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Abstract. We study limiting distributions of exponential sums SN(t) =
∑N

i=1 e
tXi as t →

∞, N → ∞, where (Xi) are i.i.d. random variables. Two cases are considered: (A)
ess supXi = 0 and (B) ess supXi = ∞. We assume that the function h(x) = − log P{Xi >
x} (case B) or h(x) = − log P{Xi > −1/x} (case A) is regularly varying at∞ with index
1 < � <∞ (case B) or 0 < � <∞ (case A). The appropriate growth scale of N relative to
t is of the form eλH0(t) (0 < λ < ∞), where the rate function H0(t) is a certain asymptotic
version of the function H(t) = log E[etXi ] (case B) or H(t) = − log E[etXi ] (case A). We
have found two critical points, λ1 < λ2, below which the Law of Large Numbers and the
Central Limit Theorem, respectively, break down. For 0 < λ < λ2, under the slightly stron-
ger condition of normalized regular variation of h we prove that the limit laws are stable,
with characteristic exponent α = α(�, λ) ∈ (0, 2) and skewness parameter β ≡ 1.

1. Introduction

1.1. The problem

In this work, we are concerned with partial sums of exponentials of the form

SN(t) =
N∑

i=1

etXi , (1.1)

where (Xi) is a sequence of independent identically distributed random variables
and both t and N tend to infinity. Our goal is to study the limiting distribution of
SN(t) and to explore possible ‘phase transitions’ due to various rates of growth of
the parameters t and N .

In such analysis, two cases are naturally distinguished according to whether
Xi are bounded above (case A) or unbounded above (case B). In the former case,
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without loss of generality we may and will assume that the upper edge of the support
of Xi is zero, ess supXi = 0.

One can expect that the results will depend on the structure of the upper distri-
bution tail ofXi . In this paper, we focus on the class of distributions with the upper
tail of the Weibull/Fréchet form

P{Xi > x} ≈
{

exp(−cx�) as x →+∞ (case B),

exp(−c(−x)−�) as x → 0− (case A),
(1.2)

where 1 < � < ∞ (case B) or 0 < � < ∞ (case A). More precisely, we will
be assuming that the function log P{Xi > x} is regularly varying in a vicinity of
ess supXi with index � ∈ (1,∞) (case B) or−� ∈ (−∞, 0) (caseA). For example,
a normal distribution is contained in this class (case B, � = 2).

1.2. Motivation

1.2.1. Topics in Probability. One motivation for this study is quite abstract and
purely probabilistic. In fact, such a setting provides a natural tool to interpolate
between the classical limit theorems concerning the bulk of the sample, i.e. the
Law of Large Numbers (LLN) and the Central Limit Theorem (CLT), on the one
hand, and limit theorems for extreme values, on the other hand. It is clear that the
asymptotic behaviour of SN(t) is largely determined by the relationship between
the parameters t and N . If, for instance, one lets N tend to infinity with t fixed
or growing very slowly, then, under appropriate (exponential) moment conditions,
the usual LLN and CLT should be valid. In contrast, if the growth rate of N is
small enough as compared to t , then the asymptotic behaviour of the sum SN(t) is
dominated by its maximal term. We will see that when both t andN tend to infinity,
a rich intermediate picture emerges made up of various limit regimes.

In this connection, let us mention a recent paper by Schlather [16] who stud-
ied the asymptotics of the lp -norms of samples of positive i.i.d. random variables,

‖Y1n‖p =
(∑n

i=1 Y
p
i

)1/p
, where the norm order p = p(n) grows together with

the sample size n. The link with our setting becomes clear if one puts Yi = eXi.
Qualitatively speaking, in [16] it was demonstrated that under a suitable parametri-
zation of the functional relation between p and n, there is a ‘homotopy’ for the limit
distributions of ‖Y1n‖p extending from the CLT to a limit law for extreme values.
The situation where p = p(n)→∞ as n→∞ arises if the random variables Yi
are bounded above and, in the sense of extreme value theory, belong to the domain
of attraction of the Weibull distribution �α(x) = exp (−(−x)α) (α > 0, x < 0)
[16, Theorem 2.3].

Application of our work to the limit distribution of lp-norms is discussed in
[4]. Let us point out that our results are complementary to [16], since for random
variables Xi with the Weibull/Fréchet tails (1.2) the distribution of the maximum
of eX1 , . . . , eXn can be shown to converge to the Gumbel (double exponential)
distribution �(x) = exp

(−e−x), x ∈ R (see [4]). Note that in the case of
attraction to�, [16, Theorem 2.4] gives only a partial result for exponential random
variables.
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1.2.2. Branching populations. The second motivation (in fact, the most important
one) is related to long-term dynamics in random media. In the simplest situation,
exponential sums emerge as the (quenched) mean population size of a colony of non-
interacting branching processes with random branching rates. Indeed, consider N
branching processes Zi(t) driven by branching rates Xi = Xi(ω) (i = 1, . . . , N).
More precisely, for a fixed (quenched) environment ω, each Zi(t) is a Markov
continuous-time branching process such that during time dt → 0, with probability
|Xi |dt a particle may split into two (if Xi > 0) or die (if Xi < 0). Note that the
functionmi(t) := Eω[Zi(t)] satisfies the differential equationm′i = Ximi (see [2,
p. 108]). Assuming that Zi(0) = 1 we obtain mi(t) = etXi , and hence the total
quenched mean population size is given by the sum (1.1).

In more interesting and realistic situations, there is spatial motion of particles
and hence interaction between individual populations. We believe that the problem
of long-term dynamics for such systems can be essentially reduced, in each particu-
lar case, to sums involving random exponentials, and therefore various asymptotic
regimes that we establish in the present paper will provide a basic building block
for the understanding of new dynamical phase transitions for branching processes
in random media. In general, such exponential sums may contain random weights,
thus having the form SN(t) =

∑N
i=1 Yi e

tXi . Here, the parameter N will charac-
terize the spatial span of the initial population, while the random variables Xi and
Yi represent the local (spectral) characteristics of the quenched branching process,
according to the mechanisms of dynamical randomness in the medium. Typically,
the weights (Yi) are expected to be mutually independent when conditioned on the
(Xi). These more difficult questions, including a more general type of the abstract
problem, will be addressed elsewhere.

1.2.3. Random Energy Model. A completely different example is provided by
the Random Energy Model (REM) introduced by Derrida [7] as a simplified ver-
sion of the Sherrington–Kirkpatrick model of spin glass. The REM describes a
system of size n with 2n energy levels Ei =

√
nXi (i = 1, . . . , 2n), where (Xi)

are i.i.d. random variables with standard normal distribution. Thermodynamics of
the system is determined by the partition function Zn(β) :=∑2n

i=1 e
β
√
nXi , which

exemplifies the exponential sum (1.1) with N = 2n, t = β√n .
The free energy for the REM, first obtained in [7] using heuristic arguments, is

given by

F(β) := lim
n→∞

log Zn(β)
n

=
{
β2/2+ β2

c /2 if 0 < β ≤ βc,

ββc if β ≥ βc,
(1.3)

whereβc =
√

2 log 2 . Eisele [8] and Olivieri and Picco [13] have rigorously derived
the limit (1.3) (in probability and a.s.) and also extended this result to the case where
Xi have the Weibull-type tail (1.2) (case B).1

1 Distributions considered in [8, 13] are subject to the condition x−�h(x)→ const > 0 as
x → +∞, where h(x) = − log P{Xi > x} and 1 < � <∞ (see [8, Theorem 2.3]), which
is more restrictive than our assumption of regular variation of h(·).
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Recently, a detailed analysis of the limit laws for Zn(β) in the Gaussian case
has been accomplished by Bovier et al. [6]. In particular, is has been shown that
in addition to the phase transition at the critical point βc, manifested as the LLN
breakdown for β > βc, within the region β < βc there is a second phase tran-
sition at β̃c =

√
log 2/2 = 1

2βc , in that for β > β̃c the fluctuations of Zn(β)
become non-Gaussian. In the present work, we extend these results to the class of
distributions with Weibull/Fréchet-type tails of the form (1.2). As compared to the
paper [6] which proceeded from extreme value theory, we use methods of theory of
summation of independent random variables. This general and powerful approach
simplifies the proofs and in particular reveals that non-Gaussian limit laws are in
fact stable.2

1.2.4. Risk theory. Finally, let us point out one application related to insurance.
A basic quantity in risk theory is the aggregate claim amount Y (t) := ∑N(t)

i=1 Ui ,
where (Ui) is a sequence of i.i.d. claim sizes and N(t) is a claim counting process
independent of (Ui) [15, Sect. 5.1.4].A common problem is to estimate the moment
generating function mU(s) := E[esUi ], in particular for large s. Such a question
arises, for example, in connection with the Lundberg bounds for the tail distribution
of Y (t).3 The Lundberg bounds are constructed using the root s∗ of the equation
mU(s) = 1/p > 1 (see [15, p. 125]), where the parameter p has the meaning of
the claim arrival rate. Hence, the case p→ 0 (and therefore s∗ → ∞) corresponds
to the practically important situation of small ‘claim load’.

The statistical method for estimating the unknown solution s∗ can be based on
the empirical moment generating function m̂U (s) := n−1 ∑n

i=1 e
sUi (cf. (1.1)).

A natural estimator s̃ defined by the equation m̂Y (s̃) = 1/p has nice asymptotic
properties including a.s.-consistency and asymptotic normality, providing 1/p is
fixed or bounded [15, p. 130]. However, the asymptotic behaviour of s̃ when both
n and 1/p are large does not seem to have been addressed so far.

2. Statement of the main results

2.1. Regularity and scaling

Denote ωX := ess supX ≡ sup{x : P(X > x) > 0}. Therefore, cases A and B
mentioned in Section 1.1 correspond to ωX = 0 and ωX = +∞, respectively. In
view of the above interpretation of the problem in terms of branching populations
(see Section 1.2.2), this labelling can be mnemonically associated with annihilation
(case A) and branching (case B).

Let us make the following notational convention that will allow us to consider
both cases A and B simultaneously.

2 Some applications of our results to the REM are discussed in [4].
3 Similar questions are of interest in other areas such as queueing theory (the equilibrium

waiting time inM/G/1 queue, see [1, p. 269, 281]) and storage models (a dam process, see
[1, Ch. XIII, § 3, 4]).
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Notation. In the symbols ±, ∓, ≷ and the like, the upper sign always refers to
case B, whereas the lower sign corresponds to case A. The notation a± stands for
the power a±1.

Assume that P{X < ωX} = 1, that is, X is finite with probability 1 (case B)
or there is no atom at point ωX = 0 (case A). Consider the log-tail distribution
function

h(x) :=
{ − log P{X > x}, x ∈ R (case B),
− log P{X > −1/x}, x > 0 (case A).

(2.1)

Clearly, in both cases h(·) is non-negative, non-decreasing, and right-continuous;
it takes finite values in its domain and h(x)→+∞ as x →+∞. According to the
above ±-convention, the upper tail of the distribution of X can be written down in
a united manner as

P{X > x} = exp{−h(±x±)}, x < ωX. (2.2)

We will be working under the assumption that h is regularly varying at infinity
with index � (we write h ∈ R�), where 1 < � < ∞ (case B) or 0 < � < ∞
(case A). That is, for any constant κ > 0 we have h(κx)/h(x)→ κ� as x →+∞.

It follows that the cumulant generating function

H(t) := ± log E[etX], t ≥ 0, (2.3)

is well defined; furthermore, it is non-decreasing and H(t)→ +∞ as t → +∞.
The link between the asymptotics of the functions h and H at infinity is character-
ized by the fundamental Kasahara–de Bruijn exponential Tauberian theorem (see
Lemma 3.1 below). In particular, h ∈R� if and only if H ∈R�′ , where

� ′ := �

� ∓ 1
. (2.4)

Recalling that 1 < � <∞ in case B and 0 < � <∞ in case A, we get

1 < � ′<∞ (case B), 0 < � ′< 1 (case A). (2.5)

According to (2.3), the expected value of the sum SN(t) is given by

E[SN(t)] =
N∑

i=1

E[etXi ] = Ne±H(t),

suggesting that the function H(t) sets up an appropriate (exponential) scale of the
form eλH(t) for the number of termsN = N(t). However, the suitable rate function
is notH(t), but rather its particular asymptotic versionH0(t) ∼ H(t) provided by
the Kasahara–de Bruijn Tauberian theorem.4

4 This makes no difference in the ‘crude’ Theorems 2.1 and 2.2 below, but is crucial for
the more delicate Theorems 2.3, 2.4 and 2.5.
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The following two values appear to be critical with respect to the scale λH0(t),

λ1 := � ′

�
, λ2 := 2�

′ � ′

�
, (2.6)

in that the LLN and CLT break down below λ1 and λ2, respectively. Let us also
introduce the parameter

α ≡ α(�, λ) :=
(
�λ

� ′

)1/� ′

, (2.7)

which will be shown to play the role of characteristic exponent in the limit laws
and hence provides their natural parametrization. In particular, note that the critical
values of α corresponding to λ1, λ2 are given by α1 = 1, α2 = 2, respectively.

Below the critical point λ2, the behaviour of the sum SN(t) becomes more
sensitive to subtle details of the upper tail’s structure. However, enough control
is gained via imposing a slightly stronger condition on regularity of the log-tail
distribution function h— that of normalized regular variation, h ∈ NR� (see [5,
p. 15]). This condition will be discussed in detail in Section 5.1. One of equivalent
definitions is that for any ε > 0, the function h(x)/x�−ε is ultimately increasing,
while h(x)/x�+ε is ultimately decreasing (see Lemma 5.2 below).

Under this assumption, the relationship between the functions h andH0 can be
characterized explicitly (see Section 5.1). Here we note thatH0(t) can be found (for
all t large enough) as the unique solution of the equation � ′H0 = �h((� ′H0/t)

±)
(Lemma 5.5).

2.2. Statement of the main theorems

We proceed to state our results. The first two theorems assert that SN(t) satisfies
the Law of Large Numbers and the Central Limit Theorem in their conventional
form provided that the number of terms N in SN(t) grows fast enough relative to t
(roughly speaking, N � eλ1H0(t) for LLN or N � eλ2H0(t) for CLT). Denote

λ := lim inf
t→∞

logN

H0(t)
. (2.8)

Theorem 2.1. Suppose that h ∈R� and λ > λ1. Then

SN(t)

E[SN(t)]
p−→ 1 (t →∞).

Theorem 2.2. Suppose that h ∈R� and λ > λ2. Then

SN(t)− E[SN(t)]√
Var[SN(t)]

d−→ N (0, 1) (t →∞).

For our further theorems, we need to specify the growth rate of N more pre-
cisely.
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Scaling Assumption. The number N = N(t) of terms in the sum SN(t) satisfies
the condition

lim
t→∞N e

−λH0(t) = 1, (2.9)

where λ is a parameter such that 0 < λ <∞.

Let µ = µ(t) be the (unique) solution of the equation

h
(
(µH0(t)/t)

±) = λ�

� ′
h
(
(� ′H0(t)/t)

±)
.

One can show (see Lemma 5.8 below) that

lim
t→∞µ(t) =

�λ

α
. (2.10)

Let us also set

η1(t) := µ(t)H0(t)

t
. (2.11)

We are now in a position to state one of our main results.

Theorem 2.3. Assume that h ∈ NR� and the scaling condition (2.9) is fulfilled.
Let 0 < λ < λ2 and set

B(t) := e±µ(t)H0(t), (2.12)

A(t) :=






E[SN(t)] (λ1 < λ < λ2),

NB1(t) (λ = λ1),

0 (0 < λ < λ1),

(2.13)

where B1(t) is a truncated exponential moment,

B1(t) := E
[
etX1{X≤±η1(t)}

]
. (2.14)

Then, as t →∞,

SN(t)− A(t)
B(t)

d−→ Fα , (2.15)

where Fα is a stable law with exponent α ∈ (0, 2) defined in (2.7) and skewness
parameter β = 1. The characteristic function of the law Fα is given by

φα(u) =






exp

{

−(1− α)|u|α exp

(

− iπα
2

sgn u

)}

(α �= 1)

exp

{

iu(1− γ )− π
2
|u|

(

1+ i sgn u · 2

π
log |u|

)}

(α = 1)

(2.16)

where γ = 0.5772 . . . is the Euler constant.

Remark. For 1 < α < 2, we use an analytic continuation of the gamma function
in (2.16), (1− α) = (2− α)/(1− α).
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Let us now describe what happens at the critical points. In fact, the Law of
Large Numbers and the Central Limit Theorem prove to be valid at λ1 and λ2,
respectively; however the normalizing constants now require some truncation.

Theorem 2.4. Under the hypotheses of Theorem 2.3, let λ = λ1. Then

SN(t)

NB1(t)

p−→ 1 (t →∞), (2.17)

where B1(t) is given by (2.14).

Theorem 2.5. Under the hypotheses of Theorem 2.3, let λ = λ2. Then

SN(t)− E[SN(t)]√
NB2(t)

d−→ N (0, 1) (t →∞),

where B2(t) is a truncated exponential moment of ‘second order’,

B2(t) := E
[
e2tX1{X≤±η1(t)}

]
. (2.18)

Remark. Note that by (2.9), we have B(t) ∼ N±µ(t)/λ as t → ∞. In particular,
(2.10) implies that in case B the normalization function B(t) amounts to N raised
to the power µ(t)/λ ∼ �/α > 1/α. This should be compared to classical results
in the i.i.d. case (see [12, p. 37, 46]), where the normalization is essentially of
the form N1/α . As we see, in case B the sum SN(t) has a limiting stable distribu-
tion by virtue of a non-classical (heavier) normalization. As for case A, we have
B(t) ∼ N−µ(t)/λ→ 0, which has no analogies in classical theory.

Overall, it may seem surprising that i.i.d. random variables having finite expo-
nential moments (or even bounded above as in case A) can be in the domain of
attraction of a stable law, reproducing under various scalings the conventional pic-
ture of classical theory (but with non-classical normalization). It is also quite striking
that the two apparently different cases A and B have so much in common and lead
to the same limiting distributions. These results suggest that stable distributions as
the limit laws for sums of i.i.d. random variables, possess greater universality than
it used to be believed, and may appear as limits for various classes of parametric
transformations of the form Yi(t) = F(Xi, t), where (Xi) is an i.i.d. sequence sat-
isfying appropriate conditions on the upper distribution tail. We intend to explore
this issue in greater detail in the future.

The remaining part of the paper is laid out as follows. In Section 3 we specify
our regularity assumption on the distribution tail of the random variables Xi and
formulate the Tauberian theorem of Kasahara–de Bruijn. In Section 4 we prove the
LLN above λ1 (Theorem 2.1) and the CLT above λ2 (Theorem 2.2). In Section 5,
the condition of normalized regular variation of the function h is discussed. Sec-
tion 6 is devoted to the proof of Theorem 2.3 (0 < λ < λ2). First, we demonstrate
convergence to an infinitely divisible law (Theorem 6.1), which is then reduced to
a canonical stable form (Theorem 6.2). In Section 7 we prove the LLN at λ = λ1
(Theorem 2.4) and the CLT at λ = λ2 (Theorem 2.5). The Appendix contains the
proof of Lemma 5.13 about the asymptotics of truncated exponential moments.
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3. Preliminaries

3.1. Regularity

Let us start by making precise our basic assumption on the regularity of the log-tail
distribution function h defined in (2.1).

Regularity Assumption. The function h is regularly varying at∞ with index �
(we write h ∈ R�), such that 1 < � < ∞ (case B) or 0 < � < ∞ (case A). That
is, for every constant κ > 0

lim
x→∞

h(κx)

h(x)
= κ�. (3.1)

It is known that h ∈R� if and only if h admits the Karamata representation

h(x) = c(x) exp

{∫ x

a

� + ε(u)
u

du

}

(x ≥ a) (3.2)

for some a > 0, where c(·), ε(·) are measurable functions and c(x) → c0 > 0,
ε(x)→ 0 as x →∞ [5, p. 21].

The following result, known as the Uniform Convergence Theorem (UCT) [5,
p. 22], significantly extends the definition of regular variation.

Lemma 3.1 (UCT). If h ∈R� with � > 0 then (3.1) holds uniformly in κ on each
interval (0, b].

3.2. Exponential Tauberian theorems

Recall that the generalized inverse of a function f is defined by f←(y) := inf{x :
f (x) > y} [5, p. 28]. The next result shows that the generalized inverse inherits
the property of regular variation and, quite naturally, is an ‘asymptotic inverse’ (cf.
[5, p. 28]).

Lemma 3.2. If f ∈R� with � > 0, then there exists g ∈R1/� such that

g(f (x)) ∼ f (g(x)) ∼ x (x →∞).
Such g is unique to within asymptotic equivalence, and one version is f←.

For 1 < � < ∞ (case B) or 0 < � < ∞ (case A), we define the ‘conjugate’
index � ′ by the formula (2.4). Rearranging (2.4), we obtain the useful identities

� ′

�
= ±(� ′ − 1),

�

� ′
= � ∓ 1. (3.3)

We are now in a position to formulate the exponential Tauberian theorems of
Kasahara and de Bruijn (see [5, Theorems 4.12.7, 4.12.9]), which play the funda-
mental role in our analysis. We will state both theorems in a unified way and in
terms convenient for our purposes.
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Lemma 3.3 (Kasahara–de Bruijn’s exponential Tauberian theorem). Let h be the
log-tail distribution function (2.2) and H the corresponding cumulant generating
function (2.3). Suppose that ϕ ∈R1/� and put

ψ(u) := uϕ(u)∓ ∈R1/� ′. (3.4)

Then

h(x) ∼ 1

�
ϕ←(x) (x →∞) ⇐⇒ H(t) ∼ 1

� ′
ψ←(t) (t →∞). (3.5)

In particular, h ∈R� if and only if H ∈R�′.

Let us point out that the function

H0(t) := 1

� ′
ψ←(t) ∼ H(t), (3.6)

appearing in (3.5), is the rate function H0 mentioned above in Section 2.1.

3.3. Some elementary inequalities

The following inequalities will be useful (see [11, Theorem 41, p. 39]): Let a > 0,
b > 0 and a �= b, then

pap−1(a − b) < ap − bp < pbp−1(a − b) (0 < p < 1), (3.7)

pbp−1(a − b) < ap − bp < pap−1(a − b) (p < 0 or p > 1). (3.8)

Let us also record a technical lemma.

Lemma 3.4. Consider the function

vλ(x) := λ(x − 1)∓ (x�′ − x), x ≥ 1. (3.9)

If λ > λ1 then there exists x0 > 1 such that vλ(x) > 0 for all x ∈ (1, x0).

Proof. By (2.6) and (3.3), we have λ1 = � ′/� = ±(� ′ − 1). Note that vλ(1) = 0
and v′λ(x) = λ∓ (� ′x�

′−1−1), so that v′λ(1) = λ∓ (� ′−1) = λ−λ1 > 0, accord-
ing to the hypothesis of the lemma. Therefore, Taylor’s formula yields vλ(x) =
(x − 1)

(
v′λ(1)+ o(1)

)
> 0 for all x > 1 sufficiently close to 1. �

4. Limit theorems above the critical points

In this section, the parameter λ is defined by (2.8). We also recall that λ1 and λ2
are given by (2.6).
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4.1. Proof of Theorem 2.1

Let us set

S∗N(t) := SN(t)

E[SN(t)]
= 1

N

N∑

i=1

etXi∓H(t),

so one has to prove that S∗N(t)
p−→ 1 as t → ∞. To this end, it suffices to show

that limt→∞ E|S∗N(t)− 1|r = 0 for some r > 1.
By von Bahr–Esseen’s inequality [3, Theorem 2], for any r ∈ [1, 2] we have

E|S∗N − 1|r ≤ 2N1−r E|etX∓H(t) − 1|r ≤ 2N1−r E|etX∓H(t) + 1|r .
Applying the elementary inequality (x + 1)r ≤ 2r−1(xr + 1) (x > 0, r ≥ 1),
which follows easily from Jensen’s inequality, we further obtain

E|S∗N − 1|r ≤ 2rN1−re±H(rt)∓rH(t) + 2rN1−r . (4.1)

Since H ∈R� ′ and H(t) ∼ H0(t) (see (3.6)), we get, using (2.8),

lim inf
t→∞

[
(r − 1) logN

H(t)
∓ H(rt)
H(t)

± r
]

= λ(r − 1)∓ r�′ ± r ≡ vλ(r).

By Lemma 3.4 we can choose r > 1 such that vλ(r) > 0, which implies that the
right-hand side of (4.1) is bounded by e−cH(t) = o(1) as t →∞.

4.2. Proof of Theorem 2.2

Denote

σ(t)2 := Var[etX] = E[e2tX]− (
E[etX]

)2 = e±H(2t) − e±2H(t). (4.2)

Lemma 4.1. As t →∞,

σ(t)2 = e±H(2t)(1+ o(1)) and e±2H(t) = σ(t)2 o(1). (4.3)

Proof. In view of (4.2) it suffices to prove the first statement. Note that

e∓H(2t)σ (t)2 = 1− e∓H(2t)±2H(t). (4.4)

Using that H ∈R�′ we obtain

lim
t→∞

(

±H(2t)
H(t)

∓ 2

)

= ±(2�′ − 2) = |2�′ − 2| > 0

(see (2.5)). Hence, the exponential term on the right-hand side of (4.4) vanishes as
t →∞, and (4.3) follows. �

The following lemma is a variation of Chebyshev’s inequality.

Lemma 4.2. Let Y ≥ 0 be a random variable. Then for any τ > 0 and all k ≤ m
E

[
Y k1{Y>τ }

]
≤ τ k−m E

[
Ym

]
. (4.5)
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Proof. Similarly to the usual proof of Chebyshev’s inequality, we write

E
[
Ym

] ≥ E
[
Ym1{Y>τ }

] = E
[
Ym−k · Y k1{Y>τ }

]
≥ τm−k E

[
Y k1{Y>τ }

]
,

whence (4.5) follows. �

Proof of Theorem 2.2. In view of Lemma 4.1, the statement of the theorem may
be rewritten as follows:

SN(t)−N e±H(t)
N1/2 e±H(2t)/2

d−→ N (0, 1) (t →∞). (4.6)

Denote

Yi ≡ Yi(t) := etXi

N1/2 e±H(2t)/2
. (4.7)

1) According to the Central Limit Theorem for independent summands (see,
e.g., [14, Theorem 18, p. 95]), we firstly need to check that for all τ > 0

N∑

i=1

P{Yi(t) > τ } = N P{Y (t) > τ } → 0 (t →∞).

Assuming that r > 1, let us apply Chebyshev’s inequality (of order 2r) and recall
the definition (4.7) to obtain

N P{Y > τ } ≤ Nτ−2r E[Y 2r ] = N1−r τ−2re±H(2rt)∓rH(2t). (4.8)

Using that H ∈R�′ and H(t) ∼ H0(t) as t →∞, we find

lim inf
t→∞

[
(r − 1) logN

H(t)
∓ H(2rt)

H(t)
± rH(2t)

H(t)

]

= λ(r − 1)∓ (2r)�′ ± r2�′

= 2�
′(

2−�
′
λ(r − 1)∓ (r�′ − r)

)
≡ 2�

′
vλ′(r),

where λ′ := 2−�′λ and the function vλ(·) is defined in (3.9). By the theorem’s
hypothesis, λ′ > 2−�′λ2 = λ1 and hence, by Lemma 3.4, vλ′(r) > 0 for a suitable
r > 1. Therefore, the right-hand part of (4.8) tends to zero as t →∞.

2) Next, we have to verify that for every τ > 0, as t →∞,

N∑

i=1

{

E
[
Y 2
i 1{Yi≤τ }

]
−

(
E

[
Yi 1{Yi≤τ }

])2
}

= N Var
[
Y 1{Y≤τ }

]→ 1. (4.9)

By Lemma 4.1, Var[Y ] ∼ 1/N , so the condition (4.9) can be rewritten in the form

N Var[Y ]−N Var
[
Y 1{Y≤τ }

]→ 0.

Expanding the variances, the left-hand side is represented as

N E
[
Y 21{Y>τ }

]
−N E

[
Y 1{Y>τ }

]
E

[
Y

(
1+ 1{Y≤τ }

)]
. (4.10)
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Applying Lemma 4.2 to the first term in (4.10) (with k = 2, m = 2r > 2) yields

N E
[
Y 2 1{Y>τ }

]
≤ Nτ−2(r−1) E[Y 2r ] = o(1), (4.11)

as shown in the first part of the proof. The second term in (4.10) is bounded by
2N(E[Y ])2 = 2e∓H(2t)±2H(t), which is o(1) by Lemma 4.1. Hence, (4.10) van-
ishes as t →∞, and (4.9) follows.

3) Finally, we need to show that

N∑

i=1

E[Yi]−
N∑

i=1

E
[
Yi 1{Yi≤τ }

] = N E
[
Y 1{Y>τ }

]→ 0.

Indeed, applying Lemma 4.2 with k = 1, m = 2r (r > 1), we obtain the estimate

N E
[
Y 1{Y>τ }

] ≤ Nτ 1−2r E[Y 2r ] = o(1)
(see (4.8), (4.11)), and the proof is complete. �

5. Normalized regularity and the Basic Identity

5.1. Normalized regular variation

From now on we impose the following

Normalized Regularity Assumption. The log-tail distribution function h is nor-
malized regularly varying at infinity, h ∈ NR� (with 1 < � < ∞ in case B and
0 < � <∞ in case A), that is, it can be represented in the form

h(x) = c exp

{∫ x

a

� + ε(u)
u

du

}

(x ≥ a), (5.1)

where c = const > 0 and ε(x)→ 0 as x →∞ (see [5, p. 15]). That is to say, the
function c(·) in the Karamata representation (3.2) is now required to be a constant.

More insight into the property of normalized regular variation is given by the
following lemma (cf. [5, p. 15]).

Lemma 5.1. Let h be a positive (measurable) function. Then h ∈NR� if and only
if h is differentiable (a.e.) and

xh′(x)
h(x)

→ � (x →∞). (5.2)

Another important characterization of normalized regularly varying functions
is provided by the following lemma (see [5, Theorem 1.5.5]).

Lemma 5.2. A positive (measurable) function h is normalized regularly varying
with index �, i.e. h ∈NR�, if and only if for every ε > 0 the function h(x)/x�−ε is
ultimately increasing and the function h(x)/x�+ε is ultimately decreasing.
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The next lemma yields a useful integral representation of normalized regularly
varying functions.

Lemma 5.3. A function h ∈NR� can be written in the form

h(x) = h(a)+
∫ x

a

h(u)

u
(� + ε(u)) du (x ≥ a), (5.3)

where ε(x)→ 0 as x →∞.

Proof. Consider the function

D(x) := h(x)− h(a)−
∫ x

a

h(u)

u
(� + ε(u)) du.

Obviously,D(a) = 0. Representation (5.1) implies that h is absolutely continuous,
hence the derivative h′ exists (a.e.) and

h′(x) = c exp

{∫ x

a

� + ε(u)
u

du

}

· � + ε(x)
x

= h(x)(� + ε(x))
x

. (5.4)

Therefore, D(·) is absolutely continuous as well and we have (a.e.)

D′(x) = h′(x)− h(x)
x

(� + ε(x)) = 0.

Hence, D(x) ≡ 0 and (5.3) follows. �

The following lemma can be viewed as a refinement of the UCT (Lemma 3.1)
for the case of normalized regular variation.

Lemma 5.4. If h ∈NR� (� > 0) then, uniformly in κ on each interval [κ0, κ1] ⊂
(0,∞),

h(κx)− h(x)
h(x)

= (κ� − 1)(1+ o(1)) (x →∞).

Proof. Suppose for definiteness that κ ≥ 1 (the case 0 < κ ≤ 1 is considered
similarly). Using the representation (5.3), after the substitution u = xy we have

h(κx)− h(x)
h(x)

=
∫ κ

1

h(xy)

h(x)y
(� + ε(xy)) dy. (5.5)

The UCT (Lemma 3.1) implies that the function under the integral sign converges to
�y�−1 uniformly on [1, κ1] as x →∞. Therefore, the integral in (5.5) converges,
uniformly in κ ∈ [1, κ1], to

∫ κ
1 �y

�−1 dy = κ� − 1. �
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5.2. Basic Identity

Let us now re-examine the application of the Kasahara–de Bruijn Tauberian theo-
rem (Lemma 3.3) to our situation. Note that the function �h(x) is continuous and,
by Lemma 5.2, ultimately strictly increasing, hence its ordinary inverse ϕ(t) :=
(�h)−1(t) is well defined and strictly increasing for all t large enough. In turn, for
all x large enough we have

ϕ−1(x) = �h(x). (5.6)

It then follows that the functionψ(t) defined by (3.4) is ultimately strictly increasing
as well. For suppose s < t , then the required inequality ψ(s) < ψ(t) is equivalent
to sϕ(s)∓ < tϕ(t)∓, or

ϕ−1(x)x∓ < ϕ−1(y)y∓, (5.7)

where x := ϕ(s), y := ϕ(t) and x < y. Using (5.6), inequality (5.7) can be
rewritten as h(x)x−�+ε < h(y)y−�+ε with ε := � ∓ 1 > 0, and the latter holds
by Lemma 5.2.

Consequently, the inverse function ψ−1 exists and is ultimately increasing.
Therefore, formula (3.6) is reduced to

ψ−1(t) = � ′H0(t). (5.8)

For the sake of notational convenience, let us introduce the function

s(t) :=
(
� ′H0(t)

t

)±
, t > 0. (5.9)

Since H0 ∈ R�′ , we have s(t) ∈ R±(�′−1) = R|�′−1| and hence s(t) → ∞ as
t →∞.

We are now in a position to characterize explicitly the link arising between
the regularly varying functions h and H0 through the Tauberian correspondence.
Remarkably, due to normalized regular variation of h, such a relationship has the
form of an exact equation, rather than just an asymptotic relation.

Lemma 5.5. For all t large enough, the functions h and H0 satisfy the equation

� ′H0(t) ≡ �h(s(t)). (5.10)

Remark. Remembering that s(·) is expressed through H0 (see (5.9)), the identity
(5.10) can be viewed as a functional equation for H0.

Proof of Lemma 5.5. Let us apply ψ to (5.8) and use relation (3.4) to obtain

t = ψ(
� ′H0(t)

) = � ′H0(t)ϕ
(
� ′H0(t)

)∓
,

that is,

ϕ
(
� ′H0(t)

) =
(
� ′H0(t)

t

)±
≡ s(t).

Hence, using (5.6) we get � ′H0(t) = ϕ−1(s(t)) = �h(s(t)). �
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In order to rewrite equation (5.10) in a form suitable for us (to be called ‘Basic
Identity’), we need to make some technical preparations. Recall that α is defined
in (2.7). Conversely, using (3.3) λ is expressed in either of the two forms

λ = � ′α�′

�
≡ ±(� ′ − 1) α�

′
. (5.11)

Lemma 5.6. For large enough s, there exists the unique root µ̃(s) of the equation

h
(
(µ̃/� ′)±s

) = α�′h(s), (5.12)

given by the formula

µ̃(s)± = (� ′)±

s
h−1(α�

′
h(s)

)
. (5.13)

In particular, if α = 1 then µ̃(s) ≡ � ′.
Proof. Recall that h is normalized regularly varying and (absolutely) continuous
(see (5.1)). Therefore, by Lemma 5.2 it is strictly increasing in some [a,∞), so the
(usual) inverse h−1 exists and is defined on [h(a),∞). Hence, the equation (5.12)
can be solved to yield formula (5.13), which is well defined for all s large enough.
The case α = 1 follows easily. �
Lemma 5.7. The function µ̃(·) defined in Lemma 5.6 is ultimately bounded above
and below, and furthermore, for all s large enough

min{1, α�′/2�} ≤
(
µ̃(s)

� ′

)±
≤ max{1, α2�′/�}. (5.14)

Proof. If α ≤ 1 then, due to monotonicity of the function h−1,

1

s
h−1(α�

′
h(s)

) ≤ 1

s
h−1(h(s)) = 1. (5.15)

In the case α > 1, we note that for every κ > 1 and all s large enough

κh(s) ≤ h(κ2/�s), (5.16)

because h ∈R� and hence lims→∞ h(κ2/�s)/h(s) = κ2 > κ . Applying inequality
(5.16) with κ = α�′ > 1, we get

1

s
h−1(α�

′
h(s)

) ≤ 1

s
h−1(h(α2�′/�s)

) = α2�′/�. (5.17)

Combining (5.15) and (5.17) and using (5.13), the upper bound (5.14) follows.
Similarly, for α ≥ 1 we obtain

1

s
h−1(α�

′
h(s)

) ≥ 1

s
h−1(h(s)) = 1,

whereas for α < 1
1

s
h−1(α�

′
h(s)

) ≥ 1

s
h−1(h(α�

′/2�s)
) = α�′/2�,

which is consistent with the lower bound in (5.14). �
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Lemma 5.8. The function µ̃(s) has a finite limit as s →∞, given by

lim
s→∞ µ̃(s) = �

′α�
′−1. (5.18)

Proof. Since µ̃(·) is bounded (see Lemma 5.7), the UCT (Lemma 3.1) implies

h
(
(µ̃(s)/� ′)±s

) ∼
(
µ̃(s)

� ′

)±�
h(s) (s →∞).

Comparing this with equation (5.12), we obtain
(
µ̃(s)

� ′

)±�
∼ α�′ (s →∞),

whence it follows that the limit (5.18) exists and is given by

lim
s→∞ µ̃(s) = �

′α±�
′/� = � ′α�′−1,

in view of the first of the identities (3.3). �
Let us define the function

µ(t) := (µ̃ ◦ s)(t) = µ̃(s(t)), (5.19)

where s(t) is given by (5.9). From the definition of µ̃(s) (see Lemma 5.6), it is clear
that for all t large enough the function µ(t) satisfies the equation

h
(
(µ(t)/� ′)±s(t)

) = α�′h(s(t)). (5.20)

Since s(t)→∞, Lemma 5.8 implies that

lim
t→∞µ(t) = �

′α�
′−1. (5.21)

For τ > 0, denote

ητ (t) := µ(t)H0(t)± log τ

t
. (5.22)

In particular, for τ = 1

η1(t) = µ(t)H0(t)

t
= µ(t)

� ′
s(t)± (5.23)

(see (5.9)). From equations (5.23) and (5.21) it follows

η1(t)
± = (

µ(t)/� ′
)±
s(t)→∞ (t →∞). (5.24)

Furthermore, it is easy to see that

ητ (t)

η1(t)
= 1± log τ

µ(t)H0(t)
→ 1 (t →∞). (5.25)

Hence, using (5.21) we obtain

t ητ (t)

H0(t)
= ητ (t)

η1(t)
µ(t)→ � ′α�

′−1 (t →∞). (5.26)

The following lemma will play a crucial role in our analysis.
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Lemma 5.9 (Basic Identity). For all t large enough,

h
(
η1(t)

±) ≡ λH0(t). (5.27)

Proof. From (5.23) and (5.20) it follows

h
(
η1(t)

±) = h((µ(t)/� ′)±s(t)) = α�′h(s(t)).
By Lemma 5.5 and relation (5.11), this coincides with λH0(t). �

5.3. Implications of the Basic Identity

In this section, we prove three useful lemmas concerning the asymptotics of vari-
ous ‘perturbations’ of the function h(η1(t)

±). Of particular importance for further
calculations will be Lemma 5.12.

Lemma 5.10. Let g(·) be such that tg(t)/H0(t) → 0 as t → ∞. Set η̃τ,y(t) :=
ητ (t)∓ yg(t). Then for each τ > 0 uniformly in y on every finite interval [y0, y1]

lim
t→∞

h(η̃τ,y(t)
±)

t η̃τ,y(t)
= α

�
. (5.28)

In particular, for g ≡ 0 one has

lim
t→∞

h(ητ (t)
±)

t ητ (t)
= α

�
. (5.29)

Proof. Relation (5.26) implies that, uniformly in y ∈ [y0, y1],

κy(t) := η̃τ,y(t)

η1(t)
= 1± log τ

t η1(t)
∓ ytg(t)

H0(t)
· H0(t)

t η1(t)
→ 1 (t →∞).

Therefore, by the UCT (Lemma 3.1), uniformly in y on any finite interval [y0, y1]

h(η̃±τ,y) = h(κ±y η±1 ) ∼ κ±�y h(η±1 ) ∼ h(η±1 ).
Hence, taking into account Lemma 5.9 and the limit (5.21), we obtain

h(η̃±τ,y)
t η̃τ,y

∼ h(η±τ )
t ητ

= λH0(t)

t η1
= λ

µ(t)
→ λ

� ′α�′−1
= α

�
,

in view of formula (2.7). �

Lemma 5.11. Under the conditions of Lemma 5.10, for each τ > 0

lim
t→∞

h(ητ (t)
±)− h(η̃τ,y(t)±)
tg(t)

= αy,

uniformly in y on every finite interval [y0, y1].
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Proof. Similarly to the proof of Lemma 5.10 we get

κy(t) := η̃τ,y(t)

ητ (t)
= 1∓ ytg(t)

H0(t)
· H0(t)

t ητ (t)
→ 1 (t →∞)

uniformly in y ∈ [y0, y1]. Therefore, for all large enough t the function κy(t) is
uniformly bounded, 0 < κ0 ≤ κy(t) ≤ κ1 <∞. Applying Lemma 5.4 we have

h(η±τ )− h(η̃±τ,y) ∼ −h(η±τ )(κ±�y − 1) (t →∞). (5.30)

Furthermore,

κ
±�
y − 1 =

(

1∓ yg(t)
ητ (t)

)±�
− 1 ∼ − �yg(t)

ητ (t)
.

Substituting this into (5.30) and using the limit (5.29), we finally obtain

h(η±τ )− h(η̃±τ,y) ∼ h(η±τ )
�yg(t)

ητ (t)
∼ αytg(t),

and the lemma follows. �

Lemma 5.12. For each τ > 0

lim
t→∞

[
h(ητ (t)

±)− h(η1(t)
±)

] = α log τ.

Proof. Apply Lemma 5.11 with y = log τ , g(t) = 1/t . �

5.4. Asymptotics of truncated exponential moments

The goal of this section is to establish some general estimates for truncated expo-
nential moments, which will be instrumental later on. Recall that the parameter
α > 0 is defined in (2.7).

Lemma 5.13. If τ > 0 is a fixed number then
(i) for each p > α,

lim
t→∞ e

∓pt ητ+h(η±τ ) E
[
eptX1{X≤±ητ }

]
= α

p − α ;

(ii) for each p < α,

lim
t→∞ e

∓ptητ+h(η±τ ) E
[
eptX1{X>±ητ }

]
= α

α − p .

The proof of this lemma is deferred to the Appendix.
In the case p = α not covered by Lemma 5.13, we prove one crude estimate

that will nevertheless be sufficient for our purposes below.
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Lemma 5.14. For α > 0, denote

Bα(t) := E
[
eαtX1{X≤±η1}

]
, (5.31)

where η1(t) is defined in (5.23). Then

bα(t) := e∓αtη1+h(η±1 )Bα(t)→+∞ (t →∞). (5.32)

Proof. Set η̃1(t) := ητ (t)∓ g(t), g(t) := t−1+�′/2. Integration by parts yields

E
[
eαtX1{X≤±η1}

]
≥ E

[
eαtX1{±η̃1<X≤±η1}

]
=

∫ ±η1

±η̃1

eαtx d
(
1− e−h(±x±))

= −
∫ ±η1

±η̃1

eαtx d
(
e−h(±x

±)) ≥ −e±αtη1−h(η±1 ) + αt
∫ ±η1

±η̃1

eαtx−h(±x
±) dx.

(5.33)

Making here the substitution ±x = η1(t)∓ yg(t) =: η̃1,y(t), we obtain

bα(t) ≥ −1+ αt g(t)
∫ 1

0
e
−αtg(t)y+h(η±1 )−h(η̃±1,y ) dy. (5.34)

By Lemma 5.11, h(η±1 )− h(η̃±1,y) = αt g(t)y(1+ o(1)), uniformly in y ∈ [0, 1].

So for any δ > 0 and all large enough t we have h(η±1 )−h(η̃±1,y) ≥ αt g(t)y(1−δ).
Returning to (5.34) we get

bα(t) ≥ −1+ αt g(t)
∫ 1

0
e−αtg(t)δy dy = −1+ 1

δ

(
1− e−αtg(t)δ

)
,

hence lim inf t→∞ bα(t) ≥ (1/δ) − 1. Since the number δ > 0 can be chosen
arbitrarily small, it follows that lim inf t→∞ bα(t) = +∞, as claimed. �

The next lemma provides some additional information in the case p = α.

Lemma 5.15. For any τ > 0

lim
t→∞ e

∓αtη1+h(η±1 ) E
[
eαtX

(
1{X≤±ητ } − 1{X≤±η1}

)] = α log τ. (5.35)

Proof. Let us assume for definiteness that τ ≥ 1, so that ±ητ (t) ≥ ±η1(t). Inte-
grating by parts and using the substitution x = ±η1(t)+ (1/t) log y, we obtain

e∓αtη1+h(η±1 ) E
[
eαtX1{±η1<X≤±ητ }

]

= 1− eα log τ+h(η±1 )−h(η±τ ) + α
∫ τ

1
eα log y+h(η±1 )−h(η±y ) dy

y
.

(5.36)

By Lemma 5.12 we have h(η±1 ) − h(η±y ) → −α log y as t → ∞, uniformly in

1 ≤ y ≤ τ , and in particular h(η±1 )−h(η±τ )→−α log τ . It is then easy to see that
the right-hand side of (5.36) tends to α log τ as t →∞. �
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For convenience of reference, we record here some further estimates for trun-
cated moments of the random variable etX under a certain normalization adopted
in this section. Namely, consider the random variables

Yi ≡ Yi(t) := etXi

(NBα(t))1/α
, (5.37)

where N is subject to the scaling assumption (2.9) and Bα is defined in (5.31). For
α > 0 and τ > 0 denote

η̃α,τ (t) := ± log(NBα(t))

αt
± log τ

t
. (5.38)

From (5.37) it is seen that the inequality Y (t) > τ is equivalent to X > ±η̃α,τ (t).
Recalling representation (5.32) and using the Basic Identity (5.27), we obtain

NBα(t) ∼ eλH0(t)±αtη1−h(η±1 ) bα(t) = e±αtη1 bα(t). (5.39)

Therefore, formula (5.38) implies

η̃α,τ (t) = η1(t)± log bα(t)

αt
+ O(1)

t
, (5.40)

whence it follows that for all sufficiently large t

±η̃α,τ (t) > ±η1(t). (5.41)

Lemma 5.16. For any p such that 0 ≤ p < α and each τ > 0

lim
t→∞N E

[
Y (t)p 1{Y (t)>τ }

] = 0. (5.42)

In particular, for p = 0 this yields

lim
t→∞N P{Y (t) > τ } = 0. (5.43)

Proof. From (5.37), (5.38) and (5.41) we obtain

E
[
Yp 1{Y>τ }

] ≤ (NBα)−p/α E
[
eptX1{X>±η1}

]
.

Using Lemma 5.13(ii) and relations (2.9), (5.39), (5.27) and (5.32), we get

N

(NBα)
p/α

E
[
eptX1{X>±η1}

]
∼ eλH0(t)

e±ptη1b p/αα

· α

α − p e
±ptη1−h(η±1 )

= α

α − p b
−p/α
α = o(1).

(5.44)

Thus, relation (5.42) is proved. �
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Denote

yα ≡ yα(t) := e±tη1(t)

(NBα(t))
1/α , (5.45)

so that Y > yα if and only if X > ±η1. From (5.39) it follows that yα(t) ∼
bα(t)

−1/α → 0.

Lemma 5.17. Suppose that p > 0. Then for any τ > 0

lim
t→∞N E

[
Y (t)p 1{yα(t)<Y(t)≤τ }

] = 0. (5.46)

Proof. Pick a number q such that 0 < q < min{α, p}. Applying Chebyshev’s
inequality (4.5), we can write

N E
[
Yp 1{yα<Y≤τ }

] ≤ Nτp−q E
[
Yq 1{yα<Y }

]

= Nτp−q

(NBα)
q/α

E
[
eqtX1{X>±η1}

]
,

and the latter expression is o(1) as shown above (see (5.44)). �

Lemma 5.18. Suppose that p > α > 0. Then for any τ > 0

lim
t→∞N E

[
Y (t)p 1{Y (t)≤τ }

] = 0. (5.47)

Proof. Let us write

N E
[
Yp 1{Y≤τ }

] = N E
[
Yp 1{Y≤yα}

]+N E
[
Yp 1{yα<Y≤τ }

]
. (5.48)

Applying Lemma 5.13(i), one can show, similarly to (5.44), that the first term on
the right-hand side of (5.48) is asymptotically equivalent to

eλH0(t)

e±ptη1(t)bα(t)
p/α
· α

p − α e
±ptη1−h(η±1 ) = α

p − α bα(t)
−p/α = o(1),

while the second term on the right of (5.48) is o(1) by Lemma 5.17. �

6. Limit theorems below �2

6.1. Convergence to an infinitely divisible law

Denote

Yi ≡ Yi(t) := etXi

B(t)
, (6.1)

where B(t) is defined in (2.12). According to classical theorems on weak conver-
gence of sums of independent random variables (see [14, p. 80–82]), in order that
the sum

S∗N(t) :=
N∑

i=1

Yi(t)− A∗(t)
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converges in distribution to an infinitely divisible law with characteristic function

φ(u) = exp

{

iau− σ
2u2

2
+

∫

|x|>0

(

eiux − 1− iux

1+ x2

)

dL(x)

}

, (6.2)

it is necessary and sufficient that the following three conditions be fulfilled:
1) In all points of its continuity, the function L(·) satisfies

L(x) =
{

lim
t→∞N P{Y ≤ x} (x < 0),

− lim
t→∞N P{Y > x} (x > 0).

(6.3)

2) The constant σ 2 is given by

σ 2 = lim
τ→0+

lim sup
t→∞

N Var
[
Y 1{Y≤τ }

] = lim
τ→0+

lim inf
t→∞ N Var

[
Y 1{Y≤τ }

]
. (6.4)

3) For each τ > 0, the constant a satisfies the identity

lim
t→∞

{
N E

[
Y 1{Y≤τ }

]− A∗(t)} = a +
∫ τ

0

x3

1+ x2 dL(x)−
∫ ∞

τ

x

1+ x2 dL(x).

(6.5)

As the first step towards the proof of Theorem 2.3, we establish convergence to
an infinitely divisible law.

Theorem 6.1. Suppose that 0 < λ < λ2. Then

SN(t)− A(t)
B(t)

d−→ Fα (t →∞),

where B(t) and A(t) are defined in (2.12) and (2.13), respectively, and Fα is an
infinitely divisible law with characteristic function

φα(u) = exp

{

iau+ α
∫ ∞

0

(

eiux − 1− iux

1+ x2

)
dx

xα+1

}

, (6.6)

where the constant a is given by

a =





απ

2 cos απ2
(α �= 1),

0 (α = 1).
(6.7)
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6.2. Proof of Theorem 6.1

The proof is broken down into steps according to formulas (6.3), (6.4) and (6.5).

Proposition 6.1. The function L defined in (6.3) is given by

L(x) =
{

0, x < 0,
−x−α, x > 0.

(6.8)

Proof. Since Y ≥ 0, it is clear that L(x) ≡ 0 for x < 0. Henceforth, assume that
x > 0. Using (6.1), (2.12) and (2.9), we obtain

N P{Y (t) > x} = N P
{
X > ±ηx(t)

} ∼ eλH0(t)−h(ηx(t)±) (t →∞),
where ηx(t) is defined in (5.22). Furthermore, by Lemmas 5.9 and 5.12

λH0(t)− h(ηx(t)±) = h(η1(t)
±)− h(ηx(t)±)→−α log x (t →∞),

so from (6.3) we get L(x) = −e−α log x = −x−α . �
Proposition 6.2. For σ 2 defined in (6.4), for all α ∈ (0, 2) we have σ 2 ≡ 0.

Proof. Since 0 ≤ Var
[
Y 1{Y≤τ }

] ≤ E
[
Y 2 1{Y≤τ }

]
, it suffices to prove that

lim
τ→0+

lim
t→∞N E

[
Y 2 1{Y≤τ }

]
= 0.

Recalling (6.1) and (2.12) and using condition (2.9), we have

N E
[
Y 2 1{Y≤τ }

]
∼ e(λ∓2µ(t))H0(t) E

[
e2tX1{X≤±ητ }

]
(t →∞). (6.9)

Application of Lemma 5.13(i) with p = 2 and 0 < α < 2 yields

E
[
e2tX1{X≤±ητ }

]
∼ α

2− α e
±2tητ−h(η±τ ) (t →∞).

Returning to (6.9) and recalling relation (5.22), we conclude that

N E
[
Y 2 1{Y≤τ }

]
∼ α

2− α e
λH0(t)∓2µ(t)H0(t)±2tητ−h(η±τ )

= α

2− α e
λH0(t)−h(η±τ )+2 log τ → α

2− α e
(2−α) log τ = α

2− α τ
2−α,

where we have also used Lemmas 5.9 and 5.12. Letting now τ → 0+, we see that
τ 2−α → 0, since 2− α > 0. �
Proposition 6.3. Set A∗(t) := A(t)/B(t), whereB(t) andA(t) are given by (2.12)
and (2.13), respectively. Then the limit

Dα(τ) := lim
t→∞

{
N E

[
Y 1{Y≤τ }

]− A∗(t)} (6.10)

exists for all α ∈ (0, 2) and is given by

Dα(τ) =





α

1− α τ
1−α (α �= 1),

log τ (α = 1).
(6.11)
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Proof. Using expressions (6.1), (2.12) and recalling (5.22) we obtain

N E
[
Y 1{Y≤τ }

] = Ne∓µ(t)H0(t) E
[
etX1{X≤±ητ }

]
. (6.12)

1) Let 0 < α < 1, then A∗ = 0. Lemma 5.13(i) with p = 1 yields

E
[
etX1{X≤±ητ }

]
∼ α

1− α e
±tητ−h(η±τ ) (t →∞).

Hence, on account of the scaling condition (2.9) the right-hand side of (6.12) is
asymptotically equivalent to

α

1− α e
λH0(t)∓µ(t)H0(t)±tητ−h(η±τ ) = α

1− α e
log τ+λH0(t)−h(η±τ ).

Finally, using the Basic Identity (5.27) and Lemma 5.12, we get

log τ + λH0(t)− h(η±τ )→ (1− α) log τ (t →∞), (6.13)

and (6.11) follows.
2) Let 1 < α < 2. Using (6.12), (2.9), (2.12) and (2.13), we obtain

N E
[
Y 1{Y≤τ }

]− A∗(t) = −N e∓µ(t)H0(t) E
[
etX1{X>±ητ }

]

∼ − α

α − 1
elog τ+λH0(t)−h(η±τ ),

where we used Lemma 5.13(ii) with p = 1. Applying (6.13) we arrive at (6.11).
3) Let α = 1. Similarly as above, we obtain using Lemmas 5.15 and 5.9:

N E
[
Y 1{Y≤τ }

]− A∗(t)
= Ne∓µ(t)H0(t)

(
E

[
etX1{X≤±ητ }

]− E
[
etX1{X≤±η1}

])

∼ eλH0(t)∓µ(t)H0(t) · e±tη1−h(η±1 ) log τ

= log τ,

and the proof is complete. �

Proposition 6.4. The parameter a defined in (6.7) satisfies the identity (6.5) with
L(·) specified by (6.8), that is,

Dα(τ) = a + α
∫ τ

0

x2−α

1+ x2 dx − α
∫ ∞

τ

x−α

1+ x2 dx (τ > 0), (6.14)

where Dα(τ) is given by (6.11).
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Proof. 1) Let 0 < α < 1. Observe that
∫ τ

0

x2−α

1+ x2 dx =
1

1− α τ
1−α −

∫ τ

0

x−α

1+ x2 dx.

Due to (6.7) and (6.11), equation (6.14) amounts to
∫ ∞

0

x−α

1+ x2 dx =
π

2 cos απ2
, (6.15)

which is true by [9, #3.241(2)].
2) For 1 < α < 2, we note that

∫ ∞

τ

x−α

1+ x2 dx =
τ 1−α

α − 1
−

∫ ∞

τ

x2−α

1+ x2 dx,

and hence, in view of (6.11) and (6.7), equation (6.14) is reduced to

π

2 cos απ2
+

∫ ∞

0

x2−α

1+ x2 dx = 0, (6.16)

which again follows from [9, #3.241(2)].
3) Finally, for α = 1 equation (6.14) takes the form

log τ =
∫ τ

0

x

1+ x2 dx −
∫ ∞

τ

1

(1+ x2)x
dx. (6.17)

The integrals on the right of (6.17) are easily evaluated to yield

1

2
log(1+ x2)

∣
∣
∣
∣

τ

0
− 1

2
log

x2

1+ x2

∣
∣
∣
∣

∞

τ

= log τ,

and this completes the proof of Proposition 6.4. �

Proof of Theorem 6.1. Gathering the results of Propositions 6.1, 6.2, 6.3 and 6.4,
which identify the ingredients of the limit characteristic function φα , we conclude
that Theorem 6.1 is true. �

6.3. Stability of the limit law

In this section, we show that the infinitely divisible law Fα with characteristic
function (6.6) is in fact stable.

Theorem 6.2. The characteristic function φα determined by Theorem 6.1 corre-
sponds to a stable probability law with exponentα ∈ (0, 2) and skewness parameter
β = 1, and can be represented in the canonical form (2.16).

Remark. Formula (6.8) and Proposition 6.2 imply that φα corresponds to a stable
law (see [12, Theorem 2.2.1]). We give a direct proof of this fact by reducing φα to
the canonical form (2.16), which allows us to identify explicitly all the parameters.
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Proof of Theorem 6.2. According to general theory5 (see, e.g., [17, p. 441]), the
characteristic function of a stable law with characteristic exponentα ∈ (0, 2) admits
a canonical representation

φα(u) =





exp
{
iµu− b|u|α

(
1− iβ sgn u · tan

πα

2

)}
(α �= 1),

exp
{
iµu− b|u|

(
1+ iβ sgn u · 2

π
log |u|

)}
(α = 1),

(6.18)

where µ is a real constant, b > 0 and −1 ≤ β ≤ 1.
1) Suppose that 0 < α < 1. It is easy to verify that, due to (6.7) and (6.15), the

characteristic function (6.6) can be rewritten in the form

φα(u) = exp

{

α

∫ ∞

0

eiux − 1

xα+1 dx

}

. (6.19)

The integral in (6.19) can be evaluated (see [12, p. 43–44]):

∫ ∞

0

eiux − 1

xα+1 dx = −(1− α)
α

|u|α e−(iπα/2) sgn u,

and (6.18) follows with µ = 0, b = (1− α) cos(πα/2) > 0, β = 1.
2) Let now 1 < α < 2. Using (6.16), we can rewrite (6.6) in the form

φα(u) = exp

{

α

∫ ∞

0
(eiux − 1− iux) dx

xα+1

}

. (6.20)

The integral in (6.20) is given by (see [12, p. 44–45])
∫ ∞

0
(eiux − 1− iux) dx

xα+1 =
(2− α)
α(α − 1)

|u|α e(iπα/2) sgn u,

which yields µ = 0, b = −(2− α)/(α − 1) · cos(πα/2) > 0, β = 1.
3) If α = 1, by the substitution y = |u|x in (6.7) we get

φ1(u) = exp

{

−|u|
∫ ∞

0

1− cos y

y2 dy − iu
∫ ∞

0

(

sin y − u2y

u2 + y2

)
dy

y2

}

.

(6.21)

It is well known (see [9, #3.782(2)]) that
∫ ∞

0

1− cos y

y2 dy = π

2
. (6.22)

To evaluate the second integral in (6.21), let us represent it in the form

∫ ∞

0

(
sin y

y
− 1

1+ y
)
dy

y
+

∫ ∞

0

(
1

1+ y −
u2

u2 + y2

)
dy

y
. (6.23)

5 See [10] for a nice review of the history of the canonical form of stable distributions.
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It is known that (see [9, #3.781(1)])

∫ ∞

0

(
sin y

y
− 1

1+ y
)
dy

y
= 1− γ, (6.24)

where γ is the Euler constant. Furthermore, note that

∫ ∞

0

(
1

1+ y −
u2

u2 + y2

)
dy

y
= 1

2
log

u2 + y2

(1+ y)2
∣
∣
∣
∣

∞

0
= − log |u|. (6.25)

Returning to (6.23), from (6.24) and (6.25) we get

∫ ∞

0

(

sin y − u2y

u2 + y2

)
dy

y2 = 1− γ − log |u|. (6.26)

Therefore, substituting expressions (6.22) and (6.26) into (6.21), we obtain the
required canonical form (6.18) with µ = 1− γ , b = π/2, β = 1. �

7. Limit theorems at the critical points

7.1. Proof of Theorem 2.4

The statement of Theorem 2.4 follows from Theorem 2.3 (for α = 1). Indeed,
according to (2.13) and (5.31), we have A(t) = NB1(t) = Ne±tη1−h(η±1 ) b1(t).
Furthermore, (2.12), (2.9), (5.27) and (5.32) imply

A∗(t) := A(t)

B(t)
∼ eλH0(t)−h(η±1 ) b1(t) = b1(t)→∞ (t →∞). (7.1)

Therefore, dividing (2.15) by A∗(t) → ∞ we obtain SN(t)/A(t) = 1 + op(1),
which is in agreement with (2.17).

7.2. Proof of Theorem 2.5

Denote

Yi ≡ Yi(t) := etXi

(NB2(t))1/2
, (7.2)

where B2(t) is defined in (5.31). According to the classical CLT for independent
summands (see [14, Theorem 18, p. 95]), it suffices to check that for any τ > 0 the
following three conditions are satisfied as t →∞:

N P{Y (t) > τ } → 0, (7.3)

N
(
E

[
Y (t)21{Y (t)≤τ }

]
− (

E
[
Y (t)1{Y (t)≤τ }

])2
)
→ 1, (7.4)

N E
[
Y (t)1{Y (t)>τ }

]→ 0. (7.5)
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Firstly, note that condition (7.3) is guaranteed by (5.43). Next, let us show that

(
E

[
Y 1{Y≤τ }

])2

E
[
Y 21{Y≤τ }

] =
(
E

[
etX1{X≤±η̃2,τ }

])2

E
[
e2tX1{X≤±η̃2,τ }

] → 0 (t →∞). (7.6)

Indeed, taking into account inequality (5.41) and representation (5.32), the ratio in
(7.6) is estimated from above by

(
E

[
etX

])2

E
[
e2tX1{X≤±η1}

] = e±2H(t)

B2(t)
= e±2H(t)+h(η±1 )∓2tη1

b2(t)
. (7.7)

Using the Basic Identity (5.27) and the limit (5.26), we have

±2H(t)+ h(η±1 )∓ 2t η1(t)

H0(t)
→±2± (� ′ − 1)2�

′ ∓ � ′2�′ = ±(2− 2�
′
) < 0,

and hence the numerator on the right of (7.7) tends to zero. Moreover, b2(t)→∞
(see (5.32)), and therefore (7.6) is validated. Hence, condition (7.4) amounts to

N E
[
Y 21{Y≤τ }

]
→ 1. (7.8)

Noting that, according to (7.2), (5.45) and (2.18),

N E
[
Y 21{Y≤y2}

]
= 1

B2
E

[
e2tX1{X≤±η1}

]
≡ 1,

we can rewrite (7.8) in the form N E
[
Y 21{y2<Y≤τ }

] → 0. The latter is true by
Lemma 5.17, and (7.4) follows.

Finally, condition (7.5) is fulfilled by Lemma 5.16 (with p = 1 < 2 = α).

Appendix. Proof of Lemma 5.13

A.1. Proof of part (i)

1) We start by showing that for a suitable θ ∈ (0, 1)

lim
t→∞ e

∓ptητ+h(η±τ ) E
[
eptX1{X≤±θ±ητ }

]
= 0. (A.1)

Since E
[
eptX1{X≤±θ±ητ }

] ≤ e±ptθ±ητ , it suffices to check that

e∓pt ητ+h(η
±
τ )±ptθ±ητ = e±(θ±−1)pt ητ+h(η±τ )→ 0 (t →∞). (A.2)

Using the limit (5.29) of Lemma 5.10, we have

±(θ± − 1)pt ητ + h(η±τ )
t ητ

→±(θ± − 1)p + α

�
(t →∞). (A.3)
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Since t ητ (t) ∼ µ(t)H0(t)→ +∞ as t →∞, the limit (A.2) will follow if there
exists θ ∈ (0, 1) such that the right-hand side of (A.3) is negative. The latter is
guaranteed by the fact that 0 < (1 ∓ α/p�)± < 1, which can be easily verified
using that p > α > 0 and � > 1 (case B) or � > 0 (case A).

2) Similarly to (5.33), integration by parts yields

E
[
eptX1{±θ±ητ<X≤±ητ }

]
=− e±ptητ−h(η±τ ) + e±ptθ±ητ−h(θ±η±τ )

+ pt
∫ ±ητ

±θ±ητ
eptx−h(±x

±) dx.
(A.4)

Using that h(·) ≥ 0, we have

e±ptθ
±ητ−h(θ±η±τ ) ≤ e±ptθ±ητ = o(1) e±ptητ−h(η±τ ) (t →∞), (A.5)

as shown above (see (A.2)).
3) Let us set η̃τ (t) := ητ (t) ∓ g(t), where g(t) := t−1+�′/2. Using that ητ ∈

R�′−1, we get η̃τ /ητ → 1 (t →∞) and so for all t large enough,±θ±ητ ≤ ±η̃τ ≤
±ητ .

Let us now show that for any x ∈ [±θ±ητ ,±η̃τ ] and all t large enough,

ptx − h(±x±) ≤ ±ptη̃τ − h(η̃±τ ). (A.6)

Setting κτ (t) := ±x±/η̃±τ , we have

1 ≥ κτ (t) ≥ θ
(
ητ

η̃τ

)±
→ θ (t →∞),

so by Lemma 5.4 we can write

h(±x±)− h(η̃±τ ) = h(η̃±τ )(κ�τ − 1)(1+ o(1)) (t →∞), (A.7)

uniformly in x ∈ [±θ±ητ ,±η̃τ ]. Furthermore, inequality (3.8) yields

κ�τ − 1 =
(±x
η̃τ

)±�
− 1 ≥ (±�)

(±x
η̃τ
− 1

)

= �

η̃τ
(x ∓ η̃τ ). (A.8)

Combining (A.7) and (A.8) and using Lemma 5.10, we obtain that for all t large
enough, uniformly in x,

h(±x±)− h(η̃±τ ) ≥
h(η̃±τ )
η̃τ

� (x ∓ η̃τ )(1+ o(1))
= αt (x ∓ η̃τ )(1+ o(1))
≥ pt (x ∓ η̃τ ),

(A.9)

since x ∓ η̃τ ≤ 0 and α < p. Hence, inequality (A.6) follows.
4) We now want to prove that, as t →∞,

I (t) := p t e∓ptητ+h(η±τ )
∫ ±η̃τ

±θ±ητ
eptx−h(±x

±) dx → 0. (A.10)
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Applying the estimate (A.6) we get

I (t) ≤ p t e−ptg(t)+h(η±τ )−h(η̃±τ )[±(1− θ±)ητ − g(t)
]
. (A.11)

Recalling thatg(t) ≥ 0 and 0 < θ < 1, it is easy to check that±(1−θ±)ητ−g(t) ≤
ητ (1− θ)/θ . Therefore, from (A.11) it follows

I (t) ≤ p(1− θ)
θ

t ητ e
−ptg(t)+h(η±τ )−h(η̃±τ ). (A.12)

It remains to observe that the pre-exponential factor in (A.12) grows only poly-
nomially, since t ητ (t) ∼ const · H0(t) ∈ R�′ , while by Lemma 5.11, −p tg(t) +
h(η±τ )− h(η̃±τ ) ∼ −(p − α)tg(t), where p − α > 0 and tg(t) = t�′/2. Hence the
right-hand side of (A.12) is exponentially small as t →∞, and (A.10) follows.

5) Let us check that

J (t) := p t e∓ptητ+h(η±τ )
∫ ±ητ

±η̃τ
eptx−h(±x

±) dx → p

p − α (t →∞).
(A.13)

By the substitution ±x = ητ (t)∓ yg(t) =: η̃τ,y(t), the left-hand side of (A.13) is
rewritten in the form

J (t) = p tg(t)
∫ 1

0
e−ptg(t)y+h(η

±
τ )−h(η̃±τ,y ) dy. (A.14)

Note that by Lemma 5.11, h(η±τ ) − h(η̃±τ,y) = αtg(t)y(1 + o(1)) as t → ∞,
uniformly in y ∈ [0, 1]. Therefore, given any ε such that 0 < ε < p − α, for all
large enough t and all y ∈ [0, 1] we have

(α − ε)tg(t)y ≤ h(η±τ )− h(η̃±τ,y) ≤ (α + ε)tg(t)y.
Substituting these estimates into (A.14) and evaluating the integral, we obtain

J (t) ≤ p tg(t)
∫ 1

0
e−(p−α−ε)tg(t)y dy = p(1− e−(p−α−ε)tg(t))

p − α − ε
and similarly

J (t) ≥ p tg(t)
∫ 1

0
e−(p−α+ε)tg(t)y dy = p(1− e−(p−α+ε)tg(t))

p − α + ε .

Using that p − α ± ε > 0 and tg(t)→∞, in the limit as t →∞ we get

p

p − α + ε ≤ lim inf
t→∞ J (t) ≤ lim sup

t→∞
J (t) ≤ p

p − α − ε .

Letting ε ↓ 0, we obtain limt→∞ J (t) = p/(p − α), as required.
6) Finally, formulas (A.1), (A.4), (A.5), (A.10) and (A.13) yield

lim
t→∞ e

∓ptητ+h(η±τ ) E
[
eptX1{X≤±ητ }

]
= −1+ p

p − α =
α

p − α .
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A.2. Proof of part (ii)

The proof follows similar steps as above.
1′) Let us start by showing that if p < α then for any θ > 1

lim
t→∞ e

∓ptητ+h(η±τ ) E
[
eptX1{X>±θ±ητ }

]
= 0. (A.15)

Note that Lemma 4.2 (with k = p, m = α) yields

E
[
eptX1{X>±θ±ητ }

]
≤ E[eαtX] · e∓θ±(α−p)tητ = e±H(αt)∓θ±(α−p)tητ .

Hence, it suffices to check that

e∓ptητ+h(η
±
τ ) · e±H(αt)∓θ±(α−p)tητ = o(1) (t →∞). (A.16)

To this end, recall that H ∼ H0 ∈R�′ and use (5.26), (5.29) and (3.3) to obtain

lim
t→∞
±H(αt)∓ (

p + θ±(α − p)) t ητ + h(η±τ )
H0(t)

= ±α�′ ∓ (p + θ±(α − p))� ′α�′−1 + α

�
� ′α�

′−1

= ±(1− θ±)(α − p)� ′α�′−1 < 0,

since θ > 1 and α > p. Hence, the limit (A.16) follows.
2′) Similarly to (A.4), integration by parts yields

E
[
eptX1{±ητ <X≤±θ±ητ }

]
=− e±ptθ±ητ−h(θη±τ ) + e±ptητ−h(η±τ )

+ pt
∫ ±θ±ητ

±ητ
eptx−h(±x

±) dx.

Let us check here that

e±(θ
±−1)ptητ−[h(θη±τ )−h(η±τ )] = o(1) (t →∞). (A.17)

Recalling that h ∈R� and using the limit (5.29), we obtain

h(θη±τ )− h(η±τ ) ∼ (θ� − 1)h(η±τ ) ∼
(θ� − 1)α

�
t ητ .

Hence,

±(θ± − 1)ptητ − [h(θη±τ )− h(η±τ )]
t ητ

→±p(θ± − 1)− (θ
� − 1)α

�
. (A.18)

Inequality (3.8) gives θ�−1 = (θ±)±�−1 ≥ ±�(θ±−1), so the right-hand side of
(A.18) is estimated from above by±p(θ±−1)∓α(θ±−1) = ±(θ±−1)(p−α) <
0, because θ > 1 and p < α. Hence, the limit (A.17) follows.
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3′) Let us set η̃τ (t) := ητ (t)± g(t), where the function g is as in step 3 above,
and check that for x ∈ [±η̃τ ,±θ±ητ ] and all sufficiently large t

p tx − h(±x±) ≤ ±p t η̃τ − h(η̃±τ ).
To this end, similarly to (A.9) we show that

h(±x±)− h(η̃±τ ) ≥ αt (x ∓ η̃τ )(1+ o(1)) ≥ pt (x ∓ η̃τ ),
using that x ∓ η̃τ ≥ 0 and α > p.

4′) The goal here is to prove that, as t →∞,

I (t) := p t e∓ptητ+h(η±τ )
∫ ±θ±ητ

±η̃τ
eptx−h(±x

±) dx → 0.

Using the estimate from step 3′, we obtain

I (t) ≤ p t eptg(t)+h(η±τ )−h(η̃±τ ) (±θ±ητ ∓ η̃τ
)

≤ p(θ − 1)t ητ e
ptg(t)+h(η±τ )−h(η̃±τ ).

We can now apply the same argument as in step 4 above, using that

p tg(t)+ h(η±τ )− h(η̃±τ ) ∼ −(α − p)tg(t) (t →∞).
5′) Similarly as in step 5 above [cf. (A.13)], one proves that

lim
t→∞p t e

∓ptητ+h(η±τ )
∫ ±η̃τ

±ητ
eptx−h(±x

±) dx = p

α − p .

In so doing, the suitable substitution in the integral is of the form ±x = ητ (t) ±
yg(t), and an auxiliary ε involved in the estimation is taken to satisfy 0 < ε < α−p.

6′) Combining the limit formulas obtained in steps 1′– 5′ we obtain

lim
t→∞ e

∓ptητ+h(η±τ ) E
[
eptX1{X>±ητ }

]
= 1+ p

α − p =
α

α − p .
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