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Abstract. In this paper we show the existence of a solution for the BSDE with two reflect-
ing barriers when those latter are completely separated. Neither Mokobodzki’s condition
nor the regularity of the barriers are supposed. The main tool is the notion of local solution
of reflected BSDEs. Applications related to Dynkin games and double obstacle variational
inequality are given.

0. Introduction

A solution for a backward stochastic differential equation (BSDE in short) with two
reflecting barriers L := (Lt )t≤T and U := (Ut )t≤T (L ≤ U) and whose coefficient
and terminal value are respectively f and ξ is a quadruple of adapted processes
(Y, Z, K+, K−) := (Yt , Zt , K

+
t , K−

t )t≤T with values in R1+d+1+1 which mainly
satisfies:





K± are continuous non-decreasing processes

−dYt = f (t, ω, Yt , Zt ) + dK+
t − dK−

t − ZtdBt , t ≤ T and YT = ξ

∀t ≤ T , Lt ≤ Yt ≤ Ut and
∫ T

0
(Yt − Lt)dK+

t =
∫ T

0
(Ut − Yt )dK−

t = 0.

(1)

Here B := (Bt )t≤T is a Brownian motion and ξ is FT -measurable where for any
t ≤ T , Ft = σ {Bs, s ≤ t} ; the adaptation is with respect to (Ft )t≤T .

BSDEs with two reflecting barriers have been first introduced by J.Cvitanic &
I.Karatzas [CK]. Their work generalizes the one of El-Karoui et al. [EKal] related
to reflected BSDEs with just one barrier. Since then the interest to those equations
grows steadily because they are an important tool in many mathematical fields
especially in stochastic games ([HL],[H]) and mathematical finance ([MC], [H]).

However the known results which provide a solution for (1) are not very satisfac-
tory and are of two types.Actually authors suppose either Mokobodzki’s assumption
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([CK], [HL]), which means the existence of a difference of non-negative super-
martingales between L and U , or the regularity of one of the barriers L and U

([CK],[HLM]), which roughly speaking has to be a semi-martingale.
Mokobodzki’s condition is a bit troublesome since it is difficult to verify in

practice. On the other hand, the regularity of one of the barriers is somewhat
restrictive.

So the main objective of this work is to investigate under which conditions on
the barriers, as weak as possible and easy to verify, the BSDE (1) has a solution.
Indeed, we show that if the barriers are completely separated, i.e., Lt < Ut , ∀t ≤ T ,
then a solution for (1) exits. In addition it is unique when the function f is Lips-
chitz with respect to (y, z). As a by-product we deduce that the value function of
a Dynkin game is a semi-martingale when the barriers are completely separated.
On the other hand, under the same assumption, we deduce also the existence of a
semi-martingale which passes between L and U . This latter result has an important
application in mathematical finance in connection with the problem of the existence
of an optimal investment strategy in real options ([HJ]).

This paper is organized as follows:
In Section 1 we set up accurately the problem and we give some preliminary

results related to BSDEs with one or two barriers (existence and comparison). In
Section 2, we deal with the notion of local solution of the BSDE (1) which is a
solution of that equation but just between two comparable stopping times. Some
properties of local solutions are given, especially comparison, uniqueness and repre-
sentation as a value function of a Dynkin game. Section 3 is devoted to the existence
of some useful local solutions. Therefore step-by-step we construct a solution for
the BSDE (1). This is the main result of this paper. The solution is unique when
f is Lipschitz. In Section 4, we study some properties of the solution of (1) and
we show, once again, the existence of a solution when f is just continuous with
at most linear growth. Finally in Section 5, we assume that the randomness stems
from a diffusion process and we study the connection of the solution of (1) with its
related double obstacle variational inequality. A solution in viscosity sense for this
latter is proved.

1. Setting of the problem. Preliminary results

Throughout this paper (�, F, P ) is a fixed probability space on which is defined a
standard d-dimensional Brownian motion B = (Bt )t≤T whose natural filtration is
(F 0

t := σ {Bs, s ≤ t})t≤T . On the other hand let (Ft )t≤T be the completed filtration
of (F 0

t )t≤T with the P -null sets of F , hence (Ft )t≤T satisfies the usual conditions,
i.e., it is right continuous and complete. Now let :

– P be the σ -algebra on [0, T ] × � of Ft -progressively measurable sets
– for any stopping time τ ∈ [0, T ], Tτ denotes the set of all stopping times θ such

that τ ≤ θ ≤ T

– M2,k be the set of P-measurable and Rk-valued processes w = (wt )t≤T which
belong to L2([0, T ] × �, dP ⊗ dt)
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– M the set of P-measurable processes Z = (Zt )t≤T with values in Rd such that
∫ T

0
|Zs |2ds < ∞, P-a.s..

– S2 the set of P-measurable and continuous processes w̄ = (w̄t )t≤T such that
E[supt≤T |w̄t |2] < ∞

– Sci (resp. S2
ci) the set of continuous P-measurable non-decreasing processes

K := (Kt )t≤T such that K0 = 0 (resp. and E[(KT )2] < ∞).

Now we are given four objects :

(i) a terminal value ξ which is a random variable FT -measurable such that
E[ξ2] < ∞

(ii) two processes U := (Ut )t≤T and L := (Lt )t≤T which belong to S2 and
satisfy Lt ≤ Ut , ∀t ≤ T , and LT ≤ ξ ≤ UT

(iii) a function f : [0, T ]×�×R1+d −→ R such that for any (y, z) ∈ R1+d , the
process (f (t, ω, y, z))t≤T is P-measurable and (f (t, ω, 0, 0))t≤T belongs to
M2,1. In addition, it is uniformly Lipschitz with respect to (y, z) uniformly
in (t, ω), i.e :

[H1] : there exists a constant C ≥ 0 such that

P − a.s., |f (t, y, z) − f (t, y′, z′)|
≤ C(|y − y′| + |z − z′|), for any t, y, y′, z and z′	


A solution for the two reflecting barrier BSDE associated with (f, ξ, L, U) is
a quadruple of P-measurable processes (Y, Z, K+, K−) := (Yt , Zt , K

+
t , K−

t )t≤T

with values in R1+d+1+1 such that :





Y ∈ S2 , Z ∈ M and K+, K− ∈ Sci

Yt = ξ +
∫ T

t

f (s, Ys, Zs)ds + (K+
T − K+

t ) − (K−
T − K−

t ) −
∫ T

t

ZsdBs, ∀t ≤ T

Lt ≤ Yt ≤ Ut, ∀t ≤ T and
∫ T

0
(Ys − Ls)dK+

s =
∫ T

0
(Us − Ys)dK−

s = 0.

(2)

In our setting, with respect to the ones of [CK] or [HLM], we do not require strong
integrability assumptions on Z and K± since in many applications, especially in
stochastic games or mathematical finance, we do not need such properties for those
processes. However, as we will show it later, there exits a solution for (2) for which
we can construct a sequence of stopping times (τn)n≥0 which is “almost indepen-
dent” of (Y, Z, K+, K−) such that for any n ≥ 0 the processes (Zt1[t≤τn])t≤T and
(K±

t∧τn
)t≤T belong respectively to M2,d and S2

ci .
It is well known that the backward equation (2) has a unique solution under

either one of the following conditions. The first is the regularity of one of the barri-
ers which, roughly speaking, has to be a semi-martingale ([CK],[HLM]). The other
one is Mokobodzki’s hypothesis which turns into the existence of a difference of
non-negative super-martingales between L and U . Also, without those assumptions
we do not have any result which provides a solution for (2). On the other hand, this
equation may not have a solution for general processes L and U . Indeed, assume
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that P-a.s. and for any s ∈ [0, T ] we have Ls = Us . Therefore if the process L is
not a semi-martingale then obviously the BSDE (2) cannot have a solution.

So the main objective of this work is to study under which conditions, especially
on L and U , as weak as possible and easier to verify in practice, the BSDE (2) has
a solution. Mainly we show that if Lt < Ut , ∀t ≤ T then it has a solution. 	


A. Preliminary results

First let us give the following result, established in [EKal], related to reflected
BSDEs with just one upper barrier .

1.1. Theorem. There exists a unique P-measurable process (Y, Z, K−) =
(Yt , Zt , K

−
t )t≤T with values in R1+d+1 solution of the single upper barrier re-

flected BSDE associated with (f, ξ, U), i.e., which satisfies






Y ∈ S2, Z ∈ M2,d and K− ∈ S2
ci

Yt = ξ +
∫ T

t

f (s, Ys, Zs)ds − (K−
T − K−

t ) −
∫ T

t

ZsdBs, ∀t ≤ T

Yt ≤ Ut, ∀t ≤ T and
∫ T

0
(Us − Ys)dK−

s = 0 	

(3)

1.2. Remark. The existence and uniqueness of a solution for equation (3) still valid
if instead of a deterministic terminal time T we have a bounded stopping time τ .

B. Comparison of solutions of BSDEs with two reflecting barriers

Assume now that the reflected BSDE associated with (f, ξ, L, U) has a solution
(Y, Z, K+, K−) (in the sense of (2)). On the other hand let (f ′(t, ω, y, z), ξ ′, L′, U ′)
be another quadruple which satisfies :

– the process (f ′(t, 0, 0))t≤T belongs to M2,1 and for any (y, z) ∈ R1+d ,
(f ′(t, y, z))t≤T is P-measurable

– L′ and U ′ belong to S2, L′
t ≤ U ′

t , ∀t ≤ T ; ξ ′ ∈ L2(�, FT , dP ) and satisfies
L′

T ≤ ξ ′ ≤ U ′
T .

Suppose now that the two barrier reflected BSDE associated with (f ′, ξ ′, L′, U ′)
has a solution (Y ′, Z′, K ′+, K

′−). The following result allows us to compare Y and
Y ′, K+ and K

′+, and finally K− and K
′− since we can compare the quadruples

(f, ξ, L, U) and (f ′, ξ ′, L′, U ′). Namely we have :

1.3. Theorem. Assume that ξ ≤ ξ ′ and for any t ≤ T , Lt ≤ L′
t , Ut ≤ U ′

t ,
f (t, Y ′

t , Z
′
t ) ≤ f ′(t, Y ′

t , Z
′
t ), then P -a.s. Y ≤ Y ′. In addition if :

(i) f (t, y, z) ≤ f ′(t, y, z) for any (t, y, z)

(ii) ∀t ≤ T , Lt = L′
t , Ut = U ′

t and Lt < Ut

(iii) the function f ′ is uniformly Lipschitz with respect to (y, z) uniformly in (t, ω).

Then we have also, ∀t ≤ T , K−
t ≤ K

′−
t and K+

t ≥ K
′+
t .
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Proof. First let us point out that if (Xt )t≤T is an R-valued continuous semimartin-
gale and if X+

t := max{Xt, 0} then

d(X+
t )2 = 2X+

t dXt + 1[Xt>0]d < X, X >t, t ≤ T . (4)

Actually using Tanaka’s formula we obtain

dX+
t = 1[Xt>0]dXt + 1

2
dLt , t ≤ T

where (Lt )t≤T is an increasing adapted process such that
∫ t

0 XsdLs = 0, ∀t ≤ T .
Now it order to deduce the result it is enough to remark that (X+

t )2 = Xt .X
+
t and

to use Itô’s formula.
Let us show that Y ≤ Y ′. For k ≥ 0, let τk be the stopping time defined as

follows :
τk = inf{t ≥ 0,

∫ t

0
(|Zs | + |Z′

s |)2ds ≥ k} ∧ T

(we always assume that inf{∅} = ∞).

Next relation (4) with Y − Y ′ yields: ∀t ≤ T ,

(Yt∧τk
− Y ′

t∧τk
)+2 +

∫ τk

t∧τk

1[Ys>Y ′
s ]|Zs − Z′

s |2ds

= 2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(f (s, Ys, Zs) − f ′(s, Y ′

s , Z
′
s))ds

+2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(dKs − dK ′

s)

−2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(Zs − Z′

s)dBs + (Yτk
− Y ′

τk
)+2

≤ 2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(f (s, Ys, Zs) − f (s, Y ′

s , Z
′
s))ds

+2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(dKs − dK ′

s)

−2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(Zs − Z′

s)dBs + (Yτk
− Y ′

τk
)+2.

since f (t, Y ′
t , Z

′
t ) ≤ f ′(t, Y ′

t , Z
′
t ). But

∫ t

0
1[Ys>Y ′

s ](Ys − Y ′
s)

+(dKs − dK ′
s) =

∫ t

0
1[Ys>Y ′

s ](Ys −Y ′
s)

+(−dK−
s −dK

′+
s ) ≤ 0 since when Yt > Y ′

t we have Yt > Lt

and U ′
t > Y ′

t . Henceforth

(Yt∧τk
− Y ′

t∧τk
)+2 +

∫ τk

t∧τk

1[Ys>Y ′
s ]|Zs − Z′

s |2ds

≤ 2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(f (s, Ys, Zs) − f (s, Y ′

s , Z
′
s))ds

−2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(Zs − Z′

s)dBs + (Yτk
− Y ′

τk
)+2, ∀t ≤ T .
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As f is Lipschitz then we can write f (t, Yt , Zt ) − f (t, Y ′
t , Z

′
t ) = at (Yt −

Y ′
t ) + bt (Zt − Z′

t ), t ≤ T , where (at )t≤T and (bt )t≤T are bounded P-measurable
processes. Therefore for any t ≤ T ,

(Yt∧τk
− Y ′

t∧τk
)+2 +

∫ τk

t∧τk

1[Ys>Y ′
s ]|Zs − Z′

s |2ds

≤ 2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+{as(Ys − Y ′

s) + bs(Zs − Z′
s)}ds

−2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(Zs − Z′

s)dBs + (Yτk
− Y ′

τk
)+2.

Now using the inequality |x.y| ≤ ε|x|2 +ε−1|y|2, ∀ε > 0 and x, y ∈ R we obtain,

(Yt∧τk
− Y ′

t∧τk
)+2 ≤ (Yτk

− Y ′
τk

)+2 + C

∫ τk

t∧τk

(Ys − Y ′
s)

+2ds

−2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(Zs − Z′

s)dBs

where C is a constant. But for any t ≤ T we have,
∫ τk

t∧τk

(Ys − Y ′
s)

+2ds = 1[t≤τk]

∫ τk

t

(Ys − Y ′
s)

+2ds

= 1[t≤τk]

∫ τk

t

(Ys∧τk
− Y ′

s∧τk
)+2ds ≤

∫ T

t

(Ys∧τk
− Y ′

s∧τk
)+2ds.

Therefore for any t ≤ T we have

(Yt∧τk
− Y ′

t∧τk
)+2 ≤ (Yτk

− Y ′
τk

)+2 + C

∫ T

t

(Ys∧τk
− Y ′

s∧τk
)+2ds

−2
∫ τk

t∧τk

1[Ys>Y ′
s ](Ys − Y ′

s)
+(Zs − Z′

s)dBs.

But the process (

∫ t∧τk

0
1[Ys>Y ′

s ](Ys − Y ′
s)

+(Zs − Z′
s)dBs)t≤T is a martingale, then

taking the expectation in both sides, and using Gronwall’s inequality implies that
E[(Yt∧τk

− Y ′
t∧τk

)+2] ≤ CE[(Yτk
− Y ′

τk
)+2], ∀t ≤ T . Finally taking the limit in

both sides as k → ∞ we get (Yt − Y ′
t )

+2 = 0 and then Y ≤ Y ′.
The proof of the second point is given in [BHM]. However for the reader’s

convenience we give it again.
Let us prove that K

′− ≥ K−. Let τ = inf{t ≥ 0, K−
t > K

′−
t } ∧ T . We are

going to show that P [τ < T ] = 0 which implies that K−
t ≤ K

′−
t , ∀t < T and then

K− ≤ K
′− by continuity.

Suppose that P [τ < T ] > 0. Since K− and K
′− are continuous processes we

have K−
τ = K

′−
τ on the set {τ < T }. On the other hand we have Yτ = Y ′

τ = Uτ

on the set {τ < T }. Indeed, let ω ∈ {τ < T } ; if Yτ(ω)(ω) 
= Uτ(ω)(ω), then there
exists a real number η(ω) > 0 such that ∀t ∈]τ(ω) − η(ω), τ (ω) + η(ω)[ we have
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Yt (ω) < Ut(ω) which implies that K−
τ(ω)(ω) = K

′−
τ(ω)(ω) = K−

t (ω) ≤ K
′−
t (ω),

∀t ∈ [τ(ω), τ (ω) + η(ω)[. But this contradicts the definition of τ(ω), henceforth
Yτ(ω)(ω) = Uτ(ω)(ω) = Y ′

τ(ω)(ω) since Y ≤ Y ′ ≤ U .
Now let δ = inf{t ≥ τ, Yt = Lt } ∧ T . We have {τ < T } ⊂ {δ > τ }. Indeed,

if ω is such that τ(ω) < T then Yτ(ω)(ω) = Uτ(ω)(ω). Now if δ(ω) = τ(ω)

then Yδ(ω)(ω) = Lδ(ω)(ω) = Uτ(ω)(ω) = Lτ(ω)(ω) which is absurd since Ut >

Lt , ∀t < T . Hence {τ < T } ⊂ {δ > τ } and then P [δ > τ ] > 0.
For t ∈ [τ, δ] we have K+

t = K+
δ and K

′+
t = K

′+
δ since the processes K+

(resp. K
′+) moves only when Y (resp. Y ′) reaches the obstacle L and Y ≤ Y ′. It

follows that, ∀t ∈ [τ, δ],

Yt = Yδ +
∫ δ

t

f (s, Ys, Zs)ds − (K−
δ − K−

t ) −
∫ δ

t

ZsdBs and

Y ′
t = Y ′

δ +
∫ δ

t

f ′(s, Y ′
s , Z

′
s)ds − (K

′−
δ − K

′−
t ) −

∫ δ

t

Z′
sdBs.

Now let (Ȳt , Z̄t , K̄t )t≤δ (resp. (Ȳ ′
t , Z̄

′
t , K̄

′
t )t≤δ) be the unique solution on [0, δ] of

the BSDE whose coefficient is f (resp. f ′), the terminal value Yδ (resp. Y ′
δ) and

reflected in the upper obstacle U , i.e.,

Ȳt = Yδ +
∫ δ

t

f (s, Ȳs, Z̄s)ds − (K̄−
δ − K̄−

t ) −
∫ δ

t

Z̄sdBs

(resp. Ȳ ′
t = Y ′

δ +
∫ δ

t

f ′(s, Ȳ ′
s , Z̄

′
s)ds − (K̄

′−
δ − K̄

′−
t ) −

∫ δ

t

Z̄′
sdBs, ∀t ≤ δ).

The comparison theorem for one upper barrier reflected BSDEs (see e.g. [HLM],
Prop.2.3) implies that Ȳ ≤ Ȳ ′ and K̄−

t −K̄−
s ≤ K̄

′−
t −K̄

′−
s , ∀s ≤ t ≤ δ. Since f and

f ′ are Lipschitz in (y, z) then ∀t ∈ [τ, δ] we have Ȳt = Yt , Ȳ ′
t = Y ′

t , Z̄t = Zt and

Z̄′
t = Z′

t . It follows that K̄−
δ −K̄−

t = K−
δ −K−

t and K̄ ′−
δ −K̄ ′−

t = K
′−
δ −K

′−
t , ∀t ∈

[τ, δ]. Henceforth we have K
′−
t −K

′−
s ≥ K−

t −K−
s for any τ(ω) ≤ s ≤ t ≤ δ(ω).

As on {τ < T }, K
′−
τ = K−

τ then K
′−
t (ω) ≥ K−

t (ω), ∀t ∈ [τ(ω), δ(ω)]. But this
contradicts the definition of τ , hence P [τ < T ] = 0 and then K− ≤ K

′−. In the
same way we show that P-a.s., K+ ≥ K

′+. The proof is now complete 	

BSDEs with one upper reflecting barrier is a particular case of (2) when we

assume that L ≡ −∞ and then K+ ≡ 0. Therefore we can deduce from The-
orem 1.3, a comparison result for the solutions of BSDEs with one upper bar-
rier. Actually, let ξ ′ be a random variable of L2(�, FT , dP ), f ′(t, ω, y, z) be
another function such that (f ′(t, ω, 0, 0))t≤T ∈ M2,1 and (f ′(t, ω, y, z))t≤T is P-
measurable and finally U ′ another process of S2 such that U ′

T ≥ ξ ′. Assume now
that the one upper barrier reflected BSDE associated with (f ′, ξ ′, U ′) has a solution
(Y ′, Z′, K ′). Then we have,

1.4. Corollary. Assume that :

(i) ξ ≤ ξ ′ and Ut ≤ U ′
t , ∀t ≤ T

(ii) ∀t ≤ T , f (t, Y ′
t , Z

′
t ) ≤ f ′(t, Y ′

t , Z
′
t ).

Then P-a.s. ∀t ≤ T , Yt ≤ Y ′
t 	
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2. Local solutions

Let τ and γ be two stopping times such that τ ≤ γ , P-a.s.. Let (Yt , Zt , K
+
t , K−

t )t≤T

be a P-measurable process with values in R1+d+1+1.

2.1. Definition. The process (Yt , Zt , K
+
t , K−

t )t≤T is called a local solution on
[τ, γ ] for the two barrier reflected BSDE associated with (f, ξ, L, U) if :






Y ∈ M2,1, Z ∈ M2,d , K± ∈ S2
ci

Yt = Yγ +
∫ γ

t

f (s, Ys, Zs)ds + (K+
γ − K+

t ) − (K−
γ − K−

t )

−
∫ γ

t

ZsdBs, ∀t ∈ [τ, γ ] ; YT = ξ

Lt ≤ Yt ≤ Ut, ∀t ∈ [τ, γ ] and
∫ γ

τ

(Ys − Ls)dK+
s =

∫ γ

τ

(Us − Ys)dK−
s = 0

(5)

The notion of a local solution is in way a solution for (2) but just between two
stopping times and YT = ξ 	


2.2. Connection with Dynkin games

Let us consider a process g := (gs)s≤T which belongs to M2,1 and τ a stopping
time. The Dynkin game on [τ, T ] associated with (g, ξ, L, U) is a zero-sum game
on stopping times where the payoff after τ is given by:

�̃τ (ν, σ ) := E[
∫ ν∧σ

τ

gsds + Lσ 1[σ≤ν<T ]

+Uν1[ν<σ ] + ξ1[ν=σ=T ]|Fτ ], ∀ν, σ ∈ Tτ .

Dynkin games arise naturally when two agents c1 and c2, whose advantages are
antagonistic, act on a system up to the time when one of them decides to stop its
intervention (see e.g. [H] for more details on this subject).

The value function of the Dynkin game on [τ, T ] is an (Ft )t≤T -adapted process
(Ỹt )t∈[0,T ] such that P−a.s.,

∀t ∈ [τ, T ], Ỹt = essinfν∈Tt
esssupσ∈Tt

�̃t (ν, σ ) = esssupσ∈Tt
essinfν∈Tt

�̃t (ν, σ ).

In that case, the random variable Ỹτ is just called the value of the game on [τ, T ].
On the other hand a pair of stopping times (ντ , στ ) which belongs to Tτ × Tτ and
which satisfies

�̃τ (ντ , σ ) ≤ �̃τ (ντ , στ ) ≤ �̃τ (ν, στ ), ∀ν, σ ∈ Tτ

is called a saddle-point for the Dynkin game on [τ, T ].
Let (Yt , Zt , K

+
t , K−

t )t≤T be a local solution on [τ, γ ] for the BSDE with two
reflecting barriers associated with (f, ξ, L, U). Let ντ , στ be the stopping times
defined as:

ντ := inf{s ≥ τ, Ys = Us} ∧ T and στ := inf{s ≥ τ, Ys = Ls} ∧ T .

On the other hand let �τ (ν, σ ) be the payoff associated with the Dynkin game on
[τ, T ] associated with ((f (t, Yt , Zt ))t≥0, ξ, L, U). Then we have :
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2.2.1. Proposition. If P -a.s. max{ντ , στ } ≤ γ then :

(i) Yτ = �τ (ντ , στ )

(ii) �τ (ντ , σ ) ≤ Yτ ≤ �τ (ν, στ ) for any ν, σ ∈ Tτ .

Therefore Yτ is the value of the Dynkin game on [τ, T ] and (ντ , στ ) is a saddle-point
for the game.

Proof. Since Y is continuous on [τ, γ ] and P-a.s. max{ντ , στ } ≤ γ then Yντ = Uντ

on [ντ < T ] and Yστ = Lστ on [στ < T ]. On the other hand we have :

Yτ = Yντ ∧στ +
∫ ντ ∧στ

τ

f (s, Ys, Zs)ds + (K+
ντ ∧στ

− K+
τ )

−(K−
ντ ∧στ

− K−
τ ) −

∫ ντ ∧στ

τ

ZsdBs. (6)

But
∫ γ

τ

(Ys − Ls)dK+
s =

∫ γ

τ

(Us − Ys)dK−
s = 0 therefore K+

ντ ∧στ
− K+

τ = 0

and K−
ντ ∧στ

− K−
τ = 0. In addition we have

Yντ ∧στ = Yστ 1[στ ≤ντ <T ] + Yντ 1[ντ <στ ] + ξ1[ντ =στ =T ]

= Lστ 1[στ ≤ντ <T ] + Uντ 1[ντ <στ ] + ξ1[ντ =στ =T ]

since P-a.s., Yντ = Uντ on [ντ < T ] and Yστ = Lστ on [στ < T ]. It follows that

Yτ = E[
∫ ντ ∧στ

τ

f (s, Ys, Zs)ds + Lστ 1[στ ≤ντ <T ] + Uντ 1[ντ <στ ]

+ξ1[ντ =στ =T ]|Fτ ] = �τ (ντ , στ )

after taking the conditional expectation in (6).
Now let ν be a stopping time of Tτ . Since ν ∧ στ ≤ γ then

Yτ = Yν∧στ +
∫ ν∧στ

τ

f (s, Ys, Zs)ds + (K+
ν∧στ

− K+
τ )

−(K−
ν∧στ

− K−
τ ) −

∫ ν∧στ

τ

ZsdBs.

But K+
ν∧στ

− K+
τ = 0 and K−

ν∧στ
− K−

τ ≥ 0 therefore we have :

Yτ ≤ Yν∧στ +
∫ ν∧στ

τ

f (s, Ys, Zs)ds −
∫ ν∧στ

τ

ZsdBs.

As

Yν∧στ = Yστ 1[στ ≤ν<T ] + Yν1[ν<στ ] + ξ1[ν=στ =T ]

≤ Lστ 1[στ ≤ν<T ] + Uν1[ν<στ ] + ξ1[ν=στ =T ],

then, after taking the conditional expectation, we obtain

Yτ ≤ E[
∫ ν∧στ

τ

f (s, Ys, Zs)ds + Lστ 1[στ ≤ν<T ]

+Uν1[ν<στ ] + ξ1[ν=στ =T ]|Fτ ] = �τ (ν, στ ).
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In the same way we can show that Yτ ≥ �τ (ντ , σ ), ∀σ ∈ Tτ . It follows that
�τ (ντ , σ ) ≤ Yτ ≤ �τ (ν, στ ) which implies

Yτ = essinfν∈Tτ
esssupσ∈Tτ

�τ (ν, σ ) = esssupσ∈Tτ
essinfν∈Tτ

�τ (ν, σ ). (7)

Therefore Yτ is the value of the Dynkin game on [τ, T ] 	


2.3. Comparison of local solutions and uniqueness

Let (f ′, ξ ′, L′, U ′) be another quadruple where f ′ is a function from [0, T ] ×�×
R1+d into R which is P ⊗B(R1+d)-measurable and (f ′(t, ω, 0, 0))t≤T belongs to
M2,1, ξ ′ a random variable of L2(�, FT , dP ; R) and finally L′ and U ′ processes
of S2 such that L′

t ≤ U ′
t for any t ≤ T and L′

T ≤ ξ ′ ≤ U ′
T , P-a.s.

Assume now that there exist a stopping time γ ′ such P-a.s., τ ≤ γ ′ and a qua-
druple (Y ′

t , Z
′
t , K

′+
t , K ′−

t )t≤T of P-measurable process with values in R1+d+1+1

which is a local solution on [τ, γ ′] for the two barrier reflected BSDE associated
with (f ′, ξ ′, L′, U ′). Let us set

ν′
τ := inf{s ≥ τ, Y ′

s = U ′
s} ∧ T and σ ′

τ := inf{s ≥ τ, Y ′
s = L′

s} ∧ T .

The following result gives conditions under which we can compare local solutions.
Recall here that (Yt , Zt , K

+
t , K−

t )t≤T is a local solution on [τ, γ ] for the BSDE
associated with (f, ξ, L, U).

2.3.1. Proposition. Assume that :

(i) P-a.s. we have στ ∧ ν′
τ ≤ γ ∧ γ ′, Yστ = Lστ on [στ < T ] and Y ′

ν′
τ

= U ′
ν′
τ

on

[ν′
τ < T ]

(ii) P-a.s. f (t, Y ′
t , Z

′
t ) ≤ f ′(t, Y ′

t , Z
′
t ) for t ∈ [τ, γ ∧ γ ′]

(iii) ξ ≤ ξ ′, Ls ≤ L′
s and Us ≤ U ′

s , ∀s ≤ T .

Then we have Yτ ≤ Y ′
τ , P − a.s..

Proof. First we have :

Yστ ∧ν′
τ

= Yστ 1[στ ≤ν′
τ ] + Yν′

τ
1[ν′

τ <στ ]

= Yστ 1[στ ≤ν′
τ ]∩[στ <T ] + Yστ 1[στ ≤ν′

τ ]∩[στ =T ] + Yν′
τ
1[ν′

τ <στ ]

≤ Lστ 1[στ ≤ν′
τ ]∩[στ <T ] + ξ1[στ ≤ν′

τ ]∩[στ =T ] + U ′
ν′
τ
1[ν′

τ <στ ]

≤ L′
στ

1[στ ≤ν′
τ ]∩[στ <T ] + ξ ′1[στ ≤ν′

τ ]∩[στ =T ] + Y ′
ν′
τ
1[ν′

τ <στ ]

≤ Y ′
στ ∧ν′

τ
.

Therefore applying formula (4) with ((Yt − Y ′
t )

+)2 for t ∈ [τ, στ ∧ ν′
τ ] we can

argue as in Theorem 1.3, to obtain that E[((Y(t∨τ)∧στ ∧ν′
τ
− Y ′

(t∨τ)∧στ ∧ν′
τ
)+)2] = 0

for any t ≤ T which implies Yτ ≤ Y ′
τ 	
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As a by-product we deduce the following result related to uniqueness of the
local solution.

Let τ ≤ T be a stopping time and γ , γ ′ two other stopping times such that
P-a.s. γ ≥ τ and γ ′ ≥ τ . Assume now that the BSDE associated with (f, ξ, L, U)

has a local solution (Yt , Zt , K
+
t , K−

t )t≤T (resp. (Y ′
t , Z

′
t , K

′+
t , K ′−

t )t≤T ) on [τ, γ ]
(resp. [τ, γ ′]). Therefore we have:

2.3.2. Proposition. Uniqueness of the local solution.

If (στ ∧ν′
τ )∨(σ ′

τ ∧ντ ) ≤ γ ∧γ ′, Yστ = Lστ on [στ < T ], Y ′
σ ′

τ
= Lσ ′

τ
on [σ ′

τ < T ],

Yντ = Uντ on [ντ < T ] and Y ′
ν′
τ

= Uν′
τ

on [ν′
τ < T ] then P-a.s. Yτ = Y ′

τ .

Proof. It is just enough to remark that στ ∧ν′
τ ≤ γ ∧γ ′ and σ ′

τ ∧ντ ≤ γ ∧γ ′ there-
fore, in combination with the other properties and Prop.2.3.1, we have Yτ ≤ Y ′

τ

and Y ′
τ ≤ Yτ then Yτ = Y ′

τ , P-a.s. 	


3. Existence of useful local solutions and main result

In this section we are going to show that for any stopping time τ there exists another
stopping time θτ ≥ τ such that the reflected BSDE associated with (f, ξ, L, U)

has a local solution on [τ, θτ ]. In addition we have θτ ≥ στ ∨ ντ . Therefore using
a concatenation procedure we will prove that the reflected BSDE (2) has a global
solution in the case when the barriers are completely separated, i.e., L < U .

So for n ≥ 0, let fn be the function from [0, T ]×�×R1+m into R which with
(t, ω, y, z) associates fn(t, ω, y, z) = f (t, ω, y, z) + n(Lt − y)+. The function
fn is uniformly Lipschitz with respect to (y, z) then, according to Theorem 1.1,
there exists a process (Y n, Zn, K−,n) solution of the reflected BSDE associated
(fn, ξ, U), i.e.,






Y n ∈ S2, Zn ∈ M2,d ; K−,n ∈ S2
ci

Y n
t = ξ +

∫ T

t

f (s, Y n
s , Zn

s )ds + n

∫ T

t

(Ls − Y n
s )+ds − (K

−,n
T − K−,n

t ) −
∫ T

t

Zn
s dBs

Y n
t ≤ Ut, ∀t ≤ T and

∫ T

0
(Us − Y n

s )dK−,n
s = 0.

(8)

Since fn ≤ fn+1, then Corollary 1.4 implies that for any n ≥ 0, Yn ≤ Yn+1 ≤ U

and then the sequence of processes (Y n)n≥0 converges in M2,1 to a lower semi-con-
tinuous process Y = (Yt )t≤T which satisfies E[sups≤T |Ys |2] < ∞ and Yt ≤ Ut ,
∀t ≤ T .

First let us show that we have also Y ≥ L.

3.1. Proposition. P-a.s., ∀t ≤ T we have Yt ≥ Lt .
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Proof. For any n ≥ 0 and any stopping time τ ≤ T , the process Yn satisfies (see
e.g. [EKal])

Yn
τ = essinfν∈Tτ

E[
∫ ν

τ

f (s, Y n
s , Zn

s )ds

+n

∫ ν

τ

(Ls − Yn
s )+ds + Uν1[ν<T ] + ξ1[ν=T ]|Fτ ].

Let νn
τ = inf{s ≥ τ, Y n

s = Us} ∧ T , then

Yn
τ = E[

∫ νn
τ

τ

f (s, Y n
s , Zn

s )ds+n

∫ νn
τ

τ

(Ls −Yn
s )+ds+Uνn

τ
1[νn

τ <T ]+ξ1[νn
τ =T ]|Fτ ].

Since Yn ≤ Yn+1, the sequence of stopping times is decreasing and then converges
to a stopping time ντ := limn→∞ νn

τ . Therefore we have

Yn
τ ≥ E[−

∫ νn
τ

τ

|f (s, Y n
s , Zn

s )|ds + n

∫ ντ

τ

(Ls − Yn
s )+ds

+Uνn
τ
1[νn

τ <T ] + ξ1[νn
τ =T ]|Fτ ]. (9)

Now since the process Kn,− moves only when Yn reaches the barrier U , then for
any s ∈ [τ, νn

τ ] we have (from (8)),

Yn
s = Yn

νn
τ

+
∫ νn

τ

s

f (r, Y n
r , Zn

r )dr + n

∫ νn
τ

s

(Lr − Yn
r )+dr −

∫ νn
τ

s

Zn
r dBr .

Therefore basic calculations imply the existence of a constant C depending only
on T and ‖f ‖Lip, the Lipschitz constant of f , such that

E[
∫ νn

τ

τ

|f (s, Y n
s , Zn

s )|2ds] + E[
∫ νn

τ

τ

|Zn
r |2dr]

≤ CE[sup
t≤T

{|Lt |2 + |Ut |2} +
∫ T

0
|f (s, 0, 0)|2ds], (10)

since Yn
νn
τ

is uniformly bounded in L2(�, F, P ). As Y 0 ≤ Yn ≤ U , f is Lipschitz
and finally taking into account (10), we deduce from (9), in taking expectation, that

∫ ντ

τ

(Lr − Yr)
+dr = 0, P − a.s. (11)

On the other hand for any s ∈ [τ, ντ ] we have,

Yn
s = Yn

ντ
+

∫ ντ

s

f (r, Y n
r , Zn

r )dr + n

∫ ντ

s

(Lr − Yn
r )+dr −

∫ ντ

s

Zn
r dBr

which implies

Yn
s = Yn

τ −
∫ s

τ

f (r, Y n
r , Zn

r )dr −n

∫ s

τ

(Lr −Yn
r )+dr +

∫ s

τ

Zn
r dBr, ∀s ∈ [τ, ντ ].
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Since Yn ≤ Yn+1 and taking into account (10), we can deduce from a result by
S.Peng ([P], Theorem 2.1) that Y is right continuous on [τ, ντ ]. Henceforth from
(11) we obtain Yτ ≥ Lτ on the set [τ < ντ ]. Finally by (9) and (10) we obtain

Yτ = Uτ on [τ = ντ < T ]. (12)

It implies that for any stopping time τ we have Yτ ≥ Lτ . Therefore using the
optional section theorem ([DM], pp.220) we have P-a.s., Y ≥ L 	


Now for a stopping time τ ≤ T and n ≥ 0, let δn
τ = inf{s ≥ τ, Y n

s = Us} ∧ T

(δn
τ is the same as νn

τ of the proof of Prop.3.1). The random variable δn
τ is a stopping

time with respect to (Ft )t≤T , moreover since for any n ≥ 0, Yn ≤ Yn+1 we have
δn
τ ≥ δn+1

τ ≥ τ . Let us denote δτ = limn→∞ δn
τ ; δτ is also a stopping time with

respect to (Ft )t≤T and δτ ≥ τ , P-a.s..
First let us show that the reflected BSDE (2) has a local solution on [τ, δτ ].

3.2. Proposition. There exist two P-measurable processes (K̄+
s )s≤T and (Z̄s)s≤T

with values respectively in R+ and Rd such that the process (Ys, Z̄s, K̄
+
s , 0)s≤T is

a local solution for (2) on [τ, δτ ], i.e.,






Z̄ ∈ M2,d , K̄+ ∈ S2
ci

Ys = Yδτ +
∫ δτ

s

f (u, Yu, Z̄u)ds + (K̄+
δτ

− K̄+
s ) −

∫ δτ

s

Z̄udBu, ∀s ∈ [τ, δτ ]; YT = ξ

Us ≥ Ys ≥ Ls, ∀s ∈ [τ, δτ ] and
∫ δτ

τ

(Ys − Ls)dK̄+
s = 0.

(13)

Proof. For any n ≥ 0 and s ∈ [τ, δτ ] we have

Yn
s = Yn

δτ
+

∫ δτ

s

f (u, Y n
u , Zn

u)du + n

∫ δτ

s

(Lu − Yn
u )+du −

∫ δτ

s

Zn
udBu,

since the process K−,n moves only when Yn reaches the barrier U and then K−,n
τ =

K
−,n
δτ

. On the other hand, for n ≥ 0, let (Ȳ n
t , Z̄n

t )t≤δτ be the P-measurable process

with values in R1+d such that:





E[sups≤δτ
|Ȳ n

s |2 +
∫ δτ

0
|Z̄n

s |2ds] < ∞

Ȳ n
s = Y n

δτ
+

∫ δτ

s

f (u, Ȳ n
u , Z̄n

u)du + n

∫ δτ

s

(Lu − Ȳ n
u )+du −

∫ δτ

s

Z̄n
udBu, ∀s ≤ δτ .

(14)

The process (Ȳ n
t , Z̄n

t )t≤δτ is the unique solution of the standard BSDE associated
with the coefficient f (t, y, z) + n(Lt − y)+, the terminal value Yn

δτ
and bounded

terminal time δτ .
We have (Y n

δτ
)n≥0 ↗ Yδτ ≤ Uδτ , hence from the Lebesgue dominated conver-

gence theorem we get E[|Yn
δτ

− Yδτ |2] → 0 as n → ∞. Therefore the sequence of

processes ((Ȳ n
s , Z̄n

s ,

∫ s

0
n(Lu −Yn

u )+du)s≤δτ )n≥0 converges in S2
δτ

×M2,d
δτ

×S2
δτ
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(S2
δτ

and M2,d
δτ

are the same as S2 and M2,d except for that T is replaced by the

stopping time δτ ) to (Yt , Zt , Kt )t≤δτ a P-measurable process with values in R1+d+1

such that:






E[sups≤δτ
|Ys |2 +

∫ δτ

0
|Zs |2ds] < ∞ ; (Ks )s≤δτ is continuous non-decreasing and K0=0

Ys = Yδτ +
∫ δτ

s

f (u,Yu, Zu)du + Kδτ
− Ks −

∫ δτ

s

ZudBu, ∀s ≤ δτ

Ys ≥ Ls, ∀s ≤ δτ and
∫ δτ

0
(Lu −Yu)dKu = 0.

Since Yδτ ≥ Lδτ (Prop.3.1), then the sketch of the proof of the existence and unique-
ness of the process (Yt , Zt , Kt )t≤δτ is similar to the one which has been done in
El-Karoui et al.’s paper [EKal] in the part related to the penalization method, except
for that there the terminal time is deterministic and it is a stopping time in our frame.
However the difference is irrelevant since δτ is bounded.

Now uniqueness of the solution of (14) on [τ, δτ ] implies that for any s ∈ [τ, δτ ],
Yn

s = Ȳ n
s and Zn

s = Z̄n
s . Therefore Ys = Ys for any s ∈ [τ, δτ ] and






E[sups∈[τ,δτ ] |Ys |2+
∫ δτ

τ

|Zs |2ds] < ∞; (Ks )s≤δτ is continuous non-decreasing and K0=0

Ys = Yδτ +
∫ δτ

s

f (u, Yu, Zu)du + Kδτ
− Ks −

∫ δτ

s

ZudBu, ∀s ∈ [τ, δτ ]

Us ≥ Ys ≥ Ls, ∀s ∈ [τ, δτ ] and
∫ δτ

τ

(Lu − Yu)dKu = 0.

For any s ≤ T , let us set K̄+
s = (Ks∧δτ

− Kτ )1[s≥τ ] and Z̄s = Zs1[τ≤s≤δτ ], we
deduce that (Ys, Z̄s, K̄

+
s , 0)s≤T is a local solution for the equation (5) on [τ, δτ ] 	


Now, let θn
τ = inf{s ≥ δτ , Y

n
s ≤ Ls} ∧ T ; θn

τ is a stopping time and P-a.s.,
θn
τ ≤ θn+1

τ since Yn ≤ Yn+1. Let us set θτ := limn→∞ θn
τ , then θτ is also a stopping

time.
On the other hand, let τ ∗

τ = inf{s ≥ τ, Ys = Us}∧T . So for any n ≥ 0, τ ∗
τ ≤ δn

τ

and then τ ∗
τ ≤ δτ . In other respects when δτ (ω) < T , for n large enough, we have

Uδn
τ
(ω) = Yn

δn
τ
(ω) ≤ Yδn

τ
(ω) ≤ Uδn

τ
(ω), therefore we have limn→∞ Yδn

τ
(ω) =

Uδτ (ω) on {δτ < T }.
3.3. Proposition.
(i) There exists a P-measurable process (Z̃t , K̃

−
t )t≤T with values in Rd+1 such

that (Yt , Z̃t , 0, K̃−
t )t≤T is a local solution for the reflected BSDE (5) on [δτ , θτ ].

(ii) P-a.s. we have Yδτ = Uδτ on [δτ < T ] and Yθτ = Lθτ on [θτ < T ].

Proof. Let us show (i). First let us recall that, from (8), for any n ≥ 0 we have

Yn
t = ξ +

∫ T

t

f (s, Y n
s , Zn

s )ds + n

∫ T

t

(Ls − Yn
s )+ds

−(K
−,n
T − K

−,n
t ) −

∫ T

t

Zn
s dBs, t ≤ T .
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Then for any s ∈ [δτ , θ
n
τ ] we have,

Yn
s = Yn

θn
τ

+
∫ θn

τ

s

f (s, Y n
s , Zn

s )ds − (K
−,n
θn
τ

− K−,n
s ) −

∫ θn
τ

s

Zn
s dBs

since either θn
τ = δτ or θn

τ > δτ and then Yn
s ≥ Ls for s ∈ [δτ , θ

n
τ ]. Let us set

Ỹ n
s := Yn

s∧θn
τ
, Z̃n

s := Zn
s 1[δτ ≤s≤θn

τ ] and K̃−,n
s := (K

−,n
s∧θn

τ
− K

−,n
δτ

)1[s≥δτ ], s ≤ T .

It follows that (Ỹ n, Z̃n, K̃n) is a solution on [δτ , θτ ] for a single upper obstacle
reflected BSDE and satisfies: ∀s ∈ [δτ , θτ ],





Ỹ n
s = Yn

θn
τ

+
∫ θτ

s

1[s≤θn
t ]f (s, Ỹ n

s , Z̃n
s )ds − (K̃

−,n
θτ

− K̃−,n
s ) −

∫ T

s

Z̃n
s dBs

Ỹ n
s ≤ Us ;

∫ θτ

δτ

(Ỹ n
s − Us)dK̃−,n

s = 0.

(15)

Standard calculations yield

E[
∫ θτ

δτ

|Z̃n
s |2ds + sup

s∈[δτ ,θτ ]
|K̃−,n

s |2] ≤ C(T , ‖f ‖Lip)

×E[sup
t≤T

(|Lt |2 + |Ut |2) +
∫ T

0
|f (s, 0, 0)|2ds]. (16)

Now let us focus on the pointwise convergence of (Ỹ n
s )n≥0 for s ∈ [δτ , θτ ]. If

s ∈ [δτ (ω), θτ (ω)[, then for n large enough we have

Ỹ n
s = Yn

s → Ys as n → ∞.

If s = θτ (ω), then once again for n large enough we have

Ỹ n
θτ

= Yn
θn
τ

= Lθn
τ

1[δτ <θτ <T ] + Yn
δτ

1[δτ =θτ ] + Lθn
τ

1[δτ <θn
τ <θτ =T ] + ξ1[δτ <θn

τ =θτ =T ]

= Lθn
τ

1[δτ <θτ <T ] + Yn
δτ

1[δτ =θτ ] + ξ1[δτ <θτ =T ] + (Lθn
τ

− ξ)1[δτ <θn
τ <θτ =T ].

It implies that

lim
n→∞ Ỹ n

θτ
= Lθτ 1[δτ <θτ <T ] + ξ1[δτ <θτ =T ]

+Yδτ 1[δτ =θτ ] + (LT − ξ)1{∩n≥0[δτ <θn
τ <θτ =T ]}.

But for any n ≥ 0, Yn ≤ Yn+1, Yn
T = ξ and t → Yn

t is continuous then

(LT − ξ)1{∩n≥0[δτ <θn
τ <θτ =T ]} = 0 a.s..

Indeed if ξ(ω) > LT (ω) then we cannot have δτ (ω) < θn
τ (ω) < θτ (ω) = T , at

least for n large enough.
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So, we have shown, P-a.s., for any s ∈ [δτ , θτ ], the sequence (Ỹ n
s )n≥0 converges

to

Ỹs := Ys1[s<θτ ] + 1[s=θτ ](Lθτ 1[δτ <θτ <T ] + ξ1[δτ <θτ =T ] + Yδτ 1[δτ =θτ ]). (17)

Now let us use Itô’s formula with (Ỹ n − Ỹ m)2 and s ∈ [δτ , θτ ]. It yields that

(Ỹ n
s − Ỹ m

s )2 +
∫ θτ

s

(Z̃n
u − Z̃m

u )2du = (Y n
θn
τ

− Ym
θm
τ
)2

+2
∫ θτ

s

(Ỹ n
u − Ỹ m

u ){1[u≤θn
τ ]f (u, Ỹ n

u , Z̃n
u) − 1[u≤θm

τ ]f (u, Ỹm
u , Z̃m

u )}du

−2
∫ θτ

s

(Ỹ n
u − Ỹ m

u )d(K̃−,n
u − K̃−,m

u ) − 2
∫ θτ

s

(Ỹ n
u − Ỹ m

u )(Z̃n
u − Z̃m

u )dBu.

ButE[(Y n
θn
τ
−Ym

θm
τ
)2] → 0 asn, m → ∞ since (Y n

θn
τ
)n≥0 converges to (Lθτ 1[δτ <θτ <T ]

+ ξ1[δτ <θτ =T ] + Yδτ 1[δτ =θτ ]). On the other hand for any n ≤ m and s ∈ [δτ , θτ ]
we have

∫ θτ

s

(Ỹ n
u − Ỹ m

u )d(K̃−,n
u − K̃−,m

u ) ≥ − sup
s∈[θn

τ ,θm
τ ]

(Ls − Yn
θn
τ
)− × K

−,m
θm
τ

.

Therefore taking the supremum, using the Burkholder-Davis-Gundy inequality,
Gronwall’s one and finally the estimates (16) we obtain

E[ sup
s∈[δτ ,θτ ]

|Ỹ n
s − Ỹ m

s |2 +
∫ θτ

δτ

|Z̃n
u − Z̃m

u |2du

+ sup
s∈[δτ ,θτ ]

|K̃−,n
s − K̃−,m

s |2] → 0 as n, m → ∞. (18)

It implies that Ỹ is continuous on [δτ , θτ ].
Now let us show that Ys = Ỹs for all s ∈ [δτ , θτ ]. From (17) we have

Y = Ỹ on the sets [δτ , θτ [, [δτ , θτ ] ∩ [θτ = T ] and [δτ = θτ ]. (19)

Now let ω be such that δτ (ω) < θτ (ω) < T and consider a sequence sn
ω of

[δτ (ω), θτ (ω)[ which converges to θτ (ω). Since Ỹ is continuous on [δτ , θτ ] we
have limn→∞ Ysn

ω
(ω) = limn→∞ Ỹsn

ω
(ω) = Ỹθτ (ω) = Lθτ (ω). As Y is lower semi-

continuous then limn→∞ Ysn
ω
(ω) ≥ Yθτ (ω), i.e., Lθτ (ω) ≥ Yθτ (ω). But Y ≥ L

then Yθτ = Ỹθτ on [δτ < θτ < T ]. Thereby, in combination with (19), we have

Ys = Ỹs for all s ∈ [δτ , θτ ].

Now let Z̃ := M2,d − limn→∞ Z̃n and K̃− := S2
ci − limn→∞ K̃−,n. Since

∫ θτ

δτ

(Ỹ n
s − Us)dK−,n

s = 0 then through Helly’s theorem ([KF], pp. 370) we have

also
∫ θτ

δτ

(Ys − Us)dK̃−
s = 0. (20)
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Therefore (Ys, Z̃s, 0, K̃−
s )s≤T is a local solution for (5) in [δτ , θτ ]. Indeed YT = ξ ,

Y ≥ L and for any s ∈ [δτ , θτ ] we have, in taking the limit in (15),

Ys = Yθτ +
∫ θτ

s

f (s, Ys, Z̃s)ds − (K̃−
θτ

− K̃−
s ) −

∫ θτ

s

Z̃sdBs ; (21)

the integrability properties for Y , Z̃ and K̃− are obviously satisfied.
Now let us show (ii). As it is underlined previously we have

Ys = Ỹs on the set [δτ , θτ ]

which implies in particular that Yθτ = Lθτ on the set [δτ < θτ < T ] and since
δn
τ ↘ δτ , Y is continuous on [δτ , θτ ] and limn→∞ Yδn

τ
= Uδτ we have also Yδτ =

Uδτ on the set [δτ < T ] ∩ [δτ < θτ ].
In order to finish the proof of (ii) it is enough to show that Yδτ = Uδτ = Lδτ on

[δτ = θτ < T ]. First observe that for all n ≥ 0, θn
τ = δτ , hence Yδτ = limn Y n

θn
τ

≤
Lδτ , on the set [δτ = θτ < T ]. On the other hand, we have:

∀n ≥ 0, Y n
δτ

= Yn
δn
τ

+
∫ δn

τ

δτ

f (u, Y n
u , Zn

u)du + n

∫ δn
τ

δτ

(Lu − Yn
u )+du

−(K
−,n
δn
τ

− K
−,n
δτ

) −
∫ δn

τ

δτ

Zn
udBu.

As n(Lu−Yn
u )+ ≥ 0, K−,n

δn
τ

=K
−,n
δτ

and supn≥0 E[
∫ δn

τ

δτ

|f (s, Y n
s , Zn

s )|2ds]<∞
(e.g. from (10)) then

E[1[δτ =θτ <T ]Y
n
δτ

] ≥ E[1[δτ =θτ <T ]Y
n
δn
τ
] − C

√
E[δn

τ − δτ ], (22)

for some constant C which does not depend on n. So, taking the limit in (22), we
get E[1[δτ =θτ <T ]Lδτ ] ≥ E[1[δτ =θτ <T ]Uδτ ]. But Lθτ ≤ Uθτ then Lθτ = Uθτ on the
set [δτ = θτ < T ].

As a consequence of Propositions 3.2 and 3.3, the reflected BSDE (5) has a
local solution on [τ, θτ ].

3.4. Theorem. The double obstacle reflected BSDE associated with (f, ξ, L, U)

has a local solution (Ys, Zs, K
+
s , K−

s )s≤T on [τ, θτ ].

Proof. Let (Ys, Z̄s, K̄
+
s , 0)s≤T (resp. (Yt , Z̃t , 0, K̃−

t )t≤T ) be a local solution of (5)
on [τ, δτ ] (resp. [δτ , θτ ]) which exists according to Prop.3.2 (resp. Prop.3.3).

Now for s ≤ T , let Zs = Z̄s1[s≤δτ ] + Z̃s1[δτ ≤s≤θτ ], K+
s = K̄+

s∧δτ
and K−

s =
K̃−

s∧θτ
1[s≥δτ ]. For any s ∈ [τ, θτ ] we have,

Ys = Yθτ +
∫ θτ

s

f (s, Ys, Zs)ds + (K+
θτ

− K+
s ) − (K−

θτ
− K−

s ) −
∫ θτ

s

ZsdBs.

(23)
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Indeed, if s ∈ [δτ , θτ ] then K+
θτ

− K+
s = 0 and (23) is satisfied from (21). On the

other hand if s ∈ [τ, δτ ], then from (5) we have,

Ys = Yδτ +
∫ δτ

s

f (u, Yu, Zu)ds + (K+
δτ

− K+
s ) −

∫ δτ

s

ZudBu.

As

Yδτ = Yθτ +
∫ θτ

δτ

f (s, Ys, Z̃s)ds − K̃−
θτ

−
∫ θτ

δτ

Z̃sdBs

then (23) is also satisfied since K+
δτ

= K+
θτ

and K̄−
s = 0.

Now for any s ∈ [τ, θτ ], Ls ≤ Ys ≤ Us and
∫ θτ

τ

(Ys − Ls)dK+
s =

∫ δτ

τ

(Ys −

Ls)dK̄+
s = 0 and

∫ θτ

τ

(Us − Ys)dK−
s =

∫ θτ

δτ

(Us − Ys)dK̃−
s = 0.

Finally YT = ξ and the integrability properties are satisfied. Henceforth the
process (Ys, Z̄s, K̄

+
s , K̄−

s )s≤T is a local solution for (5) on [τ, θτ ] 	

3.5. Remark. The construction of Y does not depend on τ but the ones of Z, K+
and K− do 	


As a consequence we have :

3.6. Proposition. There exists a unique continuous P-measurable process (Yt )t≤T

such that:
(i) ∀t ≤ T , Lt ≤ Yt ≤ Ut and YT = ξ

(ii) for any stopping time τ , there exist another stopping time θτ ≥ τ and a
triple of P-measurable processes (Zτ

t , K
+,τ
t , K

−,τ
t )t≤T such that on [τ, θτ ] the pro-

cess (Yt , Z
τ
t , K

+,τ
t , K

−,τ
t )t≤T is a local solution for the reflected BSDE associated

(f, ξ, L, U)

(iii) If ντ = inf{s ≥ τ, Ys = Us} ∧ T and στ = inf{s ≥ τ, Ys = Ls} ∧ T then
ντ ∨ στ ≤ θτ , Yστ = Lστ on [στ < T ] and Yντ = Lντ on [ντ < T ] .

Proof. The existence of the process (Yt )t≤T , θτ and the triple (Zτ
t , K

+,τ
t , K

−,τ
t )t≤T

such that (i)− (iii) are satisfied stems from Thm. 3.4 and Prop. (3.3). It remains to
show that (Yt )t≤T is unique and continuous. But uniqueness is a direct consequence
of Prop.2.3.2. Let us focus on the continuity.

In the construction of the process (Yt )t≤T we have chosen an increasing scheme.
Had we chosen a decreasing scheme, which is possible in making the penalization
on the upper barrier U , we would have constructed in a symmetric way a process
Ỹ = (Ỹt )t≤T which is P-measurable and upper semi-continuous such that:

(i) ∀t ≤ T , Lt ≤ Ỹt ≤ Ut and ỸT = ξ

(ii) for any stopping time τ , there exist another stopping time θ̃τ ≥ τ such
that on [τ, θ̃τ ] there exists a triple (Z̃τ

t , K̃
+,τ
t , K̃

−,τ
t )t≤T such that the process

(Ỹt , Z̃
τ
t , K̃

+,τ
t , K̃

−,τ
t )t≤T is a local solution for the reflected BSDE associated with

(f, ξ, L, U)

(iii) if ν̃τ = inf{s ≥ τ, Ỹs = Us} ∧ T and σ̃τ = inf{s ≥ τ, Ỹs = Ls} ∧ T then
ν̃τ ∨ σ̃τ ≤ θ̃τ , Ỹσ̃τ

= Lσ̃τ
on [σ̃τ < T ] and Ỹν̃τ

= Lν̃τ
on [ν̃τ < T ].
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Therefore using the uniqueness result of Prop. 2.3.2, we have Yτ = Ỹτ which
implies that Y is lower and upper semi-continuous in the same time and then is
continuous 	


We are now ready to give the main result of this section.

3.7. Theorem. Assume that ∀t ≤ T , Lt < Ut . Then there exists a unique pro-
cess (Yt , Zt , K

+
t , K−

t )t≤T P-measurable with values in R1+d+1+1 solution of the
reflected BSDE (2), i.e.,





Y ∈ S2 , Z ∈ M and K+, K− ∈ Sci

Yt = ξ +
∫ T

t

f (s, Ys, Zs)ds + (K+
T − K−

t ) − (K−
T − K−

t ) −
∫ T

t

ZsdBs, ∀t ≤ T

Lt ≤ Yt ≤ Ut, ∀t ≤ T and
∫ T

0
(Ys − Ls)dK+

s =
∫ T

0
(Us − Ys)dK−

s = 0.

(24)

Proof. Let (Yt )t≤T be the continuous process defined in Prop.3.6. Therefore Y is
continuous and satisfies Lt ≤ Yt ≤ Ut , and YT = ξ .

Now let τ0 = 0 and for n ≥ 0, τ2n+1 = inf{s ≥ τ2n, Ys = Us} ∧ T and
τ2n+2 = inf{s ≥ τ2n+1, Ys = Ls} ∧ T . Henceforth, for any n ≥ 0 there exists
a triple (Zn

t , K
+,n
t , K

n,−
t )t≤T of P-measurable processes with values in Rd+1+1

such that the process (Yt , Z
n
t , K

+,n
t , K

n,−
t )t≤T is a local solution for the reflected

BSDE associated with (f, ξ, L, U) on the set [τ2n, τ2n+2].
On the other hand we have P -a.s., τn < τn+1 on the set [τn+1 < T ], ∀n ≥ 0

since Y , L and U are continuous processes and L < U . In addition the sequence
(τn)n≥0 is of stationary type i.e. P-a.s. for ω ∈ � there exists n0(ω) ≥ 0 such that
τn0(ω) = T . Actually let us show that P [τn < T, ∀n ≥ 0] = 0.

Indeed let us set A = {ω : τn(ω) < T, ∀n ≥ 0} and assume that P(A) > 0.
Therefore for ω ∈ A, we have for any n ≥ 0, Yτ2n+1 = Uτ2n+1 and Yτ2n = Lτ2n .
Since the sequence of stopping times (τn)n≥0 is non-decreasing then it converges
to another stopping time τ . It follows that Yτ = Lτ = Uτ on A which is a con-
tradiction since Lt < Ut , ∀t ≤ T . Thereby we deduce P(A) = 0 i.e. P-a.s. for
ω ∈ �, there exists n0(ω) ≥ 0 such that τn0(ω) = T .

Now let us set for any t ≤ T ,

K+
t = K+

τ2n
+ (K

+,n
t − K+,n

τ2n
) if t ∈]τ2n, τ2n+2] (K+

0 = 0)

K−
t = K−

τ2n
+ (K

−,n
t − K−,n

τ2n
) if t ∈]τ2n, τ2n+2] (K−

0 = 0)

Zt = Z0
t 1[0,τ2](t) +

∑

n≥1

Zn
t 1]τ2n,τ2n+2](t).

Therefore K± = (K±
t )t≤T are continuous non-decreasing processes and since the

sequence (τn)n≥0 is P-a.s. of stationary type and for any n≥0, E[
∫ τ2n

0
|Zs |2ds]<∞

then
∫ T

0
|Zs |2ds < ∞, P-a.s..

Now let ω ∈ � and t ≤ T . Then there exits n1(ω) such that t ∈]τ2n1(ω),

τ2n1+2(ω)] and
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Yt (ω) = Yτ2n1+2(ω) +
∫ τ2n1+2(ω)

t

f (s, Ys, Zs)ds + (K+
τ2n1+2

(ω) − K+
t )

−(K−
τ2n1+2

(ω) − K−
t ) −

∫ τ2n1+2(ω)

t

ZsdBs.

But there exists n0(ω) such that for n ≥ n0 we have τ2n = T , therefore step by
step we obviously have

Yτ2n1+2 = ξ +
∫ T

τ2n1+2

f (s, Ys, Zs)ds + (K+
T − K+

τ2n1+2
)

−(K−
T − K−

τ2n1+2
) −

∫ T

τ2n1+2

ZsdBs.

It follows that :

Yt (ω) = ξ +
∫ T

t

f (s, Ys, Zs)ds + (K+
T − K+

t ) − (K−
T − K−

t ) −
∫ T

t

ZsdBs.

Finally the processes K± and Y satisfy
∫ T

0
(Ys −Ls)dK+

s =
∫ T

0
(Us −Ys)dK−

s =0

since on the intervals [τ2n, τ2n+2] those properties are satisfied and the sequence
(τn)n≥0 is P-a.s. of stationary type. Henceforth the process (Y, Z, K+, K−) is a
solution for the BSDE with two reflecting barriers associated with (f, ξ, L, U) in
the sense of (2). Uniqueness is a direct consequence of the comparison theorem
(1.3) 	


Now let us consider a process g := (gs)s≤T which belongs to M2,1 and let
t ∈ [0, T ]. Let us recall that the Dynkin game on [t, T ] associated with (g, ξ, L, U)

is a zero-sum game on stopping times where the payoff is given by:

∀ν, σ ∈ Tt , �t (ν, σ )

:= E[
∫ ν∧σ

t

gsds + Lσ 1[σ≤ν<T ] + Uν1[ν<σ ] + ξ1[ν=σ=T ]|Ft ].

In the following result we give some feature, which is fairly not known, of the value
function of the Dynkin game. The proof is a direct consequence of Thm.3.7 and
Prop. 2.2.1, therefore we skip it.

3.8. Theorem. Assume that for any t ≤ T we have Lt < Ut and let
(Yt , Zt , K

+
t , K−

t )t≤T be the solution of the BSDE with two reflecting barriers
associated with (g, ξ, L, U), then (Yt )t≤T , which is a continuous semimartingale,
is the value function of the Dynkin game on [t, T ]. 	


4. Further properties of the solution of the BSDE (24)

In Thm.3.7 we just know that K+
T + K−

T +
∫ T

0
|Zs |2ds < ∞ P-a.s. We are

going to show the existence of a sequence of stopping times (γn)≥0, P-a.s. of
stationary type and whose limit is T , which depends only on L, U , the process



BSDEs with two reflecting barriers : the general result 257

(f (t, ω, 0, 0))t≤T and the constant of linear growth of f , such that E[(K+
γn

)2 +
(K−

γn
)2 +

∫ γn

0
|Zs |2ds] < ∞ for any n ≥ 0.

4.1. Proposition. Assume that Lt < Ut , ∀t ≤ T , then there exists an increasing
sequence of stopping times (γn)≥0 such that :

(i) P-a.s. the sequence is of stationary type and converges to T

(ii) the sequence depends only on L, U , the process (f (t, ω, 0, 0))t≤T and C

(iii) ∀ n ≥ 0 we have

E[(K+
γn

)2 + (K−
γn

)2 +
∫ γn

0
|Zs |2ds] < ∞.

Proof. As L < U then there exists a quadruple of processes (Ỹ , Z̃, K̃+, K̃−) solu-
tion of the reflected BSDE associated with (|f (t, ω, 0, 0)|+C(|y|+|z|), UT , L, U),
i.e.,





Ỹ ∈ S2 , Z̃ ∈ M and K̃+, K̃− ∈ Sci

Ỹt = UT +
∫ T

t

{|f (s, ω, 0, 0)| + C(|Ỹs | + |Z̃s |)}ds

+(K̃+
T − K̃+

t ) − (K̃−
T − K̃−

t ) −
∫ T

t

Z̃sdBs, ∀t ≤ T

Lt ≤ Ỹt ≤ Ut, ∀t ≤ T and
∫ T

0
(Ỹs − Ls)dK̃+

s =
∫ T

0
(Us − Ỹs)dK̃−

s = 0.

On the other hand there exists a stationary sequence of stopping times (γn)n≥0 such
that E[(K̃+

γn
)2 + (K̃−

γn
)2] < ∞.

Now the comparison theorem (1.3) implies that P -a.s. for any t ≤ T , K−
t ≤ K̃−

t

and then E[(K−
γn

)2] < ∞. Henceforth standard calculations in (24) imply also that

E[(K+
γn

)2 +
∫ γn

0
|Zs |2ds] < ∞, whence the desired result 	


5. Reflected BSDEs with continuous coefficient

Suppose now that the function f is no longer Lipschitz but just continuous. We are
going to show, once again, that the reflected BSDE associated with (f, ξ, L, U)

has a solution in the sense of Theorem.3.7.
So namely assume that the function (t, ω, y, z) �−→ f (t, ω, y, z) is continuous

with respect to (y, z) and is at most with linear growth, i.e., there exists a constant
C such that |f (t, ω, y, z)| ≤ C(1 + |y| + |z|). Then we have the following result:

5.1. Theorem. There exists a quadruple (Y, Z, K+, K−) := (Yt , Zt , K
+
t , K−

t )t≤T

solution of the double barrier reflected BSDE associated with (f, ξ, L, U).

Proof. There exists a sequence of functions (fn)n≥0, obtained via inf-convolution,
such that for any n ≥ 0, fn ≤ fn+1, fn is Lipschitz with respect to (y, z) and finally
|fn(t, ω, y, z)| ≤ C(1 + |y| + |z|), ∀(t, y, z) ∈ [0, T ] × R1+d (see e.g. [HLM]).
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Now for n ≥ 0, let (Y n, Zn, Kn,+, Kn,−) be the solution of the reflected BSDE
associated with (fn, ξ, L, U) and (Ȳ , Z̄, K̄+, K̄−) the solution of the reflected
BSDE associated with (C(1+|y|+ |z|), ξ, L, U). Therefore using the comparison
theorem (1.3) we have for any n ≥ 0, Yn ≤ Yn+1 ≤ U , Kn,− ≤ K−,n+1 ≤ K̄−
and Kn,+ ≥ K+,n+1 ≥ K̄+. So for any t ≤ T let us set Yt (resp. K−

t ; resp. K+
t )

the pointwise limit of the sequence (Y n
t )n≥0 (resp. (K

n,−
t )n≥0; resp. (K

n,+
t )n≥0).

Now let (γk)k≥0 be the stationary sequence of stopping times such that E[(K̄+
γk

)2

+(K̄−
γk

)2+
∫ γk

0
|Z̄s |2ds] < ∞ for any k ≥ 0. Using standard calculations we obtain

for any fixed k ≥ 0,

E[ sup
s≤γk

|Ym
s − Yn

s |2 +
∫ γk

0
|Zm

s − Zn
s |2ds] −→ 0 as n, m → 0.

It follows that the process (Yt∧γk
)t≤T is continuous for any k ≥ 0. As (γk)k≥0 is a

stationary sequence then the process (Yt )t≤T is continuous. On the other hand the
sequence ((Zn

t 1[t≤γk])t≤T )n≥0 converges in M2,d to a process which we denote

(Zk
t )t≤T . In addition it satisfies, for any p ≥ 1 and k ≥ 0, Z

k+p
t∧γk

= Zk
t∧γk

,
dt ⊗ dP − a.s. Therefore for any k ≥ 0 we have,

Yt∧γk
= Yγk

+
∫ γk

t∧γk

f (s, Ys, Z
k
s )ds + (K+

γk
− K+

t∧γk
)

−(K−
γk

− K−
t∧γk

) −
∫ γk

t∧γk

Zk
s dBs, ∀t ≤ T (25)

since E[
∫ γk

0
|fn(s, Y

n
s , Zn

s ) − f (s, Ys, Z
k
s )|ds] → 0 as n → 0. Now (25) implies

also that

Yt∧γk
= Y0 −

∫ t∧γk

0
f (s, Ys, Z

k
s )ds − K+

t∧γk
+ K−

t∧γk
+

∫ t∧γk

0
Zk

s dBs, ∀t ≤ T .

As K− is lower semi-continuous and K+ is upper semi-continuous then the pro-
cesses (K+

t∧γk
)t≤T and (K−

t∧γk
)t≤T are continuous. Henceforth K+ and K− are

continuous since (γk)k≥0 is of stationary type. In addition, from Dini’s theorem,
the sequences (Kn,+)n≥0 and (Kn,−)n≥0 converge P-a.s. uniformly to K+ and K−
respectively.

Now for any t ≤ T , let us set Zt = Z0
t 1[0,γ0](t) + ∑

k≥0 Zk+1
t 1]γk,γk+1](t). As

E[
∫ γk

0
|Zk

s |2ds] < ∞ for any k ≥ 0 and the sequence (γk)k≥0 is of stationary type

then
∫ T

0
|Zs |2ds < ∞, P-a.s.. On the other hand, with the definition of Z and (25)

we have,

Yt∧γk
= Yγk

+
∫ γk

t∧γk

f (s, Ys, Zs)ds + (K+
γk

− K+
t∧γk

)

−(K−
γk

− K−
t∧γk

) −
∫ γk

t∧γk

ZsdBs, ∀t ≤ T . (26)
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Now taking k great enough in (26) yields

Yt = ξ +
∫ T

t

f (s, Ys, Zs)ds + (K+
T −K+

t )− (K−
T −K−

t )−
∫ T

t

ZsdBs, ∀t ≤ T .

Finally it remains to show that
∫ T

0
(Ys − Us)dK−

s =
∫ T

0
(Ys − Ls)dK+

s = 0. But

this is a direct consequence of the P-a.s. uniform convergence of Yn (resp. Kn,+;

resp. Kn,−) to Y (resp. K+; resp. K−) and the facts that
∫ T

0
(Y n

s − Us)dKn,−
s =

∫ T

0
(Y n

s −Ls)dKn,+
s = 0 (see e.g. the Helly’s Theorem in [KF], pp.370). The proof

is now complete 	


6. Relation with double obstacle variational inequality

Let b : [0, T ] × Rk → Rk and σ : [0, T ] × Rk → Rk×d be continuous map-
pings and Lipschitz with respect to the second variable, uniformly with respect to
t ∈ [0, T ]. For (t, x) ∈ [0, T ] × Rk , let (X

t,x
s )s∈[0,T ] be the unique Rk-valued

process solution of the following standard SDE :

{
X

t,x
s = x + ∫ s

t
b(r, X

t,x
r )dr + ∫ s

t
σ (r, X

t,x
r )dBr, t ≤ s ≤ T

X
t,x
s = x, s < t.

Now let us consider the functions g : x �−→ g(x), f : (r, x, y, z) �−→ f (r, x, y, z),
h : (r, x) �−→ h(r, x) and h′ : (r, x) �−→ h′(r, x), (r, x, y, z) ∈ [0, T ] × Rk+1+d .
We assume that they are continuous and satisfy : for any r ∈ [0, T ], x ∈ Rk, y, y′ ∈
R, z, z′ ∈ Rd






|g(x)| + |f (r, x, 0, 0)| + |h(r, x)| + |h′(r, x)| ≤ C(1 + |x|p),

|f (r, x, y, z) − f (r, x, y′, z′)| ≤ C(|y − y′| + |z − z′|),
h(r, x) < h′(r, x) and h(T , x) ≤ g(x) ≤ h′(T , x)

where C and p are some positive constants.
Now let (Y

t,x
s , Z

t,x
s , K

+,t,x
s , K

−,t,x
s )s≤T be the unique solution of the BSDE

with two reflecting barriers associated with (f (r, X
t,x
r , y, z), g(X

t,x
T ), h(r, X

t,x
r ),

h′(r, Xt,x
r )). On the other hand for n ≥ 0, let (nY

t,x
s )s≤T (resp. (nȲ

t,x
s )s≤T )

be the first component of the unique solution of the BSDE with one reflect-
ing lower (resp. upper) barrier associated with (f (r, X

t,x
r , y, z) − n(h′(r, Xt,x

r ) −
y)−, g(X

t,x
T ), h(r, X

t,x
r )) (resp. (f (r, X

t,x
r , y, z) + n(h(r, X

t,x
r ) − y)+, g(X

t,x
T ),

h′(r, Xt,x
r ))) (nY and nȲ exist through Theorem 1.1). It has been shown in [EKal]

that, for any n ≥ 0 there exist functions nu(t, x) and nū(t, x), (t, x) ∈ [0, T ]×Rk ,
such that

∀s ∈ [t, T ], nY t,x
s = nu(s, Xt,x

s ) and nȲ t,x
s = nū(s, Xt,x

s ). (27)
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In addition nu (resp. nū) is continuous and is a viscosity solution for the following
obstacle problem :






min{v(t, x) − h(t, x), − ∂v
∂t

(t, x) − Ltv(t, x)

−f (t, x, v(t, x), ∇vσ(t, x)) + n(h′(t, x) − v(t, x))−} = 0,

u(T , x) = g(x),

(28)

(resp.





max{v(t, x) − h′(t, x), − ∂v
∂t

(t, x) − Ltv(t, x)

−f (t, x, v(t, x), ∇vσ(t, x)) − n(h(t, x) − v(t, x))+} = 0,

u(T , x) = g(x), )

(29)

where

Lt = 1

2

k∑

i,j=1

(σσ ∗(t, x))i,j
∂2

∂xi∂xj

+
k∑

i=1

bi(t, x)
∂

∂xi

.

Now the comparison result (Corollary 1.4.) allows us to infer that (nY t,x)n≥0 (resp.
(nȲ t,x)n≥0) is a decreasing (resp. an increasing) sequence. Moreover they converge
in S2 to Y t,x . Therefore for any (t, x) ∈ [0, T ] × Rk , the sequence (nu(t, x))n≥0
(resp. (nū(t, x))n≥0) converges decreasingly (resp. increasingly) to the same limit
u(t, x) := Y

t,x
t which satisfies Y

t,x
s = u(s, X

t,x
s ) for any s ∈ [t, T ]. Now since nu

and nū are continuous then u is, in the same time, lower and upper semicontinuous
therefore it is continuous. It implies that the convergence of (nu)n≥0 and (nū)n≥0
to u are uniform on compact subsets of [0, T ] × Rk .

Consider now the following obstacle problem :





min{v(t, x) − h(t, x), max[− ∂v
∂t

(t, x) − Ltv(t, x)

−f (t, x, v(t, x), ∇vσ(t, x)), (v − h′)(t, x)]} = 0,

u(T , x) = g(x).

(30)

First we start by the definition of the viscosity solution for (30).

6.1. Definition. Let v be a function which belongs to C([0, T ] × Rk). It is called
a viscosity :
(i) subsolution of (30) if v(T , x) ≤ g(x) and for any φ ∈ C1,2((0, T ) × Rk) and
any local maximum point (t, x) ∈ (0, T ) × Rk of v − φ, we have

min{(v − h)(t, x), max[−∂φ

∂t
(t, x) − Ltφ(t, x)

−f (t, x, v(t, x), ∇φσ(t, x)), (v − h′)(t, x)]} ≤ 0

(ii) supersolution of (30) if v(T , x) ≥ g(x) and for any φ ∈ C1,2((0, T )×Rk) and
any local minimum point (t, x) ∈ (0, T ) × Rk of v − φ, we have

min{(v − h)(t, x), max[−∂φ

∂t
(t, x) − Ltφ(t, x)

−f (t, x, v(t, x), ∇φσ(t, x)), (v − h′)(t, x)]} ≥ 0

(iii) solution of (30) if it is both a viscosity subsolution and supersolution 	




BSDEs with two reflecting barriers : the general result 261

6.2. Theorem. The function u defined above is a viscosity solution of (30) and for
any (t, x) ∈ [0, T ] × Rk we have,

u(t, x) = infν∈Tt
supσ∈Tt

Jt,x(ν, σ ) = supσ∈Tt
infν∈Tt

Jt,x(ν, σ ) = Jt,x(δt,x, θt,x),

(31)

where for any stopping times ν and σ in Tt ,

Jt,x(ν, σ ) :=






E[
∫ ν∧σ

t

f (s, Xt,x
s , Y t,x

s , Zt,x
s )ds + h(σ, Xt,x

σ )1[σ≤ν<T ]

+h′(ν, Xt,x
ν )1[ν<σ ] + g(X

t,x
T )1[ν=σ=T ]]

if E[
∫ ν∧σ

t

|f (s, Xt,x
s , Y t,x

s , Zt,x
s )|ds] < ∞

+∞ else ;

here δt,x := inf{s ≥ t, Y
t,x
s = h′(s, Xt,x

s )} ∧ T and θt,x := inf{s ≥ t, Y
t,x
s =

h(s, X
t,x
s )} ∧ T .

Proof. Let us show that u is a viscosity subsolution of (30). Since u(T , x) =
g(x) and h(t, x) ≤ u(t, x) ≤ h′(t, x), it is sufficient to prove that for any φ ∈
C1,2((0, T ) × Rk) and for any local maximum point (t, x) ∈ (0, T ) × Rk of u − φ

such that u(t, x) > h(t, x), we have

−∂φ

∂t
(t, x) − Ltφ(t, x) − f (t, x, u(t, x), ∇φσ(t, x)) ≤ 0.

So let (tn, xn) be a sequence of local maximum points of nu − φ such that (tn, xn)

converges to (t, x) (the existence of such a sequence follows from the uniform
convergence of nu to u (see e.g.[KM], pp.117)). Note that for n large enough we
have nu(tn, xn) > h(tn, xn) then, using the fact that nu is a viscosity solution of
(28) we have,

−∂φ

∂t
(tn, xn) − Ltnφ(tn, xn) − f (tn, xn,

n u(tn, xn), ∇φσ(tn, xn))

≤ −n(h′(tn, xn) −n u(tn, xn))
− ≤ 0.

Now the continuity of the functions and the uniform convergence yields the desired
result. In a similar way we can show that u is also a viscosity supersolution.

The second part of the theorem follows from Proposition 2.2.1 and the fact that
for all (t, x) ∈ [0, T ] × Rk we have

E[
∫ δt,x∨θt,x

t

|Zt,x
s |2ds] < ∞

as mentioned in Proposition 3.6 	

We now deal with the issue of uniqueness of the viscosity solution of (30). So

assume furthermore that f satisfies the following assumption:
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[H2] For each R > 0, there is a continuous function ϕR such that ϕR(0) = 0 and

|f (t, x, y, z) − f (t, x′, y, z)| ≤ ϕR((1 + |z|)|x − x′|)
for all t ∈ (0, T ), |x|, |x′|, |y| ≤ R and z ∈ Rd.

6.3. Proposition. Uniqueness of the viscosity solution of (30)
If v (resp. u) is a viscosity supersolution (resp. subsolution) of (30) then for all

(t, x) ∈ [0, T ] × Rk we have u(t, x) ≤ v(t, x).

Proof. Note that v ≥ h and u ≤ h′ then v′ := v ∧ h′ (resp. u′ := u ∨ h) is a
viscosity supersolution (resp. subsolution) of (30). Therefore it is enough to show
that u′ ≤ v′.

In the same spirit as in [EKal], one can suppose that y → f (t, x, y, z) is strictly
decreasing for all t, x, z and |h(t, x)| + |h′(t, x)| ≤ C(1 + |x|2)−1. Otherwise one
can take, instead of u′, v′, g, ..., the following functions û, v̂,... defined by :

û(t, x) := u′(t, x)eλt ζ(x), v̂(t, x) := v′(t, x)eλt ζ(x),

ĥ(t, x) := h(t, x)eλt ζ(x), ĥ′(t, x) := h′(t, x)eλt ζ(x),

ĝ(x) := g(x)eλT ζ(x), L̂. := L. + 〈σσ ∗η; ∇.〉 and

f̂ (t, x, y, z) := eλt ζ−1(x)f (t, x, e−λt ζ(x)y, e−λt ζ(x)z

+e−λt∇ζ(x)σ (t, x)y) + [
1

2
trace(σσ ∗κ) + 〈b; η〉 − λ]y

where ζ(x) := (1 + |x|2)p+2, η(x) := ζ(x)−1∇ζ(x), κ(x) := ζ(x)−1∇2ζ(x) and
λ is large enough such that the mapping y �→ f̂ (t, x, y, z) is strictly decreasing for
all t, x, z.

Using the same arguments as in [EKal], we have for any ε and R > 0

sup
t∈[0,T ],|x|≤R

(u′(t, x) − v′(t, x) − ε

t
)+ ≤ sup

t∈[0,T ],|x|=R

(u′(t, x) − v′(t, x) − ε

t
)+.

(32)

Indeed, assume that

δ := sup
t∈[0,T ],|x|≤R

(u′(t, x) − v′(t, x) − ε

t
)+

> sup
t∈[0,T ],|x|=R

(u′(t, x) − v′(t, x) − ε

t
)+ ≥ 0.

Hence from ([EKal] pp.733) we have the existence of a sequence

(tn, xn, yn, pn, Xn, Yn) ∈ (0, T ) × B2
R × R × (Rd×d)2

such that:

(i) n|xn − yn|2 → 0 as n → ∞
(ii) u′(tn, xn) ≥ v′(tn, yn) + ε

tn
+ δ

(iii) (pn, n(xn − yn), Xn) ∈ P̄2,+(u′(tn, xn))
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(iv) (pn, n(xn − yn), Yn) ∈ P̄2,−(v′(tn, yn) + ε

tn
)

(v)
(

Xn 0
0 −Yn

)

≤ 3n

(
I −I

−I I

)

where BR := {x ∈ Rk : |x| ≤ R} and P̄2,+(u(t, x)), P̄2,−(u(t, x)) are defined in
([EKal], pp.728).

On the other hand, since h and h′ are uniformly continuous on compact subsets
we have from (ii), for n large enough, u′(tn, xn) > h(tn, xn) and v′(tn, xn) <

h′(tn, xn). Hence since u′ (resp. v′) is a subsolution (resp. supersolution) and,

−pn − 1

2
trace(σσ ∗(tn, xn)Xn) − 〈b; n(xn − yn)〉

−f (tn, xn, u
′(tn, xn), n(xn − yn)) ≤ 0,

−pn − 1

2
trace(σσ ∗(tn, yn)Yn) − 〈b; n(xn − yn)〉

−f (tn, yn, v
′(tn, yn) + ε

tn
, n(xn − yn)) ≥ ε

t2
n

then,

ε

t2
n

≤ �n =:
1

2
trace(σσ ∗(tn, xn)Xn − σσ ∗(tn, yn)Yn)

+f (tn, xn, u
′(tn, xn), n(xn − yn)) − f (tn, yn, v

′(tn, yn) + ε

tn
, n(xn − yn)).

Now arguing as in ([EKal] pp. 734), we obtain that lim infn→∞ �n ≤ 0 and then
ε ≤ 0 which is contradictory. Finally taking the limits in (32), first when R → ∞
then ε → 0, we obtain u′ ≤ v′.

It implies that if ũ is another solution for (30), then u ≤ ũ and ũ ≤ u, therefore
u = ũ 	
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