Léonard Gallardo · Marc Yor

Some new examples of Markov processes which enjoy the time-inversion property

Received: 1 June 2004 / Revised version: 1 October 2004 / Published online: 27 December 2004 – © Springer-Verlag 2004

Abstract. In this paper we give a sufficient condition on the semi group densities of an homogeneous Markov process taking values in \mathbb{R}^n which ensures that it enjoys the time-inversion property. Our condition covers all previously known examples of Markov processes satisfying this property. As new examples we present a class of Markov processes with jumps, the Dunkl processes and their radial parts.

1. Introduction

Let $\{(X_t, t \ge 0); (P_x)_{x \in \mathbb{R}^n}\}$ be a Markov process taking values in \mathbb{R}^n . The aim of this paper is to give some sufficient condition on the Markov semi-group of X:

$$P_t(x, dy) = p_t(x, y)dy$$

(we assume the existence of the densities $p_t(x, y)$) which will ensure that for all $x \in \mathbb{R}^n$ the process :

$$(tX_{1/t}, t > 0), \text{ under } P_x, \tag{1}$$

is an homogeneous Markov process. We shall then say that X enjoys the time-inversion property.

To our knowledge, the only known examples of Markov processes which enjoy the time-inversion property are Brownian motions with drift (in \mathbb{R}^n), and Bessel processes with drifts (see Watanabe [22], [23], [24], Pitman-Yor [17]). In particular, there were, until now, no Markov processes with jumps known with this property; the present paper provides such examples.

L. Gallardo: Université de Tours Laboratoire de Mathématiques et Physique Théorique-UMR 6083 Parc de Grandmont, 37200 Tours, France. e-mail: gallardo@univ-tours.fr

M. Yor: Universités Paris VI et VII Laboratoire de Probabilités et Modèles Aléatoires Casier 188 - 4, Place Jussieu 75252 Paris Cedex 05, France. e-mail: deaproba@proba.jussieu.fr

Mathematics Subject Classification (2000): 60J25, 60J60, 60J65, 60J99

Key words or phrases: Homogeneous Markov processes – Semi-stable processes – Time inversion property – "Opérateur carré du champ" – Bessel processes – Wishart processes – Dunkl processes – Radial Dunkl processes – Dunkl processes with drift – Brownian motion in a Weyl chamber

In Section 2, we give some sufficient condition on the densities p_t which ensure the time-inversion property. In particular, we assume that our Markov process of reference (X_t) , which takes values in \mathbb{R}^n , or \mathbb{R}_+ , enjoys the Brownian scaling property, together with some technical condition on its semigroup densities (see (4) and (6) below). Then any Markov process (\tilde{X}_t) , which is a *h*-process of (X_t) , will also enjoy the time-inversion property. Moreover, we give an explicit description of the extended infinitesimal generator of the time-inverted processes, using the "opérateur carré du champ".

In Section 3, we present, as new examples, a class of càdlàg Markov processes associated with a finite reflection subgroup of $O(\mathbb{R}^n)$, the Dunkl processes, and their "W-radial" parts (with Brownian motions in a Weyl chamber as particular cases), which are shown to satisfy our criterion, hence they enjoy the time inversion property.

2. A sufficient condition on the semi-group of a Markov process in \mathbb{R}^n , which implies the time-inversion property

2.1. Preliminary remarks

We keep the notation and hypothesis presented in the Introduction. Fix $x \in \mathbb{R}^n$; it is easily shown that, under P_x , the process (tX(1/t), t > 0) is Markov, inhomogeneous, with densities $q_{s,t}^{(x)}(z, y)(s < t; z, y \in \mathbb{R}^n)$ for its transition mechanism such that :

$$E_x[f(tX_{1/t})|sX_{1/s} = z] = \int dy \ f(y)q_{s,t}^{(x)}(z,y)$$
(2)

where

$$q_{s,t}^{(x)}(a,b) = \frac{1}{t^n} \frac{p_{\frac{1}{t}}(x,\frac{b}{t})p_{\frac{1}{s}-\frac{1}{t}}(\frac{b}{t},\frac{a}{s})}{p_{\frac{1}{s}}(x,\frac{a}{s})}.$$
(3)

We note the following easy result:

Lemma 2.1. : Assume that another Markov family is given by :

$$P_x^{\varphi}|_{\mathcal{F}_t} = \frac{\varphi(X_t)}{\varphi(x)} exp(-\lambda t) \cdot P_x|_{\mathcal{F}_t}$$

for some function φ , and some constant $\lambda > 0$. Then, formula (2) holds also with E_x^{φ} instead of E_x , with $q^{(x)}$ unchanged.

Proof. It suffices to use (with obvious notation) :

$$p_t^{\varphi}(x, y) = \frac{\varphi(y)}{\varphi(x)} e^{-\lambda t} p_t(x, y).$$

We then see that the right hand side of (3), where we replace p by p^{φ} is unchanged.

Remark. A more general argument for the proof of Lemma 2.1 is that under the hypothesis of the Lemma, the P^{φ} -and P-bridges are the same, which implies the result.

2.2. The main result

From now on, in our discussion, we shall assume that our Markov process $(X_t, t \ge 0)$ is semi-stable with index $(\frac{1}{2})$, in the sense of Lamperti [16], that is :

$$\{(X_{ct}, t \ge 0); P_x\} \stackrel{(d)}{=} \{(\sqrt{c}X_t, t \ge 0); P_{x/\sqrt{c}}\}.$$
(4)

This property has the following consequence for the family $(p_t(x, y))$ of the densities (assumed to exist) of the semi-group of the process :

$$p_t(x, y) = \frac{1}{t^{n/2}} p(\frac{x}{\sqrt{t}}, \frac{y}{\sqrt{t}}),$$
(5)

where we have written simply p for p_1 .

Here is our main general result.

Proposition 2.2. 1) Assume that p is of the form :

$$p(a,b) = \Phi(a,b)\theta(b) \exp[-\{\rho(a) + \rho(b)\}], \tag{6}$$

where :

i.
$$\rho(\lambda a) = \lambda^2 \rho(a);$$

ii. $\theta(\lambda b) = \lambda^{\alpha} \theta(b);$
iii. $\Phi(\lambda a, b) = \Phi(a, \lambda b), \text{ for all } \lambda > 0, a, b \in \mathbb{R}^n, \text{ and some } \alpha \in \mathbb{R}.$

Then, the density $q^{(x)}$ in (3) depends only on (t - s), and $(X_t, t \ge 0)$ under P_x enjoys the time-inversion property.

2) Denote by $\{Q_a^{(x)}\}_{a \in \mathbb{R}^n}$ the family of the laws induced by the densities $q^{(x)}$ under the above conditions ; assume furthermore that :

iv. $\Phi(a, b) = \Phi(b, a)$ *Then, there is the following h-transform relationship:*

$$Q_a^{(x)}|_{\mathcal{F}_t} = \frac{\Phi(x, X_t)}{\Phi(x, a)} \exp(-t\rho(x)) \cdot P_a|_{\mathcal{F}_t}.$$
(7)

Before we give the proof of the Proposition, we make two remarks:

a) The following consequence is immediate from the Lemma:

Corollary 2.3. If $\{Q_a\}_{a \in \mathbb{R}^n}$ is any Markovian family of laws which is in h-transform relationship with $\{P_a\}_{a \in \mathbb{R}^n}$ satisfying the hypothesis of the Proposition, then $\{Q_a\}$ enjoys the time-inversion property; this applies in particular to the family $\{Q_a^{(x)}\}_{a \in \mathbb{R}^n}$.

For example, a pair (X, \tilde{X}) of processes, as indicated in the introduction, with X satisfying (4) and (6) and \tilde{X} a *h*-process of X, is obtained if we take for X the Bessel(3) process, which is the euclidean norm of the 3-dimensional Brownian motion $(\beta_t)_{t>0}$ and \tilde{X} the radial hyperbolic Bessel(3) process, with parameter x > 0, which takes values in \mathbb{R}_+ , and has infinitesimal generator:

$$\frac{1}{2}\frac{d^2}{dy^2} + x\coth(xy)\frac{d}{dy}.$$
(8)

This process may be realized as the euclidean norm of $(\beta_t + at, t \ge 0)$ with $a \in \mathbb{R}^3$, and x = |a| (see [18]).

b) It is of some interest to give an expression of the extended generator $\mathcal{L}^{(x)}$ of $\{Q_a^{(x)}\}_{a\in\mathbb{R}^n}$ in terms of \mathcal{L} , the extended generator of $\{P_a\}_{a\in\mathbb{R}^n}$ (more details are given in subsection 2.4). Together with the hypothesis of Proposition 2.2, we assume that the domain $\mathcal{D}(\mathcal{L})$ of \mathcal{L} is an algebra, so that, for $f, g \in \mathcal{D}(\mathcal{L})$,

$$\Gamma(f,g) = \mathcal{L}(fg) - f\mathcal{L}g - g\mathcal{L}f \tag{9}$$

is well defined (see Kunita [15], and Dellacherie-Maisonneuve-Meyer [6] who call Γ the "opérateur carré du champ", following Roth [21] [14]).

Now it follows from (7), (9), and Girsanov's theorem, that if $f \in \mathcal{D}(\mathcal{L})$, then f also belongs to $\mathcal{D}(\mathcal{L}^{(x)})$, and:

$$\mathcal{L}^{(x)}(f)(y) = \mathcal{L}(f)(y) + \frac{1}{\Phi(x, y)} \Gamma(\Phi(x, .), f)(y).$$
(10)

In our discussion of examples in section 3, we shall give a more explicit form of \mathcal{L} and Γ , hence of $\mathcal{L}^{(x)}$.

We now give a

Proof of the Proposition. It will be convenient to decompose the function p, as given in the Proposition as :

$$p(a,b) = \prod_{i=1}^{3} p^{(i)}(a,b),$$

where

 $p^{(1)}(a, b) = \Phi(a, b);$ $p^{(2)}(a, b) = \theta(b);$ $p^{(3)}(a, b) = \exp[-(\rho(a) + \rho(b))].$ From formulae (3) and (5), we get that $q_{st}^{(x)}$ has the following form :

$$q_{s,t}^{(x)}(a,b) = \frac{1}{(t-s)^{n/2}} \left\{ \frac{p(\sqrt{t}x,\frac{b}{\sqrt{t}})p(\frac{b\sqrt{s}}{\sqrt{t-s}\sqrt{t}},\frac{a\sqrt{t}}{\sqrt{s}\sqrt{t-s}})}{p(x\sqrt{s},\frac{a}{\sqrt{s}})} \right\}.$$

We denote the quantity appearing between {...} as R_p , and we want to show that, under the hypothesis of the Proposition, R_p depends only on (t - s), instead of (s, t). Since $R_p = \prod_{i=1}^{3} R_p^{(i)}$, it suffices to verify this only dependency in (t - s)for $R_p^{(i)}$, i = 1, 2, 3, separately. We obtain easily the following:

$$R_p^{(1)} = \frac{\Phi(x, b)\Phi(\frac{b}{t-s}, a)}{\Phi(x, a)}$$
$$R_p^{(2)} = \theta(\frac{b}{\sqrt{t-s}})$$
$$R_p^{(3)} = \exp\left(-\{(t-s)\rho(x) + \frac{1}{t-s}(\rho(a) + \rho(b))\}\right).$$

Thus, the desired property is obtained, and we get :

$$q_{s,t}^{(x)}(a,b) = q_{t-s}^{(x)}(a,b),$$

with

$$q_t^{(x)}(a,b) = \frac{1}{t^{n/2}} \frac{\Phi(x,b)}{\Phi(x,a)} \Phi\left(\frac{b}{t},a\right) \theta\left(\frac{b}{\sqrt{t}}\right) \exp\left\{-\left(t\rho(x) + \frac{\rho(a) + \rho(b)}{t}\right)\right\}.$$
(11)

Furthermore, under the symmetry assumption (iv), it follows from the equality (11) that :

$$q_t^{(x)}(a,b) = \frac{\Phi(x,b)}{\Phi(x,a)} \exp(-t\rho(x))p_t(a,b),$$
(12)

from which the h-transform relationship (7) follows.

We now deduce from the h-transform relation (7) a self-reproducing property of $\{\Phi(a, b); a, b \in \mathbb{R}^n\}$.

Corollary 2.4. Under the hypothesis of the Proposition, the following identity of self-reproduction holds:

$$\Phi(x,a) = \int dy \Phi(x,y) \Phi(a,y) \theta(y) \exp[-(\rho(a) + \rho(x) + \rho(y))].$$
(13)

Proof. We start from the identity :

$$E_a[\frac{\Phi(x, X_t)}{\Phi(x, a)} \exp(-t\rho(x))] = 1$$
(14)

which implies :

$$\Phi(x, a) = \int dy \Phi(x, y) p_t(a, y) \exp(-t\rho(x)).$$

It then remains to use the special form of $p_t(a, y)$ as given in (5) and (6), to obtain the following identity :

$$\Phi\left(x\sqrt{t}, \frac{a}{\sqrt{t}}\right) = \int dy \Phi(x, y\sqrt{t}) \Phi\left(\frac{a}{\sqrt{t}}, y\right) \theta(y)$$
$$\times \exp\left(-\left\{\rho(\frac{a}{\sqrt{t}}) + \rho(y)\right) + \rho(\sqrt{t}x)\right\}\right).$$
simply take $t = 1$.

Then, we simply take t = 1.

Remarks. Corollary 2 gives us an opportunity to single out a few important properties of the semigroup $P_t(a, db)$ of our Markov process :

i. for convenience, we write Φ_x for $\Phi(x, \cdot)$; then :

$$P_t(\Phi_x)(a) = \exp(t\rho(x))\Phi_x(a).$$

This is simply a rewriting of the identity (14) above.

ii. The semi-group (P_t) is symmetric with respect to the measure $\theta(y)dy$; again, this follows directly from the explicit formulas (5) and (6) which give $p_t(a, b)$.

2.3. The time inversion hypothesis

In Pitman-Yor [17], the following property is called the time-inversion hypothesis:

$$i(Q_x^{(y)}) = Q_y^{(x)}$$
(15)

where i(P) denotes the image of the probability P by :

$$X \rightarrow \{tX((1/t))\}$$

(ie : if X is right continuous, so is X((1/t)-)).

To prove (15), it suffices to show the identity of the one-dimensional marginals of both sides of (15), which easily follows from, e.g.,(11).

We now recall the following

Theorem 1 (= Theorem 5.8 in [17]). Let $\{Q_x^{(y)}\}$ be a family of Markov processes which enjoy the time-inversion hypothesis (15). Let t > 0; then the process :

- (a) { $X(u), 0 < u < t; Q_x^{(y)} / X(t) = z$ } (b) { $uX((\frac{1}{u}) -\frac{1}{t}), 0 < u < t; Q_{z/t}^{(x)}$ }

(c)
$$\{\frac{t-u}{t}X(\frac{tu}{t-u}), 0 < u < t; Q_x^{(z,t)}\}$$

are identical in law, ie : the $Q^{(y)}$ bridges may be explicitly realized as (b) or (c).

2.4. On extended generators and "carré du champ" operator

This subsection is intended to give an explicit description of the extended infinitesimal generator considered in (10).

i) Following Kunita [15], let us call extended generator \mathcal{L} of a Markov process $(X_t)_{t\geq 0}$, with nice state space E, the operator \mathcal{L} defined on $\mathcal{D}(\mathcal{L})$, the space of functions f on E such that there exists g, another function on E, with:

$$M_t^f = f(X_t) - f(X_0) - \int_0^t g(X_s) ds$$
 (16)

is a local martingale for every $P_x, x \in E$. From the general theory of semimartingales, the function g featured in (16) is unique, in the sense that two functions g and \tilde{g} which fit in (16) will satisfy

$$g(X_s) = \widetilde{g}(X_s), \quad ds P_x \quad \text{a.s., for every} \quad x \in E.$$

We denote $g = \mathcal{L}(f)$.

Assuming that $\mathcal{D}(\mathcal{L})$ is an algebra, the "opérateur carré du champ" defined in (9), satisfies the important identity:

$$d < M^f, M^g >_t = \Gamma(f, g)(X_t)dt.$$

ii) We now particularize the above discussion to a class of Markov processes (X_t) taking values in \mathbb{R}^n , such that $C_c^2(\mathbb{R}^n) \subset \mathcal{D}(\mathcal{L})$, and for $f \in C_c^2(\mathbb{R}^n)$:

$$\mathcal{L}f(y) = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(y) \frac{\partial^2 f(y)}{\partial y_i \partial y_j} + \sum_{i=1}^{n} b_i(y) \frac{\partial f}{\partial y_i}(y) + \int n(y, dz)(f(z) - f(y)), \quad (17)$$

where $\{n(y, dz)\}_{y \in \mathbb{R}^n}$ is a family of positive, finite measures (this is quite restrictive, but sufficient for our purposes in this paper), such that for each y, n(y, dz)does not charge $\{y\}$. When \mathcal{L} is given by (17), the "opérateur carré du champ" is given, for $u, v \in C_c^2(\mathbb{R}^n)$, by:

$$\Gamma(u, v)(y) = \langle \nabla u(y), a(y) \nabla v(y) \rangle + \int n(y, dz)(u(z) - u(y))(v(z) - v(y)).$$
(18)

iii) Since the semi-stable hypothesis for (X_t) , our Markov process of reference, plays such an important rôle in our discussion, we now study the consequences of the semi-stable hypothesis on the form (17) of \mathcal{L} .

First it is easily shown that for $f \in \mathcal{D}(\mathcal{L})$, and c > 0 (4) implies:

$$c\mathcal{L}f(y) = \mathcal{L}(f(\sqrt{c}(.)))\left(\frac{y}{\sqrt{c}}\right).$$
(19)

We now note that, when \mathcal{L} is given by (17), the right-hand side of (19) takes the form:

$$\frac{c}{2} \sum_{i,j=1}^{n} a_{ij} \left(\frac{y}{\sqrt{c}}\right) \frac{\partial^2 f}{\partial y_i \partial y_j}(y) + \sum_{i=1}^{n} b_i \left(\frac{y}{\sqrt{c}}\right) \sqrt{c} \frac{\partial f}{\partial y_i}(y) + \int n \left(\frac{y}{\sqrt{c}}, dz\right) (f(\sqrt{c}z) - f(y)).$$

Thus in order that (19) be satisfied, the following identities must hold, for any c > 0, $y \in \mathbb{R}^n$ and every function $\varphi : \mathbb{R}^n \longrightarrow \mathbb{R}$, bounded, with compact support:

$$a(y) = a\left(\frac{y}{\sqrt{c}}\right); \quad b(y) = \frac{1}{\sqrt{c}}b\left(\frac{y}{\sqrt{c}}\right)$$
$$\int n(y, dz)\varphi(z) = \frac{1}{c}\int n\left(\frac{y}{\sqrt{c}}, dz\right)\varphi(\sqrt{c}z).$$

Taking $\lambda = \frac{1}{\sqrt{c}}$ as a new parameter, the preceding identities may be written as:

$$\begin{cases} a(\lambda y) = a(y); \quad \lambda b(\lambda y) = b(y) \\ \int n(y, dz)\varphi(z) = \lambda^2 \int n(\lambda y, dz)\varphi(\frac{z}{\lambda}) \end{cases}$$
(20)

As a consequence, the fields a, b, and n are determined from their restrictions to the unit sphere: a_1 , b_1 , n_1 and we get

$$\begin{cases} a(y) = a_1(\frac{y}{|y|}) \\ b(y) = \frac{1}{|y|}b_1(\frac{y}{|y|}) \\ \int n(y, dz)\varphi(z) = \frac{1}{|y|^2} \int n(\frac{y}{|y|}, dz)\varphi(\frac{z}{|y|}) \end{cases}$$
(21)

3. Old and new examples

The examples we know of Markov processes with the semi-stable scaling property (in the sense of Lamperti [16]) which satisfy our hypothesis are the following :

(i) Bessel processes (see e.g., Watanabe [22], [23] Pitman-Yor, [17]), and, more generally Bilateral Bessel processes (Watanabe [24])

(ii) Wishart processes ([2]) : in fact, these processes are matrix valued extensions of the squared Bessel processes, hence, they satisfy :

$$(X_{ct}^{(x)}, t \ge 0) \stackrel{(d)}{=} (cX_t^{(x/c)}, t \ge 0),$$

but, apart from this, our conditions are satisfied, mutatis mutandis.

(iii) The Dunkl Markov processes (see, e.g.,[11], [12], [20]) and their "radial" parts. We now give some details about these 3 classes of processes in the 3 following subsections.

3.1. Bessel and Bilateral Bessel processes

Bessel processes (BES (ν), $\nu > -1$), are continuous Markov processes which take values in \mathbb{R}_+ , and have infinitesimal generators :

$$\frac{1}{2}\frac{d^2}{dx^2} + \frac{2\nu + 1}{2x}\frac{d}{dx}$$

For $-1 < \nu < 0$, they are instantaneously reflecting at 0. The densities of the semi-group of BES (ν) are given by :

$$p_t^{\nu}(x, y) = \frac{1}{t} \left(\frac{y}{x}\right)^{\nu} y \exp\left(-\frac{x^2 + y^2}{2t}\right) I_{\nu}\left(\frac{xy}{t}\right), x, y > 0,$$

where I_{ν} is the modified Bessel function of the first kind with index ν [17]. Thus, our hypothesis in Proposition 2.2 is satisfied with

$$\Phi(x, y) = \frac{1}{(xy)^{\nu}} I_{\nu}(xy), \quad \theta(y) = y^{\nu+1}, \quad \rho(x) = \frac{1}{2} |x|^2.$$

The extended infinitesimal generator of $\{Q_y^{(x)}\}_{y \in \mathbb{R}_+}$ in this case is given from formula (10) by:

$$\mathcal{L}^{(x)} = \frac{1}{2} \frac{d^2}{dy^2} + \frac{2\nu+1}{2y} \frac{d}{dy} + \left(\frac{\partial}{\partial y} (\log(\frac{I_\nu(xy)}{(xy)^\nu})\right) \cdot \frac{d}{dy}$$
$$= \frac{1}{2} \frac{d^2}{dy^2} + \frac{1}{2y} \frac{d}{dy} + \left(\frac{xI'_\nu(xy)}{I_\nu(xy)}\right) \cdot \frac{d}{dy}$$
$$= \frac{1}{2} \frac{d^2}{dy^2} + \left(\frac{2\nu+1}{2y} + x\left(\frac{I_{\nu+1}}{I_\nu}\right)(xy)\right) \cdot \frac{d}{dy}$$

Note that in the particular case $v = \frac{1}{2}$ we obtain for $\mathcal{L}^{(x)}$ the operator given by formula (8).

3.2. Wishart processes

For m = 1, 2, ..., the Wishart process WIS (δ, m) is a Markov process with continuous paths taking values in the space of positive symmetric mxm matrices S_m^+ ; WIS (δ, m) solves the Stochastic Differential Equation :

$$dX_t = \sqrt{X_t} dB_t + dB_t' \sqrt{X_t} + \delta I_m dt, \ X_0 = x,$$

where $(B_t, t \ge 0)$ is an *mxm* Brownian matrix, B'_t is the transpose of B_t, I_m is the identity matrix in \mathbb{R}^m .

To our knowledge, the first papers on Wishart processes were written by M.F. Bru [2], and further results have been obtained in [3], [4], [7]; in particular, the transition probability density $q_{\delta}(t, x, dy)$ with respect to the Lebesgue measure $dy = \prod_{i \leq j} (dy_{ij})$ is given by:

$$q_{\delta}(t, x, y) = \frac{1}{(2t)^{\delta m/2} \Gamma_m(\delta/2)} \exp\left(-\frac{1}{2t} Tr(xy)\right) \\ \times \left(det(y)\right)^{(\delta-m-1)/2} {}_0F_1\left(\frac{\delta}{2}; \frac{xy}{4t^2}\right),$$

 $(x, y \in S_m^+)$ where Γ_m is the multivariate gamma function, and $_0F_1$ a hypergeometric function whose second argument is a generic mxm matrix.

3.3. Dunkl processes and their radial parts

The Dunkl Markov processes in \mathbb{R}^n are càdlàg Markov processes with infinitesimal generators $\frac{1}{2}L_k = \frac{1}{2}\sum_{i=1}^n T_i^2$, where for $1 \le i \le n$, T_i is the differential-difference operator defined for $u \in C^1(\mathbb{R}^n)$ by

$$T_i u(x) = \frac{\partial u(x)}{\partial x_i} + \sum_{\alpha \in R_+} k(\alpha) \alpha_i \frac{u(x) - u(\sigma_\alpha x)}{\langle \alpha, x \rangle}, \quad (x \in \mathbb{R}^n)$$

where $\langle \cdot, \cdot \rangle$ is the usual scalar product, *R* is a root system in \mathbb{R}^n , R_+ a positive subsystem, *k* a non negative multiplicity function defined on *R* and invariant by the

finite reflection group W associated with R and σ_{α} is the reflection with respect to the hyperplane H_{α} orthogonal to α ([8], [9]).

For $u \in C^2(\mathbb{R}^n)$, we can write

$$L_k u(x) = \Delta u(x) + 2 \sum_{\alpha \in R_+} k(\alpha) \left[\frac{\langle \nabla u(x), \alpha \rangle}{\langle x, \alpha \rangle} - \frac{u(x) - u(\sigma_\alpha x)}{\langle x, \alpha \rangle^2} \right],$$

where Δ is the usual Laplacian and ∇u denotes the gradient of u. Then the "opérateur carré du champ" Γ_k associated with $\mathcal{L}_k \equiv \frac{1}{2}L_k$, is given, for $u, v \in C^2(\mathbb{R}^n)$, by:

$$\Gamma_{k}(u,v)(x) = \langle \nabla u(x), \nabla v(x) \rangle + \sum_{\alpha \in R_{+}} \frac{(u(\sigma_{\alpha}x) - u(x))(v(\sigma_{\alpha}x) - v(x))}{\langle x, \alpha \rangle^{2}}, \qquad (22)$$

as follows from the general formula (18).

The semi-group densities of the process $(X_t^{(k)})_{t>0}$ with generator $\frac{1}{2}L_k$ are given by the formulae obtained by M. Rösler ([19], (see also [12]) :

$$p_t^{(k)}(x, y) = \frac{1}{c_k t^{\gamma+n/2}} \exp\left(-\frac{|x|^2 + |y|^2}{2t}\right) D_k\left(\frac{x}{\sqrt{t}}, \frac{y}{\sqrt{t}}\right) \omega_k(y),$$
(23)

where $D_k(u, v) > 0$ is the Dunkl kernel, $\omega_k(y) = \prod_{\alpha \in R_+} |\langle \alpha, y \rangle|^{2k(\alpha)}$ the weight function which is homogeneous of degree $2\gamma = 2\sum_{\alpha \in R_+} k(\alpha)$ and $c_k = \int_{\mathbb{R}^n} e^{-|x|^2/2} \omega_k(x) dx$.

Moreover the Dunkl kernel satisfies

$$\forall \lambda \in \mathbb{R}, \forall x, y \in \mathbb{R}^n, D_k(x, \lambda y) = D_k(\lambda x, y).$$

Thus, our hypothesis in Proposition 1 is satisfied with

$$\Phi \equiv D_k, \quad \theta \equiv \omega_k, \quad \rho(a) \equiv \frac{1}{2} |a|^2.$$
(24)

We must emphasize that, unlike Bessel processes, Dunkl processes have jumps (see [11] for a study of the behaviour of the trajectories in the case n = 1).

We also remark that, for $x \in \mathbb{R}^n$, the semigroup densities of the process $\widetilde{X}_t^{(k),x} = t X_{\underline{1}}^{(k)}$ under P_x are given, as a consequence of (7), by:

$$q_t^{(x)}(a,b) = \exp(-\frac{1}{2}|x|^2 t) \frac{D_k(x,b)}{D_k(x,a)} p_t^{(k)}(a,b),$$
(25)

and they induce a family of laws $(Q_a^{(x)})_{a \in \mathbb{R}^n}$ on \mathbb{R}^n . The process $\{(\widetilde{X}_t^{(k),x})_{t>0}, (Q_a^{(x)})_{a \in \mathbb{R}^n}\}$ will be called the Dunkl process with drift *x*. It can be easily deduced from the semigroup densities (25) that the infinitesimal generator of this process is of the form

$$\mathcal{L}^{(k),x}: f \longmapsto \frac{1}{2} \frac{1}{D_k(x,.)} L_k(D_k(x,.)f) - \frac{|x|^2}{2} f,$$

 $(f \in C^2(\mathbb{R}^n))$, which from formulas (10) and (22), is given by:

$$\begin{split} \mathcal{L}^{(k),x}(f)(y) &= \frac{1}{2} L_k(f)(y) + \frac{1}{D_k(x, y)} \bigg\{ < \nabla_y(D_k(x, y)), \nabla f(y) > \\ &+ \sum_{\alpha \in R_+} \frac{k(\alpha)}{< y, \alpha >^2} (D_k(x, \sigma_\alpha y) - D_k(x, y)) (u(\sigma_\alpha y) - u(y)) \bigg\}. \end{split}$$

Note that if $k(\alpha) \equiv 0$, this process is the usual Brownian motion with drift x.

Let us now consider a fixed Weyl chamber *C* of the root-system *R* (i.e. *C*:= a connected component of $\mathbb{R}^n \setminus \bigcup_{\alpha \in R} H_\alpha$). The operator $\frac{1}{2}L_k^W$, where

$$L_k^W u(x) = \Delta u(x) + 2 \sum_{\alpha \in R_+} k(\alpha) \frac{\langle \nabla u(x), \alpha \rangle}{\langle \alpha, x \rangle},$$
(26)

 $(u \in C_0^2(\overline{C}), < \nabla u(x), \alpha \ge 0$ for $x \in H_\alpha, \alpha \in R_+$), is the infinitesimal generator of a diffusion process $(X_t^W)_{t>0}$ in \overline{C} (see [20]), which we call the *W*-radial part of the Dunkl process $(X_t^{(k)})_{t>0}$. Indeed, the space \mathbb{R}^n/W of *W*-orbits in \mathbb{R}^n can be identified to \overline{C} and we have $X_t^W = \pi(X_t^{(k)})$ if $\pi : \mathbb{R}^n \longrightarrow \mathbb{R}^n/W$ denotes the canonical projection. For example, in the one dimensional case, $\overline{C} = \mathbb{R}_+$ and $\pi(X_t^{(k)}) = |X_t^{(k)}|$ is a Bessel process [11]. We deduce immediately from (23) that the semi-group densities of $(X_t^W)_{t>0}$ are of the form

$$p_t^W(x, y) = \frac{1}{c_k t^{\gamma + n/2}} \exp\left(-\frac{|x|^2 + |y|^2}{2t}\right) D_k^W\left(\frac{x}{\sqrt{t}}, \frac{y}{\sqrt{t}}\right) \omega_k(y) dy, (x, y \in C),$$

where

$$D_k^W(u, v) = \sum_{w \in W} D_k(u, wv).$$

Clearly the hypothesis of Proposition 1 is also satisfied using (24) with D_k replaced by D_k^W .

Example. It is interesting to notice that the Brownian motion process in a Weyl chamber as studied by Biane, Bougerol and O'Connell in [1], is an example of a W-radial Dunkl process. Indeed, its infinitesimal generator is of the form $\frac{1}{2}L_k^W$ with the particular multiplicity function $k(\alpha) \equiv 1$. To prove this assertion, consider the function

$$h(x) = \prod_{\alpha \in R_+} < \alpha, x >,$$

which is Δ -harmonic (see e.g. [10], Theorem 4.2.6) and strictly positive in the Weyl chamber *C* (if suitably chosen). Then formula (26) with $k \equiv 1$, can be written

$$L_k^W u(x) = \Delta u(x) + \frac{2}{h(x)} < \nabla u(x), \nabla h(x) > 1$$

This shows immediately ([18], p.357) that the corresponding process $(X_t^W)_{t>0}$ is the *h*-transform of the usual Brownian motion in *C*, killed when it reaches the walls of *C* i.e. the Brownian motion in the Weyl chamber *C* of [1].

4. Conclusion and summary

In this paper, the criterion which is presented in Proposition 2.2 for a Markov process to enjoy the time-inversion property may look a little strange in several respects: indeed, we ask for our Markov process of reference (X_t) to be a semi-stable Markov process of index $(\frac{1}{2})$, in short: a $SSMP(\frac{1}{2})$, in the sense of Lamperti [16], and that its semigroup density be of a special form. This second condition (or some variant of it) is needed, since not every $SSMP(\frac{1}{2})$ satisfies the time inversion property as we show with the two following examples:

i) For every $\alpha \in]0, 1[$, if we denote by $(T_t^{(\alpha)}, t \ge 0)$, the subordinator of index α , then the process $((T_t^{(\alpha)})^{\alpha/2}, t \ge 0)$ is a $SSMP(\frac{1}{2})$ and it does not satisfy the time inversion property. Indeed if we denote by $p_t^{(\alpha)}(.,.)$ its transition densities and if we consider t = s + 1 in formula (3) and let $s \to +\infty$, then for fixed x > 0, we would have

$$p_{\frac{1}{s+1}}^{(\alpha)}(x, \frac{b}{s+1}) = 0,$$

for s big enough and this would imply $q_{s,s+1}^{(x)}(a, b) = 0$ for all $a, b \in \mathbb{R}_+$ which is impossible. Another proof based on the harness property satisfied by subordinators (see Exercise 6.19 in [5]), is obtained by considering the process $\hat{T}_t \equiv t (T_{1/t}^{(\alpha)})^{\alpha/2}$ which satisfies the following identity :

$$E[(\hat{T}_t)^{2/\alpha}|\hat{T}_s] = (1 + \frac{t-s}{s})^{(2/\alpha)-1}(\hat{T}_s)^{2/\alpha}.$$
(27)

Then we clearly see that the conditional expectation on the left hand side of (27) given $\hat{T}_s = x$, depends both on *s* and t - s.

ii) With the same ideas used in the first example, we can also show that if $(C_t, t \ge 0)$ is a symmetric standard Cauchy process on the real line, then the process $(\sqrt{|C_t|}, t \ge 0)$ is also a $SSMP(\frac{1}{2})$ which does not satisfy the time inversion property. Finally, we are led to ask the following question :

Does a $SSMP(\frac{1}{2})$ which satisfies the time inversion property, necessarily have transition densities of the form given in Proposition 2.2?

Acknowledgements. The authors thank Ph. Biane for pointing to their attention the example i) above (with $\alpha = \frac{1}{2}$) of a *SSMP*($\frac{1}{2}$) which does not satisfy the time inversion property.

References

- 1. Biane, P., Bougerol, P., O'Connell, N.: Littlemann paths and Brownian paths. Preprint (March 2004)
- 2. Bru, M.F.: Processus de Wishart, C.R. Acad. Sci. Paris, Série I, t. 308, 29-32 (1989)
- Bru, M.F.: Diffusions of perturbed principal component analysis, J. Multivariate Anal. 29, 127–136 (1989)
- 4. Bru, M.F.: Wishart processes. J. Theor. Prob., 4, 725–751 (1991)
- Chaumont, L., Yor, M.: Exercises in Probability. A guided Tour from Measure Theory to Random Processes, via Conditioning. Cambridge University Press, 2003
- 6. Dellacherie, C., Maisonneuve, B., Meyer, P.A.: Probabilités et Potentiels, Chap. XVII à XXIV. Hermann, Paris 1992
- Donati-Martin, C., Doumerc, Y., Matsumoto, H., Yor, M.: Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws. To appear in Publ. RIMS, Kyoto, 2004
- Dunkl, C.: Differential-differences operators associated to reflection groups. Trans. Amer. Math. Soc. 311 (1), 167–183 (1989)
- Dunkl, C.: Hankel Transforms associated to finite reflection groups. Contemp. Math., 138, 123–138 (1992)
- Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, 2001
- Gallardo, L., Yor, M.: Some remarkable properties of the Dunkl martingales. to appear in Sém. Probas. XXXVIII, dedicated to Paul André Meyer. Springer LNM 2005
- 12. Godefroy, L.: Frontière de Martin sur les hypergroupes et principe d'invariance relatif au processus de Dunkl. Thèse Université de Tours (Déc. 2003)
- Graversen, S.E., Vuolle-Apiala, J.: On Paul Lévy's arc sine law and Shiga-Watanabe's time-inversion result. Prob. Math. Stat. 20, 63–73 (2000)
- Hirsch, F.: L'opérateur carré du champ, d'après J.P. Roth. Séminaire Bourbaki, 29 ième année, exposé 501, (juin 1977)
- Kunita, H.: Absolute continuity of Markov processes and generators. Nagoya Math. J. 36, 1–26 (1969)
- 16. Lamperti, J.: Semi-stable Markov processes I. Zeit. für Wahr. 22, 205–255 (1972)
- Pitman, J., Yor, M.: Bessel processes and infinitely divisible laws. In : D. Williams (ed) Stochastic Integrals. Lect. Notes in Math. 851 (1981)
- Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer. Third Edition, corrected second printing, 2001
- Rösler, M.: Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators. Commun. Math. Phys. 192, 519–542 (1998)
- Rösler, M., Voit, M.: Markov processes related with Dunkl operators. Adv. App. Math. 21 (4), 575–643 (1998)
- Roth, J.P.: Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues. Ann. Inst. Fourier, 26 (4), 1–97 (1976)
- Watanabe, S.: On time-inversion of one-dimensional diffusion processes. Zeit. f
 ür Wahr. 31, 115–124 (1975)
- Watanabe, S.: Invariants of one-dimensional diffusion processes and applications. In : J. Korean Math. Soc. 35 (3), 659–673 (1998)
- 24. Watanabe, S.: Bilateral Bessel diffusion processes with drifts and time-inversion. Preprint (1997–1998)