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Abstract. We study a class of stochastic differential equations with non-Lipschitz coeffi-
cients. A unique strong solution is obtained and the non confluence of the solutions of
stochastic differential equations is proved. The dependence with respect to the initial values
is investigated. To obtain a continuous version of solutions, the modulus of continuity of
coefficients is assumed to be less than |x − y| log 1

|x−y| . Finally a large deviation principle
of Freidlin-Wentzell type is also established in the paper.

1. Introduction and statement of results

Let σ : Rd → Rd ⊗ Rm and b : Rd → Rd be respectively matrix valued and
Rd valued continuous functions. It is well-known that the following Itô stochastic
differential equation

dXt = σ(Xt ) dWt + b(Xt ) dt, X0 = xo ∈ Rd (1.1)

has a weak solution up to a lifetime ζ (see [SV], [IW, p.155-163]), where t → Wt is
a Rm-valued standard Brownian motion. It is also known that under the assumption
of linear growth of coefficients σ and b, the lifetime ζ is infinite almost surely.
The well-known result of Yamada and Watanabe says that if the stochastic differ-
ential equation (1.1) has the pathwise uniqueness, then it admits a unique strong
solution (see [IW, p.149], [RY, p.341]). So the study of pathwise uniqueness is of
great interest. It is a classical result that under the Lipschitz conditions, the path-
wise uniqueness holds and the solution of stochastic differential equation (1.1) can
be constructed using Picard iteration; moreover the solution depends continuous-
ely on the initial data (see [Ku]). The main tool to these studies is the Gronwall
lemma. When the coefficients σ and b do not satisfy the Lipschitz conditions, the
use of Gronwall lemma is not possible. Therefore, there are few results of pathwise
uniqueness of solutions of stochastic differential equations beyond the Lipschitz
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(or local Lipschitz ) conditions in the literature except in the one dimensional case
(see [IW, p.168], [RY, Ch. IX-3]). We refer also to [MX] for related discussions.
In the case of ordinary differential equations, the Gronwall lemma was generalized
to establish uniqueness results (see e.g. [La]). However the method is not applica-
ble to stochastic differential equations. For stochastic differential equations with
less regular coefficients, a new concept of solutions has been introduced recently
and many interesting phenomena have been obtained in [LJR1,2]. In this work, we
shall study a class of stochastic differential equations for which the Lipschitzian
conditions are relaxed mainly by a logarithmic factor. For the pathwise uniqueness,
we impose a condition on the modules of the continuity of the coefficients only
in an arbitrarily small neigbourhood of the diagonal. This seems the first time in
the literature to notice this phenomena. Our method of proving the uniqueness and
the non-explosion is dimension-free and does not require that the control function
of the modules of the continuity of the coefficients is concave in contrast to the
existing literature .

Now let’s describe the main results in the paper. For a matrix σ , we denote
by ||σ || the Hilbert-Schmidt norm: ||σ ||2 =

∑

ij

σ 2
ij ; for a vector x ∈ Rd , |x| the

Euclidean norm.

Theorem A. Let ρ be a strictly positive, C1-function defined on a neighborhood

[K,+∞[ of +∞, satisfying (i) lim
s→+∞ ρ(s)=+∞, (ii) lim

s→+∞
sρ′(s)
ρ(s)

= 0 and (iii)
∫ +∞

K

ds

sρ(s)+ 1
= +∞. Assume that for |x| ≥ K ,

{||σ(x)||2 ≤ C (|x|2 ρ(|x|2)+ 1),
|b(x)| ≤ C (|x| ρ(|x|2)+ 1).

(H1)

Then the stochastic differential equation (1.1) has no explosion: P(ζ = +∞) =
1.

This result will be proved in section 4. Moreover if we denote by Xt(xo) a
solution of (1.1) with the initial value xo, then the condition (H1) implies that

lim
|xo|→+∞

|Xt(xo)| = +∞ in probability.

Functions ρ(s) = log s, ρ(s) = log s · log log s, · · · are typical examples sat-
isfying the above conditions (i)-(iii). When the coefficients σ and b grow at most
as |x|, the hypothesis (H1) holds obviously with ρ(s) = log s.
Our second result deals with pathwise uniqueness.

Theorem B. Let r be a strictly positive, C1-function defined on a neighborhood

]0, co] of 0, satisfying (i) lim
s→0

r(s)=+∞, (ii) lim
s→0

sr ′(s)
r(s)

= 0 and (iii)
∫ a

0

ds

sr(s)
=

+∞ for any a > 0. Assume that for |x − y| ≤ co,
{||σ(x)− σ(y)||2 ≤ C |x − y|2 r(|x − y|2),

|b(x)− b(y)| ≤ C |x − y| r(|x − y|2). (H2)

Then the pathwise uniqueness holds for stochastic differential equation (1.1).
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The proof of this result will be given in section 5. The crucial idea is to construct a
family of positive increasing functions (�δ)δ>0 on R+ so that the Gronwall lemma
can be applied to the composition of �δ with appropriate processes. Functions
r(s) = log 1/s, r(s) = log 1/s · log log 1/s, · · · are typical examples satisfying the
conditions (i)-(iii) in theorem B.

It is known that for ordinary differential equations, pathwise uniqueness is
equivalent to the property of non confluence by reversing the time. For stochastic
differential equations, reversing the time is delicate. However, using this idea, we
shall construct another function �δ so that we shall obtain the following result

Theorem C. Under the same hypothesis as in theorem B and assume that the solu-
tion does not explode at a finite time. Then for xo �= yo, almost surely Xt(xo) �=
Xt(yo) for all t > 0.

Such kind of non confluence property was studied by M. Emery in an early
work [Em] for general stochastic differential equations under Lipschitz conditions,
and by T.Yamada andY. Ogura for non-Lipschitz case in [YO]. However the mixing
condition imposed in [YO] for coefficients σ and b seems difficult to check and not
natural.

Our third result concerns the dependence with respect to initial data.

Theorem D. Assume that the hypothesis (H2) holds with r(s) = log 1/s and the
stochastic differential equation (1.1) has no-explosion. Then there exists a version
X̃t (xo) of Xt(xo) such that (t, xo) → X̃t (xo) is continuous over [0,+∞[×Rd

almost surely.

We shall prove this result in section 6. The last result is devoted to Freidlin-Wentzell
type large deviation principle.

Theorem E. Suppose that the coefficients σ and b satisfy the hypothesis (H1)with
ρ(s) = log s and the hypothesis (H2) with r(s) = log 1/s. For ε > 0, consider
the solution (Xεt )t≥0 of the stochastic differential equation

dXεt = √
ε σ (Xεt ) dWt + b(Xεt ) dt, Xε0 = xo. (1.2)

Let µε be the law of ω → Xε· (ω) on the space Cxo([0, 1],Rd) of continuous
functions starting from xo ∈ Rd . Then {µε, ε > 0} satisfies a large deviation
principle.

The good rate function and the proof of theorem E will be given in section 7.
The method of estimating moments used in the literature ([DS],[DZ], [S]) does not
work here because of the non-Lipschitz feature of coefficients. We again appeal to
a family of positive functions (�ρ,λ).

The organization of the paper is as follows. In section 2, we shall discuss the
case of ordinary differential equations. It will be useful for the study on skeletons
of stochastic differential equations in section 7. In section 3, we shall prepare some
preliminary lemmas in order to avoid repetitions of same kind of computations in
the sequel. Section 4,5,6, and 7 will be devoted to the proof of main results. A
preliminary version of theorem A and theorem B has been given in [FZ1]. A study
on stochastic flows of homeomorphisms and critical Sobolev flows on the sphere
Sd will be discussed in a separate paper.
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2. Ordinary differential equations

Let b : Rd → Rd be a continuous function. It is essentially due to Ascoli-Arzela
theorem that the following differential equation:

dXt

dt
= b(Xt ), X(0) = x0 (2.1)

admits a solution up to a lifetime ζ . The following result weakens the linear growth
condition for non explosion.

Theorem 2.1. Let ρ : [0,+∞[→ [1,+∞[ be a continuous function such that∫ +∞
0

ds
sρ(s)+1 = +∞. Assume that

|b(x)| ≤ C (|x|ρ(|x|2)+ 1) (2.2)

where C > 0 is a constant. Then the lifetime of any solution of (2.1) is infinite:
ζ = +∞.

Proof. Define for ξ ≥ 0,

ψ(ξ) =
∫ ξ

0

ds

sρ(s)+ 1
and �(ξ) = eψ(ξ).

We have

�′(ξ) = �(ξ)

ξρ(ξ)+ 1
. (2.3)

Let ξt = |Xt |2. Taking the derivative of �(ξt ) with respect to the time t , we get

d

dt
�(ξt ) = 2�′(ξt )

〈
Xt, b(Xt )

〉
,

where
〈
,

〉
denotes the inner product in Rd . By growth condition (2.2), we have

∣∣∣
d

dt
�(ξt )

∣∣∣ ≤ 2C�′(ξt )|Xt |
(|Xt |ρ(ξt )+ 1

)
.

It is easy to see that

sup
ξ≥0

ξρ(ξ)+ √
ξ

ξρ(ξ)+ 1
≤ 2.

Therefore, according to (2.3),

∣∣∣
d

dt
�(ξt )

∣∣∣ ≤ 4C�(ξt ). (2.4)

It follows that for t < ζ ,

�(ξt ) ≤ �(|x0|2)+ 4C
∫ t

0
�(ξs) ds.
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By Gronwall lemma, we have

�(ξt ) ≤ �(|x0|2) e4C t for all t < ζ. (2.5)

If ζ < +∞, letting t ↑ ζ in (2.5), we get�(ξζ ) ≤ �(|x0|2) e4Cζ . Since ξζ = +∞,
by condition on ρ, �(+∞) = +∞. The left hand side of (2.5) is infinite, while
the right hand side is finite; which is impossible. So ζ = +∞. ��
Remark 2.2. By considering the inequality d

dt
�(ξt ) ≥ −4C �(ξt ) in (2.4), we

have

�(ξt ) ≥ �(|xo|2)− 4C
∫ t

0
�(ξs) ds,

which yields
�(ξt ) ≥ �(|xo|2)e−4Ct .

If we denote by Xt(xo) the solution of the differential equation (2.1) with initial
value xo, then we get lim|xo|→+∞�(|Xt(xo)|2) = +∞, which implies that

lim
|xo|→+∞

|Xt(xo)| = +∞.

For simplicity, we shall assume that solutions of (2.1) do not explode at a finite
time.

Theorem 2.3. Let r :]0, co] → [1,+∞[ be a continuous function defined on a
neighborhood ]0, co] of 0 such that

∫ a
0

ds
sr(s)

= +∞ for any a > 0. Assume that for
|x − y| ≤ co,

|b(x)− b(y)| ≤ C |x − y| r(|x − y|2) (2.6)

where C > 0 is a constant. Then the differential equation (2.1) has a unique
solution.

Proof. Let (Xt )t≥0 and (Yt )t≥0 be two solutions of the equation (2.1). Set ηt =
Xt − Yt and ξt = |ηt |2. Let δ > 0 be a parameter, consider functions

ψδ(ξ) =
∫ ξ

0

ds

sr(s)+ δ
and �δ(ξ) = eψδ(ξ). (2.7)

We have

�′
δ(ξ) = �δ(ξ)

ξ r(ξ)+ δ
.

Define the stopping time

τ = inf{t > 0, ξt ≥ c2
0 }.

By assumption (2.6), we have for t < τ

∣∣〈ηt , b(Xt )− b(Yt )
〉∣∣ ≤ C ξt r(ξt ).
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Therefore
∣∣∣
d

dt
�δ(ξt )

∣∣∣ ≤ 2C �δ(ξt ). (2.8)

It follows that, for t < τ ,

�δ(ξt ) ≤ 1 + 2C
∫ t

0
�δ(ξs) ds,

which implies that �δ(ξt ) ≤ e2C t for t < τ . Letting δ ↓ 0, we get that eψ0(ξt ) ≤
e2Ct . Now by assumption on r , we obtain that ξt = 0 for all t < τ . If τ < +∞,
letting t ↑ τ , we get

c2
o = ξτ = 0,

which is absurd. Therefore ξt = 0 for all t ≥ 0. In other words, Xt = Yt for t ≥ 0.
��

In what follows, we shall study the dependence of the solutions on the initial
data.

Theorem 2.4. Assume that the coefficient b satisfies the condition (2.6) and that
the solution of (2.1) has no explosion. Then xo → Xt(xo) is continuous, uniformly
with respect to t in any compact subset.

Proof. Let ε ∈]0,
√
co], where c0 is given in definition of r . Let (xo, yo) ∈ Rd×Rd

such that |xo − yo| < ε. Set ηt = Xt(xo)−Xt(yo) and ξt = |ηt |2. Define

τ(xo, yo) = inf{t > 0, ξt ≥ ε2 }.
Let �δ be the function defined in (2.7), as in proof of Theorem 2.3, we have for
t < τ(xo, yo),

�δ(ξt ) ≤ �δ(ξo)e
2C t . (2.9)

Taking δ = |xo − yo| in (2.9), we get

�δ(ξt ) ≤ eδ e2C t , for t < τ(xo, yo). (2.10)

Fix the point xo. If lim infyo→xo τ (xo, yo) = τ is finite, we can choose a sequence
yn → xo such that limn→+∞ τ(xo, yn) = τ . Set δn = |xo − yn|. Applying (2.10)
for (xo, yn) and letting t ↑ τ(xo, yn), we get

�δn(ε) = �δn
(
ξτ(xo,yn)

) ≤ eδn e2C τ(xo,yn).

Letting n → +∞ in the above inequality, we see that

+∞ = �o(ε) ≤ e2C τ

which is absurd. Therefore

lim
yo→xo

τ (xo, yo) = +∞,
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which means that for any t > 0, there exists δ > 0 such that for |yo − xo| < δ,
τ(xo, yo) > t . In other words,

sup
0≤s≤t

|Xs(xo)−Xs(yo)| ≤ ε.

��
Remark 2.5. This argument does not work, when we deal with stochastic differen-
tial equations, as it is not possible to choose a common sequence yn.

Proposition 2.6. Under the same hypothesis as in theorem 2.4, for xo �= yo, we
have Xt(xo) �= Xt(yo) for all t ≥ 0.

Proof. Let ηt = Xt(xo)−Xt(yo) and ξt = |ηt |2. Without loss of generality, assume
that c2

0 > 2ξ0. Let

τ = inf
{
t > 0, ξt ≥ 3

4
c2
o

}
.

By starting from τ again , it is enough to prove that for any c2
0 > 2ξ0, we have

ξt > 0 for t < τ . Consider

ψδ(ξ) =
∫ ξ

0

ds

sr(s)+ δ
and �δ(ξ) = eψδ(ξ).

We have for t < τ , ∣∣∣
d�δ(ξt )

dt

∣∣∣ ≤ 2C�δ(ξt ).

It follows that �δ(ξt ) ≥ �δ(ξo)− 2C
∫ t

0
�δ(ξs)ds or

�δ(ξt ) ≥ �δ(ξo)e
−2Ct for t < τ.

For δ > 0 small enough,�δ(ξo)e
−2Ct > 1. It follows that�δ(ξt ) > 1 or ξt > 0. ��

Now by the standard arguments, we obtain

Theorem 2.7. Suppose that the coefficient b satisfies the hypothesis (2.2) and (2.6).
Then for any t > 0, xo → Xt(xo) defines a flow of homeomorphisms of Rd .

Before ending this section, we would like to give an example of function b sat-
isfying the condition (2.6), but having not the local Lipschitz continuity property.

Example 2.8. Define the function V on R by the series

V (x) =
+∞∑

k=1

| sin kx|
k2 . (2.11)

Obviously the function V is continuous on R. We claim that

|V (x)− V (y)| ≤ C |x − y| log {1/|x − y|} for |x − y| < 2/e (2.12)

whereC > 0 is a constant. To prove (2.12), we start with the following preliminary
lemma.
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Lemma 2.9. For 0 < θ < 1/e, we have

V (θ) =
∞∑

k=1

| sin kθ |
k2 ≤ C1 θ log

1

θ
(2.13)

Proof. Consider the function φ(s) = sin sθ

s2 . We compute the derivative φ′(s):

φ′(s) = s2θ cos sθ − 2s sin sθ

s4 .

Then |φ′(s)| ≤ 3θ

s2 . Consider the integral W(θ) =
∫ +∞

1

| sin sθ |
s2 ds. We have

|V (θ)−W(θ)| ≤
+∞∑

k=1

∫ k+1

k

|φ(s)− φ(k)| ds

≤ 3θ
+∞∑

k=1

1

k2 = π2θ

2
. (2.14)

Now for 0 < θ < 1,

W(θ) = θ

∫ +∞

θ

| sin t |
t2

dt ≤ θ

∫ 1

θ

sin t

t

dt

t
+ θ

∫ +∞

1

ds

s2 ,

which is dominated by

θ
(

log
1

θ
+ 1

)
.

Therefore, according to (2.14)

V (θ) ≤ θ
(

log
1

θ
+ 1 + π2

2

)
,

which is less than (
π2

2
+ 2) θ log

1

θ
for 0 < θ < 1/e. ��

Proof of (2.12). We have

|V (x)− V (y)| ≤
+∞∑

k=1

| sin kx − sin ky|
k2 ≤ 2

+∞∑

k=1

| sin k x−y2 |
k2 .

Applying (2.13), we get (2.12). ��
Now we define for X = (x1, x2) ∈ R2,

f (X) = V (x1)+ V (x2). (2.15)

Using the concavity of the function s → s log (1/s), we see that for |X−Y | < 1/e,

|f (X)− f (Y )| ≤ C |X − Y | log{1/|X − Y |}.
Remark 2.10. By further analysis on the function V , it is known (see e.g. [Ma])
that V (θ) ∼ θ log (1/θ) as θ → 0. So the function f on R2 constructed in (2.15)
is not locally Lipschitzian. Furthermore functions satisfying the condition (2.6) are
mostly defined by a series or a generalized integral.
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3. Preparing lemmas

Let (�,F, P ) be a probability space, endowed with a filtration (Ft )t≥0. Let (Wt )t≥0
be a Ft -Brownian motion taking values in Rm. Consider the following Itô process
in Rd :

ηt = η0 +
∫ t

0
esdWs +

∫ t

0
fsds, η0 ∈ Rd (3.1)

where (et (ω))t≥0 is a matrices-valued adapted process such that
∫ T

0 ||es ||2 ds <
+∞ for any T > 0 and (ft (ω))t≥0 is a Rd -valued adapted process such that∫ T

0 |fs | ds < +∞ for any T > 0.

Lemma 3.1. Let ξt = |ηt |2. Then

dξt = 2
〈
e∗t ηt , dWt

〉 + 2
〈
ηt , ft

〉
dt + ||et ||2 dt (3.2)

where e∗t denotes the transpose matrix of et . The stochastic contraction dξt · dξt is
given by

dξt · dξt = 4|e∗t ηt |2 dt (3.3)

Proof. It follows directly from Itô formula. ��

Lemma 3.2. Let ρ be a continuous function on [0,+∞[ such that ρ ≥ 1. Let �
be a strictly positive, C2-function on [0,+∞[ satisfying the conditions

|�′(ξ)| ≤ C1�(ξ)

ξρ(ξ)+ 1
, �′′(ξ) ≤ C2�(ξ)ρ(ξ)

(ξρ(ξ)+ 1)2
(3.4)

whereC1, C2 are two positive constant. Keeping the notations in lemma 3.1, assume
that almost surely and for all t ≥ 0,

{||et ||2 ≤ C3 (ξt ρ(ξt )+ 1),
|ft | ≤ C4 (ξ

1/2
t ρ(ξt )+ 1)

(3.5)

where C3, C4 are two positive constant. Define the stopping time τR = inf{t >
0, ξt ≥ R}. Let

K = (C1 + 2C2)C3 + 4C1C4. (3.6)

Then the following estimate holds

IE
(
�(ξt∧τR )

)
≤ �(|η0|2) eKt , for any t ≥ 0, R > 0.
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Proof. Using Itô formula and according to (3.2) and (3.3), we have

�(ξt∧τR ) = �(ξ0)+ 2
∫ t∧τR

0
�′(ξs)

〈
e∗s ηs, dWs

〉

+2
∫ t∧τR

0
�′(ξs)

〈
ηs, fs

〉
ds +

∫ t∧τR

0
�′(ξs)||es ||2 ds

+2
∫ t∧τR

0
�′′(ξs) |e∗s ηs |2 ds

= �(ξ0)+ I1(t)+ I2(t)+ I3(t)+ I4(t)

respectively. By conditions (3.5), we see that I1(t) is a martingale; therefore
IE(I1(t)) = 0. Using (3.4) and (3.5),

|�′(ξs)
〈
ηs, fs

〉| ≤ C1C4�(ξs)

ξsρ(ξs)+ 1
· |ηs | (|ηs |ρ(ξs)+ 1)

= C1C4�(ξs)
ξsρ(ξs)+ ξ

1/2
s

ξsρ(ξs)+ 1
.

Since ρ ≥ 1 and

sup
ξ≥0

ξρ(ξ)+ ξ1/2

ξρ(ξ)+ 1
≤ 2,

we get the estimate

IE(I2(t)) ≤ 4C1C4

∫ t

0
IE(�(ξs∧τR )) ds.

In the same way, IE(I3(t)) ≤ C1C3

∫ t

0
IE(�(ξs∧τR )) ds. Now

�′′(ξs) ≤ C2�(ξs)ρ(ξs)

(ξsρ(ξs)+ 1)2
≤ C2�(ξs)

ξs(ξsρ(ξs)+ 1)

and

�′′(ξs)|e∗s ηs |2 ≤ C2C3�(ξs)

ξs(ξsρ(ξs)+ 1)
· ξs(ξsρ(ξs)+ 1) = C2C3�(ξs),

so that E(I4(t)) ≤ 2C2C3

∫ t

0
IE(�(ξs∧τR )) ds. Let K be the constant defined in

(3.6), we obtain the inequality

IE(�(ξt∧τR )) ≤ �(ξ0)+K

∫ t

0
IE(�(ξs∧τR )) ds.

By Gronwall lemma, we get that for all t ≥ 0 and R > 0,

IE(�(ξt∧τR )) ≤ �(ξ0)e
Kt .

��
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Lemma 3.3. Let r be a continuous function defined on a neighborhood of 0, say
]0, co], such that r ≥ 1. Let� be a strictly positive, C2-function defined on [0, co].
Suppose that there exists δ > 0 such that

|�′(ξ)| ≤ C1�(ξ)

ξr(ξ)+ δ
, �′′(ξ) ≤ C2�(ξ)r(ξ)

(ξr(ξ)+ δ)2
. (3.7)

Keep the notations in lemma 3.1 and suppose that |η0|2 < co. Define the stopping
time

τ = inf{t > 0, ξt ≥ co}.
Assume that for t < τ ,

||et ||2 ≤ C3 (ξt r(ξt )+ δ), |〈ηt , ft 〉| ≤ C4 (ξr(ξt )+ δ). (3.8)

Let

K = (C1 + 2C2)C3 + 4C1C4. (3.9)

Then
IE

(
�(ξt∧τ )

)
≤ �(|η0|2) eKt , for any t ≥ 0.

Proof. Using Itô formula and according to (3.2) and (3.3), we have

�(ξt∧τ ) = �(ξ0)+ 2
∫ t∧τ

0
�′(ξs)

〈
e∗s ηs, dWs

〉

+2
∫ t∧τ

0
�′(ξs)

〈
ηs, fs

〉
ds +

∫ t∧τ

0
�′(ξs)||es ||2 ds

+2
∫ t∧τR

0
�′′(ξs)|e∗s ηs |2 ds

= �(ξ0)+ I1(t)+ I2(t)+ I3(t)+ I4(t)

respectively. By assumption (3.8), for any s ≤ τ ,

|e∗s ηs |2 ≤ ||es ||2|ηs |2 ≤ C3 (ξsr(ξs)+ δ)ξs .

According to (3.7),

|�′(ξs)e∗s ηs |2 ≤ C2
1C3�(ξs)

2 ξs (ξsr(ξs)+ δ)

(ξsr(ξs)+ δ)2
≤ C2

1C3 sup
0≤ξ≤co

�(ξ)2 < +∞.

Therefore I1(t) is a martingale and IE(I1(t)) = 0. On the other hand, by assumption
(3.7) and (3.8),

|�′(ξs)
〈
ηs, fs

〉| ≤ C1C4�(ξs) and |�′(ξs)| ||es ||2 ≤ C1C3�(ξs)

and
�′′(ξs) |e∗s ηs |2 ≤ C2C3�(ξs).

Let K be the constant defined in (3.9). We have

IE
(
�(ξt∧τ )

)
≤ �(|η0|2)+K

∫ t

0
IE

(
�(ξs∧τ )

)
ds.

It follows that IE
(
�(ξt∧τ )

)
≤ �(|η0|2) eK t for all t > 0. ��
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Lemma 3.4. Keeping the same notations, assume that the coefficients e and f are
bounded, namely

||et (w)|| ≤ A, |ft (w)| ≤ B for all (t, ω).

Then for any T > 0 and R >
√
dBT , we have

P
(

sup
0≤s≤T

|ξs | ≥ R
)

≤ 2de−(R−√
dBT )2/2dA2T . (3.10)

Proof. It is a classical result and can be deduced from exponential martingale
method. For a proof, see for example [S, p.81]. ��

4. Criterion of non-explosion for stochastic differential equations

Let σ : Rd → Rd ⊗ Rm and b : Rd → Rd be continuous functions. Let (Xt ,Wt )

be a solution of the Itô stochastic differential equation

dXt = σ(Xt )dWt + b(Xt )dt, X0 = xo ∈ Rd (4.1)

with the lifetime ζ . The main purpose of this section is to prove theorem A.

Proof of theorem A. Extend the function ρ to a strictly positiveC1 function defined
on the whole half line [0,∞[. It is easy to see that there exists a constant C > 0
such that (H1) holds for any x ∈ Rd . Define the functions

ψ(ξ) =
∫ ξ

0

ds

sρ(s)+ 1
and �(ξ) = eψ(ξ), ξ ≥ 0.

We have

�′(ξ) = �(ξ)

ξ ρ(ξ)+ 1
and �′′(ξ) = �(ξ)

(
1 − ρ(ξ)− ξρ′(ξ)

)

(ξρ(ξ)+ 1)2
.

By conditions (i) and (ii) on the functionρ, we see that |1−ρ(ξ)−ξρ′(ξ)| ≤ C1ρ(ξ)

for a large constant C1 > 0, so that

�′′(ξ) ≤ C1
�(ξ)ρ(ξ)

(ξρ(ξ)+ 1)2
for all ξ ≥ 0.

The conditions in (3.4) are satisfied. Now according to notations in lemma 3.2, let
ηt = Xt and ξt = |ηt |2. Then we have et = σ(Xt ) and ft = b(Xt ). By hypothesis
(H1),

||et ||2 ≤ C (ξtρ(ξt )+ 1), |ft | ≤ (ξ
1/2
t ρ(ξt )+ 1).

This means that conditions in (3.5) are satisfied. Now define

τR = inf
{
t > 0, ξt ≥ R

}
, R > 0.

It is clear that τR tends to the lifetime ζ as R → +∞. Using lemma 3.2, there
exists a constant C2 > 0 such that

E
(
�(ξt∧τR )

)
≤ �(ξo)e

C2 t .
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Letting R → +∞ in above inequality, by Fatou lemma, we get

IE
(
�(ξt∧ζ )

)
≤ �(ξo)e

C2 t . (4.2)

Now if P(ζ < +∞) > 0, then for a large T > 0, P(ζ ≤ T ) > 0. Taking t = T in
(4.2), we get

IE
(

1(ζ≤T )�(ξζ )
)

≤ �(ξo)e
C2 T . (4.3)

Since �(ξζ ) = �(+∞) = +∞ on a positive measure subset {ζ ≤ T }, the left
hand side of (4.3) is infinite, while the right hand side is finite: which is impossible.
Therefore P(ζ = +∞) = 1 . ��

LetXt(xo) be a solution of stochastic differential equation (4.1)with the initial
value xo. Comparing to remark 2.2, we have the following result

Theorem 4.1. Under the same hypothesis as in theorem A, we have

lim
|xo|→+∞

|Xt(xo)| = +∞ in probability. (4.4)

Proof. Let ψ be the function defined in the proof of theorem A:

ψ(ξ) =
∫ ξ

0

ds

sρ(s)+ 1
. Define the function � by

�(ξ) = e−ψ(ξ).

In this case, � is a decreasing function, but |�′(ξ)| = �(ξ)

ξ ρ(ξ)+ 1
and for a large

constant C1 > 0,

�′′(ξ) = �(ξ)
(
1 + ρ(ξ)+ ξρ′(ξ)

)

(ξρ(ξ)+ 1)2
≤ C1

�(ξ)ρ(ξ)

(ξρ(ξ)+ 1)2
.

The conditions in (3.4) are satisfied. Let R,M be two positive constant such that
M > |xo| > R. Define

τ̂R = inf
{
t > 0, |Xt(xo)| ≤ R

}
and τM = inf

{
t > 0, |Xt(xo)| ≥ M

}
.

By theorem A, we see that τM ↑ +∞ asM ↑ +∞. Let ηt = Xt∧τ̂R , which is a Itô
process. According to notations in lemma 3.1, we have

es(ω) = 1{τ̂R≥s}σ(Xs), fs(ω) = 1{τ̂R≥s}b(Xs).

By hypothesis (H1), we have

||es ||2 ≤ C(ξsρ(ξs)+ 1), |fs | ≤ C(ξ
1/2
s ρ(ξs)+ 1).

Now using lemma 3.2, we get

IE
(
�(ξt∧τM )

) ≤ �(|x0|2) eCt .
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Letting M → +∞ in above inequality, we get

IE
(
�(|Xt∧τ̂R (xo)|2)

)
≤ �(|xo|2) eC t .

This gives that

P
(
τ̂R ≤ t

)
�(R2) ≤ IE

(
�(|Xt∧τ̂R (xo)|2)

)
≤ �(|x0|2) eCt .

Therefore,

P
(

inf
0≤s≤t

|Xs(xo)| ≤ R
) ≤ eCt exp

{
−

∫ |xo|2

R2

ds

sρ(s)+ 1

}
,

which tends to 0 when |xo| → +∞. ��

5. Pathwise uniqueness and non contact property

The main purpose of this section is to prove theorem B and C. After establishing
these results, we shall prove that the solutions Xt(xo) will define a Feller semi-
group.

Proof of theorem B. Without loss of generality, we can assume the lifetime ζ of
stochastic differential equation (4.1) is infinite; otherwise we have the pathwise
uniqueness up to the lifetime. Let Xt and Yt be two solutions of (4.1) having the
same initial data. Consider ηt = Xt − Yt and ξt = |ηt |2. According to notations in
lemma 3.1,

et = σ(Xt )− σ(Yt ), ft = b(Xt )− b(Yt ).

Let τ = inf{t > 0, ξt ≥ c2
o}. By hypothesis (H2), for t ≤ τ ,

||et ||2 ≤ C ξt r(ξt ) and |〈ηt , ft 〉| ≤ C ξt r(ξt ).

According to the condition (i) on the function r , we can assume that r(ξ) ≥ 1 for
all ξ ∈]0, co]. Let δ > 0, we define

ψδ(ξ) =
∫ ξ

0

ds

sr(s)+ δ
and �δ(ξ) = eψδ(ξ).

By condition (iii) on r , we see that �0(ξ) = +∞ for any ξ > 0. We have

�′
δ(ξ) = �δ(ξ)

ξ r(ξ)+ δ
, �′′

δ (ξ) = �δ(ξ)
1 − r(ξ)− ξ r ′(ξ)
(ξ r(ξ)+ δ)2

.

By conditions (i) and (ii) on the function r , there exists a large constant C1 > 0
such that

|1 − r(ξ)− ξ r ′(ξ)| ≤ C1 r(ξ)

so that

�′′
δ (ξ) ≤ C1

�δ(ξ)r(ξ)

(ξ r(ξ)+ δ)2
.
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The conditions in (3.7) are satisfied. Now using lemma 3.3, there exists a constant
C2 > 0 such that for any t > 0,

IE
(
�δ(ξt∧τ )

)
≤ eC2 t .

Letting δ ↓ 0 in the above inequality, we get

IE
(
eψ0(ξt∧τ )

)
≤ eC2 t

which implies that for t given,

ξt∧τ = 0 almost surely. (5.1)

If P(τ < +∞) > 0, then for some large T > 0, P(τ ≤ T ) > 0. By (5.1), almost
surely for all t ∈ Q ∩ [0, T ], ξt∧τ = 0. It follows that on {τ ≤ T }, ξτ = 0 which is
absurd by the definition of τ . Therefore τ = +∞ almost surely. So for any given
t , ξt = 0 almost surely. Now by the continuity of samples, the two solutions are
indistinguishable. ��
Remark 5.1. In the case of d = m = 1, stronger results on pathwise uniqueness
have been established. Namely σ was allowed to be Hölder of exponent ≥ 1/2 (see
[RY, Ch. IX-3], [IW, p.168]).

Proof of theorem C. Without loss of generality, we may assume that |xo − yo| <
co/2. Let 0 < ε < |xo − yo| and define

τ̂ε = inf{t > 0, |Xt(xo)−Xt(yo)| ≤ ε}, τ̂ = inf{t > 0, Xt (xo) = Xt(yo)}.
It is clear that τ̂ε ↑ τ̂ as ε ↓ 0. Let

τ = inf{t > 0, |Xt(xo)−Xt(yo)| ≥ 3

4
co}.

Consider ηt = Xt∧τ̂ε (xo) − Xt∧τ̂ε (yo) and ξt = |ηt |2. Then using notations in
lemma 3.1, we have expressions

et = 1{τ̂ε≥t}
(
σ(Xt (xo))− σ(Xt (yo))

)
, ft = 1{τ̂ε≥t}

(
b(Xt (xo))− b(Xt (yo))

)
.

By hypothesis of (H2), for t < τ ,

||et ||2 ≤ C ξt r(ξt ) and |〈ηt , ft
〉| ≤ C ξ

1/2
t r(ξt ).

Now define the functions

ψδ(ξ) =
∫ co

ξ

ds

sr(s)+ δ
and �δ = eψδ(ξ) for ξ ≤ co.

We have |�′
δ(ξ)| = �δ(ξ)

ξ r(ξ)+ δ
and for some large constant C1 > 0,

�′′
δ (ξ) = �δ(ξ)

1 + r(ξ)+ ξ r ′(ξ)
(ξ r(ξ)+ δ)2

≤ C1
�δ(ξ)r(ξ)

(ξ r(ξ)+ δ)2
.
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So we can apply lemma 3.3 to get the inequality

IE
(
�δ(ξt∧τ )

)
≤ �δ(ξo)e

C2 t for some C2 > 0 and for all t > 0.

Letting δ ↓ 0, by Fatou lemma, we get

IE
(
�0(ξt∧τ )

)
≤ �0(ξo)e

C2 t .

Replacing ξt by its expression, we have

IE
(
�0(|Xt∧τ̂ε∧τ (xo)−Xt∧τ̂ε∧τ (yo)|2)

)
≤ �0(ξo)e

C2 t .

On subset {τ̂ε < t ∧τ }, |Xt∧τ̂ε∧τ (xo)−Xt∧τ̂ε∧τ (yo)| = ε. From the above inequal-
ity, we obtain

P(τ̂ε < t ∧ τ)�0(ε
2) ≤ �0(ξo)e

C2 t ,

or

P(τ̂ε < t ∧ τ) ≤ exp
{
−

∫ ξo

ε2

ds

sr(s)

}
→ 0 as ε ↓ 0.

Therefore P(τ̂ε < t ∧ τ) = 0 for all t . Letting t → ∞ we get P(τ̂ < τ) = 0.
Therefore, ξ. is positive almost surely on the interval [0, τ ]. Now define T0 := 0,

T1 := τ, T2 = inf
{
t > 0, |Xt(xo)−Xt(yo)| ≤ co

2

}

and generally

T2n = inf
{
t > T2n−1, |Xt(xo)−Xt(yo)| ≤ co

2

}
,

T2n+1 = inf
{
t > T2n, |Xt(xo)−Xt(yo)| ≥ 3co

4

}

Clearly Tn → ∞ almost surely as n → ∞. By definition, ξ. is positive on the
interval [T2n−1, T2n]. By pathwise uniqueness of solutions, X enjoys the strong
Markovian property. Starting again from T2n and applying the same arguments as
in the first part of the proof, one can show that ξ. is positive almost surely also on
the interval [T2n, T2n+1]. This completes the proof. ��

Theorem 5.2. Under the same hypothesis as in theorem C, for any ε > 0, we have

lim
yo→xo

P ( sup
0≤s≤t

|Xs(yo)−Xs(xo)| > ε) = 0. (5.2)

Proof. Let x0, y0 be such that |yo − xo| < ε < c0, where c0 is the parameter in
definition of function r . Let ξt = |Xt(yo)−Xt(xo)|2. Denote explictly

τ(xo, yo) = inf{ t > 0, ξt > ε2 }.
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Let �δ be the function defined in the proof of theorem B. By lemma 3.3, for some
large constant C > 0,

IE
(
�δ(ξt∧τ(xo,yo))

)
≤ �δ(ξo) e

Ct for all t > 0 and δ > 0.

Taking δ = |xo−yo| in the above inequality, we have IE
(
�δ(ξt∧τ(xo,yo))

)
≤ eδ eCt .

Hence
P(τ(xo, yo) < t)�δ(ε

2) ≤ E
(
�δ(ξt∧τ(xo,yo))

)
≤ eδ eCt .

It follows

P( sup
0≤s≤t

|Xs(yo)−Xs(xo)| > ε) = P(τ(xo, yo) < t) ≤ e−ψδ(ε
2) eδ eCt → 0

as δ = |yo − xo| → 0. We obtain (5.2). ��
Corollary 5.3. The diffusion process (Xt (x)) given by solutions of the stochastic
differential equation (4.1) is Feller, i.e., the associated semigroup (Tt , t ≥ 0)maps
Cb(R

d) into Cb(Rd).

Proof. It is a direct consequence of Theorem 5.2 and the definition

Ttf (x) = IE[f (Xt (x))], f ∈ Cb(Rd).
��

6. Continuous dependence of initial data

Having pathwise uniqueness under the hypothesis (H2) in theorem B, the stochas-
tic differential equation (4.1) has a unique solution Xt(xo). In this section, we are
mainly interested in the continuous modification of Xt(xo). To this end, we need
to assume that for |x − y| ≤ co, where c0 is a small enough constant,

||σ(x)− σ(y)||2 ≤ C |x − y|2 log
1

|x − y| ,

|b(x)− b(y)| ≤ C |x − y| log
1

|x − y| . (6.1)

In what follows, we shall first construct the strong solution of stochastic differ-
ential equation (4.1) via Euler approximation.

Theorem 6.1. Assume that the coefficients σ and b satisfy the condition (6.1) and
are bounded:

||σ(x)|| ≤ A, |b(x)| ≤ B for all x ∈ Rd .

For n ≥ 1, define (Xn(t))n≥1 by Xn(0) = x and

Xn(t) = Xn(k2−n)+ σ(Xn(k2−n))(Wt −Wk2−n)+ b(Xn(k2−n))(t − k2−n)

for k2−n ≤ t ≤ (k + 1)2−n. Then for any T > 0, almost surely, Xn(t) converges
uniformly in t ∈ [0, T ], to the solution Xt of stochastic differential equation (4.1).
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Proof. Define φn(t) = k2−n for t ∈ [k2−n, (k + 1)2−n[, k ≥ 0. Then Xn(t) can
be expressed by

Xn(t) = xo +
∫ t

0
σ
(
Xn(φn(s))

)
dWs +

∫ t

0
b
(
Xn(φn(s))

)
ds. (6.2)

Let 1 < a <
√

2. Introduce the stopping time

τn = inf
{
t > 0, |Xn(t)−Xn(φn(t))| ≥ a−n}.

For t ∈ [k2−n, (k + 1)2−n[, by expression (6.2), we have

Xn(t)−Xn(φn(t)) =
∫ t−k2−n

0
σ
(
Xn(φn(k2−n + s))

)
dW̃s

+
∫ t−k2−n

0
b
(
Xn(φn(k2−n + s))

)
ds

where W̃s = Wk2−n+s −Wk2−n . Using lemma 3.4,

P
(

sup
k2−n≤t<(k+1)2−n

|Xn(t)−Xn(φn(t))| ≥ a−n
)

≤ 2d exp
{−(a−n −

√
dB2−n)2/2dA22−n}

= 2d exp
{−( 2

a2 )
n(1 −

√
dB(

2

a
)−n)2/2dA2}.

Let c = 2/a2, which is strictly bigger than 1. Therefore for large n,

P
(

sup
k2−n≤t<(k+1)2−n

|Xn(t)−Xn(φn(t))| ≥ a−n
)

≤ 2de−c
n/4dA2

and for integer T > 0,

P(τn ≤ T ) ≤ 2d2nT exp
{−cn/4dA2}.

Hence for sufficiently large n,

P(τn ≤ T ) ≤ e−c
n/8dA2

. (6.3)

Now define ηn(t) = Xn+1(t)−Xn(t) and ξn(t) = |ηn(t)|2. Introduce the notations

es = σ
(
Xn+1(φn+1(s))

) − σ
(
Xn(φn(s))

)
,

fs = b
(
Xn+1(φn+1(s))

) − b
(
Xn(φn(s))

)
.

By lemma 3.1, we have

dξn(t) = 2
〈
e∗t ηn(t), dWt

〉 + 2
〈
ηn(t), ft

〉
dt + ||et ||2dt (6.4)

and the stochastic contraction dξn(t) · dξn(t) is given by

dξn(t) · dξn(t) = 4|e∗t ηn(t)|2 dt. (6.5)
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Define the stopping time

ζn = inf
{
t > 0, ξn(t) ≥ 1

n2β

}
(6.6)

where β > 1 is a parameter. Then for s ≤ τn+1 and n large enough, we can use
(6.1) to obtain

||σ (
Xn+1(φn+1(s))

) − σ
(
Xn+1(s)

)||2

≤ C
∣∣Xn+1(φn+1(s))−Xn+1(s)

∣∣2 log
{

1/|Xn+1(φn+1(s))−Xn+1(s)
∣∣
}

≤ C a−2(n+1) log an+1 ≤ C a−2n log an

where we used the fact that s → s log 1/s is increasing over [0, 1/e]. In the same
way,

||σ (
Xn(φn(s))

) − σ
(
Xn(s)

)||2 ≤ C a−2n log an,

and for s ≤ τn ∧ τn+1 ∧ ζn,

||es ||2 ≤ 2
{
||σ (

Xn+1(φn+1(s))
) − σ

(
Xn+1(s)

)||2

+||σ (
Xn+1(s)

) − σ
(
Xn(s)

)||2

+||σ (
Xn(φn(s))

) − σ
(
Xn(s)

)||2
}

≤ 2C {ξn(s) log {1/ξn(s)} + 2a−2n log an}.
On the other hand, for s ≤ τn ∧ τn+1 ∧ ζn,

|〈ηn(t), ft
〉| ≤ C |ηn(t)|

{
|Xn+1(φn+1(t))−Xn+1(t)|

× log {1/|Xn+1(φn+1(t))−Xn+1(t)|}
+|Xn(φn(t))−Xn(t)| log {1/|Xn(φn(t))−Xn(t)|}
+|ηn(t)| log {1/|ηn(t)|

}

≤ C
{
ξn(t) log {1/ξn(t)} + 2

nβ
a−n log an

}
.

Choose the parameter ρn by

ρn = 2

nβ
a−n log an. (6.7)

Then the conditions (3.8) in lemma 3.3 are satisfied with C3 = 2C,C4 = C and δ
replaced by ρn.

Now consider the function ψn(ξ) =
∫ ξ

0

ds

s log (1/s)+ ρn
and �n(ξ) = e4ψn(ξ).

We have

�′
n(ξ) = 4�n(ξ)

ξ log (1/ξ)+ ρn
and �′′

n(ξ) = 4�n(ξ)(5 + log ξ)

(ξ log 1/ξ + ρn)2
≤ 0
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for ξ ≤ co small enough. The conditions in (3.7) are satisfied withC1 = 4, C2 = 0.
Let

τ̃n = τn ∧ τn+1 ∧ ζn.
For large n, ξn(t ∧ τ̃n) ≤ co. Let K = 24C. Then by lemma 3.3, we have the
following estimate

IE
(
�n(ξn(t ∧ τ̃n))

)
≤ eK t for all t,

from which we get

IE
(

1{τn∧τn+1≥T ,ζn≤T }�n(ξn(T ∧ τ̃n))
)

≤ eK T ,

or

P(τn ∧ τn+1 ≥ T , ζn ≤ T ) ·�n( 1

n2β ) ≤ eK T ,

Therefore

P(τn ∧ τn+1 ≥ T , ζn ≤ T ) ≤ eK T exp
{

− 4
∫ n−2β

0

ds

s log 1/s + ρn

}
. (6.8)

Since 0 < ρn < n−2β log n2β , there exists cn ∈]0, n−2β [ such that

cn log
1

cn
= ρn = 2

nβ
a−n log an < a−n log an. (6.9)

The function s → s log
1

s
being increasing over [0, 1/e], from (6.9), we see that

0 < cn < a−n. (6.10)

Now
∫ n−2β

0

ds

s log 1
s

+ ρn
≥

∫ n−2β

cn

ds

2s log 1
s

= −1

2
log

( log n−2β

log cn

)
.

According to (6.8),

P(τn ∧ τn+1 ≥ T , ζn ≤ T ) ≤ eKT
( log n−2β

log cn

)2 ≤ eKT
(2β log n

n log a

)2
,

where the last inequality was deduced by (6.10). Therefore for some constant
C1 > 0 and n big enough,

P(τn ∧ τn+1 ≥ T , ζn ≤ T ) ≤ C2

( log n

n

)2
. (6.11)

Now combining (6.3) and (6.11), we get

P(ζn ≤ T ) ≤ 1

nγ
for some γ > 1,
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or

P
(

sup
0≤t≤T

|Xn+1(t)−Xn(t)|2 ≥ 1

n2β

) ≤ 1

nγ
.

By Borel-Cantelli lemma, almost surely

sup
0≤t≤T

|Xn+1(t)−Xn(t)| ≤ 1

nβ
for large n.

It follows that the series

Xt :=
∑

n≥1

(
Xn+1(t)−Xn(t)

) +X1(t)

converges uniformly in t ∈ [0, T ]. It is easy to check that Xt is the solution of
stochastic differential equation (4.1). ��

Now we turn to establish theorem D. Let’s begin with the following lemma.

Lemma 6.2. Let r be a strictly positive continuous function defined on ]0, co],
where 0 < co < 1. Assume that the coefficients σ and b are compactly supported,
say,

σ(x) = 0 and b(x) = 0 for |x| ≥ R, (6.12)

and satisfy the hypothesis (H2) in theorem B. Let p ≥ 1. If s → r(s) is decreasing
on ]0, co], then there exists a constant Cp > 0 such that for all |x| ≤ R + 1, |y| ≤
R + 1,





||σ(x)− σ(y)||2 ≤ Cp |x − y|2 r

( |x−y|2p
Mp

)
,

|b(x)− b(y)| ≤ Cp |x − y| r
( |x−y|2p

Mp

) (6.13)

where M = 4(R + 1)2

co
.

Proof. Because of the similarity, we only prove the conclusion for b. If |x−y| ≤ co,
by hypothesis (H2),

|b(x)− b(y)| ≤ C |x − y|r(|x − y|2) ≤ C |x − y| r
(
(
|x − y|2
M

)p
)
, (6.14)

as r is supposed to be decreasing. Remark that

inf
co≤ξ≤2(R+1)

ξ r
([ξ2

M

]p) ≥ co r(c
p
o ) > 0

and supx,y |b(x) − b(y)| ≤ 2||b||∞, where ||b||∞ denotes the uniform norm of b
over Rd . Therefore there exists a constant Cp > 0 such that

|b(x)− b(y)| ≤ Cp |x − y| r
(
(
|x − y|2
M

)p
)

for |x − y| ≥ co. (6.15)

Combining (6.14) and (6.15), we get the result. ��
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Lemma 6.3. Let σ and b be continuous functions satisfying the support condition
(6.12). If the stochastic differential equation (4.1) has the pathwise uniqueness,
then for any |xo| ≤ R + 1, |Xt(xo)| ≤ R + 1 almost surely for all t > 0.

Proof. Define the stopping time

τ = inf
{
t ≥ 0; |Xt(xo)| ≥ R + 1

}

Set Yt = Xt∧τ (x). Then

Yt = xo +
∫ t∧τ

0
σ(Ys)dWs +

∫ t∧τ

0
b(Ys)ds.

We have

IE
(∫ t

0
||σ(Ys)||2

(
1(s<τ) − 1

)2
ds

)
= IE

(∫ t

τ

||σ(Ys)||2 ds
)

= IE
(∫ t

τ

||σ(Xτ )||2 ds
)

Xτ being on the sphere of radius R + 1, σ(Xτ ) = 0 by hypothesis (6.12), the last
term in the above equality is equal to zero. Therefore t ≥ 0,

∫ t∧τ

0
σ(Ys)dWs =

∫ t

0
σ(Ys)dWs and

∫ t∧τ

0
b(Ys)ds =

∫ t

0
b(Ys)ds,

almost surely. We see that {Yt , t ≥ 0} satisfies the same stochastic differential
equation as {Xt, t ≥ 0}. By pathwise uniqueness, we conclude that Yt = Xt
almost surely for all t ≥ 0, which proves the lemma. ��
Lemma 6.4. Assume the same hypothesis as in lemma 6.2 and furthermore r sat-
isfies the condition (i)-(iii) in theorem B and ξ → ξr(ξ) is concave over ]0, co].
Let p ≥ 2 be an integer. For |xo| ≤ R + 1 and |yo| ≤ R + 1, set

ηt = Xt(xo)−Xt(yo), ξt = |ηt |2 and zt = (
ξt

M
)p

where M is the constant defined in Lemma 6.2. Put ϕ(t) = IE(zt ). Then for some
constant Cp,

ϕ′(t) ≤ Cp ϕ(t) r(ϕ(t)). (6.16)

Proof. By hypothesis imposed on the function r , we can apply lemma 6.2 and
6.3 so that zt is a bounded process. Now we shall proceed as in [F]. Let et =
σ(Xt (xo)) − σ(Xt (yo)) and ft = b(Xt (xo)) − b(Xt (yo)). By Itô formula and
applying (3.2) and (3.3),

dzt = 1

Mp

(
2pξp−1〈e∗t ηt , dWt

〉 + 2pξp−1〈ηt , ft
〉
dt

+pξp−1
t ||et ||2 dt + 2p(p − 1)ξp−2

t |e∗t ηt |2 dt
)
.
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By lemma 6.3, Xt(xo) and Xt(yo) are bounded by R + 1. Now using (6.13), we
have

ξ
p−1
s

Mp

∣∣〈ηs, fs
〉∣∣ ≤ Cp

ξ
p
s

Mp
r
( ξps
Mp

) = Cpzsr(zs) (6.17)

and

ξ
p−1
s ||es ||2 ≤ Cpzsr(zs),

ξ
p−2
s

Mp

∣∣e∗s ηs
∣∣2 ≤ Cpzsr(zs). (6.18)

By concavity of ξ → ξr(ξ) over ]0, co], we see that sup
0<ξ≤co

(
ξr(ξ)

)
is finite. There-

fore the first term in the expression of dzt is a martingale and ϕ(t) = IE(zt ) is a
derivable function with respect to t and

ϕ′(t) = 1

Mp

(
2pIE(ξp−1

t

〈
ηt , ft

〉
)+ pIE(ξ

p−1
t ||et ||2)

+2p(p − 1)IE(ξp−2
t |e∗t ηt |2)

)

which is less, according to (6.17) and (6.18), than

(2p2 + p)Cp IE(zt r(zt )) ≤ (2p2 + p)Cp ϕ(t)r(ϕ(t)).

So we get the result. ��
Remark 6.5. Consider r(s) = log 1

s
· log log 1

s
for s ∈]0, 1/2e]. Clearly s → r(s)

is decreasing and s → sr(s) is concave over [0, 1/2e]. Solving (6.16), we get

ϕ(t) ≤ exp
(
−[

log
1

ϕ(0)

]e−Cpt)
.

In order to apply the Kolmogorov’s modification theorem, we have to find α > 0
such that

exp
(
−[

log
1

ϕ(0)

]e−Cpt) ≤ ϕ(0)α,

or [
log

1

ϕ(0)

]e−Cpt ≥ α log
1

ϕ(0)

which is impossible when |xo − yo| is small for any t > 0.

Proof of theorem D. We split the proof into two steps.
Step 1. Assume that σ and b are compactly supported, say,

σ(x) = 0 and b(x) = 0 for |x| ≥ R.

Let ϕ be defined as in Lemma 6.4. Solving (6.16) with r(s) = log
1

s
, we get

ϕ(t) ≤ (ϕ(0))e
−Cp t

or explicitly

IE
(
|Xt(xo)−Xt(yo)|2p

)
≤ Cp |xo − yo|2pe−Cp t .
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On the other hand, it is easy to see that

IE
(
|Xt(xo)−Xs(xo)|2p

)
≤ Cp|t − s|p.

Therefore,

IE
(
|Xt(xo)−Xs(yo)|2p

)
≤ Cp

[
|t − s|p + |xo − yo|2pe−Cp t

]
. (6.19)

Fixp > d+1. Choose a constant To > 0 small enough such that 2pe−CpT0 > d+1.
It follows from (6.19) and Kolmogorov’s modification theorem that there exists a
version of Xt(xo,w), denoted by X̃t (xo, w), such that (t, xo) → X̃t (xo, w) is
continuous over [0, To] × {|xo| ≤ R + 1} almost surely. But

Xt(xo,w) = xo if |xo| > R.

We conclude that (t, xo) → X̃t (xo, w) can be extended continuously to [0, To]×Rd .
Let (θTow)(t) = w(t + To)− w(To). Define for 0 < t ≤ To,

X̃To+t (xo, w) = X̃t
(
X̃To(xo, w), θTow

)
.

Then X̃To+·(xo, w) satisfies the stochastic differential equation (4.1) driven by
the Brownian motion θTow with the initial condition X̃To(xo, w). By pathwise
uniqueness, we see that X̃To+t (xo, w) = XTo+t (xo, w) almost surely for all t ∈
[0, To]. This means that X̃t (xo, w) is a continuous version of Xt(xo,w) over
|0, 2To] × Rd . Continuing in this way, we get a continuous version on the whole
space [0,+∞[×Rd .
Step 2: General case. We shall proceed as in [Pr] for locally Lipschitzian coeffi-
cients.

ForR > 0, let fR(x) denote a smooth function with compact support satisfying

fR(x) = 1 for |x| ≤ R and fR(x) = 0 for |x| > R + 1.

Define
σR(x) = σ(x)fR(x) and bR(x) = b(x)fR(x).

Let XRt (x,w) be the unique solution of the stochastic differential equation (4.1)
with σ and b replaced by σR and bR . Let X̃Rt (x,w) denote a continuous version of
XRt (x,w). Such a version exists according to step 1. For K > 0, set

τRK(x) = inf{t > 0; |X̃Rt (x,w)| ≥ K},
τK(x) = inf{t > 0; |Xt(x,w)| ≥ K}.

By pathwise uniqueness, for |x| ≤ R,

Xt(x,w) = X̃Nt (x,w) for any N > R + 1 and t < τNR+1,

or
τR+1(x) = τNR+1(x) for any N > R + 1.
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For |x| ≤ R, we define

X̃t (x, w) = X̃R+2
t (x, w) on [0, τR+2

R+1 (x)[.

Then X̃.(x, w) is a version ofX.(x,w). Let us prove that X̃t (x, w) is continuous in
(t, x) for almost allw. Fix x0 with |x0| ≤ R. Since the lifetime of the solution is infi-
nite, there exists R > 0 such that τR+2

R+1 (x0) > t + ε for a small ε. This implies that

sup0≤s≤t+ε |X̃R+2
s (xo, w)| < R+1. By the continuity, we can find a neighborhood

Bδ(xo) of xo such that sup0≤s≤t+ε |X̃R+2
s (x, w)| < R + 1 or τR+2

R+1 (x) > t + ε for

all x ∈ Bδ(xo). Hence, X̃s(x,w) = X̃R+2
s (x, w) for all x ∈ Bδ(xo) and s ≤ t + ε,

which implies that X̃s(xo, w) is continuous at the point (t, xo). ��

7. Large deviations principle

The theory of large deviations for diffusion processes under Lipschitzian coeffi-
cients is well established (see [A], [S]). Some new developments in infinite dimen-
sional situations are discussed in [FZ2,3], [Z1,2]. The main task of this section
is again to handle the non-Lipschitzian feature. In what follows, we shall restrict
ourselves on the intervall [0, 1]. Let n ≥ 1, ε > 0, consider the following Euler
approximation of stochastic differential equation (1.2):

Xεn(t) = xo + √
ε

∫ t

0
σ
(
Xεn(φn(s))

)
dWs +

∫ t

0
b
(
Xεn(φn(s))

)
ds

where φn is the step function defined in the proof of theorem 6.1; namely φn(t) =
k2−n if t ∈ [k2−n, (k + 1)2−n[, k ≥ 0.

Lemma 7.1. Under the same hypothesis as in theorem 6.1, for any fixed δo > 0,

lim
n→+∞ lim sup

ε→0
ε logP( sup

0≤t≤1
|Xεt −Xεn(t)| ≥ δo) = −∞. (7.1)

Proof. Let δ > 0 be a small parameter, define the stopping time

τ εn = inf
{
t > 0, |Xεn(t)−Xεn(φn(t))| ≥ δ

}
.

Replacing A2 by εA2, cn = 2n/a2n by 2nδ2 and T by 1 in the estimate (6.3), we
get

P(τεn ≤ 1) ≤ exp{−2nδ2/8dεA2}. (7.2)

Now let ηεn(t) = Xεt −Xεn(t) and ξεn(t) = |ηεn(t)|2.According to notations in lemma
3.1, set

et = √
ε
(
σ(Xεt )− σ(Xεn(φn(t)))

)
and ft = b(Xεt )− b(Xεn(φn(t))).

Introduce the stopping time

ζ εn = inf{ t > 0, ξ εn(t) ≥ δ2
o }.
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We shall take δo ∨ δ < co <
1

e
where co is given in the condition (6.1). Then for

t < τεn ∧ ζ εn ,

||et ||2 ≤ 2ε
{||σ(Xεt )− σ(Xεn(t))||2 + ||σ(Xεn(t))− σ(Xεn(φn(t)))||2

}
.

Using condition (6.1), the first term in the brace is dominated by
C

2
ξεn(t) log{1/ξεn(t)};

while the second term is dominated by

C

2
|Xεn(t)−Xεn(φn(t))|2 log{1/|Xεn(t)−Xεn(φn(t))|2}

≤ C

2
δ2 log{1/δ2} ≤ Cδ log{1/δ}.

Therefore for t < τεn ∧ ζ εn ,

||et ||2 ≤ 2Cε
(
ξεn(t) log

1

ξεn(t)
+ δ log

1

δ

)
. (7.3)

In the same way for t < τεn ∧ ζ εn , δo being chosen less than 1/e, we have

|〈ηεn(t), ft
〉| ≤ C

2

(
ξεn(t) log

1

ξεn(t)
+ δoδ log

1

δ2

)

≤ C
(
ξεn(t) log

1

ξεn(t)
+ δ log

1

δ

)
.

Therefore the conditions in (3.8) are satisfied with C3 = 2Cε,C4 = C and δ
replaced by

ρ = δ log
1

δ
. (7.4)

Now let ψρ(ξ) = ∫ ξ
0

ds
s log (1/s)+ρ for 0 < ξ ≤ c2

o < co, and

�ρ,λ(ξ) = eλψρ(ξ) for λ > 0.

We have �′
ρ,λ(ξ) = λ�ρ,λ(ξ)

ξ log 1
ξ

+ ρ
, and

�′′
ρ,λ(ξ) = λ2 �ρ,λ(ξ)

(ξ log 1
ξ

+ ρ)2
+ λ�ρ,λ(ξ)

1 + log ξ

(ξ log 1
ξ

+ ρ)2

≤ λ2 �ρ,λ(ξ)

(ξ log 1
ξ

+ ρ)2

The conditions in (3.7) are satisfied with C1 = λ,C2 = λ2. Let Kλ = 2Cλ +
2Cλε + 4Cλ2ε. By lemma 3.3, we have

IE
(
�ρ,λ(ξ

ε
n(t ∧ τ εn ∧ ζ εn ))

)
≤ eKλ t , for all t > 0. (7.5)
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Let t = 1. From (7.5), we get easily the following estimate

P
(
τ εn ≥ 1, ζ εn ≤ 1

)
≤ eKλ · e−λψδ(δ2

o). (7.6)

Now let λ = 1

ε
, then Kλ = 2C + 6C

1

ε
. Using (7.6), we have

ε logP
(
τ εn ≥ 1, ζ εn ≤ 1

) ≤ (2Cε + 6C)− ψρ(δ
2
o).

Therefore for any ρ = δ log 1
δ
,

lim sup
ε→0

ε logP
(
τ εn ≥ 1, ζ εn ≤ 1

) ≤ 6C − ψρ(δ
2
o). (7.7)

Now

P
(

sup
0≤t≤1

|Xεt −Xεn(t)| ≥ δo

)
= P(ζ εn ≤ 1)

≤ P
(
τ εn ≥ 1, ζ εn ≤ 1

) + P(τεn ≤ 1).

By (7.2), for any δ > 0,

lim sup
ε→0

ε logP(τεn ≤ 1) ≤ −2nδ/8dA2. (7.8)

Using the inequality

lim sup
ε→0

ε log
{
P(ζ εn ≤ 1, τ εn ≥ 1)+ P(τεn ≤ 1)

}

≤ lim sup
ε→0

ε logP(ζ εn ≤ 1, τ εn ≥ 1) ∨ lim sup
ε→0

ε logP(τεn ≤ 1)

and according to (7.7) and (7.8), we get

lim sup
ε→0

ε logP
(

sup
0≤t≤1

|Xεt −Xεn(t)| ≥ δo

)

≤ (
6C − ψρ(δ

2
o)

) ∨ (−2nδ/8dA2). (7.9)

Letting first n → +∞ in (7.9), we get

lim sup
ε→0

ε logP
(

sup
0≤t≤1

|Xεt −Xεn(t)| ≥ δo

)
≤ 6C − ψρ(δ

2
o).

Hence as δ → 0, the right hand side in the above inequality tends to −∞. The
proof of (7.1) is complete. ��

Letm ≥ 1 be an integer. Fix x ∈ Rm, denote byCx([0, 1],Rm) the space of con-
tinuous functions from [0, 1] into Rm with initial value x. Let g ∈ C0([0, 1],Rm),
define

e(g) =
{∫ 1

0 |ġ(t)|2 dt if g is absolutely continuous,
+∞ otherwise .

(7.10)



A study of a class of stochastic differential equations with non-Lipschitzian coefficients 383

For an absolutely continuous function h in C0([0, 1],Rm), we consider the follow-
ing ordinary differential equation on Rd ,

dXh(t) =
(
σ(Xh(t))ḣ(t)+ b(Xh(t))

)
dt, Xh(0) = xo ∈ Rd . (7.11)

The uniqueness and non-explosion of (7.11) under the hypothesis as in lemma 7.1
could be obtained in a similar way as in section 2. In this case, we have the following
result.

Lemma 7.2. Let h ∈ C0([0, 1],Rm) such that e(h) < +∞ andXnh(t) be the Euler
approximation of the same scale as in lemma 7.1 for differential equation (7.11),
then for any α > 0,

lim
n→+∞ sup

{h;e(h)≤α}

(
sup

0≤t≤1
|Xnh(t)−Xh(t)|

)
= 0. (7.12)

Proof. Let h such that e(h) ≤ α. For any n ≥ 1, Xnh(t) satisfies the equation

Xnh(t) = xo +
∫ t

0

[
σ
(
Xnh(φn(s))

)
ḣ(s)+ b

(
Xnh(φn(s))

)]
ds. (7.13)

Let t ∈ [k2−n, (k + 1)2−n], we have

Xnh(t)−Xnh(k2−n) = σ
(
Xnh(k2−n)

)
(h(t)− h(k2−n))+ b

(
Xnh(k2−n)

)
(t − k2−n).

Assume that ||σ(x)|| ≤ A, |b(x)| ≤ B for all x ∈ Rd . Using the above expression
and the fact that

|h(t)− h(k2−n)| ≤ 2−n/2√e(h),
we get the estimate for the difference Xnh(t)−Xnh(φn(t)), namely

|Xnh(t)−Xnh(φn(t))| ≤ (A
√
e(h)+ B)2−n/2, for any t > 0. (7.14)

Therefore for sufficient large n, the quantity |Xnh(t) − Xnh(φn(t))| is bounded by

co, uniformly over the subset {h; e(h) ≤ α}. Let 0 < δ < co ≤ 1

e
. Define

τn(h) = inf
{
t > 0, |Xh(t)−Xnh(t)| ≥ δ

}
.

As before, set ηt = Xnh(t)−Xh(t) and ξt = |ηt |2. According to (7.13), we have

dξt

dt
= 2

〈
ηt ,

(
σ(Xnh(φn(t)))− σ(Xh(t))

)
ḣ(t)

〉

+2
〈
ηt , b(X

n
h(φn(t)))− b(Xh(t))

〉
. (7.15)

For large n and t < τn(h) and using the hypothesis (6.1) and (7.14), we get

||σ(Xnh(φn(t)))− σ(Xh(t))||
≤ ||σ(Xnh(φn(t)))− σ(Xnh(t))|| + ||σ(Xnh(t))− σ(Xh(t))||

≤ C
{
an(h)

√

log
1

an(h)
+ |ηt |

√

log
1

|ηt |
}
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where we set

an(h) = (A
√
e(h)+ B)2−n/2. (7.16)

It is clear that sup
e(h)≤α

an(h) ≤ (A
√
α + B)2−n/2. Therefore there exists no ≥ 1

(independent of h satisfying e(h) ≤ α) such that for n ≥ no and for t < τn(h),

||σ(Xnh(φn(t)))− σ(Xh(t))|| ≤ C
{
an(h) log

1

an(h)
+ |ηt | log

1

|ηt |
}
.

In the same way,

||b(Xnh(φn(t)))− b(Xh(t))|| ≤ C
{
an(h) log

1

an(h)
+ |ηt | log

1

|ηt |
}
.

According to (7.15), we get, for t < τn(h),

∣∣dξt
dt

∣∣ ≤ 2C
{
δan(h) log

1

an(h)
+ 1

2
ξt log

1

ξt

}
(|ḣ(t)| + 1)

≤ 2C
{
an(h) log

1

an(h)
+ ξt log

1

ξt

}
(|ḣ(t)| + 1)

≤ 2C
{
βn log

1

βn
+ ξt log

1

ξt

}
(|ḣ(t)| + 1) (7.17)

where

βn = (A
√
α + B)2−n/2. (7.18)

Let ρn = βn log
1

βn
. Define ψn(ξ) = ∫ ξ

0
ds

s log 1
s
+ρn and�n(ξ) = eψn(ξ). By (7.17),

we have for t < τn(h),
∣∣∣
d

dt
�n(ξt )

∣∣∣ ≤ 2C
�n(ξ)

ξt log 1
ξt

+ ρn

{
βn log

1

βn
+ ξt log

1

ξt

}
(|ḣ(t)| + 1)

which is less than 2C�n(ξt )(|ḣ(t)| + 1). It follows that

�n(ξt∧τn(h)) ≤ 1 + 2C
∫ t

0
�n(ξs∧τn(h))(|ḣ(s)| + 1) ds.

By Gronwall lemma, for any t > 0 and n ≥ no, e(h) ≤ α,

�n(ξt∧τn(h)) ≤ exp
{
2C

∫ t

0
(|ḣ(s)| + 1) ds

} ≤ e2C(
√
α+1). (7.19)

The function ξ → �n(ξ)being increasing, by taking the suprenium over {h; e(h) ≤
α} in (7.19), we get

�n( sup
e(h)≤α

ξ1∧τn(h)) ≤ e2C(
√
α+1). (7.20)
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To complete the proof, it is sufficient to prove that for any δ > 0, there exists
an integer N such that if n ≥ N , then τn(h) > 1 for all h ∈ {g; e(g) ≤ α}.
Otherwise, there exists δo > 0, a subsequence {nk; k ≥ 1} of positive integers and
hnk ∈ {g; e(g) ≤ α} such that

τnk (hnk ) ≤ 1.

By (7.20),

�nk (δ
2
o) = �nk (ξ1∧τnk (hnk )) ≤ e2C(

√
α+1). (7.21)

As k → +∞, nk → +∞, ρnk = βnk log 1/βnk tends to 0. Therefore letting
k → +∞ in (7.21), the left hand side tends to +∞: it is impossible. This com-
pletes the proof of (7.12). ��
Theorem 7.3. Let σ and b be continuous functions on Rd , taking values respec-
tively in Rd⊗Rm and Rd . Suppose that they are bounded and satisfy the hypothesis
(6.1). Let ε > 0, consider the stochastic differential equation

dXεt = √
εσ (Xεt ) dWt + b(Xεt ) dt, Xε0 = xo. (7.22)

Denote by µε the law ofw → Xε· (w) on the space Cxo([0, 1],Rd). Then {µε, ε >
0} satisfies a large deviation principle with the following good rate function defined

by I (f ) = inf{1

2
e(g); Xg = f } for f ∈ Cxo([0, 1],Rd); namely

(i) for any closed subset C ⊂ Cxo([0, 1],Rd),

lim sup
ε→0

ε logµε(C) ≤ − inf
f∈C

I (f ),

(ii) for any open subset G ⊂ Cxo([0, 1],Rd),

lim inf
ε→0

ε logµε(G) ≥ − inf
f∈G

I (f ).

Proof. Let n ≥ 1. Define the map Fn : C0([0, 1],Rm) → Cxo([0, 1],Rd) by
Fn(w)(0) = xo and

Fn(w)(t) = Fn(w)(k2−n)+ σ
(
Fn(w)(k2−n)

)
(w(t)− w(k2−n))

+b(Fn(w)(k2−n)
)
(t − k2−n).

It is clear that Fn is a continuous map from C0([0, 1],Rm) into Cxo([0, 1],Rd).
Notice that

Xεn(t) = Fn(
√
εw)(t).

By Schilder large deviations principle for {√εw; ε > 0} and the continuity of Fn,
the large deviations principle holds for Xεn. Now according to lemmas 7.1 and 7.2
and theorem 4.2.23 in [DZ], we obtain the result. ��

In what follows, we shall drop the hypothesis of boundedness on the coefficients
σ and b.
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Proposition 7.4. Assume that σ and b satisfy the following growth condition
{||σ(x)||2 ≤ C (|x|2 log |x| + 1),

|b(x)| ≤ C (|x| log |x| + 1).
(7.24)

Let (Xεt )t≥0 be a solution of stochastic differential equation (7.22). Then

lim
R→+∞

lim sup
ε→0

ε logP
(

sup
0≤t≤1

|Xεt | ≥ R
) = −∞. (7.25)

Proof. Let ρ ≥ 1 be a C1-function defined on [0,+∞[ such that ρ(ξ) = log ξ for
ξ ≥ e2. According to (7.24), there exists a constant C1 > 0 such that

{||σ(x)||2 ≤ C1 (|x|2ρ(|x|2)+ 1),
|b(x)| ≤ C1 (|x|ρ(|x|2)+ 1).

(7.26)

Now define ψ(ξ) = ∫ ξ
0

ds
sρ(s)+1 and �(ξ) = eλψ(ξ) for λ > 0. We have �′(ξ) =

λ�(ξ)

ξρ(ξ)+ 1
and

�′′(ξ) = λ2�(ξ)

(ξρ(ξ)+ 1)2
− λ�(ξ)(ρ(ξ)+ ξρ′(ξ))

(ξρ(ξ)+ 1)2

≤ λ2�(ξ)

(ξρ(ξ)+ 1)2
− λ�(ξ)ξρ′(ξ)
(ξρ(ξ)+ 1)2

.

By choice of the function ρ, we see that sup
ξ≥0
(|ρ′(ξ)| ξ) < +∞. Therefore there

exists a constant C2 > 0 such that

�′′(ξ) ≤ (λ2 + λC2)�(ξ)

(ξρ(ξ)+ 1)2
. (7.27)

Let ηεt = Xεt and ξεt = |ηεt |2. According to lemma 3.1, we set

et = √
εσ (Xεt ), ft = b(Xεt ).

By (7.26), we have the estimates

||et ||2 ≤ C1ε (ξ
ε
t ρ(ξ

ε
t )+ 1), |ft | ≤ C1 (

√
ξεt ρ(ξ

ε
t )+ 1).

Define τ εR = inf{t > 0, ξ εt ≥ R2} and set

K = (λ+ 2λ2 + 2λC2)ε C1 + 4λC1. (7.28)

Applying lemma 3.2, we have

IE
(
�(ξεt∧τ εR )

)
≤ eKt �(|xo|2). (7.29)

Let t = 1 and λ = 1

ε
in (7.29), we get

P(τεR ≤ 1) ·�(R2) ≤ eK�(|xo|2)
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or more precisely

P(τεR ≤ 1) ≤ e−
1
ε
ψ(R2) · e(2C+1)C1+6C1/ε · eψ(|xo|2)/ε

which implies that

lim sup
ε→0

ε logP(τεR ≤ 1) ≤ −ψ(R2)+ 6C1 + ψ(|xo|2).

Letting R → +∞ in the above inequality, we get (7.25). ��
Remark 7.5. Let ε = 1 and t = 1 in (7.29), similarly we obtain

P( sup
0≤t≤1

|Xt | ≥ R) ≤ C2 e
λψ(|xo|2) · e−λψ(R2) for some constant C2 > 0.

Since ψ(R2) =
∫ R2

0

ds

sρ(s)+ 1
≥ 1

2

∫ R2

e2

ds

s log s
= 1

2
log logR, we have

P( sup
0≤t≤1

|Xt | ≥ R) ≤ C2 e
λψ(|xo|2) · (logR)−λ/2 for any λ > 0. (7.30)

Now for R > 0, define mR = sup{|b(x)|, ||σ(x)||; |x| ≤ R} and bRi = (−mR −
1)∨ bi ∧ (mR + 1), σRi,j = (−mR − 1)∨ σi,j ∧ (mR + 1), 1 ≤ i ≤ d, 0 ≤ j ≤ m.

Put bR = (bR1 , b
R
2 , ..., b

R
d ) and σR = (σRi,j )1≤i≤d,1≤j≤m. Then for |x| ≤ R,

bR(x) = b(x), σR(x) = σ(x).

and bR, σR satisfy (6.1) and (7.24) with the same constants.
Let XεR(·) be the solution to

dXεR(t) = √
εσR(X

ε
R(s))dWs + bR(X

ε
R(s))ds, XεR(0) = xo. (7.31)

For h with e(h) < ∞, let XhR(t) be the solution to

dXhR(t) =
[
σR(X

h
R(t)) ḣ(t)+ bR(X

h
R(t))

]
dt, XhR = xo. (7.32)

For f ∈ Cx0

(
[0, 1], Rd

)
, define

IR(f ) = inf

{
1

2
e(g); XhR = f

}
, and I (f ) = inf

{
1

2
e(g); Xh = f

}

where Xh is the solution of differential equation (7.11). If sup0≤t≤1 |Xh(t)| ≤ R,
then Xh solves the differential equation (7.32) up to the time t = 1. By unique-
ness of solutions, we see that Xh(t) = XhR(t) for 0 ≤ t ≤ 1. Therefore for
f ∈ Cxo([0, 1],Rd) satisfying sup0≤t≤1 |f (t)| ≤ R, I (f ) = IR(f ).

Lemma 7.6. Let α > 0. Then under the condition (7.24),

sup
{h;e(h)≤α}

sup
0≤t≤1

|Xh(t)| < +∞. (7.33)
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Proof. Let ξh(t) = |Xh(t)|2. Then for some constant C > 0,
∣∣∣
dξh(t)

dt

∣∣∣ ≤ C
(
ξh(t)ρ(ξh(t))+ 1

)
(|ḣ(t)| + 1)

where ρ is the function defined on [0,+∞[, considered in the proof of proposition

7.4. Introduce again the function ψ(ξ) =
∫ ξ

0

ds

sρ(s)+ 1
and �(ξ) = eψ(ξ). Then

∣∣∣
d�(ξh(t))

dt

∣∣∣ ≤ C (|ḣ(t)| + 1) ·�(ξh(t))
from which we get

�(ξh(t)) ≤ �(|xo|2)+ C

∫ t

0
(|ḣ(s)| + 1) ·�(ξh(s)) ds.

Again by Gronwall lemma, we obtain

�(ξh(t)) ≤ �(|xo|2) · eC(
√
α+1) for e(h) ≤ α. (7.34)

� being increasing, taking the suprenium over {h; e(h) ≤ α} and t ∈ [0, 1] in
(7.34), we get

�
(

sup
e(h)≤α

sup
0≤t≤1

ξh(t)
) ≤ �(|xo|2) eC(

√
α+1).

It follows that sup
e(h)≤α

sup
0≤t≤1

ξh(t) < +∞. ��

Lemma 7.7. The rate function I is a good rate function, namely for any β > 0,
the level set Qβ = {f ; I (f ) ≤ β} is compact.

Proof. Let (fn) be a sequence in Qβ : I (fn) ≤ β. Then there exist hn ∈
Co([0, 1],Rm) such that

1

2
e(hn) ≤ β + 1

n
and Xhn = fn. Let α = β + 1. By

(7.33), for some R > 0, we have

Xhn = X
hn
R = fn.

It is known that there exists a h ∈ Co([0, 1],Rm) such that 1
2e(h) ≤ β andXhnR con-

verges toXhR uniformly over [0, 1], up to a subsequence. Therefore f = Xh ∈ Qβ .
��

Now we are ready to prove the main result E.

Proof of theorem E. Recall that the process XεR(·) is defined by (7.31). Let µRε
denote the law of XεR(·) on Cx0([0, 1], Rd). By theorem 7.3, {µRε , ε > 0} satis-
fies a large deviation principle with good rate function IR(·). Note that µRε and
µε coincide on the ball {f ; sup0≤t≤1 |f (t)| ≤ R}. For R > 0 and a closed subset
C ⊂ Cx0([0, 1], Rd), set CR = C ∩ {f ; sup0≤t≤1 |f (t)| ≤ R}. Then,

µε(C) ≤ µε(CR)+ P( sup
0≤t≤1

|Xεt | > R)

= µRε (CR)+ P( sup
0≤t≤1

|Xεt | > R).
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By large deviation principle for {µRε , ε > 0},

lim sup
ε→0

ε logµRε (CR) ≤ − inf
f∈CR

{IR(f )} ≤ − inf
f∈C

I (f ).

Hence

lim sup
ε→0

ε logµε(C) ≤ ( − inf
f∈C

I (f )
) ∨ (

lim sup
ε→0

ε logP( sup
0≤t≤1

|Xε(t)| > R)
)
.

Applying (7.25) and letting R → ∞, we obtain

lim sup
ε→0

ε logµε(C) ≤ − inf
f∈C

I (f ),

which is the upper bound.
Let G be an open subset of Cx0([0, 1], Rd). Fix any φ0 ∈ G. Choosing

δ > 0 such that B(φ0, δ) = {f ; sup0≤t≤1 |f (t) − φ0(t)| ≤ δ} ⊂ G. Let R =
sup0≤t≤1 |φ0(t)| + δ. Since

B(φ0, δ) ⊂ {f ; sup
0≤t≤1

|f (t)| ≤ R},

we have

−I (φ0) = −IR(φ0) ≤ lim inf
ε→0

ε logµRε

(
B(φ0, δ)

)

= lim inf
ε→0

ε logµε

(
B(φ0, δ)

)

≤ lim inf
ε→0

ε logµε(G).

Since φ0 is arbitrary, it follows that

− inf
f∈G

I (f ) ≤ lim inf
ε→0

ε logµε(G),

which is the lower bound. ��
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