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Abstract. We provide general criteria for energy measures of regular Dirichlet forms on
self-similar sets to be singular to Bernoulli type measures. In particular, every energy mea-
sure is proved to be singular to the Hausdorff measure for canonical Dirichlet forms on
2-dimensional Sierpinski carpets.

1. Introduction

During the development of the analysis on self-similar sets, or fractals, various
anomalous properties have been observed. For example, a typical behavior of transi-
tion densities p(t, x, y) of diffusion processes on good fractal sets can be described
as

c1.1t
−ds/2 exp

(
−c1.2(d(x, y)

dw/t)−1/(dw−1)
)
≤ p(t, x, y)

≤ c1.3t
−ds/2 exp

(
−c1.4(d(x, y)

dw/t)−1/(dw−1)
)
, (1.1)

where the spectral dimension ds is different from the fractal dimension, and the walk
dimension dw is greater than 2. This is in contrast to the case of symmetric diffusion
processes on R

d associated with uniformly elliptic operators of divergence form.
The estimates of the transition densities of these processes are similar to (1.1) but
with ds = d and dw = 2. Moreover, the domains of Dirichlet forms associated
with canonical symmetric diffusions on a broad class of fractals are represented by
Lipschitz spaces with a differential order of dw/2 ([14, 18, 26]), while that of the
Brownian motion on R

d is given by a first order Sobolev space.
In this paper, we demonstrate another anomalous property concerning the

energy measures associated with regular Dirichlet forms on self-similar sets. In
the case of the Brownian motion on R

d , the associated Dirichlet form (E,F) on
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L2(Rd , dx) is given by

E(f, g) = 1

2

∫

Rd
(∇f,∇g) dx, f, g ∈ F = H 1(Rd),

and the energy measure µ〈f 〉, where f ∈ F , is equal to |∇f |2 dx. This, in par-
ticular, is absolutely continuous with respect to the Lebesgue measure on R

d . It
has been suspected that energy measures are singular to the Hausdorff measure
for generic fractals due to the lack of differential structures. This was first proved
by Kusuoka [19] for a class of fractals including Sierpinski gaskets. Later, Ben-
Bassat, Strichartz, and Teplyaev [9] proved the singularity for generic p.c.f. self-
similar sets. In this article, we treat further generalized self-similar sets including
infinitely ramified ones, and provide criteria for energy measures of self-similar
Dirichlet forms to be singular to Bernoulli type measures. Broadly speaking, main
theorems imply that singularity to the canonical Bernoulli measure is verified if
the elliptic Harnack inequality holds and the walk dimension is greater than 2. In
particular, every energy measure is proved to be singular to the Hausdorff measure
for standard Dirichlet forms on 2-dimensional Sierpinski carpets. This partially
answers the questions posed in [2].

The organization of this paper is as follows. In Section 2, we set up a framework
and state the main claims. In Section 3, we prove a series of lemmas. In Section 4,
the main theorems are proved. Certain examples are presented in the last section.

Throughout this article, ci,j denotes a positive constant appearing in Section i
for the first time.

2. Framework

First, we introduce a self-similar structure. Let K be a compact metrizable topo-
logical space, S a finite set with #S ≥ 2, and ψi : K → K a continuous injective
map for i ∈ S. Set � = SN. For i ∈ S, define a shift operator σi : � → � by
σi(ω1ω2 · · · ) = iω1ω2 · · · . Let us suppose that there exists a continuous surjective
map π : �→ K such that ψi ◦π = π ◦σi for each i ∈ S. We call (K, S, {ψi}i∈S)
a self-similar structure, following Kigami [15].

Define W0 = {∅}, Wm = Sm for m ∈ N, and W∗ = ⋃
m∈Z+ Wm. When

w ∈ Wm, we write |w| = m and call m the length of w. For w = w1w2 · · ·wm ∈
Wm ⊂ W∗, we defineψw = ψw1◦ψw2 ◦· · ·◦ψwm , σw = σw1◦σw2 ◦· · ·◦σwm ,Kw =
ψw(K), and �w = σw(�). Here, we use the convention that ψ∅ and σ∅ represent
the identity maps. When w = w1w2 · · ·wm ∈ Wm and w′ = w′1w

′
2 · · ·w′m′ ∈ Wm′ ,

ww′ denotes w1w2 · · ·wmw′1w′2 · · ·w′m′ ∈ Wm+m′ .
Define a subset A of R

S by

A =
{
θ = {θi}i∈S ∈ R

S

∣∣∣∣∣ θi > 0 for every i ∈ S and
∑
i∈S

θi = 1

}
.

Given θ ∈ A, let λθ denote the Bernoulli measure on � with weight θ . Specifi-
cally, λθ is a unique Borel probability measure such that λθ (�w)=θw1θw2 · · · θwm
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for every w = w1w2 · · ·wm ∈ Wm ⊂ W∗. We will use the notation θw =
θw1θw2 · · · θwm for θ ∈ R

S andw ∈ Wm, and θ∅ = 1 for the remainder of the paper.
Define a Borel measure µθ on K by µθ = π∗λθ , that is, µθ(A) = λθ (π

−1(A)). It
is called a self-similar measure on K with weight θ .

We impose the following assumption.

(A1) For every x ∈ K , π−1(x) is a finite set.

LetKb = {x ∈ K | #(π−1(x)) > 1}.According toTheorem 1.4.5 and Lemma 1.4.7
in [17], every θ ∈ A satisfies µθ(Kb) = 0 and µθ(Kw) = θw for all w ∈ W∗.

We fix p ∈ A and abbreviate λp and µp as λ and µ, respectively. Assume that
we are given a regular Dirichlet form (E,F) on L2(µ) = L2(K,µ). Let {Tt }t>0
denote the associated Markovian semigroup onL2(µ). For any α ∈ [1,∞), {Tt }t>0
extends (or is restricted) to a strongly continuous contraction semigroup on Lα(µ).
Furthermore, the generator of {Tt }t>0 on Lα(µ) is denoted by L(α) with domain
Dom(L(α)). Note that Dom(L(α2)) ⊂ Dom(L(α1)) and L(α1)|Dom(L(α2)) = L(α2)

when α1 ≤ α2. We write L for L(2), which is a nonpositive self-adjoint opera-
tor on L2(µ). Set Fb = F ∩ L∞(µ), F+ = {f ∈ F | f ≥ 0 µ-a.e.}, and
Fb,+ = Fb ∩ F+. We equip F with norm ‖f ‖F = (E(f, f )+ ‖f ‖2

L2(µ)
)1/2. We

further impose the following assumptions.

(A2) 1 ∈ F and E(1, 1) = 0.
(A3) (Self-similarity) ψ∗i f ∈ F for every f ∈ F and i ∈ S, and there exists

s = {si}i∈S with si > 0 for all i ∈ S such that

E(f, f ) =
∑
i∈S

siE(ψ∗i f, ψ∗i f ), f ∈ F . (2.1)

Here, ψ∗i f is a pullback of f by the map ψi .
(A4) (Spectral gap) There exists a constant cN > 0 such that

∥∥∥∥f −
∫

K

f dµ

∥∥∥∥
2

L2(µ)

≤ cNE(f, f ) for all f ∈ F . (2.2)

According to the polarization argument and by repeatedly using (2.1), any f , g ∈ F
and m ∈ N satisfies

E(f, g) =
∑
w∈Wm

swE(ψ∗wf,ψ∗wg). (2.3)

Let f̃ denote a quasi-continuous Borel modification of f ∈ F . For each f ∈ F , let
µ〈f 〉 denote the energy measure of f with respect to (E,F). When f ∈ Fb, µ〈f 〉
is a unique smooth Borel measure on K satisfying∫

K

g̃ dµ〈f 〉 = 2E(f, fg)− E(f 2, g), g ∈ Fb.

The following inequalities are also useful (see e.g. [11, p. 111]). For f1, f2 ∈ F ,
and a nonnegative Borel function g on K ,∣∣∣∣∣

(∫

K

g dµ〈f1〉
)1/2

−
(∫

K

g dµ〈f2〉
)1/2

∣∣∣∣∣ ≤
(∫

K

g dµ〈f1−f2〉
)1/2

; (2.4)
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in particular,
∣∣∣µ〈f1〉(A)

1/2 − µ〈f2〉(A)
1/2
∣∣∣ ≤ µ〈f1−f2〉(A)

1/2 (2.5)

for any Borel subset A of K .
To state additional assumptions, we introduce a number of other notations.

When w ∈ W∗ and f ∈ L2(µ), we define 	wf ∈ L2(µ) by

	wf (x) =
{
f (ψ−1

w (x)) if x ∈ Kw
0 otherwise

.

Since µ(Kb) = 0, it should be noted that ψ∗
w′	wf = 0µ-a.e. if w and w′ are

different elements in some Wm.
For a measurable function f on K , supp f denotes the smallest closed set F

such that f = 0 µ-a.e. onK \F . We fix a Borel subsetK∂ ofK , which is regarded
as a boundary of K . (In most cases, K∂ denotes the image of the post-critical set
by π ; see Section 5.) Set

F0 = {f ∈ F | supp f ∩K∂ = ∅}.
We impose the following assumptions.

(A5) K \K∂ has a nonempty interior.
(A6) 	if ∈ F0 for any f ∈ F0 and i ∈ S ⊂ W∗.

By (A6), it is easy to prove that 	wf ∈ F0 for any f ∈ F0 and w ∈ W∗. Denote
the closure of F0 in F by FD .

Let

H = {h ∈ F | E(h, h) ≤ E(h+ f, h+ f ) for all f ∈ FD},
H+ = {h ∈ H | h ≥ 0 µ-a.e.}.

We term the elements in H harmonic functions. As is seen later, H is a closed
subspace of F . The following is a key condition to the main theorem.

(C) There exists some u ∈ W∗ such that ψ∗u : H → F is a compact operator.

Theorem 2.1. Assume (C). Then, for every q ∈ A, either of the following holds:

(i) There exists some h ∈ H such that µ〈h〉 = µq .
(ii) For every f ∈ F , µ〈f 〉 and µq are mutually singular.

We will provide the sufficient conditions for (C). Consider the following conditions.

(EHI) (Elliptic Harnack inequality on a certain subset) There exist v ∈ W∗ and
c2.1 > 0 such that for any h ∈ H+,

µ-esssup
x∈Kv

h(x) ≤ c2.1 µ-essinf
x∈Kv

h(x).
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(D) There exist v ∈ W∗ and c2.2 > 0 such that

µ-esssup
x∈Kv

|h(x)| ≤ c2.2‖h‖F for every h ∈ H.

(R) L has compact resolvents. In other words, F is compactly imbedded in
L2(µ).

Theorem 2.2. (EHI) implies (D), and (D)+(R) implies (C).

We will also provide criteria to guarantee that case (i) of Theorem 2.1 does not
occur.

Theorem 2.3. Suppose that every Borel subsetA, B ofK with positive µ-measure
satisfies

lim
t↓0

t log
∫

K

Tt1A · 1B dµ ≥ 0. (2.6)

Then, if f ∈ F satisfies µ〈f 〉 � µ(= µp) and the Radon-Nikodym derivative
dµ〈f 〉
dµ

belongs to L∞(µ), then f will be a constant function. In particular, case (i)
of Theorem 2.1 does not occur for q = p.

According to Lemma 3.12 below and Theorem 1.1 in [13], limt↓0 t log
∫
K
Tt1A ·

1B dµ always exists and is less than or equal to 0. Therefore, (2.6) is equivalent to
the condition limt↓0 t log

∫
K
Tt1A · 1B dµ = 0.

The assumption in Theorem 2.3 holds if Tt has an integral kernel p(t, x, y)
satisfying

p(t, x, y) ≥ c2.3t
−ds/2 exp

(
−c2.4t

−1/(dw−1)
)
, t ∈ (0, 1] and x, y ∈ K

for some positive constants c2.3, c2.4, and ds , and some dw > 2. This is because we
have

∫

K

Tt1A · 1B dµ =
∫∫

A×B
p(t, x, y) µ(dx)µ(dy)

≥ µ(A)µ(B)c2.3t
−ds/2 exp

(
−c2.4t

−1/(dw−1)
)
,

which implies (2.6) since 1/(dw − 1) < 1.
To state another criterion, we define distance-like functions as follows. Let

m ∈ N. For x, x′ ∈ K , denote x
m∼ x′ if there exist w, w′ ∈ Wm such that x ∈ Kw,

x′ ∈ Kw′ , and Kw ∩Kw′ �= ∅. Set

dm(x, x
′) = min{j ∈ N | xi m∼ xi+1, i = 0, 1, . . . , j − 1, x0 = x, xj = x′}.

(2.7)

We introduce the following condition.
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(O) There exist some z ∈ W∗, N ∈ N, and C > 0 such that for any w ∈ W∗
with Kw ⊂ Kz, there exists A(w) ⊂ W|w| with #A(w) ≤ N satisfying the
condition that every h ∈ H has a continuous modification on Kz and that

(
µ-esssup
x∈Kw

h(x)− µ-essinf
x∈Kw

h(x)

)2

≤ C
∑

ξ∈A(w)
E(ψ∗ξ h, ψ∗ξ h).

Theorem 2.4. Assume (O). Let q = {qi}i∈S ∈ A and r = mini∈S si/qi . Suppose

lim
m→∞

dm(x, y)

rm/2
= 0

for each x, y ∈ K . Then, if f ∈ H satisfies µ〈f 〉 � µq and
dµ〈f 〉
dµq

belongs to

L∞(µq), then f will be constant onKz, where z is given in (O). In particular, case
(i) of Theorem 2.1 does not occur for such q.

As is seen in Section 5, with regard to typical examples such as nested fractals
and Sierpinski carpets, the set of q satisfying the assumption of Theorem 2.4 is a
neighborhood of p in A, where p is given such thatµp is the normalized Hausdorff
measure of the self-similar set.

The following proposition is an easy application of singularity of energy mea-
sures.

Proposition 2.1. Suppose f ∈ Dom(L), f 2 ∈ Dom(L(1)), and µ〈f 〉 ⊥ µ. Then,
f is a constant function. In particular, if µ〈f 〉 ⊥ µ for any f ∈ F , then no
nonconstant function f can satisfy both f ∈ Dom(L) and f 2 ∈ Dom(L(1)).

3. Preliminary lemmas

Lemma 3.1. For anyw ∈ W∗,ψ∗w is a bounded operator on F . To be more precise,

‖ψ∗wf ‖F ≤ (p−1/2
w ∨ s−1/2

w )‖f ‖F .

Proof. This is evident from the inequalities ‖ψ∗wf ‖2
L2(µ)

≤ p−1
w ‖f ‖2

L2(µ)
and

E(f, f ) ≥ swE(ψ∗wf,ψ∗wf ) due to the self-similarities of µ and E . ��
Lemma 3.2. There exists a constant c3.1 such that ‖f ‖2

F ≤ c3.1E(f, f ) +(∫
K
f dµ

)2
for all f ∈ F .

Proof. The claim follows with c3.1 = cN + 1 from the identity ‖f ‖2
L2(µ)

=∥∥f − ∫
K
f dµ

∥∥2
L2(µ)

+ (∫
K
f dµ

)2 and inequality (2.2). ��
Lemma 3.3. 	wf ∈ FD for any f ∈ FD and w ∈ W∗.

Proof. Take a sequence {fn} from F0 converging to f in F . Then, 	wfn ∈ F0 by
(A6), and we have

E(	wfn −	wfk,	wfn −	wfk) = swE(fn − fk, fn − fk)
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and
‖	wfn −	wfk‖2

L2(µ)
= pw‖fn − fk‖2

L2(µ)
.

This implies that {	wfn}n∈N is a Cauchy sequence in F . Since its limit should be
	wf , we conclude that 	wf belongs to FD . ��

Lemma 3.4. If f ∈ FD and g ∈ F+, then f ∧ g ∈ FD .

Proof. When f ∈ F0, we have f ∧ g ∈ F0 since supp(f ∧ g) ⊂ supp f .
When f ∈ FD , take a sequence {fn} from F0 converging to f in F and µ-a.e.

It is easy to see that {fn ∧ g} ⊂ F0 is bounded in F . Therefore, we can take a
subsequence converging weakly to f ∧ g in F , which implies that f ∧ g ∈ FD . ��

Lemma 3.5. There exists a constant cD > 0 such that

‖f ‖2
L2(µ)

≤ cDE(f, f ) for all f ∈ FD.

In particular, 1 �∈ FD .

Proof. Take an arbitrary i ∈ S = W1 and let a = µ(K \ Ki) > 0. Let b be a
positive number and f ∈ FD with E(f, f ) = 1. From Chebyshev’s inequality,
(2.1), (2.2), and Lemma 3.3, we have

µ

({∣∣∣∣	if −
∫

K

	if dµ

∣∣∣∣ > b

})
≤ 1

b2

∥∥∥∥	if −
∫

K

	if dµ

∥∥∥∥
2

L2(µ)

≤ cN

b2 E(	if,	if )

= cNsi

b2 E(f, f ) = cNsi

b2 . (3.1)

Set b = (2cNsi/a)1/2. Then, the last term of (3.1) is less than a. Since 	if = 0
on K \Ki ,

∣∣∫
K
	if dµ

∣∣ must be less than or equal to b. Therefore, we have

∣∣∣∣
∫

K

f dµ

∣∣∣∣ =
1

pi

∣∣∣∣
∫

K

	if dµ

∣∣∣∣ ≤
b

pi

and

‖f ‖2
L2(µ)

=
∥∥∥∥f −

∫

K

f dµ

∥∥∥∥
2

L2(µ)

+
∣∣∣∣
∫

K

f dµ

∣∣∣∣
2

≤ cNE(f, f )+ b2

p2
i

= cN + b2

p2
i

.

This concludes the assertion. ��

Lemma 3.6. (i) For h ∈ F , h ∈ H if and only if E(f, h) = 0 for every f ∈ FD .
(ii) H is a closed subspace of F .
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Proof. (i) Suppose h ∈ H. For any f ∈ FD and ε �= 0, we have E(h, h) ≤
E(h+ εf, h+ εf ), which implies that 2ε−1E(f, h)+ E(f, f ) ≥ 0. If E(f, h) �= 0,
we get a contradiction by letting ε ↓ 0 or ε ↑ 0.

Next, suppose that E(f, h) = 0 for every f ∈ FD . Then, E(h + f, h + f ) =
E(h, h)+ E(f, f ) ≥ E(h, h) for every f ∈ FD , which implies that h ∈ H.

Claim (ii) is a straightforward consequence of (i). ��
Lemma 3.7. For any w ∈ W∗, ψ∗w(H) ⊂ H.

Proof. Letm = |w| and take h ∈ H. For any f ∈ FD ,	wf ∈ FD by Lemma 3.3.
Then,

0 = E(h,	wf ) =
∑
ξ∈Wm

sξE(ψ∗ξ h, ψ∗ξ 	wf ) = swE(ψ∗wh, f ).

Therefore, E(ψ∗wh, f ) = 0. This implies that ψ∗wh ∈ H by Lemma 3.6. ��
Lemma 3.8. For each f ∈ F , there exists a unique h ∈ H such that f − h ∈ FD .

Proof. Fix f ∈ F and let Ff := {g ∈ F | f−g ∈ FD}. It is sufficient to prove that
there exists a unique element in Ff that attains the infimum of {E(g, g) | g ∈ Ff }.
Take a sequence {gn} ⊂ Ff such that E(gn, gn) ↓ inf{E(g, g) | g ∈ Ff } as
n→∞. By Lemma 3.5,

‖gn‖L2(µ) ≤ ‖gn − f ‖L2(µ) + ‖f ‖L2(µ)

≤ √
cDE(gn − f, gn − f )1/2 + ‖f ‖L2(µ)

≤ √
cD{E(gn, gn)1/2 + E(f, f )1/2} + ‖f ‖L2(µ).

Therefore, {gn} is bounded in L2(µ), and hence, bounded in F . By taking a sub-
sequence if necessary, gn converges weakly to some g∞ in F . We also have
E(g∞, g∞) ≤ limn→∞ E(gn, gn). Since Ff is weakly closed in F , we conclude
that g∞ ∈ Ff and that g∞ attains the infimum. If both g′ and g′′ in Ff attain the
infimum of {E(g, g) | g ∈ Ff }, then

E
(
g′ − g′′

2
,
g′ − g′′

2

)
= −E

(
g′ + g′′

2
,
g′ + g′′

2

)
+1

2
E(g′, g′)+1

2
E(g′′, g′′) ≤ 0

since (g′ + g′′)/2 ∈ Ff . Therefore, g′ − g′′ is a constant function. In view of
Lemma 3.5, we conclude that g′ = g′′. ��
Define a mapH : F → H ⊂ F byHf = h, where h is given in the lemma above.

Lemma 3.9. (i) H is a bounded linear operator on F .
(ii) For f ∈ F , µ-essinf f ≤ µ-essinfHf ≤ µ-esssupHf ≤ µ-esssup f .

Proof. (i) The linearity of the map H follows from Lemma 3.6. We have
E(Hf,Hf ) ≤ E(f, f ) by definition. We also have

‖Hf ‖L2(µ) ≤ ‖Hf − f ‖L2(µ) + ‖f ‖L2(µ)

≤ √
cDE(Hf − f,Hf − f )1/2 + ‖f ‖L2(µ)

≤ 2
√
cDE(f, f )1/2 + ‖f ‖L2(µ).
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Therefore, ‖Hf ‖F is dominated by a constant times ‖f ‖F , which implies the first
assertion.
(ii) Suppose f ≤ b µ-a.e. for b ∈ R. Since Hf − f ∈ FD and b − f ∈ F+,
Lemma 3.4 assures that

Hf ∧ b − f = (Hf − f ) ∧ (b − f ) ∈ FD.
Since E(Hf ∧ b,Hf ∧ b) ≤ E(Hf,Hf ) and Hf is the unique element attaining
the infimum of {E(g, g) | g ∈ Ff }, we conclude that Hf ∧ b = Hf µ-a.e., that
is, Hf ≤ b µ-a.e. Considering −f in place of f , we derive all the relations. ��

Let

Hloc =
{
f ∈ F

∣∣∣∣
there exists some m ∈ Z+ such that
ψ∗wf ∈ H for every w ∈ Wm

}
.

Lemma 3.10. Hloc is dense in F .

Proof. For f ∈ F and m ∈ Z+, set

fm(x) = H(ψ∗wf )(ψ
−1
w (x)) for x ∈ Kw, w ∈ Wm.

This is well-defined up toµ-equivalence becauseµ(Kb) = 0. Then, fm has another
expression:

fm = f +
∑
w∈Wm

	w(H(ψ
∗
wf )− ψ∗wf ),

which implies that fm ∈ F . Since ψ∗wfm = H(ψ∗wf ) ∈ H for any w ∈ Wm, fm
belongs to Hloc. By (2.3), we also have

E(fm, fm) =
∑
w∈Wm

swE(H(ψ∗wf ),H(ψ∗wf ))

≤
∑
w∈Wm

swE(ψ∗wf,ψ∗wf ) = E(f, f ). (3.2)

In order to prove the lemma, it is enough to show that any functionf ∈ F∩C(K)
is approximated by functions in Hloc in the weak topology of F . On account of
Lemma 3.9 (ii), we may assume

min
x∈Kw

f (x) ≤ inf
x∈Kw

fm(x) ≤ sup
x∈Kw

fm(x) ≤ max
x∈Kw

f (x)

for any w ∈ Wm by taking a suitable µ-modification if necessary. In particu-
lar, we see that {fm}m∈Z+ is bounded in F by combining the estimate (3.2). Let
ω = ω1ω2 · · · ∈ � and y = π(ω). For each m ∈ Z+,

|f (y)− fm(y)| ≤ max
x∈Kω1ω2 ···ωm

f (x)− min
x∈Kω1ω2 ···ωm

f (x),

which converges to 0 asm→∞because
⋂
m∈Z+ Kω1ω2···ωm = {y}by [17, Proposi-

tion 1.3.3]. Therefore, fm converges to fµ-a.e. and we conclude that fm converges
weakly to f in F . ��
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Lemma 3.11. (i) Let w ∈ W∗. For any exceptional set N of K , ψ−1
w (N) is also

an exceptional set. In particular, for every f ∈ F ,ψ∗wf̃ is a quasi-continuous
modification of ψ∗wf .

(ii) For f ∈ F and m ∈ Z+, we have

µ〈f 〉 =
∑
w∈Wm

sw(ψw)∗µ〈ψ∗wf 〉, (3.3)

that is, µ〈f 〉(A) =
∑
w∈Wm swµ〈ψ∗wf 〉(ψ

−1
w (A)) for any Borel subset A ofK .

Proof. (i) Let ε > 0. Take an open set O ⊃ N and a function eO ∈ F such that
eO ≥ 1 µ-a.e. on O and ‖eO‖F < ε. Then, ψ∗weO ≥ 1 µ-a.e. on ψ−1

w (O) ⊃
ψ−1
w (N). Moreover, by Lemma 3.1, ‖ψ∗weO‖F ≤ (p

−1/2
w ∨ s−1/2

w )ε. Therefore,
ψ−1
w (N) is also exceptional.

(ii) Suppose f ∈ Fb. Then for any g ∈ Fb,
∫

K

g̃ dµ〈f 〉 = 2E(f, fg)− E(f 2, g)

=
∑
w∈Wm

sw

{
2E(ψ∗wf,ψ∗wfψ∗wg)− E(ψ∗wf 2, ψ∗wg)

}

=
∑
w∈Wm

sw

∫

K

ψ∗wg̃ dµ〈ψ∗wf 〉.

From the uniqueness of the energy measure, we obtain (3.3). For general f ∈ F ,
we simply take an approximate sequence in Fb and use (2.4). ��

Lemma 3.12. (E,F) is a local Dirichlet form.

Proof. We note that for each x ∈ K ,
{⋃

w∈Wm:x∈Kw Kw
∣∣m ∈ Z+

}
gives a funda-

mental system of neighborhoods of x by Proposition 1.3.6 in [17]. Suppose that f ,
g ∈ F satisfies supp f ∩ supp g = ∅. Then, for sufficiently large m ∈ Z+, each
w ∈ Wm satisfies either supp f ∩Kw = ∅ or supp g ∩Kw = ∅. Then,

E(f, g) =
∑
w∈Wm

swE(ψ∗wf,ψ∗wg) = 0.

This implies that (E,F) is local. ��

4. Proof of Theorems

We set �A =
⋃
w∈A �w for A ⊂ W∗.

For f ∈ F , we will construct a finite measure λ〈f 〉 on � as follows. For each
m ∈ Z+, define

λ
(m)
〈f 〉 (A) = 2

∑
w∈A

swE(ψ∗wf,ψ∗wf ), A ⊂ Wm.
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Then, λ(m)〈f 〉 is a measure on Wm. When A ⊂ Wm and A′ = {wi ∈ Wm+1 | w ∈
A, i ∈ S},

λ
(m+1)
〈f 〉 (A′) = 2

∑
w∈A

∑
i∈S

swiE(ψ∗wif, ψ∗wif )

= 2
∑
w∈A

sw
∑
i∈S

siE(ψ∗i ψ∗wf,ψ∗i ψ∗wf )

= 2
∑
w∈A

swE(ψ∗wf,ψ∗wf ) = λ
(m)
〈f 〉 (A).

Therefore, {λ(m)〈f 〉 }m∈Z+ has a consistency condition. We also note that λ(m)〈f 〉 (Wm) =
2E(f, f ) <∞. By the Kolmogorov extension theorem, there exists a unique Borel
finite measure λ〈f 〉 on � such that λ〈f 〉(�w) = λ

(|w|)
〈f 〉 ({w}) for every w ∈ W∗.

Lemma 4.1. π∗λ〈f 〉 = µ〈f 〉.

Proof. We define a set function χm for m ∈ Z+ by

χm(A) =
∑
w∈Wm

swµ〈ψ∗wf 〉(π(σ
−1
w (A))),

whereA is a σ -compact set of�. χm does not necessarily satisfy the additive prop-
erty but has monotonicity. Let B be a closed subset of K . From Lemma 3.11 (ii),
µ〈f 〉(B) =

∑
w∈Wm swµ〈ψ∗wf 〉(ψ

−1
w (B)). Sinceψw◦π = π◦σw andπ is surjective,

we have
ψ−1
w (B) = π(π−1(ψ−1

w (B))) = π(σ−1
w (π−1(B))).

Therefore, we get

µ〈f 〉(B) = χm(π
−1(B)). (4.1)

When C ⊂ Wm ⊂ W∗, we have

λ〈f 〉(�C) = λ
(m)
〈f 〉 (C)

=
∑
w∈C

swµ〈ψ∗wf 〉(K)

=
∑
w∈Wm

swµ〈ψ∗wf 〉(π(σ
−1
w (�C)))

= χm(�C). (4.2)

Here, in the third equality, we used the identity

π(σ−1
w (�C)) =

{
K if w ∈ C
∅ if w �∈ C .

Now, let D be a closed set of K . π−1(D) is also a closed set of �. For each
m ∈ Z+, let Cm = {w ∈ Wm | �w ∩ π−1(D) �= ∅}. Then, {�Cm}m∈Z+ is a
decreasing sequence and

⋂
m∈Z+ �Cm = π−1(D). In fact, if we set a distance ρ on
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� by ρ(ω, η) = exp(− inf{j | ωj �= ηj }) for ω = {ωj }j∈N and η = {ηj }j∈N ∈ �,
then �Cm is simply {ω ∈ � | ρ(ω, π−1(D)) ≤ e−m−1}.

By virtue of (4.1) and (4.2),

µ〈f 〉(D) = χm(π
−1(D)) ≤ χm(�Cm) = λ〈f 〉(�Cm).

Letting m→∞, we get

µ〈f 〉(D) ≤ λ〈f 〉(π−1(D)) = π∗λ〈f 〉(D).

Since bothµ〈f 〉 andπ∗λ〈f 〉 are Borel measures onK , we haveµ〈f 〉(B) ≤ π∗λ〈f 〉(B)
for every Borel set B. Since the total masses are the same for µ〈f 〉 and π∗λ〈f 〉, the
reverse inequality also holds by considering K \ B in place of B. This completes
the proof. ��

The following general criterion for the singularity of probability measures, which
is a slight modification of Theorem VII.6.4 in [28], is a key to the proof of Theorem

2.1. For x ∈ R, x⊕ is defined by x⊕ =
{

1/x if x �= 0
0 if x = 0

.

Theorem 4.1. Let (�,B) be a measurable space on which a filtration {Bn}n∈Z+
is defined such that

∨
n∈Z+ Bn = B. Let P and P̃ be two probability measures on

(�,B). Assume that P̃ |Bn � P |Bn for each n ∈ Z+. Set zn = d(P̃ |Bn )
d(P |Bn ) for n ∈ Z+

and αn = znz
⊕
n−1 for n ∈ N. If

∞∑
n=1

(1− E
P [
√
αn | Bn−1]) = ∞ P -a.e., (4.3)

where E
P [ · | Bn−1] denotes the conditional expectation for P given Bn−1, then P

and P̃ are mutually singular.

Remark 4.1. Note that by Jensen’s inequality, 1 − E
P [
√
αn | Bn−1] ≥ 0 always

holds. In Theorem VII.6.4 in [28], it is proved that the singularity of the two mea-
sures is equivalent to the same relation as (4.3) but with P̃ -a.e. instead of P -a.e.
A characterization for absolute continuity is also provided there.

For the proof of Theorem 4.1, we recall the following result.

Theorem 4.2 ([28, Theorem VII.6.1]). With the same notation as in Theorem 4.1,
z∞ = limn→∞ zn exists (P + P̃ )-a.e. and

P̃ (A) =
∫

A

z∞ dP + P̃ (A ∩ {z∞ = ∞}), A ∈ B.

Moreover, P̃ (· ∩ {z∞ = ∞}) and P are mutually singular.
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Proof of Theorem 4.1. Combining the estimates (19), (20), (25), (23), (28), and
(24) in the proof of Theorem VII.6.4 in [28], we have

{z∞ = ∞} =
{ ∞∑
n=1

E
P [(1−√

αn)
2 | Bn−1] = ∞

}

=
{ ∞∑
n=1

(1− E
P [
√
αn | Bn−1]) = ∞

}
P̃ -a.e.

By (4.3), there exists B ∈ B such that P(B) = 1 and
∑∞
n=1(1 − E

P [
√
αn |

Bn−1]) = ∞ on B. Then, z∞ = ∞ P̃ -a.e. on B. Applying Theorem 4.2 to A =
� \ B, we have P̃ (� \ B) = P̃ ((� \ B) ∩ {z∞ = ∞}), that is, z∞ = ∞ P̃ -a.e.
on � \ B. Hence, P̃ ({z∞ = ∞}) = 1 and we obtain P̃ ⊥ P by the latter part of
Theorem 4.2. ��
Proof of Theorem 2.1. Consider a projective system {RWm (m ∈ N), ϕm,n (m, n ∈
N, m ≤ n)}, where ϕm,n is a continuous map from R

Wn to R
Wm given by

ϕm,n({aw}w∈Wn) = {bw′ }w′∈Wm, bw′ =
∑

w′′∈Wn−m
aw′w′′ .

Note that the consistency condition ϕl,m ◦ ϕm,n = ϕl,n holds for l ≤ m ≤ n. The
projective limit lim←−R

Wm associated with {RWn, ϕm,n} becomes a Hausdorff space.
We set �w(f ) = 2swE(ψ∗wf,ψ∗wf ) for w ∈ W∗ and f ∈ F . For each m ∈ N, we
define a map �(m) : F → R

Wm by �(m)(f ) = {�w(f )}w∈Wm . When a sequence
{fn}n∈N converges to f in F ,

|E(ψ∗wfn, ψ∗wfn)1/2 − E(ψ∗wf,ψ∗wf )1/2|2 ≤ E(ψ∗wfn − ψ∗wf,ψ∗wfn − ψ∗wf )
≤ s−1

w E(fn − f, fn − f )→ 0

as n → ∞ for any w ∈ Wm. Thus, �(m) is a continuous map. Moreover, by the
self-similarity (A3),�(m) = ϕm,n◦�(n) form ≤ n. Therefore, there exists a unique
continuous map� : F → lim←−R

Wm such that�(n) = ϕn ◦� for every n, where ϕn
is a canonical map from lim←−R

Wm to R
Wn .

Set q(m) = {qw}w∈Wm ∈ R
Wm for m ∈ N and let q denote the element of

lim←−R
Wm represented by {q(m)}m∈N.

First, assume that there exists some h ∈ H such that �(h) = q. For each
w ∈ W∗, we have

λ〈h〉(�w) = 2swE(ψ∗wh,ψ∗wh) = �w(h) = qw = λq(�w).

This implies that λ〈h〉 = λq . By Lemma 4.1, we get µ〈h〉 = π∗λ〈h〉 = π∗λq = µq .
Therefore, case (i) of Theorem 2.1 holds.

Next, assume that�(h) �= q for every h ∈ H. LetN = |u| and δ = qu/(4su) >
0, where u is given in assumption (C). Define

K′ =
{
h ∈ H

∣∣∣∣
∫

K

h dµ = 0, E(h, h) ≤ 1/2

}
, K = ψ∗u(K′).
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According to (2.2), K′ is a bounded closed set of F . Moreover, since K′ is convex,
it is closed for the weak topology of F . Therefore, K′ is weakly compact in F .
From Lemma 3.7 and assumption (C), K is a subset of H and compact in F . The
set Kδ = {f ∈ K | E(f, f ) ≥ δ} is also compact in F . We set

�̄w(f ) := �w

(
f
/√

2E(f, f )
)
= sw · E(ψ∗wf,ψ∗wf )

E(f, f )

for f ∈ Kδ and w ∈ W∗. For each m ∈ N, define �̄(m) : Kδ → R
Wm by

�̄(m)(f ) = {�̄w(f )}w∈Wm . Further, define �̄ : Kδ → lim←−R
Wm by �̄(f ) =

�
(
f
/√

2E(f, f )). Then, q �∈ �̄(Kδ) and �̄ is continuous when Kδ is equipped
with a relative topology of F . By the definition of the topology of lim←−R

Wm , there
exist M ∈ N and γ > 0 such that |�̄(M)(f )− q(M)| ≥ γ for every f ∈ Kδ . Here,
| · | denotes the Euclidean norm on R

WM . Set

β1 = sup



∑
w∈WN

√
qwaw

∣∣∣∣
a = {aw}w∈WN ∈ R

WN , aw ≥ 0 for every w,∑
w∈WN aw = 1, and au ≤ qu/2


 ,

β2 = sup



∑
w∈WM

√
qwbw

∣∣∣∣
b = {bw}w∈WM ∈ R

WM , bw ≥ 0 for every w,∑
w∈WM bw = 1, and |b − q(M)| ≥ γ


 .

Then, β1 < 1 and β2 < 1. Indeed, β1 < 1 follows from the facts that∑
w∈WN

√
qwaw ≤ ∑w∈WN (qw + aw)/2 = 1 and the equality holds only when

a = q(N), and a is taken over a compact set in R
WN that does not contain q(N).

The same rationale is applied to β2. Let β = β1 ∨ β2 < 1. We define a filtration
{Bn}n∈Z+ on � by

B2k = σ({�w | w ∈ W(M+N)k}),
B2k+1 = σ({�w | w ∈ W(M+N)k+N }) (k = 0, 1, 2, . . . ).

It is clear that
∨
n∈Z+ Bn is identical with the Borel σ -field of �.

Let h ∈ H with E(h, h) = 1/2. For each n ∈ Z+, λ〈h〉|Bn � λq |Bn since
only an empty set is a Bn-measurable set with λq -null measure. Define

zn = d(λ〈h〉|Bn )
d(λq |Bn ) for n ∈ Z+ and αn = znz

⊕
n−1 for n ∈ N. We will prove that∑∞

n=1

(
1− E

λq [
√
αn | Bn−1]

) = ∞ λq -a.e.
Taking k ∈ Z+, w ∈ W(M+N)k , w′ ∈ WN , and w′′ ∈ WM , we have

z2k = λ〈h〉(�w)
λq(�w)

= 2swE(ψ∗wh,ψ∗wh)
qw

on �w,

z2k+1 = λ〈h〉(�ww′)
λq(�ww′)

= 2sww′E(ψ∗ww′h,ψ∗ww′h)
qww′

on �ww′ ,
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and

z2k+2 = λ〈h〉(�ww′w′′)
λq(�ww′w′′)

= 2sww′w′′E(ψ∗ww′w′′h,ψ∗ww′w′′h)
qww′w′′

on �ww′w′′ .

On �ww′ , we have

α2k+1 = z2k+1z
⊕
2k =

sw′

qw′
· E(ψ∗w′ψ∗wh,ψ∗w′ψ∗wh)E(ψ∗wh,ψ∗wh)⊕.

If E(ψ∗wh,ψ∗wh) = 0, we get α2k+1 = 0 on �w, and therefore, 1− E
λq [
√
α2k+1 |

B2k] = 1 on �w.
Let us assume that E(ψ∗wh,ψ∗wh) �= 0. Set

g =
ψ∗wh−

∫

K

ψ∗wh dµ
√

2E(ψ∗wh,ψ∗wh)
.

Then,
∫
K
g dµ = 0, E(g, g) = 1/2, and ψ∗ug ∈ K. If ψ∗ug �∈ Kδ , that is,

E(ψ∗ug, ψ∗ug) < δ, then

α2k+1 = 2sw′

qw′
· E(ψ∗w′g,ψ∗w′g) on �ww′

and

E
λq [
√
α2k+1 | B2k] =

∑
w′∈WN

qw′

√
2sw′

qw′
· E(ψ∗

w′g,ψ
∗
w′g)

=
∑

w′∈WN

√
qw′�w′(g)

≤ β1 ≤ β on �w

since �u(g) < 2suδ = qu/2 by the definition of δ and
∑
w′∈WN �w′(g) =

2E(g, g) = 1.
If ψ∗ug ∈ Kδ , then we have, on �wuw′′ ,

α2k+2 = z2k+2z
⊕
2k+1

= sw′′

qw′′
· E(ψ∗

wuw′′h,ψ
∗
wuw′′h)

E(ψ∗wuh,ψ∗wuh)

= sw′′

qw′′
· E(ψ∗

w′′ψ
∗
ug, ψ

∗
w′′ψ

∗
ug)

E(ψ∗ug, ψ∗ug)
;

therefore, on �wu,

E
λq [
√
α2k+2 | B2k+1] =

∑
w′′∈WM

qw′′

√
�̄w′′(ψ∗ug)

qw′′
≤ β2 ≤ β

since |�̄(M)(ψ∗ug)− q(M)| ≥ γ and
∑
w′′∈WM �̄w′′(ψ

∗
ug) = 1.
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Accordingly, in any case,

(1− E
λq [
√
α2k+1 | B2k])+ (1− E

λq [
√
α2k+2 | B2k+1]) ≥ 1− β > 0 on �wu.

Set

�̂ = {ω ∈ � | σ (N+M)k(ω) ∈ �u for an infinitely number of k ∈ Z+},
where σm : � → � is defined by σm(ω1ω2 · · · ) = ωm+1ωm+2 · · · for m ∈ Z+.
Then,

∑∞
n=1(1 − E

λq [
√
αn | Bn−1](ω)) = ∞ if ω ∈ �̂. Since λq(�̂) = 1 by the

law of large numbers, we can apply Theorem 4.1 to conclude that λq ⊥ λ〈h〉. Take a
σ -compact setA in� such that λ〈h〉(A) = 1 and λq(A) = 0. Recall the µq -null set
Kb = {x ∈ K | #(π−1(x)) > 1}. Set B = A ∪ π−1(Kb). Since π−1(π(B)) = B,
we have

µq(π(B)) = λq(π
−1(π(B))) = λq(B) = 0,

µ〈h〉(π(B)) = λ〈h〉(B) ≥ λ〈h〉(A) = 1.

Therefore, µq ⊥ µ〈h〉. Evidently, this relation is now true for all h ∈ H.
When h ∈ Hloc, we can also prove that µq ⊥ µ〈h〉 in view of expression (3.3).

Take an arbitrary f ∈ F . By Lemma 3.10, there exists a sequence {fn} in Hloc

converging to f in F . TakeAn ⊂ K such thatµq(An) = 0 andµ〈fn〉(K \An) = 0.
Let A = ⋃n∈N

An. By (2.5), µ〈f 〉(K \ A) = limn→∞ µ〈fn〉(K \ A) = 0, while
µq(A) = 0. Hence, µq ⊥ µ〈f 〉. This completes the proof. ��
Remark 4.2. In the proof of Theorem 2.1, assumption (A1) is used only to assure
that µp(Kb) = µq(K

b) = 0. Therefore, in view of [17, Lemma 1.4.7], (A1) can
be replaced by a weaker condition, λp(I∞) = λq(I∞) = 0, where I∞ = {ω ∈ � |
#(π−1(π(ω))) = ∞}.
Proof of Theorem 2.2. (EHI) ⇒ (D): Let h ∈ H+. By (EHI),

µ-esssup
x∈Kv

h(x) ≤ c2.1 µ-essinf
x∈Kv

h(x) ≤ c2.1‖ψ∗v h‖L2(µ).

Next, suppose that h ∈ H and let h+ = h ∨ 0 and h− = (−h) ∨ 0. Since
h = Hh = Hh+ −Hh− and Hh± ∈ H+ by Lemma 3.9,

µ-esssup
x∈Kv

|h(x)| ≤ µ-esssup
x∈Kv

Hh+(x)+ µ-esssup
x∈Kv

Hh−(x)

≤ c2.1(‖ψ∗v (Hh+)‖L2(µ) + ‖ψ∗v (Hh−)‖L2(µ))

≤ c2.1p
−1/2
v (‖Hh+‖L2(µ) + ‖Hh−‖L2(µ))

≤ c4.1(‖h+‖F + ‖h−‖F ) (by Lemma 3.9)

≤ 2c4.1‖h‖F .
(D)+(R) ⇒ (C): By assumption (A5) and the regularity of the Dirichlet form, we
can take ξ ∈ W∗ and g ∈ F0 ∩ C(K) such that 0 ≤ g ≤ 1 on K and g = 1 on
Kξ . We will show condition (C) with u = vξ . It is sufficient to prove the following
claim.
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(∗) If a sequence {hn} in H converges weakly to 0 in F , then there exists a subse-
quence {hn(k)} such that ψ∗uhn(k) converges strongly to 0 in F .

In order to deduce condition (C) from (∗), suppose that {fm} is a sequence in H
that is bounded in F . By the Banach-Alaoglu theorem, we can take a subsequence
{fm(n)} converging weakly to some f in F . Since H is weakly closed in F , f ∈ H.
Applying (∗) to hn := fm(n) − f , we can take a sequence {n(k)} diverging to ∞
such that ψ∗ufm(n(k)) → ψ∗uf in F . This implies that condition (C) holds.

We now prove (∗). Since F is compactly imbedded in L2(µ) by (R), {hn} con-
verges to 0 in L2(µ). Take a subsequence {hn(k)} converging to 0 µ-a.e. Define
fk = ψ∗v hn(k). Then, fk ∈ Fb ∩ H and supk ‖fk‖L∞(µ) < ∞ by (D). Since
fkg ∈ F0, we have

0 = 2E(fk, fkg) = E(f 2
k , g)+

∫

K

g dµ〈fk〉.

Note that E(f 2
k , f

2
k ) ≤ 4‖fk‖2

L∞(µ)E(fk, fk), which is bounded in k. A suitable

subsequence {fk′ } can be taken so that {f 2
k′ } converges weakly in F . Since fk′ → 0

µ-a.e., f 2
k′ → 0 weakly in F . In particular, E(f 2

k′ , g)→ 0 as k′ → ∞. Applying
Lemma 3.11 (ii) with m = |ξ |, we have

∫

K

g dµ〈fk′ 〉 =
∑
w∈Wm

sw

∫

K

ψ∗wg dµ〈ψ∗wfk′ 〉

≥ sξ

∫

K

ψ∗ξ g dµ〈ψ∗ξ fk′ 〉

= sξµ〈ψ∗ξ fk′ 〉(K) = 2sξE(ψ∗ξ fk′ , ψ∗ξ fk′).

Combining these estimates, we obtain limk′→∞ E(ψ∗ξ fk′ , ψ∗ξ fk′) ≤ 0. Therefore,
ψ∗ξ fk′(= ψ∗uhn(k′)) converges to 0 in F . This proves (∗). ��
Proof of Theorem 2.3. Assume that there exists a nonconstant Borel function f ∈
F such that µ〈f 〉 � µ and

dµ〈f 〉
dµ

≤ c µ-a.e. for some c > 0. Take a, b,R ∈ R such

that a < b, R > 0, and both A = {−R < f/
√
c < a} and B = {b < f/

√
c < R}

have µ-positive measures. Then, by [13, Theorem 2.8] for example,

∫

K

Tt1A · 1B dµ ≤
√
µ(A)µ(B) exp

(
− (b − a)

2

2t

)
, t > 0.

Therefore, limt↓0 t log
∫
K
Tt1A · 1B dµ ≤ −(b− a)2/2 < 0, which is a contradic-

tion. ��
Proof of Theorem 2.4. Assume µ〈h〉 � µq and dµ〈h〉

dµq
≤ c µq -a.e. for some h ∈ H

and c > 0. Take an arbitrary x, y ∈ Kz. Set x′ = ψ−1
z (x) and y′ = ψ−1

z (y). Fix
m ∈ N and let k = dm(x

′, y′). Then, we can choose x′0, x
′
1, . . . , x

′
k+1 fromK such

that x′0 = x′, x′k+1 = y′, and both x′i and x′i+1 belong to some Kξ ′i with ξ ′i ∈ Wm

for each i. Setting xi = ψz(x
′
i ) and ξi = zξ ′i ∈ W|z|+m, we obtain a sequence
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x0, x1, . . . , xk+1 in Kz such that x0 = x, xk+1 = y, and both xi and xi+1 belong
to Kξi .

Condition (O) assures that (after taking a continuous modification of h on Kz)

|h(xi)− h(xi+1)|2 ≤ C
∑

w∈A(ξi )
E(ψ∗wh,ψ∗wh).

By Lemma 3.11 (ii), we have

2swE(ψ∗wh,ψ∗wh) = swµ〈ψ∗wh〉(K) ≤ µ〈h〉(Kw) ≤ cµq(Kw) = cqw

for any w ∈ W∗. Then,

|h(xi)− h(xi+1)|2 ≤ C
∑

w∈A(ξi )

cqw

2sw
≤ cCN

2
· r−(|z|+m),

and therefore,

|h(x)− h(y)| ≤
dm(x

′,y′)∑
i=0

|h(xi)− h(xi+1)|

≤ (dm(x
′, y′)+ 1)(cCN/2)1/2r−(|z|+m)/2.

Lettingm→∞ and using the assumption in the theorem, we obtain h(x) = h(y).
This implies that h is constant on Kz. By virtue of Lemma 3.11 (ii), case (i) of
Theorem 2.1 does not occur. ��
Proof of Proposition 2.1. Let D = {f ∈ Dom(L) | f ∈ L∞(µ), Lf ∈ L∞(µ)}.
It is a dense subset of F since (1− L)−1(L∞(µ)) is dense in F and is a subset of
D.

Suppose that f ∈ Dom(L) and f 2 ∈ Dom(L(1)). Take {fn}n∈N ⊂ Dom(L) ∩
L∞(µ) such that fn → f in Dom(L) with respect to the graph norm. Note that
f 2
n → f 2 in L1(µ).

For g ∈ D, we have
∫

K

g̃ dµ〈fn〉 = 2E(fn, fng)− E(f 2
n , g)

= −2
∫

K

(Lfn)fng dµ+
∫

K

f 2
nLg dµ.

The first term of the right-hand side converges to−2
∫
K
(Lf )fg dµwhen n tends to

∞, and the second term converges to
∫
K
f 2Lg dµ = ∫

K
L(1)(f 2) g dµ. Therefore,

∫

K

g̃ dµ〈f 〉 = −2
∫

K

(Lf )fg dµ+
∫

K

L(1)(f 2) g dµ.

Since D is dense in F , dµ〈f 〉 = {−2(Lf )f +L(1)(f 2)}dµ. In particular, µ〈f 〉 �
µ, which implies that µ〈f 〉 = 0 by combining µ〈f 〉 ⊥ µ. This concludes that f is
a constant function. ��
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5. Examples

In the following examples, we set P =⋃m∈N
σm
(
π−1

(⋃
i,j∈S, i �=j (Ki ∩Kj)

))

and V0 = π(P). The set P is called a post-critical set.

5.1. P. c. f. self-similar sets

Let us suppose that P is a finite set. In this case, (K, S, {ψi}i∈S) is called post-
critically finite (abbreviated to p. c. f.), which was introduced by Kigami [15]. By
the proof of Lemma 4.2.3 in [17], the assumption (A1) is satisfied. Furthermore,
assume that there exists a regular harmonic structure (D, r) (see e.g. [17] for the
detail). Then, it is known that we can construct a regular local Dirichlet form (E,F)
associated with (D, r) that satisfies (A2)–(A6) withK∂ = V0. Moreover, F is con-
tinuously imbedded in C(K). Therefore, when we set F̂D = {f ∈ F ⊂ C(K) |
f (x) = 0 for all x ∈ K∂}, we can easily prove that FD = F̂D as follows. Since
F0 ⊂ F̂D and F̂D is closed, we have FD ⊂ F̂D . To prove the converse inclusion,
let f ∈ F̂D and set fn = (f − 1/n)+ − (f + 1/n)−. Then, fn ∈ F0 and fn → f

in F as n → ∞, which implies that f ∈ FD . Therefore, H is identical with the
space of harmonic functions in [17]. The dimension of H is equal to #V0 < ∞,
which implies that condition (C) with u = ∅ is satisfied. (In practice, (EHI), (D),
and (R) are also true for v = ∅.) Thus, Theorem 2.1 can be applied. The result of
Theorem 2.1 in the case that q = p and si/pi is independent of i ∈ S is the same
as that of Theorem 5.1 in [9]. The condition (O) is also assured by the following
general lemma.

Lemma 5.1. Suppose F is continuously imbedded in C(K), that is, there exists
c5.1 such that ‖f ‖L∞(µ) ≤ c5.1‖f ‖F for all f ∈ F . Then, (O) holds with z = ∅,
N = 1, and A(w) = {w}.
Proof. Letting f+ = f ∨ 0 and f− = −(f ∧ 0) for f ∈ F , we have

|µ-esssup f − µ-essinf f |2
≤ 4‖f ‖2

L∞(µ) ≤ 4c2
5.1‖f ‖2

F

≤ c5.2

{
E(f, f )+

(∫

K

f dµ

)2
}
. (by Lemma 3.2)

Taking f − ∫
K
f dµ in place of f , we obtain (O). ��

As a special case, let (K, S, {ψi}i∈S) be a nested fractal with length scaling
factor L and mass scaling factor M = #S. This object was introduced by Lind-
strøm [23]. Here, we also refer to [1] for the details. We can construct a local
regular Dirichlet form (E,F) on L2(K,µ) satisfying (A2)–(A6) with pi = 1/M
and si = ρ for i ∈ S for some resistance scaling factor ρ ([1, Theorem 6.23],
originally [23]). By Proposition 6.30 in [1], Mρ ≥ L2. The shortest path scaling
factor γ ≥ L( > 1) can be defined (see Definition 5.42 in [1]); furthermore, in
the same way as the proof of Corollary 5.41 in [1], it is proved that there exists
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a constant c5.3 such that dm(x, y) ≤ c5.3γ
m for every x, y ∈ K and m ∈ N. Let

dw = log(Mρ)/ log γ and assume that dw > 2. Since γm/(mini∈S si/qi)m/2 =
(γ 2−dwM maxi∈S qi)m/2, the assumption of Theorem 2.4 is true if q = {qi}i∈S ∈ A
satisfies M maxi∈S qi < γ dw−2. Combining Theorems 2.4 and 2.1, we obtain the
following theorem.

Theorem 5.1. If q = {qi}i∈S ∈ A satisfiesM maxi∈S qi < γ dw−2, thenµ〈f 〉 ⊥ µq
for every f ∈ F .

Since we can apply Theorem 5.1 for qi = 1/M(= pi), i ∈ S, the set of q satisfying
the assumption of the theorem above is an open neighborhood of p in A.

We have the following heat kernel estimate (see e.g. [1, Theorem 8.18])

c5.4t
−ds/2 exp

(
−c5.5(d(x, y)

dw/t)−1/(dw−1)
)
≤ p(t, x, y)

≤ c5.6t
−ds/2 exp

(
−c5.7(d(x, y)

dw/t)−1/(dw−1)
)
,

t ∈ (0, 1], x, y ∈ K, (5.1)

where ds = 2 logM/ log(Mρ) and d(·, ·) is a suitable metric on K . Therefore, we
may also apply Theorem 2.3 to deduce the singularity with respect to µ = µp.

For specific fractals, we can prove a stronger assertion. Let us consider the
2-dimensional Sierpinski gasket. Let S = {1, 2, 3}. We identify R

2 with C and
let {a1, a2, a3} be a set of vertices of an equilateral triangle in C. Let T be a
convex hull of {a1, a2, a3}. Define ψi(z) = (z − ai)/2 + ai for i ∈ S and
K = ⋂m∈N

⋃
w∈Wm ψw(T ). Then, (K, S, {ψi}i∈S) is a self-similar structure and

K is called the Sierpinski gasket. Let p = (1/3, 1/3, 1/3) ∈ A, µ = µp, and
K∂ = {a1, a2, a3}. The standard harmonic structure (D, r) is given by D =

−2 1 1
1 −2 1
1 1 −2


 and r = (3/5, 3/5, 3/5). In other words, if we set

E0(f, f ) = −tR(f )DR(f ), R(f ) =


f (a1)

f (a2)

f (a3)




for a continuous function f onK , the canonical Dirichlet form (E,F) onL2(K,µ)

is given by

E(f, f ) = lim
m→∞

∑
w∈Wm

(
5

3

)m
E0(ψ

∗
wf,ψ

∗
wf ).

Here, the limit is an increasing limit, and F is the space of all f such that the
limit above is finite. (E,F) has the self-similarity (A3) for s = (5/3, 5/3, 5/3).
For a harmonic function h, E(h, h) = E0(h, h) holds, and for each j ∈ S,



ψ∗j h(a1)

ψ∗j h(a2)

ψ∗j h(a3)


 = Aj



h(a1)

h(a2)

h(a3)


 ,
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where

A1 = 1

5




5 0 0
2 2 1
2 1 2


 , A2 = 1

5




2 2 1
0 5 0
1 2 2


 , A3 = 1

5




2 1 2
1 2 2
0 0 5


 .

See Examples 3.1.5 and 3.2.6 in [17] for further details. Using these data, we
can calculate the value E(ψ∗wh,ψ∗wh) explicitly for any harmonic function h and
w ∈ W∗. For any q ∈ A, we can check that every harmonic function h satisfies
�(2)(h) �= q(2), particularly�(h) �= q. Here, we used the same terminology as that
in the proof of Theorem 2.1. Therefore, this concludes that µ〈f 〉 ⊥ µq for every
f ∈ F and every q ∈ A.

5.2. Sierpinski carpets

As typical infinitely ramified self-similar sets, we consider Sierpinski carpets. Let
d ≥ 2, l ≥ 3, and S be a finite set whose cardinality M is less than ld . Assume
that we are given a family {ψi}i∈S of contractive affine transformations on R

d of
type ψi(x) = aix + bi for some ai ∈ R+ and bi ∈ R

d such that each ψi maps
F0 = [0, 1]d onto

∏d
j=1[kj / l, (kj + 1)/ l] for some kj = 0, 1, . . . , l − 1, and

ψi �= ψi′ if i �= i′. Let Fm = ⋃
w∈Wm ψw(F0) for m ∈ N and K = ⋂

m∈N
Fm.

Then, (K, S, {ψi}i∈S) is a self-similar structure andK is called a Sierpinski carpet.
We assume the following:

• (Symmetry) F1 is preserved by all the isometries of the unit cube F0.
• (Connectedness) Int(F1) is connected and contains a path connecting the hyper-

plane {x1 = 0} and {x1 = 1}.
• (Nondiagonality) Let B be a cube in F0 with length 2/l and with vertices on
l−1

Z. Then, if Int(F1 ∩ B) is nonempty, it is connected.
• (Borders included) F1 contains the line segment {x = (x1, . . . , xd) ∈ R

d | 0 ≤
x1 ≤ 1, x2 = · · · = xd = 0}.

Above, Int(A) denotes the interior of A in R
d . Barlow and Bass [3] constructed

nondegenerate symmetric diffusions on K when d = 2 for the first time by taking
a limit of the Brownian motions on Lipschitz domains of R

2 converging to K .
An analogous construction was devised in [6] for higher dimensions. On the other
hand, Kusuoka and Zhou [21] provided symmetric diffusions on K when d = 2
using a limit of random walks on graphs. Such a method was generalized in [12]
for higher dimensional spaces.

Here, we briefly review the method of construction by graph approximations
for later convenience. We set p = {pi}i∈S by pi = M−1 and let µ = µp, which is
simply the normalized Hausdorff measure onK . Form ∈ N, let Em be a symmetric
bilinear form in C(Wm) defined by

Em(f, g) =
∑

w,z∈Wm
q(m)wz (f (w)− f (z))(g(w)− g(z)), f, g ∈ C(Wm),

where q(m)wz = 1 if the Hausdorff dimension of ψw(F0) ∩ ψz(F0) is d − 1, and
q
(m)
wz = 0 otherwise. Let B(1)m = {w ∈ Wm | ψw(F0) ∩ ({0} × [0, 1]d−1) �= ∅} and
B
(2)
m = {w ∈ Wm | ψw(F0) ∩ ({1} × [0, 1]d−1) �= ∅}. Let
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Rm = min{Em(f, f ) | f ∈ C(Wm), f = 0 on B(1)m , f = 1 on B(2)m }−1.

According to the result in [24], there exist some c5.8, c5.9, and ρ such that c5.8ρ
m ≤

Rm ≤ c5.9ρ
m for every m ∈ N. Set Tm = RmM

m for m ∈ N and T = ρM . We
define the operator Pm : L1(K,µ)→ C(Wm) for m ∈ N by

Pmf (w) = µ(Kw)
−1
∫

Kw

f (x) µ(dx), f ∈ L1(K,µ), w ∈ Wm.

Let E (m), m ∈ N, be a Dirichlet form on L2(K,µ) defined by

E (m)(f, g) = RmEm(Pmf, Pmg), f, g ∈ L2(K,µ).

Let (X(t); P (m)w , w ∈ Wm) denote the Markov process on Wm associated with
the Dirichlet form (Em,L2(Wm,M

−m∑
w∈Wm δw)). Fix x ∈ K . Let Q(m) denote

the law of the process {ψX(Tmt)(x)}t∈Q+ on K with the initial law of {X(t)} being

M−m∑
w∈Wm P

(m)
w . Note that Q(m) is a probability measure on KQ+ . For any

cluster point Q̃ of {Q(m)}m∈N, we have the following theorem.

Theorem 5.2 ([21, 12]). There exists a strongly continuous symmetric Markovian
semigroup {Tt }t>0 on L2(K,µ) such that

∫

KQ+
f0(ω(t0))f1(ω(t1)) · · · fn(ω(tn)) Q̃(dω)

=
∫

K

fn · Ttn−tn−1(fn−1(Ttn−1−tn−2(fn−2(· · · (Tt1−t0f0) · · · )))) dµ

for any 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ∈ Q+ and f0, . . . , fn ∈ C(K). Each Tt
has an integral kernel p(t, x, y) and the Aronson type estimate (5.1) holds with
ds = 2 logM/ log T , dw = log T/ log l, and the Euclidean distance d(·, ·). More-
over, the Dirichlet form (E,F) associated with {Tt } satisfies the following:

• (E,F) is local.
• F = {f ∈ L2(K,µ) | supm E (m)(f, f ) <∞}.
We will attempt to prove that every energy measure µ〈f 〉 of (E,F) is singular to
µ. Since it is unknown whether (E,F) has the self-similarity (A3), we require
additional arguments. For each m ∈ Z+, define

Ēm(f, g) =
∑
w∈Wm

ρmE(ψ∗wf,ψ∗wg), f, g ∈ F .

Then, by the result presented in section 6 of [21], each (Ēm,F) is a Dirichlet form
equivalent to (E,F) in the sense that there exist constants c5.10 and c5.11 indepen-
dent of m satisfying

c5.10E(f, f ) ≤ Ēm(f, f ) ≤ c5.11E(f, f ), f ∈ F .
Moreover, there exists a divergent sequence {mk} such that m−1

k

∑mk
j=1 Ēj (f, f )

converges to some Ē(f, f ) for any f ∈ F , and (after the polarization procedure)



Singularity of energy measures 287

(Ē,F) becomes a regular Dirichlet form ([16]). In addition, (A1)–(A6) and (R) are
true for this Ē with K∂ = [0, 1]d \ (0, 1)d and si = ρ for i ∈ S. Let µ̄〈f 〉 denote
the energy measure of f ∈ F associated with (Ē,F). Since

c5.10E(f, f ) ≤ Ē(f, f ) ≤ c5.11E(f, f ), f ∈ F,
Proposition 1.5.5(b) in [22] implies that c5.10µ〈f 〉 ≤ µ̄〈f 〉 ≤ c5.11µ〈f 〉 for every
f ∈ F . (See also [25, p. 389] for simpler proof.) Therefore, it is sufficient to prove
that µ̄〈f 〉 ⊥ µq in order to prove that µ〈f 〉 ⊥ µq . In order to apply Theorem 2.1 to
(Ē,F), it is necessary to check condition (C). The Harnack inequality is accepted
for (E,F) for a general d ≥ 2 ([6, 12]); unfortunately, the author is unable to
determine whether (Ē,F) satisfies (C) (see, however, Remark 5.1 below). At pres-
ent, the case d = 2 will have to suffice. In this case, the following strong property
holds: F is continuously imbedded inC(K) ([21]). In particular, (D) holds and (O)
is satisfied according to Lemma 5.1. The walk dimension dw is greater than 2; see
e.g. Remark 5.4 in [6]. Regarding the distance-like function defined in (2.7), we
have the following estimate: there exists a constant c5.12 such that

dm(x, y) ≤ c5.12l
m, m ∈ N, x, y ∈ K.

This is proved by the same idea as that used to prove Lemma 7.3 in [5]. Therefore,
combining Theorems 2.1 and 2.4, we have the following theorem.

Theorem 5.3. If q = {qi}i∈S ∈ A satisfies maxi∈S qi < ρ/l2, then µ̄〈f 〉 ⊥ µq
and µ〈f 〉 ⊥ µq for every f ∈ F .

Note that ρ/l2 > 1/M since dw > 2, and we can always take q = p.
For another class of symmetric diffusions on K due to Barlow and Bass [3,

6], it is also unknown whether the associated Dirichlet forms satisfy the self-
similarity (A3). However, they have a transition estimate (5.1) with the same ds
and dw ([5, 6]). Therefore, at least when d = 2, we can prove the same singularity
as Theorem 5.3 for these Dirichlet forms by the following proposition.

Proposition 5.1. Suppose that {Tt }t>0 and {T̂t }t>0 are symmetric and conserva-
tive Markovian semigroups on L2(µ) having transition semigroups p(t, x, y) and
p̂(t, x, y), respectively, and that both have the Aronson-type estimate (5.1) with the
same ds and dw and possibly other different constants. Let (E,F) and (Ê, F̂) be
the Dirichlet forms associated with {Tt }t>0 and {T̂t }t>0, respectively. Then, F = F̂
and there exist c5.13 and c5.14 such that

c5.13µ〈f 〉 ≤ µ̂〈f 〉 ≤ c5.14µ〈f 〉, f ∈ F,
where µ〈f 〉 (resp. µ̂〈f 〉) is the energy measure of f ∈ F with respect to (E,F)
(resp. (Ê, F̂ )). In particular, µ〈f 〉 and µ̂〈f 〉 are mutually absolutely continuous.

Proof. From the estimates of transition densities, there exist c5.15, . . . , c5.18 such
that

p(t, x, y) ≤ c5.15p̂(c5.16t, x, y), p̂(t, x, y) ≤ c5.17p(c5.18t, x, y), x, y ∈ K,
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when t , c5.16t , and c5.18t belong to (0, 1]. Combining these estimates with the fact
that f ∈ F if and only if

∞ > lim
t→0

t−1(‖f ‖2
L2(µ)

− ‖Tt/2f ‖2
L2(µ)

)

= lim
t→0

(2t)−1
∫

K×K
(f (x)− f (y))2p(t, x, y) µ(dx)µ(dy),

and the same fact for F̂ , we obtain F = F̂ .
For f ∈ Fb and g ∈ Fb,+, let

I tf (g) =
1

t

∫

K×K
g(x)(f (x)− f (y))2p(t, x, y) µ(dx)µ(dy), t > 0;

Î tf (g) is similarly obtained. Then, I tf (g) ≤ c5.15c5.16Î
c5.16t
f (g) for small t . Letting

t → 0, we obtain ∫

K

g̃ dµ〈f 〉 ≤ c5.15c5.16

∫

K

g̃ dµ̂〈f 〉.

Therefore, µ〈f 〉 ≤ c5.15c5.16µ̂〈f 〉. Similarly, we have the converse inequality. ��
Remark 5.1. After submitting this paper, the author was informed that the elliptic
Harnack inequality of the averaged Dirichlet form (Ē,F) was proved for higher
dimensional Sierpinski carpets in [8] by means of stability results for the parabolic
Harnack inequality. Therefore, singularity of energy measures to the Hausdorff
measure is now true for d-dimensional Sierpinski carpets with d ≥ 2. For further
details, see [8].

Remark 5.2. The notion of singularity of the energy measure is stable under a
product in the following manner. Suppose that (Ei ,Fi ) is a regular Dirichlet form
on L2(Xi, µi) for a measure space (Xi, µi) such that µi(Xi) = 1, 1 ∈ Fi ,
and Ei (1, 1) = 0, for i = 1, . . . , n. Let Li be a nonpositive self-adjoint opera-
tor on L2(Xi, µi) with domain Dom(Li ) associated with (Ei ,Fi ). Define X =∏n
i=1Xi and µ =⊗n

i=1 µi . Let
⊗n

i=1 Dom(Li ) denote the set of all finite linear
combinations of vectors f1 ⊗ · · · ⊗ fn, where fi ∈ Dom(Li ). A linear oper-
ator (

∑n
i=1 Li ,

⊗n
i=1 Dom(Li )) on

⊗n
i=1 L

2(Xi, µi) # L2(X,µ) is given by
(
∑n
i=1 Li )(f1 ⊗ · · · ⊗ fn) := ∑n

i=1 f1 ⊗ · · · ⊗ fi−1 ⊗ Lifi ⊗ fi+1 ⊗ · · · ⊗ fn.
It is known that this operator is essentially self-adjoint (see e.g. [27, p. 301, Corol-
lary]). Let its closure be denoted by (L,Dom(L)). Let (E,F) be a Dirichlet form
on (X,µ) associated with L and assume that it is regular. For f = f1 ⊗ · · · ⊗
fn ∈ ⊗n

i=1 Dom(Li ) and g = g1 ⊗ · · · ⊗ gn ∈ ⊗n
i=1 Dom(Li ), E(f, g) =∑n

i=1 Ei (fi, gi)
∏
j �=i (fj , gj )L2(µj )

. This expression implies that the energy mea-
sure µ〈f 〉 for such f is equal to

n∑
i=1

f 2
1 µ1 ⊗ · · · ⊗ f 2

i−1µi−1 ⊗ µi,〈fi 〉 ⊗ f 2
i+1µi+1 ⊗ · · · ⊗ f 2

n µn,

whereµi,〈fi 〉 is an energy measure of fi with respect to (Ei ,Fi ). Let us assume that
for some j , the energy measureµj,〈h〉 is singular toµj for all h ∈ Fj . By the above
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expression, µ〈f 〉 is singular to µ for any f ∈ ⊗n
i=1 Dom(Li ). Since Dom(Li ) is

dense in F , by (2.5) and by a usual approximation argument we can conclude that
µ〈f 〉 ⊥ µ for all f ∈ F .
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Ann. Inst. H. Poincaré Probab. Statist. 25, 225–257 (1989)

4. Barlow, M.T., Bass, R.F.: On the resistance of the Sierpiński carpet. Proc. Roy. Soc.
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