2004) from a bridge with exchangeable increments. Our
setting generalizes previous results by allowing a finite number of “attracting points” to
emerge.

1. Introduction

We study the asymptotic behavior as n → ∞ of random elements of the set [n][n]

of mappings from [n] = {1, 2, . . . , n} to [n]. Given a probability measure p =
(p1, . . . , pn) on [n], define a random mapping M as follows: for each i ∈ [n], map
i to j with probability pj , independently over different i’s, so that

P(M = m) =
∏

i∈[n]

pm(i) , m ∈ [n][n]. (1)

The random mapping M is called the p-mapping. In what follows, we will not be
concerned about keeping track of the labels of the mapping’s digraph, so we will
suppose that the probability p is ranked, i.e. p1 ≥ p2 ≥ . . . ≥ pn > 0.

Now consider a sequence of such probabilities pn = (pn1, . . . , pnn). Weak
convergence of the associated p-mappings Mn as n → ∞ has been studied
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2 D. Aldous et al.

when pn satisfies an asymptotic negligibility condition, namely, letting σ(pn) =
(
∑

1≤i≤n p2
ni)

1/2,

maxi∈[n] pni

σ (pn)
→

n→∞ 0. (2)

Under this hypothesis, it has been shown [1] that several features of the p-mapping,
such as sizes of basins and number of cyclic points, can be described asymptoti-
cally in terms of certain functionals of reflected Brownian bridge (this was originally
proved in [3] for the uniform case pni = 1/n). The two basic ingredients in the
methodology of [1] are:
(i) Code the random mapping into a mapping-walk HMn that contains enough
information about the mapping;
(ii) use a random bijection, called the Joyal correspondence [8], that maps p-map-
pings into random doubly-rooted trees, called p-trees, whose behavior is better
understood.
In particular, the limits in law of associated encoding random walks can be shown
to converge to twice normalized Brownian excursion under condition (2), and this
information lifts back to mappings, implying that the rescaled mapping walks con-
verge weakly to twice standard reflecting Brownian bridge; that is, σ(pn)H

Mn →
2B |br| according to a certain topology on càdlàg functions. Results provable via
this methodology encompass those proved in [9] by somewhat different methods.

The goal of this paper is to extend this methodology to more general asymptotic
regimes for the distribution p, under the natural assumption maxi∈[n] pni → 0 as
n → ∞. In these more general regimes, several p-values are comparable to σ(pn)

instead of being negligible. Precisely, we will assume there exists θ = (θ1, θ2, . . . )

such that

max
i∈[n]

pni →
n→∞ 0 and

pni

σ (pn)
→

n→∞ θi , i ≥ 1. (3)

By Fatou’s Lemma, such a limiting θ must satisfy
∑

i θ2
i ≤ 1, but

∑
i θi may

be finite or infinite. We let θ0 =
√

1 − ∑
i θ2

i . A vertex i ≥ 1 with θi > 0 then
corresponds to a “hub" [4] or “attracting center” [9] for the mapping, because sig-
nificantly many more integers are likely to be mapped to it as n gets large than to
those for which θi = 0. Our main result (Theorem 1) roughly states that for pn

satisfying (3) with θ = (θ1, . . . , θI , 0, 0, . . . ) with θI > 0 and θ0 > 0 (the subset
of such θ ’s is called �finite), we have weak convergence

σ(pn)H
Mn

(d)→ Zθ (4)

for a certain continuous process Zθ to be described in section 2.3, where the topol-
ogy is in general slightly weaker than the usual Skorokhod topology. We will also
provide criteria under which the stronger convergence holds. In turn, we will see
how this convergence and related results give information on the size of the basins
of Mn, and on the number of cyclic points, which in the limit arise as a kind of local
time at 0 for Zθ .
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To implement our methodology, the key point is that under (3), the p-trees are
known to converge in a certain sense (Proposition 1) to an Inhomogeneous Contin-
uum Random Tree (ICRT) which we denote by T θ . This family of trees was first
investigated in [4] in the context of the additive coalescent. What is important for
this paper is the recent result [2] that a certain class of ICRT’s are encoded into
random excursion functions H θ , just as the Brownian tree is encoded into twice
the normalized Brownian excursion. The definition of H θ is recalled in section 2.3,
where we also give the definition of the process Zθ as a functional of H θ .

So the contribution of this paper is to show how the ideas from [1] (in particular,
the Joyal functional featuring in our Lemma 1) may be combined with the result of
[2] to prove the limit result indicated at (4). Once these ingredients are assembled,
only a modest amount of new technicalities (e.g part (ii) of Theorem 2 and its use
in the proof of Theorem 1) will be required. One reason why “only modest" is our
restriction to the case �finite. In [2] it is shown that the construction of H θ and asso-
ciated limit results for p-trees work in the more general setting where

∑
i θi < ∞.

It seems very likely that our new result (Theorem 1) also extends to this setting,
but the technicalities become more complicated.

While the existence of a limit process Zθ provides qualitative information about
aspects of the p-mappings, enabling one to show that various limit distributions exist
and equal distributions of certain functionals of Zθ , obtaining explicit formulas for
such distributions remains a challenging open problem.

2. Statement of results

2.1. Mappings, trees, walks

We first introduce some notation which is mostly taken from [1]. If m is a mapping
on some finite set S, let D(m) be the directed graph with vertex set S, whose edges
are s → m(s), and let C(m) be the set of cyclic points, which is further partitioned
into disjoint cycles, s and s′ belonging to the same cycle if one is mapped to the
other by some iterate of m. For c ∈ C(m), if we remove the edges c → m(c) and
c′ → c where c′ is the unique point of S ∩C(m) that is mapped to c, the component
of D(m) containing c is a tree Tc(m) which we root at c. Label the disjoint cycles
of m as C1(m), C2(m), . . . with some ordering convention, then this in turn induces
an order on the basins of m:

Bj (m) :=
⋃

c∈Cj (m)

Tc(m).

q-biased order. The ordering we will consider in this paper uses a convenient
extra randomization, yet we mention that results similar to this paper’s could be
established for different choices of basins ordering using similar methods. See e.g.
[6], where two different choices of ordering lead to two intricate decompositions
of Brownian bridge. Given q, a probability distribution on S with qs > 0 for every
s ∈ S, consider an i.i.d. q-sample (X2, X3, . . . ) indexed by {2, 3, . . . }. If m is a
random mapping, we choose the q-sample independently of m. Since qs > 0 for
every s ∈ S, the following procedure a.s. terminates:
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• Let τ1 = 2 and let B1(m) be the basin of m containing X2.
• If ∪1≤i≤jBi (m) = S then end the procedure; else, given τj let τj+1 = inf{k :

Xk /∈ ∪1≤i≤jBi (m)} and let Bj+1 be the basin containing Xτj+1 .
This induces an order on basins of m, and then on the corresponding cycles. We

add a further order on the cyclic points themselves by letting cj be the cyclic point
of Cj (m) such that Xτj

∈ Tcj
, and by ordering the cyclic points within Cj (m) as

follows:
m(cj ) ≺ m2(cj ) ≺ · · · ≺ m|Cj (m)|−1(cj ) ≺ cj .

This extends to a linear order on C(m) by further letting cj−1 ≺ m(cj ). We call
this (random) order on cyclic points and basins the q-biased random order. In the
special case where q is the uniform distribution on S, we call it the size-biased
order.

Coding trees and mappings with marked walks Let To
n be the set of plane

(ordered) rooted trees with n labeled vertices 1, 2, . . . , n, so that the children of
any vertex v are distinguished as first, second, . . . The cardinality of To

n is therefore
n!Cn where Cn is the n-th Catalan number. For any T ∈ To

n, we may put its set
of vertices in a special linear order v1, v2, . . . , vn called depth-first order: we let
v1 = root, and then vj+1 is the first (oldest) child of vj not in {v1, . . . , vj } if any,
or the oldest brother of vj not in {v1, . . . , vj } if any, or the oldest brother of the
parent of vj not in {v1, . . . , vj }, and so on. Write htT (v) for the height of vertex
v. For any weight sequence w = (w1, . . . , wn) with wi > 0 for every i, let

HT
w (s) = htT (vi) if

i−1∑

j=1

wvj
≤ s <

i∑

j=1

wvj
, (5)

and let HT
w (

∑
i wi) = htT (vn). Call HT

w the height process of T . Notice that any
s ∈ [0,

∑
i wi) specifies a vertex of T , which is vi in the case appearing in (5).

We say that vi is visited at time s by HT
w . Intuitively, picture a particle touring

the vertices in depth-first order during the unit time interval, spending time wi at
vertex i.

Given a mapping m with basins and cyclic points c1, . . . , cK in q-biased order
for some q, we may associate to each Tci

a walk as follows. First, turn these unor-
dered trees into plane trees by putting each set of children of each vertex in random
exchangeable order, independently over vertices given Tci

. Then associate to this

ordered tree the height process H
Tci
w , with a slight abuse of notation, where we are

again given a weight function w on [n] (though we use only the relevant labels
appearing in Tci

). We can now define the walk associated with m to be

Hm
w (s) = H

Tci
w



s −
∑

1≤j<i

w(Tcj
)



 if
i−1∑

j=1

w(Tcj
) ≤ s <

i∑

j=1

w(Tcj
),

and Hm
w (

∑
i wi) = Hm

w (
∑

i wi−), where w(A) = ∑
i∈A wi . That is, we concat-

enate the tree-walks associated with Tc1 , . . . , TcK
in this order. Again, there is a

natural notion of vertex visited at time s <
∑

i wi .
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Further, let Dm
w (i) = ∑i

j=1 w(Bj (m)) be the weight of the i first basins, so that
Dm

w (i) is the time when the mapping-walk Hm
w has completely visited the vertices

of the i-th basin, so w(Bi (m)) = Dm
w (i)−Dm

w (i −1) for i ≥ 1 with the convention
Dm

w (0) = 0. We also let �m
w(s) be the number of cyclic points that have been visited

before time s, namely

�m
w(s) =

i∑

j=1

1{Hm
w (w({v1,... ,vj })−)=0} whenever

i−1∑

j=1

wvj
≤ s <

i∑

j=1

wvj
,

with �m
w(

∑
i wi) = �m

w(
∑

i wi−).

2.2. The Joyal functional

We now define a functional Ju on the Skorokhod space D[0, 1], which translates
into the world of encoding paths the Joyal bijection (recalled below) between trees
and mappings. Let u ∈ [0, 1]. Define the pre-post infimum of f ∈ D[0, 1] before
and after u to be the function

s → f
s
(u) =

{
inf t∈[s,u] ft for s < u

inf t∈[u,s] ft for s ≥ u.

The function f (u) is non-decreasing on [0, u] and non-increasing on [u, 1]. If [a, b]
is a maximal flat interval for f (u), we call the recentered function ((f −f (u))(s +
a), 0 ≤ s ≤ b − a) an excursion of f above f (u). Such a function may not be
an excursion in the usual sense because it might be zero for some s ∈ (0, b − a).
Further, if two distinct such intervals [a, b] and [c, d] satisfy f (b) = f (c), then it
must be that b < u < c, and in this case we call the function obtained by concate-
nating the excursion of f above f (u) on [a, b] and [c, d] a (generalized) excursion
of f above f (u). Label as ε1, ε2, . . . the generalized excursions of f above f (u),
according to decreasing durations l1, l2, . . . . Write also hi for the “height” of the
excursion εi , i.e. the value taken by f (u) on the flat interval of the excursion. We
define a function Ju(f ) that arranges these excursions in order of heights:

Ju(f )(s) = εi



s −
∑

j :hj <hi

lj



 if
∑

j :hj <hi

lj ≤ s <
∑

j :hj ≤hi

lj , (6)

with the convention that Ju(f )(s) = 0 on [
∑

i li , 1].
To keep track of the structure of the original function, we finally add marks at

the points gu
i (f ) = ∑

j :hj <hi
lj and du

i (f ) = ∑
j :hj ≤hi

lj , i ≥ 1. In particular,
if Ju(f ) if non-zero on (gu

i (f ), du
i (f )), then the εi is an “usual” excursion rather

than “generalized” excursion.
See Figure 1 for an example.
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Fig. 1. The Joyal functional, with three strictly generalized excursions

2.3. The limiting process and main result

Let us recall the construction [2] of the exploration process of the ICRT T θ for
θ ∈ �finite. Let (bs, 0 ≤ s ≤ 1) be a standard Brownian bridge, U1, . . . , UI be
independent uniform random variables independent of b, and

Xbr,θ (s) = θ0bs +
I∑

i=1

θi(1{Ui≤s} − s) , 0 ≤ s ≤ 1.

Such a process has a.s. a unique time where it attains its overall minimum, and this
time is a continuity time, call it smin. Define the Vervaat transform of Xbr,θ by

Xθ (s) = Xbr,θ (s + smin[mod 1]) − Xbr,θ (smin) , 0 ≤ s ≤ 1,

and let ti = Ui − smin[mod 1], 1 ≤ i ≤ I be the jump times of Xθ . Let Ti =
inf{s ≥ ti : Xθ

s = Xθ
ti−} and write

Rθ
i (s) =

{
inf ti≤u≤s Xθ

u − Xθ
ti− if s ∈ [ti , Ti]

0 else.

Last, let Y θ = Xθ − ∑I
i=1 Rθ

i . This process Y θ is continuous, and it is intuitively
described by: “take away all the jumps of Xθ and reflect the process above its infi-
mum after these jumps until Xθ gets back to the level it started at before jumping”.
The exploration process of T θ is then defined as H θ = 2

θ2
0
Y θ .
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The open set {s ∈ (ti , Ti) : H θ (s) > H θ (ti)} associated with jump i can be
decomposed into disjoint open intervals (tij , Tij ), j ≥ 1, ranked by decreasing
order of lengths.

Now take a uniform(0, 1) random variable U independent of Y θ , and consider
the process Zθ = JU(H θ ). Recall that this process has marks gU

i (H θ ), dU
i (H θ ),

which we more simply call gi, di . The following facts are simple consequences of
usual properties of Brownian motion and Brownian bridge:

• The sum of durations of generalized excursions of H θ above H θ (U) is 1, mean-
ing

∑
i≥1(di − gi) = 1.

• The corresponding excursion heights hi, i ≥ 1 are a.s. everywhere dense in
[0, H θ

U ].

Now let V1, V2, . . . be independent uniform(0, 1) variables, independent of U and
H θ . Define recursively a sequence D0 = 0 < D1 < D2 < . . . < 1 by

Dn = inf{s : s > Dn−1 + Vn(1 − Dn−1) and ∃i ≥ 1, s = di} n ≥ 1.

Last, we define the local time function of Zθ as follows: for s in an excursion inter-
val of Zθ above 0, let Lθ

s be the “height” of the corresponding generalized excursion
of H θ above H θ . This defines Lθ on a dense subset of [0, 1] as an increasing func-
tion, which can be extended to the whole interval [0, 1] uniquely as a continuous
function, because H θ is itself continuous, and the excursion heights are dense in
[0, H θ

U ]. Notice that this “local” time has the unusual property that its increase
times do not exactly match with the zero set of Zθ ; rather, the set of increase times
is the closure of {gi, di, i ≥ 1}.

Now let pn, qn, wn be three sequences of probabilities on [n] charging every
point. Consider a pn-mapping Mn with basins in qn-biased order, and let H

Mn
wn

be
the associated walk. We let HMn := H

Mn
pn

. Our main result is

Theorem 1. Suppose maxi qni → 0 as n → ∞.
(i) Under the asymptotic regime (3) for pn, with limiting θ ∈ �finite, and if (8,9)

below are satisfied, then for any weight function w satisfying maxi wni → 0, we
have the convergence in law in the usual Skorokhod topology on D[0, 1]

σ(pn)H
Mn
wn

(d)→ Zθ .

(ii) Moreover, jointly with the above convergence, the marks D
Mn
wn

(1), D
Mn
wn

(2),

. . . converge in law to D1, D2, . . . .

(iii) Jointly with the above convergences, σ(pn)�
Mn
wn

(d)→ Lθ for the uniform

topology.
(iv) In general, under the asymptotic regime (3) for pn, with limiting θ ∈ �finite,

one has convergence in law for the ∗-topology defined in [5]

σ(pn)H
Mn

(d)→ Zθ ,

and the convergences of (ii),(iii) hold jointly for wn = pn.
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We echo [1, Corollary 1] by stating

Corollary 1. Under (3,8,9) with finite-length limiting θ , and for any weight func-
tion wn, qn with maxi max(wni, qni) → 0 as n → ∞, we have

(wn(Bj (Mn)), σ (pn)Card Cj (Mn), j ≥ 1)
(d)→(Dj − Dj−1, L

θ
Dj

− Lθ
Dj−1

, j ≥ 1).

Notice that for uniform wn, the first component equals n−1Card (Bj (Mn)).
The essential point of the ∗-topology is the following property [1]. One has

f n → f for the ∗-topology, where fn ∈ D[0, 1] and f ∈ C[0, 1], if and only if
there exist gn, hn ∈ D[0, 1] with fn = gn+hn such that gn → f uniformly, hn ≥ 0
and Leb{x : hn(x) > 0} → 0. Thus the ∗-convergence asserted in (iv) is compatible
with the possible presence of upward “spikes” on the mapping-walk, which have
arbitrary large height but vanishing weight. In particular, Theorem 1 (iv) allows
us to deduce the asymptotic “height” (distance to the set C(Mn)) of a randomly
pn-chosen vertex, but not the behavior of the asymptotic maximum height over all
vertices, which is however handled under the hypotheses in (i). Under the same
hypotheses, we can handle quantities such as the diameter of the random mapping
(the maximal k such that there exists v with v, m(v), . . . , mk−1(v) pairwise dis-
tinct). We also mention that the ∗-topology on D[0, 1] is metrizable and separable,
a property we will use to apply Skorokhod’s representation theorem below.

Although this result leaves a large degree of freedom for choosing the order
of basins, we stress that other orderings are possible, such as ordering the basins
according to increasing order of the least vertices they contain, or ordering cycles
by order of least vertex they contain. The first order is in fact equivalent to the
size-biased order described above, up to relabeling, and the second order could be
also handled by our methods, although the marks Di would have to be defined in
a different way, see [6].

Last, we stress that the hypotheses (8,9) below are by no means necessary, we
believe that they are in fact quite crude (see [2] for further discussion). Also, as dis-
cussed below, we believe thatTheorem 1 (iv) remains true for much more general wn.

3. Proofs

3.1. p-trees and associated walks

p-trees and their walks. We now define the random trees whose asymptotics are
related to the process H θ , namely p-trees. Let Tn be the set constituted of the nn−1

(unordered) rooted labeled trees on [n]. For p a probability measure charging every
point of [n], let T p be the random variable in Tn with law

P(T p = t) =
∏

i∈[n]

p
ci(t)
i , t ∈ Tn, (7)

where ci(t) is the number of children of i in t . The fact that (7) indeed defines a
probability measure amounts to the Cayley multinomial expansion for trees [10].
For t ∈ Tn, we can associate a random To

n-valued tree to by putting each set of
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children of a given vertex in uniform random order, independently over distinct
vertices, so given a weight function w on [n] we may associate with t the random
walk Ht := Hto as defined in section 2.1. We will now apply this to the random
trees T p and their associated height processes H

p
w := HT p

w . When w = p we let
H p := H

p
p .

Asymptotics. We introduce two extra hypothesis on the sequence pn besides
(3). The first one prevents exponentially small (in the scale σ(p)) p-values from
appearing:

(min
i

pni)
−1 = o(exp(α/σ(pn))) , ∀ α > 0. (8)

The second states that “small” p-values are of rough order σ(p)2. Suppose there ex-
ists some non-negative finite r.v.Q such that, letting p̄=(0, . . ., 0, pI+1, pI+2, . . . ),

lim
n→∞ E

[
exp

(
λp̄nξ

σ (pn)2

)]
= E[exp(λQ)] < ∞ (9)

for every λ in a neighborhood of 0. Here, ξ denotes a random variable with law p,
so p̄nξ is its p̄n-value.

The key results on p-trees are the following variations of [2, Theorems 1,3].
For k ≥ 1, let X2, . . . , Xk be independent p-sampled vertices of T p, indepen-
dent of T p. Let rk(T p) be the subtree of T p spanned by the root and X2, . . . , Xk ,
re-interpreted as a tree with edge-lengths, in the sense that two vertices separated
by a single edge are at distance 1, and we delete all the nodes that have degree
2, so the distance between two vertices on the final tree is equal to the number of
deleted nodes plus 1. The tree rk(T p) is thus a discrete rooted tree with at most
k leaves, which has no degree 2 vertices, and with lengths attached to each of its
edges. The notion of convergence on the space of trees with edge-length is the
usual convergence for the product topology, so tn → t if both trees have the same
discrete structures for all sufficiently large n, and the vector of edge-lengths of tn
converges to that of t. Last, for a > 0 we let a ⊗ t be the tree with edge-length with
same discrete structure as t, and where all distances have been multiplied by a.

Proposition 1 ([7]). Suppose that pn satisfies (3). For every k, the tree σ(pn) ⊗
rk(T pn) converges in distribution to T θ

k , the k-th marginal of the ICRT described
in section 4.

Theorem 2. (i) Suppose that pn satisfies (3,8,9), with θ ∈ �finite, and that wn

satisfies maxi wni → 0. Then

σ(pn)H
pn
wn

(d)→ H θ

for the usual Skorokhod topology (and hence for the uniform topology since the
limit is continuous).

(ii) Under the assumptions of (i), for each 1 ≤ i ≤ I , there exist random
sequences t

pn

i , T
pn

i and t
pn

ij , T
pn

ij , j ≥ 1 with

H
pn
wn

(t
pn

i ) = H
pn
wn

(t
pn

ij ) = H
pn
wn

(T
pn

ij ) for every j ≥ 1,
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h

h hn(1)
hn(2)

ti tij (1)Tij (1) tij (2) Tij (2) tij (3)Tij (3)Ti

U1 U2 U3

h hn(1)
hn(2)

2 2

1 13
3

root root

Fig. 2. Illustration for Theorem 2 (ii)

and H
pn
wn

(s) ≥ H
pn
wn

(t
pn

i ) for s ∈ [tpn

i , T
pn

i ], such that jointly with the convergence
of (i), one has convergence in law

(t
pn

i , T
pn

i , t
pn

ij , T
pn

ij , 1 ≤ i ≤ I, j ≥ 1)
(d)→ (ti , Ti, tij , Tij , 1 ≤ i ≤ I, j ≥ 1),

with the notations of section 2.3.
(iii) Suppose only that pn satisfies (3), then

σ(pn)H
pn

(d)→ H θ

in the ∗-topology. Moreover, the statement of (ii) still holds for wn = pn.

Proof. Except for the last sentence, point (iii) is a consequence of [5, Proposition
7] which states that the convergence of marginals of p-trees to that of the limiting
ICRT [2, Proposition 1 and (23)] is equivalent to the ∗-convergence of the rescaled
walk σ(pn)H

pn with weights wn = pn to H θ .
Point (i) was proved in [2, Theorem 3, Corollary 3] in the two special cases

where wn = pn and where wn = (1/n, . . . , 1/n) (n times). The general case uses
the same proof as Corollary 3 in the stated paper. By the weak law of large numbers
for sampling without replacement applied to wn, we have sup0≤t≤1 |Swn,0(t) −
t | → 0 in probability, where Swn,0 is the linear interpolation between the points
((

∑
1≤k≤i wnπ(k), i/n), 1 ≤ i ≤ n), and where π is a uniformly distributed ran-

dom permutation on [n]. This implies the result because, as shown in [2], the
depth-first order on vertices v1, v2, . . . , vn of a pn-tree is a (random) shift of a
uniform permutation of [n]. Therefore, the linear interpolation Swn between points
((

∑
1≤k≤i wnvk

, i/n), 1 ≤ i ≤ n) also uniformly converges to the identity, and the
conclusion follows from the fact that H

pn
wn

= H pn ◦ (Spn)
−1 ◦ Swn .

Point (ii) refines one aspect of (i). First consider the case wn = pn. By Skorokhod’s
representation theorem, suppose that the convergence in law of (i) holds almost-
surely. Fix i. Figure 2 shows schematically (top left) three of the excursions of H θ
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associated with jump i. All have the same height, h say. The lower left diagram in
Figure 2 shows corresponding parts of H pn . Consider the minimum value hn(1) of
H pn between Tij (1) and tij (2), and the minimum value hn(2) of H pn between Tij (2)

and tij (3). The key claim is

hn(1) = hn(2) for all large n. (10)

To verify (10), take three independent uniform random variables U1, U2, U3 on
[0, 1] independent of H θ , H pn , n ≥ 1. These random variables specify three pn-
chosen vertices on T pn , namely those which are visited by H pn at these times. On
an event of positive probability we have Uk ∈ (tij (k), Tij (k)), k = 1, 2, 3. Con-
sider the subtree of T pn spanned by the root and the three vertices encoded by
U1, U2, U3. If hn(1) �= hn(2) then, on the above event, the subtree has an edge of
length |hn(2) − hn(1)| (as shown in rightmost tree in Figure 2), but this is not con-
verging to the correct limit asserted in Proposition 1 (in the sense of convergence
of discrete structures mentioned above Proposition 1) because the limit tree (the
second-right tree in Figure 2) has different tree shape. Thus we can deduce (10)
using Proposition 1. It is then straightforward to deduce the full assertion of (ii)
from the case (10) of three excursions.

Treating the case of general weights wn is done by asking (again by the Sko-
rokhod representation theorem) that the uniform convergence ofS−1

wn
◦Spn to identity

is also almost-sure. Then replace Uk, k = 1, 2, 3 by U
wn

k = S−1
wn

◦ Spn(Uk), k =
1, 2, 3, so the new variables encode again pn-chosen vertices. The case of ∗-con-
vergence (for wn = pn) is similar (see also the proof of [1, Lemma 2]). ��

Remark. To prove (iii) for more general weights wn, we could try to use the same
method as above (first treating the case of uniform weights). But if fn → f for the
∗-topology with f continuous, and if Sn is a strictly increasing piecewise linear
continuous function that converges uniformly to the identity on [0, 1], then fn ◦ Sn

need not converge to f for the ∗-topology. Indeed, with the above notation, this
convergence is equivalent to Leb{x ∈ [0, 1] : hn ◦ Sn(x) > 0} → 0. But this last
quantity is

∫ 1
0 1{hn>0}(S−1

n )′(x)dx. So we would need a sharper result than the weak
law of large numbers for sampling without replacement to estimate the values of
the derivative at points where hn > 0. However, it was proved in [5, Theorem 25]
by different methods that in the asymptotically negligible regime (2), Theorem 1
(i) is still valid for general weights wn satisfying maxi wni → 0. It would therefore
be surprising if the same result did not hold here.

3.2. The Joyal correspondence.

Let us now describe the Joyal correspondence between trees and mappings, de-
signed to push the distribution of p-trees onto the distribution of p-mappings. Let q
be a probability distribution charging every point. Let X0 be the root of the p-tree
T p and X1 be random with law p independent of T p. We consider X1 as a second
root, and call the path X0 = c1, c2, . . . , cK = X1 from X0 to X1 the spine. Delet-
ing the edges {c1, c2}, {c2, c3}, . . . splits T p into subtrees rooted at c1, c2, . . . , cK ,
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which we call Tc1 , . . . , TcK
. Orient the edges of these trees by making them point

towards the root. Now let X2, X3, . . . be an i.i.d. q-sample independent of T p.
Consider the following procedure.

• Let τ1 = 2 and k1 be such that Tck1
contains X2. Bind the trees Tc1 , . . . , Tck1

by adding oriented edges c1 → c2 → . . . → ck1 → c1. Let C1 = {c1, . . . , ck1}
and B1 = ∪1≤i≤k1Tci

.
• Given τi, ki, Ci , Bi , 1 ≤ i ≤ j as long as ∪1≤i≤jBi �= [n], let τj+1 = inf{k :

Xk /∈ ∪1≤i≤jBi} and kj+1 be such that Tckj+1
contains Xτj+1 . Then add edges

ckj +1 → ckj +2 → . . . → ckj+1 → ckj +1, let Cj+1 = {ckj +1, . . . , ckj+1} ,
Bj+1 = ∪kj +1≤i≤kj+1Tci

.

When it terminates, say at stage r , the procedure yields a digraph with r connected
components B1, . . . , Br , and each component contains exactly one cycle of the
form ckj +1 → . . . → ckj+1 → ckj +1. Let J (T p, Xi, i ≥ 1) be the mapping whose
digraph equals the one given by the procedure. Then, as an easy variation of [1,
Proposition 1],

Proposition 2. The random mapping J (T p, Xi, i ≥ 1) is a p-mapping, and the
order on its basins B1, B2, . . . , Br induced by the algorithm is q-biased order.

3.3. Consequences for associated walks

From now on, let T p be a p-tree, and H
p
w the associated height process. Let

v1, v2, . . . , vn be the vertices of T p in depth-first order, and let Sw be the lin-
ear interpolation between points ((

∑
1≤j≤i wj , i/n), 0 ≤ i ≤ n). Given a random

variable U uniform on [0, 1] and independent of H p, let X1 = X1(U) be the vertex
that is visited by the walk at time Uw = S−1

w ◦ Sp(U), so this vertex is a p-distrib-
uted random variable independent of T p. We also let X2, X3, . . . be an independent
q-sample, independent of T p, U . Let M = J (T p, Xi, i ≥ 1) be the p-mapping
associated with T p by the Joyal correspondence. We will prove Theorem 1(i) by
showing that the mapping-walk associated with M converges in law to Zθ .

Consider the slight variation of the process H
p
w(u):

K
p
w(u)(s) =

{
H

p
w(u)(s) if s is not a time when a vertex of the spine is visited

H
p
w(u)(s) + 1 else.

This process thus “lifts” the heights of the vertices of the spine by 1. Recall from
the proof of [1, Lemma 3] (with a slightly more general context that incorporates
the weights w) that these vertices are visited precisely at the times for which the
reversed pre-minimum process s �→ H

p
w(u)((u − s)−) jumps downward, so in

s �→ K
p
w(u)((u − s)−) we just delay these jumps by the corresponding w-mass of

the vertex.
What we now call “excursion” or generalized excursion of H

p
w above K

p
w(u)

is the same as before, that is a portion of the path of H
p
w defined on a flat interval

of K
p
w(u), with the convention that two excursions on two flat intervals with same

heights (where the term “height” refers to the flat intervals) are merged together
as a single generalized excursion. Precisely, if (a, b) is an interval of constancy of
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K
p
w(u), the corresponding excursion is (H

p
w(s + a) − K

p
w(u)(a), 0 ≤ s ≤ b − a),

and if (c, d) is a second such interval with b < c and same height K
p
w(u)(a) =

K
p
w(u)(c), we merge the two associated excursions into a single “generalized” one.

By contrast with the above, these excursions may take negative values, but only
at times when cyclic vertices are visited, where the excursions’value is −1 (because
K

p
w(u) is one unit larger than H

p
w(u)). As in (6), let J̃u(H

p
w) be the process obtained

by merging the excursions of H
p
w above K

p
w(u) in increasing order of height. A

slight variation of [1, Lemma 3] gives

Lemma 1.
J̃Uw

(H
p
w) = HM

w − 1.

Notice in particular that HM
w is a functional of T p and X1(U) alone, and does not

depend on X2, X3, . . . .

Proof of Theorem 1. Let pn satisfy (3) with finite-length limit θ . We use Theorem
2 and Skorokhod’s representation theorem, so we suppose that the convergence of
σ(pn)H

pn → H θ (either in ∗-topology or Skorokhod topology according to the
hypotheses, recall from the discussion at the end of Sect. 2.3 that we may apply
the representation theorem in the case of *-topology) is almost-sure, as well as the
convergence of Spn , Swn , Sqn to the identity. We also suppose that the convergence
of Theorem 2 (ii) is almost-sure.

Fix ε > 0. For (Lebesgue) almost-every u ∈ [0, 1], u is not a local minimum
of H θ on the right or on the left. Fix such a u. Since uwn := S−1

wn
◦ Spn(u) → u

as n → ∞, it is easily checked that for any η > 0 and n > N1 large enough, the
processes H θ (uwn) and H θ (u) (resp. K

pn
wn

(uwn) and K
pn
wn

(u)) coı̈ncide outside the
interval (u − η, u + η). Let ε1, ε2, . . . be the generalized excursions of H θ above
H θ (u), ranked by decreasing order of their durations l1, l2, . . . , call h1, h2, . . .

the corresponding (pairwise distinct) heights. Let α > 0 be such that ω(h) :=
suph∈[−α,α] ||H θ

·+h − H θ· ||∞ < ε/3. Notice that for n > N2 large enough, we also
have ωn(h) := σ(pn) suph∈[−α,α] ||H pn

wn
(· + h) − H

pn
wn

(·)||∞ ≤ ε/2. Next, take k

such that
∑k

i=1 li ≥ 1 − α/2, and choose η < α/4 such that none of the intervals
of constancy of H θ (u) corresponding to these k excursions intersect (u−η, u+η).

Next, consider hypothesis (i) of Theorem 1. If [a, b] is an interval of constancy
of H θ (uwn) (or H θ (u)) not intersecting (u− η, u+ η), then there exists for n large
enough a constancy interval of K

pn
wn

(u), which we denote by [an, bn], such that
(an, bn) → (a, b), implying by Theorem 2(i) that

(σ (pn)(H
pn
wn

(an + s) − H
pn
wn

(an)), 0 ≤ s ≤ bn − an)

→ (H θ (a + s) − H θ (a), 0 ≤ s ≤ b − a)

uniformly. Moreover, for u as chosen above, if u ∈ (ti , Ti) (notice u = Ti or
u = ti is not possible) then there exists some tij , Tij with tij < u < Tij . Thus,
for such u and as a consequence of Theorem 2 (ii), if there exists a second such
flat interval [c, d] with same height as the initial one (with say b < c), then there
also exists a constancy interval [cn, dn] of K

pn
wn

(u) with (cn, dn) → (c, d), with the
same height as the first one. Therefore, these two intervals do merge to form the



14 D. Aldous et al.

interval of a generalized excursion of σ(pn)H
pn
wn

above σ(pn)K
pn
wn

(u) with length
(bn −an)+ (dn −cn), that converges uniformly to the generalized excursion of H θ

above H θ (u) with height H θ
a and duration (b − a) + (d − c). As a conclusion, one

has εn
i → εi uniformly for every 1 ≤ i ≤ k, where εn

i is the generalized excursion
of σ(pn)H

pn
wn

above σ(pn)K
pn
wn

(uwn) with i-th largest duration lni . Call hn
i its height.

Now (hn
1, . . . , hn

k) → (h1, . . . , hk), and
∑

1≤i≤k |lni − li | → 0 as n → ∞.
Thus, if n > max(N1, N2) is also chosen so that

• ∑
1≤i≤k |lni − li | ≤ α/2,

• hn
1, . . . , hn

k are in the same order as h1, . . . , hk (recall these are pairwise dis-
tinct),

• sup1≤i≤k ||εn
i − εi ||∞ < ε/2,

then necessarily, the uniform distance between σ(pn)̃Juwn
(H

pn
wn

) and Juwn
(H θ ) is

at most ε. Indeed, for x ∈ [0, 1], if x ∈ (gn
i , dn

i ) ∩ (gi, di) for some i ≤ k, then

|σ(pn)̃Juwn
(H

pn
wn

)(x) − Juwn
(H θ )(x)|

≤ ||εi − εn
i ||∞ + sup

|h|<α

||εi(·) − εi(· + h)||∞ ≤ ε,

and else the value taken by this difference does not exceed ω(h) + ωn(h) ≤ ε

because there must be a zero of both processes at distance < α from x. Apply this
to u = U , which a.s. does not belong to the set of local minima (on the left or on
the right) of H θ . Using Lemma 1 establishes the assertion of (i).

The case (iv) of ∗-convergence follows the same lines as in [1, Lemma 2]. With
the help of the discussion on the ∗-topology at the end of Sect. 2.3 and the usual
Borel-Cantelli argument, we suppose up to extracting subsequences that σ(pn)H

pn

can be written as gn + hn with gn converging uniformly to H θ and hn(u) = 0 ulti-
mately for almost-every u. Then, up to modifying slightly the constancy intervals
of Kpn , the same result as above holds for gn, so this proves that σ(pn)JU(H pn)

converges to Zθ in probability for the ∗-metric.
Points (ii,iii) in Theorem 1 then follow the same lines as in the proof of [1,

Theorem 1]. We give some details for (ii). Let U2, U3, . . . be uniform independent
random variables, independent of H θ , U, (H pn , n ≥ 1). Let U

qn

i = S−1
wn

◦ Sqn(Ui)

for i ≥ 2. Recall that the walk H
Mn
wn

can be defined using only H pn , U , so we
are allowed to make the following choice for X2, X3, . . . : we let Xi be the vertex
visited by H

Mn
wn

at time U
q
i . Therefore, the marks D

Mn
wn

(i) are obtained recursively

as follows: let v be the vertex visited by the first U
q
j > D

Mn
wn

(i), then D
Mn
wn

(i + 1)

is the first time when a cyclic point is visited strictly after v, i.e. at the right end of
the generalized excursion of H

Mn
wn

straddling this U
q
j . Passing to the limit, we find

that (D
Mn
wn

(i), 1 ≤ i ≤ j) converges a.s. to (D′
i , 1 ≤ i ≤ j) defined recursively by:

D′
i+1 is the first point of {d1, d2, d3, . . . } that occurs after the first Uj > D′

i . It is
easy to see that this defines a sequence with the same law as Di, i ≥ 1. ��
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4. Inhomogeneous continuum random tree interpretation

Let us briefly introduce the details of the limiting ICRT’s stick-breaking construc-
tion [7, 4]. Let θ = (θ0, θ1, θ2, . . . ) satisfy

∑
i≥0 θ2

i = 1. Consider a Poisson
process (Uj , Vj ), j ≥ 1 on the first octant O = {(x, y) ∈ R

2 : 0 ≤ y ≤ x}, with
intensity θ2

0 per unit area. For each i ≥ 1 consider also homogeneous Poisson pro-
cesses (ξi,j , j ≥ 1) with intensity θi per unit length, and suppose these processes
are independent, and independent of the first Poisson process. The points of R+ that
are either equal to some Ui, i ≥ 1 or some ξi,j , j ≥ 2 will be called cutpoints. To a
cutpoint η we associate a joinpoint η∗: if η is of the form Ui , let η∗ = Vi , while if
η = ξi,j for some i ≥ 1, j ≥ 2, we let η∗ = ξi,1. Since

∑
i θ2

i < ∞, one shows that
the cutpoints can be ordered as 0 < η1 < η2, . . . almost-surely. We build recur-
sively a consistent family of trees whose edges are line-segments by first letting T θ

1
be the segment [0, η1] rooted at 0, and then, given T θ

J , by attaching the left-end of
the segment (ηJ , ηJ+1] at the corresponding joinpoint η∗

J , which has been already
placed somewhere on T θ

J . Further, we relabel the joinpoints of the form ξi,1 as i,
and we relabel the leaves η1, η2, . . . as 1+, 2+, . . . . When all the branches are
attached, we obtain a random metric space whose completion we call T θ (it can
therefore be interpreted as the completion of a special metrization of [0, ∞)). We
let [[v, w]] be the only injective path from v to w, and ]]v, w]] = [[v, w]] \ {v}.

Together with the ICRT comes one natural measure, which is the length measure
inherited from Lebesgue measure on [0, ∞). When θ satisfies the further hypothesis
θ0 > 0 or

∑
i θi = ∞, the tree can be endowed ([4]) with another measure µ, which

is a probability measure obtained as the weak limit of the empirical distribution µJ

on the leaves 1+, 2+, . . . , J+ as J → ∞. We call µ the mass measure.
If θ ∈ �finite, it has been shown in [2] that H θ is the exploration process of T θ .

To explain what this means, note first that H θ induces a special pseudo-metric on
[0, 1] by letting

d(u, v) = H θ
u + H θ

v − 2 inf
w∈[u,v]

H θ
w.

It turns out that the quotient space T obtained by identifying points of [0, 1] at
distance 0 has the same “law” as T θ , where the mass measure is the measure on
the quotient induced by Lebesgue measure on [0, 1]. Precisely,

Theorem 3 ([2]). If U1, . . . , UJ are independent uniform variables on [0, 1], inde-
pendent of H θ , then the subtree of T θ spanned by the (equivalence classes of the)
Ui’s has the same law as T θ

J .

Conceptually, the stick-breaking construction provides an “algorithmic construc-
tion" of the ICRT, whereas the process H θ plays a rôle similar to that of Brownian
excursion in our methodology described in point (ii) in the introduction.

We now show how some consequences of our main theorem can be formulated
in terms of the stick-breaking construction of the ICRT. For v ∈ T θ , let junc(v) be
the branchpoint between v and 1+. Define recursively a sequence 0 = c0, c1, . . .

of vertices of the spine [[root, 1+]] with increasing heights recursively using the
rule
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Given cj let kj+1+be the first leaf of {2+, 3+, 4+, . . . }withjunc(kj+1+) /∈
[[root, cj ]] and let cj+1 = junc(kj+1+).

Corollary 2. Under regime (3) with limiting θ ∈ �finite,

(pn(Bj (Mn)), σ (pn)Card (Cj (Mn)), j ≥ 1)

→
(

lim
k→∞

1

k
Card {1 ≤ i ≤ k : junc(i+) ∈]]cj−1, cj ]]}, ht(cj ) − ht(cj−1), j ≥ 1

)

Proof. The n → ∞ limit of the left side is (by Corollary 1) the law of

(Dj − Dj−1, L
θ
Dj

− Lθ
Dj−1

, j ≥ 1). (11)

By the description of µ as the k → ∞ limit of the empirical distribution on leaves
{1+, 2+, . . . , k+}, the k → ∞ limit of the right side of Corollary 2 becomes

(µ{v ∈ T θ : junc(v) ∈]]cj−1, cj ]]}, ht(cj ) − ht(cj−1), j ≥ 1). (12)

So the issue is to show equality in law of (11) and (12). But Theorem 3 identifies
the law (12) with the law

(Leb{v ∈ (0, 1) : junc(v) ∈]]cj−1, cj ]]}, H θ
cj

− H θ
cj−1

, j ≥ 1) (13)

where the quantities involved can be redefined as follows. Take U1, U2, U3, . . . uni-
form on (0, 1), independent of H θ . Let junc(v) be the point at which inf[v,U1] H θ·
or inf[U1,v] H θ· is attained. Given cj , let cj+1 = junc(U ′) where U ′ is the first of
{U2, U3, U4, . . . } such that H θ

junc(U ′) > H θ
cj

.
On the other hand, D1 is by definition equal in law to the sum of the lengths

of the generalized excursions of H θ above H θ (U1) whose heights are less than or
equal to that of the excursion containing an independent uniform U2, while Lθ

D1
is

the height of the corresponding excursion. Recursively, Dj+1 − Dj is equal in law
to the sum of the durations of the excursions with heights between the height of the
previously explored excursions (strictly) and the height of the excursion straddling
the first Ui that falls in an excursion interval with height larger than the previous
ones; Lθ

Dj
− Lθ

Dj−1
is then the difference of these heights. This identifies the law

(11) with the law (13). ��
Remark. Corollary 2 could alternatively be proved, for more general limit regimes,
by an argument based directly on the Joyal correspondence, without using the detour
through exploration processes.

5. Final remarks

The regimes (3) are basically the only possible ones, if we require a limit distribution
for the number |C(Mn)| of cyclic vertices.

Lemma 2. If cn(|C(Mn)|−dn) converges in law to some non-trivial distribution on
R+ for some renormalizing sequences c, d, then there exists θ such that p satisfies
(3) up to elementary rescaling, that is, there exists α ∈ (0, ∞) and β ∈ R such that
cn/σ (pn) → α and cndn → β.
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This lemma is a direct consequence of [7, Theorem 4] and of Proposition 2,
which implies that the number of cyclic points of a p-mapping has same distribution
as one plus the distance from the root to a p-sampled vertex of a p-tree.

Acknowledgements. Thanks to Thomas Duquesne for his comments on an earlier version of
the paper.
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