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Abstract. Let X1, X2, . . . be i.i.d. random variables, and set Sn = X1 + . . .+Xn. Several
authors proved convergence of series of the type f (ε) = ∑

n cnP (|Sn| > εan), ε > α,
under necessary and sufficient conditions. We show that under the same conditions, in fact∫∞
δ
f (ε)dε < ∞, δ > α, i.e. the finiteness of

∑
n cnP (|Sn| > εan), ε > α, is equivalent to

the convergence of the double sum
∑

k

∑
n cnP (|Sn| > kan).Two exceptional series required

deriving necessary and sufficient conditions for E[supn |Sn| (log n)η/n] < ∞, 0 ≤ η ≤ 1.

1. Introduction

Throughout this paper,X, X1, X2, . . . is a sequence of i.i.d. random variables with
P(X �= 0) > 0, and Sn = X1 + . . .+Xn, n ≥ 1. We consider series of the type

f (ε) =
∑

n

cnP (|Sn| > εan), ε > 0, (1)

where cn > 0 and
∑
n cn = ∞, and an is either n1/p, 0 < p < 2,

√
n log n or√

n log log n. Under appropriate necessary and sufficient conditions of the form
E[ϕ(|X|)] < ∞ and EX = 0, several authors (Hsu and Robbins (1947), Erdős
(1949,1950), Spitzer (1956), Baum and Katz (1965), Davis (1968a,1968b), Lai
(1974), Gut (1980)) proved that f (ε) < ∞ for ε > some α. The purpose of
this paper is to strengthen these classical results by showing that, except for two
remarkable cases,

E[ϕ(|X|)] < ∞ and EX = 0 ⇐⇒
∞∫

δ

f (ε)dε < ∞, δ > α. (2)

Thus the convergence of the series in (1) is in fact equivalent to the convergence of
the double series

∑
k

∑
n cnP (|Sn| > kan).As expected, the exceptional situations
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2 A. Spătaru

pertain to the cases cn = 1/n, an = n (Spitzer (1956)), and cn = (log n)/n, an = n

(Baum and Katz (1965)). The range of tools used is rather broad, including Fuk-
Nagaev type inequalities, stopping times, non-uniform estimates in the CLT, sym-
metrization techniques. Since the implication ⇐� in (2) is trivial, we shall prove
only �⇒ . Notice also that it suffices to prove (2) for δ > some α0 ≥ α, as f is
nonincreasing.

We collect the auxiliary lemmas in Section 2, after which Sections 4–6 are
essentially devoted to the proof of (2) for large, moderate and small an, respec-
tively. To cover the exceptional cases alluded to above, an interlude on the expected
supremum of |Sn| (log n)η/n, 0 ≤ η ≤ 1, is done in Section 3. In the sequel,
log+ x = log(e ∨ x), x ≥ 0, and � stands for the standard normal distribution
function. Also C shall denote positive constants, independent of ε, possibly vary-
ing from place to place. For a random variable g,we will writeE[g : A] = ∫

A
gdP

whenever the integral exists.

2. Auxiliary lemmas

Part (i) of the next lemma is to be found in Spătaru (1999), while (ii) follows by
specializing an inequality in Nagaev and Pinelis (1977, p. 250). Both rest on an
inequality by Fuk and Nagaev (1971).

Lemma 1. Let Y1, . . . , Yn be i.i.d random variables with EY1 = 0, set Tn =
Y1 + · · · + Yn, and let x, a > 0.

(i) If E |Y1|q < ∞ for some 1 ≤ q ≤ 2, then

P(|Tn| > x) ≤ nP (|Y1| > x/a)+ C

(
nE |Y1|q
xq

)a
.

(ii) If E |Y1|q < ∞ for some q > 2, then

P(|Tn| > x) ≤ nP (|Y1| > x/a)+ C

(
nE |Y1|q
xq

)aq/(q+2)

+ 2e−Cx
2/nEY 2

1 .

The following result is due to Choi and Sung (1987, p.100).

Lemma 2. Let {Yn, n ≥ 1} be a sequence of independent random variables with
EYn = 0, n ≥ 1, and let {bn, n ≥ 1} be a nondecreasing sequence of positive
numbers with limn→∞ bn = ∞ such that

∑
n≥1 EY

2
n /b

2
n < ∞. Then

E

[

sup
n≥1

|Y1 + . . .+ Yn|
bn

]

< ∞.

Lemma 3. Let p, r, c > 0 and assume that E|X|r < ∞. Then
∑

n≥1

nr/p−1P(|X| > cεn1/p) ≤ Cε−rE|X|r , ε > 0.
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Proof. We have
∑

n≥1

nr/p−1P(|X| > cεn1/p) =
∑

n≥1

nr/p−1
∑

k≥n
P (cεk1/p < |X| ≤ cε(k + 1)1/p)

=
∑

k≥1

(
k∑

n=1

nr/p−1

)

P(cεk1/p < |X|

≤ cε(k + 1)1/p)

≤ C
∑

k≥1

kr/pP (cεk1/p < |X| ≤ cε(k + 1)1/p)

= Cc−rε−r
∑

k≥1

crεrkr/pP (crεrkr/p < |X|r

≤ crεr (k + 1)r/p)

≤ Cε−rE|X|r , ε > 0. ��
Lemma 4. Let p, c > 0 and assume that E[|X|p log+ |X|] < ∞. Then there is
ε0 > 0 such that

∑

n≥2

log nP (|X| > cεn1/p) ≤ Cε−pE[|X|p log+ |X|], ε > ε0.

Proof. Taking ε0 = e1∨1/p/c, it is easily checked that, for k ≥ 2, log k ≤
p log+(cεk1/p), ε > ε0. Then, arguing as above, we find
∑

n≥2

log nP (|X| > cεn1/p) ≤
∑

k≥2

k log kP (cεk1/p < |X| ≤ cε(k + 1)1/p)

≤ Cε−p
∑

k≥2

cpεpk log+(cεk1/p)P(cpεpk log+(cεk1/p)

< |X|p log+ |X|
≤ cpεp(k + 1) log+(cε(k + 1)1/p))

≤ Cε−pE[|X|p log+ |X|], ε > ε0. ��
Lemma 5. Let p, c > 0 and assume that E[|X|2p(log+ |X|)−p] < ∞. Then there
is ε0 > e such that
∑

n≥2

np−1P(|X| > cε
√
n log n) ≤ Cε−2p(log ε)pE[|X|2p(log+ |X|)−p], ε > ε0.

Proof. Set h(x) = x2p(log+ x)−p, x > 0.As above, we see that
∑

n≥2

np−1P(|X| > cε
√
n log n)

≤
∑

k≥2

kp

h(cε
√
k log k)

h(cε
√
k log k)P (h(cε

√
k log k)

< h(|X| ≤ h(cε
√
(k + 1) log(k + 1))), ε > 0. (3)

Since, for any k ≥ 2,
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kp

h(cε
√
k log k)

= c−2pε−2p
(

log+(cε
√
k log k)

log k

)p
≤ Cε−2p(log ε)p

whenever ε > some ε0 > e, the result follows from (3). ��
The proof of the next lemma is similar to that of Lemma 3.

Lemma 6. If EX2 < ∞, then
∑

n≥ee
P (|X| > ε

√
n log log n) ≤ ε−2EX2, ε > 0.

The last lemma is useful in connection with exponential identities.

Lemma 7. Let an, bn, cn, dn≥0, n≥1, be such that
∑
n≥1 an<∞,

∑
n≥1 bn≤1,∑

n≥1 cn < ∞ and {dn} is nonincreasing, and assume that



∑

n≥1

ant
n







1 −
∑

n≥1

bnt
n



 =
∑

n≥1

cnt
n, 0 < t < 1. (4)

Then



∑

n≥1

andnt
n







1 −
∑

n≥1

bnt
n



 ≤
∑

n≥1

cndnt
n, 0 < t < 1. (5)

Proof. Equating the coefficients of tn in (4), we get

a1 = c1, an −
n−1∑

k=1

akbn−k = cn, n > 1.

Hence, as {dn} is nonincreasing,

a1d1 = c1d1, andn −
n−1∑

k=1

akdkbn−k ≤ cndn, n > 1. (6)

Clearly, (6) implies (5). ��

3. On the expected supremum of |Sn| (log n)η/n

For the stopping times T±(ε) in Theorem 4, the finiteness of
E[
∣
∣ST±(ε)

∣
∣ (log T±(ε))η/T±(ε)] is guaranteed by that of E[supn |Sn| (log n)η/n].

Statements like Theorem 1 have long been of interest in ergodic theory, having also
implications for stopping rules.

Theorem 1. For 0 ≤ η ≤ 1, the following are equivalent:

(i) E[|X|(log+ |X|)η+1] < ∞;
(ii) E[supn≥2 |Sn| (log n)η/n] < ∞;
(iii) E[supn≥2 |Xn| (log n)η/n] < ∞.
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Remark 1. For a sequence {cn, n ≥ 1} of positive numbers, E[supn≥1 cn |Sn|] <
∞ ⇐⇒ E[supn≥m cn |Sn|] < ∞, m ≥ 2. This will be tacitly used several times
in the sequel.

Remark 2. If η = 0, Marcinkiewicz and Zygmund (1937) proved that (i)�⇒(ii),
and Burkholder (1962) showed that (ii)�⇒(iii)�⇒(i).

Proof. Let ψ(x) = x/(log x)η, x ≥ 2, and let ϕ(x), x ≥ e, denote the inverse
function of ψ . Then

ϕ(x) ∼ x(log x)η as x → ∞. (7)

For n ≥ 2, put Yn = XnI {|Xn| ≤ ψ(n)} − E[XnI {|Xn| ≤ ψ(n)}] and Zn =
XnI {|Xn| > ψ(n)}. Assume that (i) holds. Then, on account of Fubini’s theorem
and (7), we have
∑

n≥3

EY 2
n /ψ(n)

2 ≤
∑

n≥3

E[X2I {|X| ≤ ψ(n)}]/ψ(n)2

≤ e2
∑

n≥3

(log n)2η

n2 +
∑

n≥3

E[X2I {e ≤ |X| ≤ ψ(n)}] (log n)2η

n2

≤ C + E



X2I {e ≤ |X|}
∑

n≥ϕ(|X|)

(log n)2η

n2





≤ C + CE

[

X2I {e ≤ |X|} (logϕ(|X|))2η
ϕ(|X|)

]

≤ C + CE

[

X2I {e ≤ |X|} (log |X| + η log log+ |X|)2η
|X| (log |X|)η

]

≤ C + CE[|X|(log+ |X|)η] < ∞.

This in conjunction with Lemma 2 entails that

E

[

sup
n≥2

|Y2 + . . .+ Yn|
ψ(n)

]

< ∞. (8)

Now, as {ψ(n), n ≥ 3} is increasing, and by (7), we get

E

[

sup
n≥4

|Z2 + ...+ Zn|
ψ(n)

]

≤ E

[

sup
n≥4

|Z2| + . . .+ |Zn|
ψ(n)

]

≤ E




∑

n≥2

|Zn|
ψ(n)





=
∑

n≥2

E[|X|I {|X| > ψ(n)}] (log n)η

n

= C + E



|X|I {e ≤ |X|}
∑

3≤n<ϕ(|X|)

(log n)η

n





≤ C + E[|X|I {e ≤ |X|}(logϕ(|X|))η+1]

≤ C + CE[|X|(log+ |X|)η+1] < ∞.
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Hence, in fact

E

[

sup
n≥2

|Z2 + . . .+ Zn|
ψ(n)

]

< ∞. (9)

Finally, since EX = 0, we have

|E[XnI {|Xn| ≤ ψ(n)}]| ≤ E[|X|I {|X| > ψ(n)}]
≤ E[|X|(log+ |X|)η]/(log+ ψ(n))η, n ≥ 2,

and so, as
∑n
k=2(log k)−η ≤ Cn(log n)−η,

1

ψ(n)

n∑

k=2

|E[XkI {|Xk| ≤ ψ(k)}]| ≤ C

ψ(n)

n∑

k=2

1

(log+ ψ(k))η

≤C (log n)η

n

n∑

k=2

1

(log k)η
≤ C, n≥2. (10)

SinceXk = Yk+Zk+E[XkI {|Xk| ≤ ψ(k)}], k ≥ 2, (8)–(10) show that (i)�⇒(ii).
The implication (ii)�⇒(iii) follows at once fromXn = Sn− Sn−1, n ≥ 3. Finally,
suppose that (iii) holds. Then, by the result of Burkholder (1962), we have

E[|X| log+ |X|)] < ∞. (11)

Now choose M > 0 so that P(|X| ≤ M) > 0. From (11) and (7) we infer that∑
i≥2 P(|X| > ψ(i)M) < ∞, and so

∏
i≥2 P(|X| ≤ ψ(i)M) > 0. Consequently,

we may write

E[sup
n≥2

|Xn| /ψ(n)] ≥
∞∫

M

P(sup
n≥2

|Xn| /ψ(n) > u)du

=
∞∫

M




∑

n≥2

P(|X| > ψ(n)u)

n−1∏

i=2

P(|X| ≤ ψ(i)u)



 du

≥



∏

i≥2

P(|X| ≤ ψ(i)M)





∞∫

M




∑

n≥2

P(|X| > ψ(n)u)



 du

≥ C

∫

{|X|>ψ(3)M}





∞∫

M




∑

n≥3

I {n < ϕ(
|X|
u
)}


 du



 dP

≥ C

∫

{|X|>ψ(3)M}






|X|/ψ(3)∫

M

(ϕ(
|X|
u
)− 3)du




 dP. (12)
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By virtue of (7), it is not hard to check that

I {|X| > ψ(3)M}
|X|/ψ(3)∫

M

(ϕ(
|X|
u
)−3)du ≥ CI {|X| > ψ(3)M}|X|(log+ |X|)η+1.

(13)

Combining (12) with (13) shows that (iii)�⇒(i). ��
4. Strengthening the Hsu-Robbins-Erdős/Spitzer/Baum-Katz and
Baum-Katz theorems

4.1. The following result was proved in Baum and Katz (1965)

Theorem A. Let 0 < p < 2 and r ≥ 1∨p, and set f (ε) = ∑
n≥1 n

r/p−2P(|Sn| >
εn1/p), ε > 0. Then f (ε) < ∞, ε > 0,⇐⇒ E|X|r < ∞ and EX = 0.

The result had been discovered earlier by Hsu and Robbins (1947) and Erdős
(1949,1950) in case p = 1 and r = 2, and by Spitzer (1956) in case p = r = 1. It
can be strengthened as follows.

Theorem 2. Letp, r andf be as inTheoremA and assume r > 1. Then
∞∫

δ

f (ε)dε<

∞, δ > 0,⇐⇒ E|X|r < ∞ and EX = 0.

Proof. As stated above, we have to prove ⇐� .Without loss of generality suppose
E|X|r = 1. We distinguish three cases.

Case p < r ≤ 2. Applying Lemma 1.i with q = r, x = εn1/p and a = 2, and
then Lemma 3, we have

f (ε) ≤
∑

n≥1

nr/p−1P(|X| > εn1/p/2)+ C
∑

n≥1

nr/p−2n2ε−2rn−2r/p

≤ Cε−r + Cε−2r
∑

n≥1

n−r/p, ε > 0,

whence
∞∫

δ

f (ε)dε < ∞, δ > 0.

Case r > 2. Lemma 1.ii with q = r, x = εn1/p and a = r + 2 yields

f (ε) ≤
∑

n≥1

nr/p−1P(|X| > εn1/p/(r + 2))+ Cε−2r
∑

n≥1

n−r/p

+ 2
∑

n≥1

nr/p−2e−Cε
2nr/p−1

, ε > 0. (14)

Now choose s > r−p
2−p . Then s > 1 and r

p
−2−( 2

p
−1)s < −1. Hence, on applying

also Lemma 1.i, (14) shows that

f (ε) ≤ Cε−r + Cε−2r + C
∑

n≥1

nr/p−2ε−2sn−(2/p−1)s

≤ Cε−r + Cε−2r + Cε−2s , ε > 0,
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and so
∞∫

δ

f (ε)dε < ∞, δ > 0.

Case p = r . For n ≥ 1, put Yn,k = XkI {|Xk| ≤ εn1/p}, 1 ≤ k ≤ n, and
Un = Yn,1 + . . .+ Yn,n. Since EX = 0,

∣
∣EYn,1

∣
∣ ≤ E[|X|I {|X| > εn1/p}] ≤ (εn1/p)1−p, n ≥ 1.

Thus

∣
∣EYn,1

∣
∣ ≤ εn1/p/8, ε > 0, n ≥ 8ε−p, (15)

and

|EUn| ≤ εn1/p/2, ε ≥ 2−p, n ≥ 1.

Therefore, we have

P(|Sn| > εn1/p) ≤ nP (|X| > εn1/p)+ P(|Un| > εn1/p)

≤ nP (|X| > εn1/p)

+P(|Un − EUn| > εn1/p/2), ε ≥ 2−p, n ≥ 1. (16)

Further, by Lemma 1.i with Y1 = Yn,1 −EYn,1, q = a = 2 and x = εn1/p/2, and
on account of (15), we obtain

P(|Un − EUn| > εn1/p/2) ≤ nP (
∣
∣Yn,1 − EYn,1

∣
∣ > εn1/p/4)

+Cn2(EY 2
n,1)

2ε−4n−4/p

≤ nP (|X| > εn1/p/8)

+Cε−4n2−4/p(EY 2
n,1)

2, ε>0, n≥8ε−p. (17)

Combining (16) with (17), we get

P(|Sn| > εn1/p) ≤ 2nP (|X| > εn1/p/8)

+Cε−4n2−4/p(EY 2
n,1)

2, ε ≥ 2−p, n ≥ 8ε−p. (18)

This, in connection with Lemma 3, shows that

f (ε) ≤ 8ε−p + 2P(|X| > εn1/p/8)+ Cε−4
∑

n≥1

n1−4/p(EY 2
n,1)

2

≤ Cε−p + Cε−4
∑

n≥1

n1−4/p(E[X2I {|X| ≤ εn1/p}])2, ε ≥ 2−p. (19)

Now let Y be a random variable which is independent ofX and which has the same
distribution as X. Then, on account of Fubini’s theorem, we may write
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∑

n≥1

n1−4/p(E[X2I {|X| ≤ εn1/p}])2

=
∑

n≥1

n1−4/pE[X2Y 2I {|X| ≤ εn1/p}I {|Y | ≤ εn1/p}]

= E



X2Y 2I {XY �= 0}
∑

n≥(|X|/ε)p∨(|Y |/ε)p
n1−4/p





≤ CE[X2Y 2I {XY �= 0}((|X|/ε)p ∨ (|Y |/ε)p)2−4/p]

≤ CE[X2I {X �= 0}(|X|/ε)p−2Y 2I {Y �= 0}(|Y |/ε)p−2]

= Cε−2p+4(E|X|p)2, ε ≥ 2−p, (20)

where the last inequality comes from a ∨ b ≥ √
ab, a, b ≥ 0. From (19) and

(20) we infer that f (ε) ≤ Cε−p + Cε−2p, ε ≥ 2−p, which leads to
∞∫

δ

f (ε)dε <

∞, δ > 2−p. ��

In some instances, even
∞∫

0
f (ε)dε is finite and computable.

Example 1. Let p, r and f be as in Theorem A, and assume that the distribution
of X is stable with characteristic exponent γ, where either r < γ < 2 or γ = 2.
Then

∞∫

0

f (ε)dε =
{
E|X|∑n≥1 n

r/p−2−1/p+1/γ if r
p

− 1
p

+ 1
γ
< 1

∞ otherwise
.

Actually, since Sn/n1/γ has the same distribution as X,

∞∫

0

f (ε)dε =
∑

n≥1

nr/p−2

∞∫

0

P(|Sn| > εn1/p)dε

=
∑

n≥1

nr/p−2

∞∫

0

P(|X| > εn1/p−1/γ )dε

= E|X|
∑

n≥1

nr/p−2−1/p+1/γ .

4.2. The next result was also proved by Baum and Katz (1965)

Theorem B. Let 1 ≤ p < 2, and put f (ε) = ∑
n≥2

log n
n
P (|Sn| > εn1/p), ε > 0.

Then f (ε) < ∞, ε > 0,⇐⇒ E[|X|p log+ |X|] < ∞ and EX = 0.

We obtained the following strengthening.
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Theorem 3. Suppose 1 < p < 2, and let f be as in Theorem B. Then
∞∫

δ

f (ε)dε <

∞, δ > 0,⇐⇒ E[|X|p log+ |X|] < ∞ and EX = 0.

Proof. We may and do assume E|X|p = 1. For n ≥ 1, let Yn,k, 1 ≤ k ≤ n, be as
in the proof of Theorem 2, and set ε0 = 8e1∨1/p. Then (18) still holds, and so

f (ε) ≤ 8ε−p + 2
∑

n≥2

log nP (|X| > εn1/p/8)

+Cε−4
∑

n≥2

log n

n4/p−1 (EY
2
n,1)

2, ε ≥ 2−p.

On applying Lemma 4, this leads to

f (ε) ≤ Cε−p

+Cε−4
∑

n≥2

log n

n4/p−1E[X2Y 2I {|X| ≤ εn1/p}I {|Y | ≤ εn1/p}], ε > ε0,

where Y is an independent copy of X. Hence, by Fubini’s theorem, as∑
n≥m n−t log n ≤ Cm−t+1 logm, t > 1, we have

f (ε) ≤ Cε−p + Cε−4E



X2Y 2I {XY �= 0}
∑

n≥(|X|/ε)p∨(|Y |/ε)p

log n

n4/p−1





≤ Cε−p + Cε−4E

[

X2Y 2I {XY �= 0} log((|X|/ε)p ∨ (|Y |/ε)p)
((|X|/ε)p ∨ (|Y |/ε)p)4/p−2

]

≤ Cε−p + Cε−4
(

E

[

X2Y 2 log+(|X|/ε)p
(|X|/ε)2−p(|Y |/ε)2−p

]

+E
[

X2Y 2 log+(|Y | /ε)p
(|X|/ε)2−p(|Y |/ε)2−p

])

≤ Cε−p + Cε−2p(E[|X|p log+ |X|]E|Y |p

+E[|Y |p log+ |Y |]E|X|p), ε > ε0, (21)

where the last but one inequality follows from log(a ∨ b) ≤ log+ a + log+ b and

a ∨ b ≥ √
ab, a, b > 0. (21) shows that

∞∫

δ

f (ε)dε < ∞, δ > ε0. ��

Example 2. Let p and f be as in Theorem B, and assume that the distribution of
X is stable with characteristic exponent γ ≥ p. Then

∞∫

0

f (ε)dε =
{
E|X|∑n≥2(log n)n−1−1/p+1/γ if γ > p

∞ if γ = p
.
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4.3 The remaining casep = r = 1, corresponding to the Spitzer theorem, is not
covered by Theorem 2. Neither is the case p = 1 in Theorem 3. As the next result
shows, the assumption E|X| < ∞ and EX = 0, respectively E[|X| log+ |X|] <
∞ andEX = 0, is no longer sufficient for the integrability of f in these exceptional
cases.Actually, it turns out the necessary and sufficient condition is to be augmented
to E[|X| log+ |X|] < ∞ and EX = 0, respectively E[|X|(log+ |X|)2] < ∞ and
EX = 0.

Theorem 4. For ε > 0, define the stopping times T±(ε) = inf{n : 1 ≤ n ≤
∞, ±Sn > εn}. Then, for 0 ≤ η ≤ 1, the following are equivalent:

(i) E[|X|(log+ |X|)η+1] < ∞ and EX = 0;
(ii) E[supn≥1 |Sn|(log n)η/n] < ∞ and EX = 0;
(iii) E[ST+(ε)(log T+(ε))η/T+(ε) : T+(ε) < ∞] < ∞ and E[−ST−(ε)

(log T−(ε))η/T−(ε) : T−(ε) < ∞] < ∞ for any ε > 0, and EX = 0;
(iv)

∞∫

δ

(
∑

n≥1

(log n)η

n
P (|Sn| > εn)

)

dε < ∞ for any δ > 0.

Remark 3. For 1 ≤ p < 2 and 0 ≤ η ≤ 1, one can convince oneself that
∑
n≥1

(log n)η

n
P (|Sn| > εn1/p) < ∞, ε > 0,⇐⇒ E[|X|p(log+ |X|)η] < ∞

and EX = 0.

Proof. The equivalence of (i) and (ii) is established inTheorem 1. Clearly, (ii)�⇒(iii).
Assume that (iii) holds. For δ > 0, setX∗

n = Xn− δ, S∗
n = X∗

1 + . . .+X∗
n, n ≥ 1,

and put T = inf{n : 1 ≤ n ≤ ∞, S∗
n > 0} = T+(δ). Then

E[S∗
T (log T )η/T : T < ∞] < ∞. (22)

Since EX∗
1 = −δ < 0, we have (see, e.g. Loéve (1977), pp. 396, 399)

exp



−
∑

n≥1

1

n
P (S∗

n > 0)



 = P(T = ∞) > 0, (23)

and so
∑

n≥1

1

n
P (S∗

n > 0) < ∞. (24)

Now, for 0 < t < 1 and u > 0, consider the exponential identity (see, e.g. Loéve
(1977), p. 395)

exp



−
∑

n≥1

tn

n
E[e−uS

∗
n : S∗

n > 0]



 = 1 − E[tT e−uS
∗
T ],

that is
∑

n≥1

tn

n
E[e−uS

∗
n : S∗

n > 0] = − log(1 − E[tT e−uS
∗
T : T < ∞]). (25)
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For u ≥ u0 > 0, in view of (24), we have

∑

n≥1

∣
∣
∣
∣
tn

n

d

du
(E[e−uS

∗
n : S∗

n > 0])

∣
∣
∣
∣ ≤ 1

eu0

∑

n≥1

1

n
P (S∗

n > 0) < ∞.

Thus we may differentiate term by term the series in (25) to get

∑

n≥1

tn

n
E[S∗

ne
−uS∗

n : S∗
n > 0] = E[tT S∗

T e
−uS∗

T : T < ∞]

1 − E[tT e−uS∗
T : T < ∞]

, u > 0. (26)

Next, on account of the monotone convergence theorem, by letting u → 0 in (26),
we obtain

∑

n≥1

tn

n
E[S∗

n : S∗
n > 0] = E[tT S∗

T : T < ∞]

1 − E[tT : T < ∞]
.

Hence, on applying Lemma 7 with an = E[S∗
n : S∗

n > 0]/n, bn =
P(T = n), cn = E[S∗

n : T = n], n ≥ 1, and d1 = d2 = d3, dn = (log n)η/n,
n ≥ 3, we see that

∑

n≥1

tndn

n
E[S∗

n : S∗
n > 0] ≤ E[tT dT S∗

T : T < ∞]

1 − E[tT : T < ∞]
. (27)

Letting t → 1 in (27), and taking into account (22) and (23), yields

∑

n≥1

dn

n
E[S∗

n : S∗
n > 0] ≤ E[dT S∗

T : T < ∞]

P(T = ∞)
< ∞. (28)

For n ≥ 1, we have

∫ ∞

δ

P (Sn > εn)dε = E[
Sn

n
− δ :

Sn

n
− δ > 0] = 1

n
E[S∗

n : S∗
n > 0].

Therefore, (28) entails that

∞∫

δ




∑

n≥1

dnP (Sn > εn)



 dε < ∞. (29)

(29) in conjunction with the inequality derived from it on replacing Xn by −Xn
show that (iv) is satisfied. Finally, assume that (iv) holds. Then, by Remark 3,
E|X| < ∞ and EX = 0, and so

lim
n→∞ nP (|X| > n) = 0. (30)
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Suppose first that X is symmetric. On account of Proposition 2.3 and Lemma 2.6
in Ledoux and Talagrand (1991), and by (30),

2P(|Sn| > εn) ≥ P( max
1≤i≤n

|Xi | > εn)

≥ nP (|X| > εn)

1 + nP (|X| > εn)

≥ nP (|X| > εn)

1 + nP (|X| > n)

≥ CnP (|X| > εn), ε, n ≥ 1.

Therefore, we may write

∞ >

∞∫

1




∑

n≥1

(log n)η

n
P (|Sn| > εn)



 dε ≥ C

∞∫

1




∑

n≥1

(log n)ηP (|X| > εn)



 dε

= C
∑

n≥1

(log n)η

n

∞∫

n

P (|X| > ε)dε ≥ C
∑

n≥1

(log n)η

n

∑

k≥n
P (|X| > k + 1)

= C
∑

k≥1

P(|X| > k + 1)
k∑

n=1

(log n)η

n
≥ C

∑

k≥1

(log k)η+1P(|X| > k + 1), (31)

since
∑k
n=1

(log n)η

n
∼

(log k)η+1

η+1 as k → ∞. (31) shows that (i) is satisfied under
the symmetry assumption. Considering now the general case, let α, α1, α2, . . .

be a sequence of i.i.d. Rademacher variables, independent of X, X1, X2, . . . ,

with P(α = 1) = P(α = −1) = 1/2. Put X′ = αX, X′
n = αnXn, S

′
n =

X′
1 + . . .+X′

n, n ≥ 1. It follows from Theorem 1 in Pruss (1997) that there is an
absolute constant C > 0 such that, for all t > 0 and n ≥ 1,

P (
∣
∣S′
n

∣
∣ > t) ≤ CP(|Sn| > t/C). (32)

On account of (iv) and (32), it then follows that (iv) holds with S′
n in place of Sn.

Hence, by the first part of the proof,E[|X|(log+ |X|)η+1] = E[
∣
∣X′∣∣ (log+ ∣∣X′∣∣)η+1]

< ∞. Thus (iv)�⇒ (i). ��

Remark 4. For η = 0, the following alternate proof of the implication (iv)�⇒(i)
appears instructive.

In view of (23), as 1 − e−x ≤ x, x ≥ 0, we have

P(T±(ε) < ∞) = 1 − exp



−
∑

n≥1

1

n
P (±Sn > εn)





≤
∑

n≥1

1

n
P (±Sn > εn), ε > 0.
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Consequently, for δ > 0,

E[sup
n≥1

|Sn| /n] ≤ δ +
∫ ∞

δ

P (sup
n≥1

|Sn| /n > ε)dε

= δ +
∫ ∞

δ

P (T+(ε) ∧ T−(ε) < ∞)dε

≤ δ +
∫ ∞

δ

(P (T+(ε) < ∞)+ P(T−(ε) < ∞))dε

≤ δ +
∞∫

δ




∑

n≥1

1

n
P (|Sn| > εn)



 dε < ∞.

5. Strengthening a theorem involving moderate deviations

The following result is due to Lai (1974).

Theorem C. Let p > 1, and set f (ε) = ∑
n≥2 n

p−2P(|Sn| > ε
√
n log n), ε > 0.

If E[|X|2p(log+ |X|)−p] < ∞, EX2 = σ 2 and EX = 0, then f (ε) < ∞ for any
ε >σ

√
2p − 2. Conversely, if f (ε)<∞ for some ε, thenE[|X|2p(log+ |X|)−p]<

∞ and EX = 0.

We obtained the next strengthening.

Theorem 5. Let p and f be as in Theorem C. If E[|X|2p(log+ |X|)−p] < ∞,
EX2 = σ 2 and EX = 0, then

∞∫

δ

f (ε)dε < ∞, δ > σ
√

2p − 2. (33)

Proof. Assume EX2 = 1 and let ε0 be as in Lemma 5. Applying Lemma 1.ii with
q = p + 1, x = ε

√
n log n and a = 2(p + 3)/(p + 1) yields

P(|Sn| > ε
√
n log n) ≤ nP (|X| > ε

√
n log n(p + 1)/2(p + 3))

+Cε−2(p+1)n1−p(log n)−p−1 + 2n−Cε2
, ε > 0, n ≥ 2.

Therefore, in view of Lemma 5,

f (ε) ≤
∑

n≥2

np−1P(|X| > ε
√
n log n/(p + 3))+ Cε−2(p+1)

∑

n≥2

n−1(log n)−p−1

+2
∑

n≥2

np−2−Cε2

≤ Cε−2p(log ε)p + Cε−2(p+1) + C(Cε2 − p + 1)−1, ε > ε0 ∨ C
√
p − 1.

This shows that (33) holds. ��
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Remark 5. Davis (1968b) proved that f (ε) = ∑
n≥2

log n
n
P (|Sn| > ε

√
n log n) <

∞, ε > 0,⇐⇒ EX2 < ∞ and EX = 0. In Gafurov and Siraždinov (1979, p.
283) the estimate f (ε) ≤ Cε−6 +Cε−2, ε > 0, is obtained. Thus in this case also
∞∫

δ

f (ε)dε < ∞, δ > 0,⇐⇒ EX2 < ∞ and EX = 0.

6. Strengthening a result concerning the LIL

The first part of the next result follows from Theorem 4 in Davis (1968a), and the
second part is due to Gut (1980).

Theorem D. Let f (ε) = ∑
n≥ee

1
n
P (|Sn| > ε

√
n log log n), ε > 0. If EX2 =

σ 2 < ∞ andEX = 0, then f (ε) < ∞ for any ε > σ
√

2.Conversely, if f (ε) < ∞
for some ε, then EX2 < ∞ and EX = 0.

The following strengthening holds.

Theorem 6. Let f be as in Theorem D. If EX2 = σ 2 < ∞ and EX = 0, then
∞∫

δ

f (ε)dε < ∞, δ > σ
√

2.

Proof. Assume EX2 = 1, define ψ(x) = √
x log log x, x ≥ e, and let ϕ(x), x ≥

0, denote the inverse function of ψ. Notice that

x2 = ϕ(x) log logϕ(x), x ≥ 0. (34)

For ε > 0 and n ≥ ee, set Yn,k = XkI {|Xk| ≤ εψ(n)}, 1 ≤ k ≤ n, Un = Yn,1 +
. . . + Yn,n, σn(ε)

2 = EY 2
n,1 − (EYn,1)

2 and ρn(ε) = σn(ε)
−3E

∣
∣Yn,1 − EYn,1

∣
∣3 .

As EX = 0 and EX2 = 1, we see that

∣
∣EYn,1

∣
∣ ≤ 1

εψ(n)
, ε > 0, n ≥ ee, (35)

and so |EUn| ≤ εψ(n)/2, ε ≤ √
2, n ≥ ee. Consequently, we have

P(|Sn| > εψ(n)) ≤ P(Sn �= Un)+ P(|Un| > εψ(n))

≤ P(Sn �= Un)+ P(|Un − EUn| > εψ(n)/2)

≤ P(Sn �= Un)

+
∣
∣
∣
∣P(|Un − EUn| > εψ(n)/2)− 2�

(

− εψ(n)

2σn(ε)
√
n

)∣
∣
∣
∣

+2�

(

− εψ(n)

2σn(ε)
√
n

)

, ε ≥
√

2, n ≥ ee. (36)

Now, on account of Lemma 6,

∑

n≥ee

1

n
P (Sn �= Un) ≤

∑

n≥ee
P (|X| > εψ(n)) ≤ ε−2, ε > 0. (37)
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Also, in view of Nagaev’s inequality (see, e.g. Petrov (1975), p. 125) and (36),

∣
∣
∣
∣P(|Un − EUn| > εψ(n)/2)− 2�

(

− εψ(n)

2σn(ε)
√
n

)∣
∣
∣
∣

≤ C
ρn(ε)√
n

(
2σn(ε)

√
n

εψ(n)

)3

= Cn
E
∣
∣Yn,1 − EYn,1

∣
∣3

ε3ψ(n)3

≤ Cn
E
∣
∣Yn,1

∣
∣3

ε3ψ(n)3
+ Cn

∣
∣EYn,1

∣
∣3

ε3ψ(n)3

≤ Cn
E
∣
∣Yn,1

∣
∣3

ε3ψ(n)3
+ C

ε6

1

n2 , ε ≥
√

2, n ≥ ee.

Therefore, by Fubini’s theorem and (34), as

∑

n≥m
ψ(n)−3 ≤ Cm−1/2(log logm)−3/2,m ≥ ee,

we get

∑

n≥ee

1

n

∣
∣
∣
∣P(|Un − EUn| > εψ(n)/2)− 2�

(

− εψ(n)

2σn(ε)
√
n

)∣
∣
∣
∣

≤ C
∑

n≥ee

E[|X|3I {|X| ≤ εψ(n)}]
ε3ψ(n)3

+ C

ε6

≤ CE




( |X|
ε

)3 ∑

n≥ee∨ϕ(|X|/ε)

1

ψ(n)3



+ Cε−6

≤ CE

[( |X|
ε

)3 1

(ee ∨ ϕ(|X|/ε))1/2(log log(ee ∨ ϕ(|X|/ε)))3/2
]

+ Cε−6

= CE

[
X2

ε2

(ϕ(|X|/ε) log logϕ(|X|/ε))1/2
(ee ∨ ϕ(|X|/ε))1/2(log log(ee ∨ ϕ(|X|/ε)))3/2

]

+ Cε−6

≤ Cε−2 + Cε−6, ε ≥
√

2. (38)

As for the last term in (36), since σn(ε) ≤ 1 and

�(−x) ∼ 1√
2π

· e
−x2/2

x
as x → ∞,

we obtain
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∑

n≥ee

1

n
�

(

− εψ(n)

2σn(ε)
√
n

)

≤ C
∑

n≥ee

2

n

σn(ε)
√
n

εψ(n)
exp

(

− ε2ψ(n)2

8σn(ε)2n

)

≤ C

ε

∑

n≥ee

1

n
exp

(

−ε
2 log log n

8

)

= C

ε

∑

n≥ee

1

n(log n)ε2/8

≤ C

ε(ε2 − 8)
, ε > 2

√
2. (39)

Finally, (36)–(39) show that
∞∫

δ

f (ε)dε < ∞, δ > 2
√

2. ��

References

1. Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Amer.
Math. Soc. 120, 108–123 (1965)

2. Burkholder, D.L.: Successive conditional expectations of an integrable function. Ann.
Math. Statist. 33, 887–893 (1962)

3. Choi, B.D., Sung, S.K.: On moment conditions for the supremum of normed sums.
Stochastic Processes Appl. 26, 99–106 (1987)

4. Davis, J.A.: Convergence rates for the law of the iterated logarithm. Ann. Math. Statist.
39, 1479–1485 (1968a)

5. Davis, J.A.: Convergence rates for probabilities of moderate deviations. Ann. Math.
Statist. 39, 2016–2028 (1968b)
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