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Abstract. To measure the dependence between a real-valued random variable X and a
σ -algebra M, we consider four distances between the conditional distribution function of
X given M and the distribution function of X. The coefficients obtained are weaker than
the corresponding mixing coefficients and may be computed in many situations. In particu-
lar, we show that they are well adapted to functions of mixing sequences, iterated random
functions and dynamical systems. Starting from a new covariance inequality, we study the
mean integrated square error for estimating the unknown marginal density of a stationary
sequence. We obtain optimal rates for kernel estimators as well as projection estimators on
a well localized basis, under a minimal condition on the coefficients. Using recent results,
we show that our coefficients may be also used to obtain various exponential inequalities, a
concentration inequality for Lipschitz functions, and a Berry-Esseen type inequality.

1. Introduction and definitions

Let (�,A,P) be a probability space,X a real-valued random variable with law PX

and M a σ -algebra of A. Recall that there exists a function PX|M from B(R)×�
to [0, 1] such that

1. For any ω in �, PX|M(., ω) is a probability measure on B(R).
2. For any A ∈ B(R), PX|M(A, .) is a version of E(�X∈A|M).

The usual mixing coefficients between M and σ(X), introduced respectively by
Rosenblatt (1956), Volkonskii and Rozanov (1959) and Ibragimov (1962), may be
defined as follows (see for instance Bradley (2002), Proposition 3.22):

α(M, σ (X)) = sup
A∈B(R)

‖PX|M(A)− PX(A)‖1

β(M, σ (X)) = ‖ sup
A∈B(R)

|PX|M(A)− PX(A)| ‖1
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φ(M, σ (X)) = sup
A∈B(R)

‖PX|M(A)− PX(A)‖∞ .

Note that α(M, σ (X)) = 2 sup{|P(A ∩ B) − P(A)P(B)|, A ∈ M, B ∈ σ(X)},
so that our definition differs from that of Rosenblatt (1956) from a factor 2. These
coefficients measure the dependence between M and σ(X), and are widely used
in the areas of limit theorems and statistics. Due to their importance, the properties
of these coefficients have been extensively studied by many authors. For recent and
complete works, we mention the monographs by Doukhan (1994), Rio (2000a) and
Bradley (2002). One of the most important examples is the following: a stationary,
irreducible, aperiodic and positively recurrent Markov chain (Xi)i≥0 is β-mixing,
which means that β(σ(X0), σ (Xn)) tends to zero as n tends to infinity (for more
details, see Rio (2000a), inequality (9.22) page 139).

Unfortunately, many simple Markov chains are neither β nor α-mixing. For
instance, Andrews (1984) proved that if (εi)i≥1 is iid with marginal B(1/2), then
the stationary solution (Xi)i≥0 of the equation

Xn = 1

2
(Xn−1 + εn) , X0 independent of (εi)i≥1 (1.1)

is not α-mixing (more precisely α(σ(X0), σ (Xn)) = 1/2 for any n). This exam-
ple is not an exception: the chain satisfying (1.1) is the Markov chain associated
to the dynamical system generated by the map T (x) = 2xmod 1 on the space
[0, 1] equipped with the Lebesgue measure (see Section (4.4) for more details),
and it is well known that such dynamical sytems are not α-mixing in the sense
that α(σ(T ), σ (T n)) does not tend to zero as n tends to infinity. More precisely,
let T be a Borel function preserving a probability µ on B(R). The sequence
(T i)i≥0 of random variables from (�,A,P) = (R,B(R), µ) to R is strictly sta-
tionary. Since σ(T n) ⊂ σ(T ) and since T n has distribution µ, it follows that
α(σ(T ), σ (T n)) ≥ α(σ(T n), σ (T n)) = α(B(R),B(R)), and the later is posi-
tive as soon as the probability µ is non trivial. Note that the dynamical system
(T n, µ) is said to be mixing in the ergodic-theoric sense (MES) if for any sets A
and B in B(R), the sequence Dn(A,B,µ, T ) = |µ(A ∩ T −n(B)) − µ(A)µ(B)|
converges to zero. For such dynamical systems, it is easy to see that strong mix-
ing is a uniform version of MES, since with our definition α(σ(T ), σ (T n)) =
2 sup{Dn−1(A,B,µ, T ),A,B ∈ B([0, 1])}. Mixing in the ergodic-theoretic sense
is an important property which is satisfied for many ergodic dynamical systems.
However, since it only gives a non uniform control of Dn(A,B,µ, T ), it is not
sufficient in general to obtain functional limit theorems or deviation inequalities
for large classes of functions.

Although many dependent processes are not mixing, some of them can be rep-
resented as functions of mixing processes, that is Xn = f ((ξn+i )i∈Z) where f is
a function from X Z to R and (ξi)i∈Z is a mixing sequence. If f is not too bad,
this structure of dependence is often sufficient to derive limit theorems for the
sequence (Xi)i∈Z. Since the well known results of Billingsley (1968, Section 21),
who used this representation to establish limit theorems for the continued-fraction
transformation, this approach has proved to be very fruitful. In 1982 Hofbauer and
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Keller proved that if T is a nice expanding map preserving a probabilityµ on [0, 1],
with finite partition {I1, . . . , IN } of [0, 1] into intervals of continuity and mono-
ticity of T , the label process defined by ξn(x) = i if T n(x) ∈ Ii is β-mixing with
exponential mixing rate, and T n = f ((ξi)i≥n) for some measurable f . Using this
representation together with a strong invariance principle for functions of β-mixing
sequences given in Philipp and Stout (1975), Hofbauer and Keller proved a strong
invariance principle for the partial sums Sn(f ) = f ◦ T + · · · + f ◦ T n, where
f is any bounded variation function. Functions of β-mixing processes have been
further studied in a recent paper by Borovkova et al. (2001), who provided many
interesting examples and applications, and showed how the coupling properties of
the underlying sequence may be used in such situations. We shall follow a similar
approach for the examples of Section 4.1 (see also Rio (1996), Section 1.2 for
related results).

Note that, even if one knows that a stationary sequence can be written as a
function f of a mixing sequence, one may know nothing about the function f and
its properties. This is the case, for instance, in the paper by Hofbauer and Keller
(1982), where only the existence of f is proved. This theoretical representation
is not sufficient to obtain uniform upper bounds for |E(g(Xk)|M) − E(g(Xk))|
over an appropriate class of functions G, which are useful to prove limit theorems
for the empirical process indexed by a subset of G (see Corollary 4, Section 6)
as well as deviation inequalities for some functions of the variables (see inequal-
ity (1.2) and Theorem 2, Section 7.4). In part (ii) of the proof of Theorem 5 in
Hofbauer and Keller, such upper bounds are derived from the properties of the
adjoint operator of T , and not from the representation T n = f ((ξi)i≥n). Now,
as one can see from Theorem 4.4 in Bradley (2002), the control of the condi-
tional expectations |E(g(Xk)|M)− E(g(Xk))| over a class of functions G is often
related to the control of an appropriate dependence coefficient (see also Lemma 1,
Section 1.1).

A reasonable question is then: how to weaken the definition of the usual mix-
ing coefficients in order to catch many more examples, without losing too much
of their nice properties? A first idea, given by Rosenblatt, is to consider coarser
sets than M or B(R). In fact changing M is possible, but the coefficients obtained
behave differently from the usual mixing coefficients (see for instance Doukhan and
Louhichi (1999)). Another way is to change B(R) by considering only the coarser
set {] − ∞, t], t ∈ R}, as done in Rio (2000a) and Peligrad (2002) for the strong
mixing coefficient. The coefficients obtained measure the difference between the
conditional distribution function FX|M of PX|M and the distribution function FX
of PX. More precisely, define the four dependence coefficients

τ(M, X) =
∫

‖FX|M(t)− FX(t)‖1dt

α(M, X) = sup
t∈R

‖FX|M(t)− FX(t)‖1

β(M, X) = ‖ sup
t∈R

|FX|M(t)− FX(t)| ‖1

φ(M, X) = sup
t∈R

‖FX|M(t)− FX(t)‖∞ .
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The coefficient α(M, X) was introduced by Rio (2000a, equation 1.10c) and used
by Peligrad (2002), while τ(M, X)was introduced by Dedecker and Prieur (2003).

Of course, the coefficients α(M, X), β(M, X) and φ(M, X) are smaller than
the corresponding mixing coefficientsα(M, σ (X)),β(M, σ (X)) andφ(M, σ (X)).
We shall see in Section 4 that these weaker coefficients may be easily computed in
many situations, so that our first objective is reached. For instance, if T is a nice
piecewise expanding map preserving a probability µ on [0, 1], then φ(σ(T n), T )
decreases geometrically (this works for T (x) = 2xmod 1, and hence for the model
(1.1) the coefficient φ(σ(X0),Xn) decreases geometrically). The largest classes of
examples are obtained for the coefficient τ , which is the easiest to compute.

Among the coefficients described above, some of them have a nice interpretation
in terms of coupling. Let us first recall the well known result of Berbee (1979): if� is
rich enough, there exists a random variableX∗ distributed asX and independent of
M such that P(X 	= X∗) = β(M, σ (X)). For the mixing coefficient α(M, σ (X)),
Bradley (1983) proved the following result: if � is rich enough, then for each
1 ≤ p ≤ ∞ and each λ < ‖X‖p, there existsX∗ distributed asX and independent
of M such that P(|X−X∗| ≥ λ) ≤ 18(‖X‖p/λ)p/(2p+1)(α(M, σ (X)))2p/(2p+1).
For the weaker coefficient α(M, X), Rio (1995, 2000a) obtained the following
upper bound, which is not directly comparable to Bradley’s: if X belongs to [a, b]
and if� is rich enough, there existsX∗ independent of M and distributed asX such
that ‖X−X∗‖1 ≤ (b−a)α(M, X). Rio’s coupling has been extended by Peligrad
(2002) to the case of unbounded variables. Many authors have used these coupling
properties to obtain sharp limit theorems as well as sharp exponential bounds (see
Merlevède and Peligrad (2002) and the references therein).

Note that the random variableX∗ appearing in the results by Rio (1995, 2000a)
and Peligrad (2002) is based on Major’s quantile transformation (1978). It has the
following remarkable property: ‖X − X∗‖1 is the infimum of ‖X − Y‖1 where
Y is independent of M and distributed as X. Starting from the exact expression
of X∗, Dedecker and Prieur (2003) have shown that τ(M, X) is the appropriate
coefficient for the coupling in L

1: the equality ‖X−X∗‖1 = τ(M, X) holds. This
property is a useful tool to obtain suitable inequalities and to prove various limit
theorems (see Section 7.3). When FX is regular, it can be used also to obtain upper
bounds for β(M, X) (see Proposition 2, Section 3).

We see that both β(M, σ (X)) and τ(M, X) have a property of optimality: they
are equal to the infimum of E(d0(X, Y ))where Y is independent of M and distrib-
uted as X, for the distances d0(x, y) = �x 	=y and d0(x, y) = |x − y| respectively.
In fact, these two coefficients belong to the same family, built on the Kantorovitch-
Rubinstein distance Kd0(PX|M,PX) between the probabilities PX|M and PX. We
shall be more precise on this subject in Section 7.1.

As made clear by Viennet (1997) in a β-mixing framework, a precise covari-
ance inequality is another useful tool for statistical applications. Using a covariance
inequality due to Delyon (1990) Viennet proved that, under a minimal assumption
on the β-mixing coefficients, the mean integrated square error (MISE) for the
unknown invariant density is of the same order than in the iid case. This result
applies to kernel estimators as well as projection estimators. In Proposition 1 of
Section 2, we prove an inequality similar to that of Delyon but for β(M, X) instead
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of β(M, σ (X)). The main difference is that our inequality is no longer symetric,
so that it cannot apply to any projection estimators (see Proposition 4, Section
5.1). Nevertheless, for kernel estimators as well as projection estimators on well
localized basis (such as histograms and wavelet basis), we extend Viennet’s results
to sequences such that

∑
β(σ(X0),Xn) is finite (see Sections 5.3 and 5.4). Once

again the results apply to dynamical systems.
In Proposition 5 of Section 6 we prove an Hoeffding-type inequality for partial

sums Sn(h) = h(X1)+ · · · + h(Xn), where h is a bounded variation function (see
Section 1.1 for a Definition). If φ(k) = supi≤n−k φ(σ (Xj , 1 ≤ j ≤ i), Xk+i ), the
bound is

P(|Sn(h)− E(Sn(h))| > x) ≤ C1 exp

( −x2

nC2‖dh‖2(φ(0)+ · · · + φ(n− 1))

)
,

(1.2)

for some universal constantsC1 andC2 (see Proposition 5 for the exact expression).
As a byproduct, we obtain an empirical central limit theorem for a class of smooth
functions.

To obtain more precise inequalities and limit theorems, it is often necessary to
consider the dependence between a past σ -algebra and several points in the future
of the sequence. Unfortunately the coefficients we use seem difficult to define in
higher dimension, because they are based on distribution functions. Starting from
an equivalent definition given in Lemma 1, we see that the difficulty vanishes for
τ(M, X). The definition of that coefficient can be naturally extended to random
variables with values in any Polish space X , without losing the coupling property
(see Section 7.1). Following Rio (1996), we can also define the uniform version
ϕ(M, X) of τ(M, X).

We shall see in Section 7 that the coefficients τ(M, (Xi, . . . , Xi+m)) and their
uniform version ϕ(M, (Xi, . . . , Xi+m)) are still easy to compute for the examples
given in Section 4, and that their asymptotic behavior is the same as when consid-
ering only a single point in the future (this is mainly due to the underlying Markov
structure of these examples). Then, using recent results of Rio (1996, 2000b), Collet
et al. (2002) and Dedecker and Prieur (2003), we obtain a Berry-Esseen bound, a
concentration inequality for Lipschitz functions, and a functional law of the iterated
logarithm for partial sums.

1.1. Equivalent definitions

Definition 1. A σ -finite signed measure is the difference of two positive σ -finite
measures, one of them at least being finite. We say that a function h from R to R is σ -
BV if there exists a σ -finite signed measure dh such that h(x) = h(0)+dh([0, x[) if
x ≥ 0 and h(x) = h(0)−dh([x, 0[) if x ≤ 0 (h is left continuous). The function h is
BV if the signed measure dh is finite. Recall also the Hahn-Jordan decomposition:
for anyσ -finite signed measureµ, there is a setD such thatµ+(A) = µ(A∩D) ≥ 0
and −µ−(A) = µ(A\D) ≤ 0. µ+ and µ− are singular, one of them at least is
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finite and µ = µ+ −µ−. The measure |µ| = µ+ +µ− is called the total variation
measure for µ. Denote by ‖µ‖ = |µ|(R).

As for other measures of dependence, we can define τ(M, X), α(M, X),
β(M, X) and φ(M, X) as a supremum over some family of functions (compare
to Theorem 4.4 in Bradley (2002) for usual mixing coefficients).

Lemma 1. Let (�,A,P) be a probability space,X a real-valued random variable
and M a σ -algebra of A. Let �1 be the space of 1-Lipschitz functions from R to
R, and BV1 be the space of BV functions h such that ‖dh‖ ≤ 1. We have

1. τ(M, X) =
∥∥∥sup

{∣∣∣
∫
f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣∣, f ∈ �1

}∥∥∥
1
.

2. α(M, X) = sup{‖E(f (X)|M)− E(f (X))‖1, f ∈ BV1}.
3. β(M, X) =

∥∥∥sup
{∣∣∣
∫
f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣∣, f ∈ BV1

}∥∥∥
1
.

4. φ(M, X) = sup{‖E(f (X)|M)− E(f (X))‖∞, f ∈ BV1}.

Proof. In Dedecker and Prieur (2003), the equality in 1 is given as a definition of
τ(M, X). The fact that the right hand side in 1 is equal to

∫ ‖FX|M(t)−FX(t)‖1dt

follows from the equalities (2.8), (2.9) and (2.10) of the proof of Lemma 5 in
Dedecker and Prieur (2003).

It remains to prove 2, 3 and 4. Without loss of generality, assume that f in BV1
is such that f (−∞) = 0. Hence,

∫
f (x)PX|M(dx)−

∫
f (x)PX(dx)

=
∫ (∫

�x>t df (t)
)
PX|M(dx)−

∫ (∫
�x>t df (t)

)
PX(dx).

Applying Fubini, we obtain that

∣∣∣
∫
f (x)PX|M(dx)−

∫
f (x)P(dx)

∣∣∣ =
∣∣∣
∫ (

FX|M(t)− FX(t)
)
df (t)

∣∣∣
≤
∫

|FX|M(t)− FX(t)||df |(t) . (1.3)

From (1.3) we easily infer that

sup{‖E(f (X)|M)− E(f (X))‖1, f ∈ BV1} ≤ α(M, X)∥∥∥sup
∣∣∣
∫
f (x)PX|M(dx)−

∫
f (x)P(dx)

∣∣∣, f ∈ BV1

∥∥∥
1

≤ β(M, X)

sup{‖E(f (X)|M)− E(f (X))‖∞, f ∈ BV1} ≤ φ(M, X) ,

and the converse inequalities follow by noting that the function �]−∞,t] belongs to
BV1. ��
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2. Covariance Inequalities

Proposition 1. Let (�,A,P) be a probability space. Let X and Y be two real-
valued random variables and h be a σ -BV function. If Y , h(X) and Yh(X) are
integrable, then

Cov(Y, h(X)) = −
∫

Cov(Y, �X≤t )dh(t) . (2.1)

Let M be a σ -algebra of A, and b(M, X) = supt∈R |FX|M(t) − FX(t)|. If Y is
M-measurable, we have the inequalities

1. |Cov(Y, h(X))| ≤ ‖Y‖∞
(∫

‖FX|M(t)− FX(t)‖1|dh|(t)
)

.

2. |Cov(Y, h(X))| ≤ ‖dh‖ E(|Y |b(M, X)) ≤ ‖dh‖ ‖Y‖1 φ(M, X).

Remark 1. The first inequality in item 2 is comparable to that of Delyon (1990)
(see also Viennet (1997), Lemma 4.1) in which appear two variables b1(M, X)

and b2(M, X) each having mean β(M, σ (X)). The main difference is that our
inequality is not symetric, because the coefficient β(M, X) is not.

Proof. We proceed as in Theorem 2.3 in Yu (1993). Let X∗ be a random variable
distributed as X and independent of Y . We have the equalities

Cov(Y, h(X)) = E(Y (h(X)− h(X∗))) = E

(
Y

∫
(�X∗≤t − �X≤t ) dh(t)

)
. (2.2)

To apply Fubini, it is sufficient to check that

E

(
|Y |

∫
|�X∗≤t − �X≤t | |dh|(t)

)
< ∞ . (2.3)

Define the function h by h(x) = |dh|([0, x[) if x ≥ 0 and h(x) = |dh|([x, 0[) if
x ≤ 0. With this definition, we have that

∫
|�X∗≤t − �X≤t | |dh|(t) ≤

∫ (|�X∗≤t − �0≤t | + |�X≤t − �0≤t |
) |dh|(t)

= h(X∗)+ h(X) , (2.4)

Now dh = µ+ − µ− where µ− for instance is finite. Define the two functions
G+ and G− by G+(x) = µ+([0, x[) and G−(x) = µ−([0, x[) if x ≥ 0 and
G+(x) = −µ+([x, 0[) andG−(x) = −µ−([x, 0[) if x ≤ 0. Clearly h(x)−h(0) =
G+(x)−G−(x). Since Yh(X) is integrable and |G−(X)| is bounded we infer that
YG+(X) is integrable. It follows that |Y |(|G+(X)| + |G−(X)|) is integrable. In
the same way, |G+|(X)+ |G−|(X) is integrable. Since |dh| = µ+ +µ−, we have
that h = |G+| + |G−|, and consequently both Yh(X) and Yh(X∗) are integrable.
From (2.4) we infer that (2.3) holds. Now applying Fubini in (2.2), we obtain (2.1).
To prove inequalities 1 and 2, note that

|Cov(Y, �X≤t )| ≤ E(|Y | |FX|M(t)− FX(t)|) .
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Consequently

|Cov(Y, h(X))| ≤ E

(
|Y |

∫
|FX|M(t)− FX(t)| |dh|(t)

)
. (2.5)

Inequalities 1 and 2 follow from (2.5). ��

3. Comparison of coefficients

The following Lemma will be very useful to obtain upper bounds for τ(M, X),
α(M, X), β(M, X) and φ(M, X).

Lemma 2. Let (�,A,P) be a probability space, X a real-valued random vari-
able and M a σ -algebra of A. If X∗ is a random variable distributed as X and
independent of M then

1. τ(M, X) ≤ ‖X − X∗‖1. Moreover, if � is rich enough, one can choose X∗
such that τ(M, X) = ‖X −X∗‖1.

2. Assume that X has a continuous distribution function F . For any y ∈ [0, 1],
we have that

β(M, X) ≤ y + P(|F(X)− F(X∗)| > y) .

3. Assume that X has a continuous distribution function F . For any y ∈ [0, 1],
we have that

φ(M, X) ≤ y + ‖E(�|F(X)−F(X∗)|>y |M)‖∞ .

In particular, taking y = ‖F(X) − F(X∗)‖∞ in the previous inequality, we
obtain that φ(M, X) ≤ ‖F(X)− F(X∗)‖∞.

Using this Lemma, we can now compare τ(M, X), α(M, X), β(M, X) and
φ(M, X).

Proposition 2. Let (�,A,P) be a probability space,X a real-valued random var-
iable and M a σ -algebra of A.

1. We have the inequalities α(M, X) ≤ β(M, X) ≤ φ(M, X).
2. Let QX be the generalized inverse of the tail function t → P(|X|>t):if u ∈

]0, 1[, QX(u)= inf{t ∈R : P(|X| > t) ≤ u}. We have the inequality

τ(M, X) ≤ 2
∫ α(M,X)

0
QX(u)du .

3. Assume moreover thatX has a continuous distribution functionF with modulus
of continuity w. Define the function g by g(x) = xw(x). Then

β(M, X) ≤ 2τ(M, X)

g−1(τ (M, X))
. (3.1)

In particular, if F is Hölder, that is |F(x)− F(y)| ≤ C|x − y|α for α ∈]0, 1]
and C > 0, then

β(M, X) ≤ 2C1/(α+1) (τ (M, X))α/(α+1) .
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If X has a density bounded by K , we obtain the bound

β(M, X) ≤ 2
√
Kτ(M, X) . (3.2)

Proof of Lemma 2. Item 1. has been proved in Dedecker and Prieur (2003). It re-
mains to prove 2. and 3. ��
Proof of 2. We shall use the following lemma, which gives the hereditary properties
of α(M, X), β(M, X) and φ(M, X). ��
Lemma 3. Let (�,A,P) be a probability space, X a real-valued random var-
iable and M a σ -algebra of A. If g is any nondecreasing function, then we
have the inequalities α(M, g(X)) ≤ α(M, X), β(M, g(X)) ≤ β(M, X) and
φ(M, g(X)) ≤ φ(M, X). In particular, for the distribution function F of X, we
have α(M, F (X)) = α(M, X), β(M, F (X)) = β(M, X) and φ(M, F (X)) =
φ(M, X).

Let Y = F(X) and Y ∗ = F(X∗). Clearly Y ∗ is independent of M and distributed
as Y .According to Lemma 3, we have that β(M, X) = β(M, Y ). Hence, it suffices
to prove the result for Y . Let PY,Y ∗|M be a conditional distribution of (Y, Y ∗) given
M (see Dudley (1989) Theorem 10.2.2 for the existence). Since F is continuous,
PY,Y ∗|M has marginals PY |M and PY ∗|M = λ, where λ is the Lebesgue measure
over [0, 1]. For any t, y in [0, 1],

FY |M(t) =
∫

�v+u−v≤tPY,Y ∗|M(du, dv)

≤
∫

�v≤t+yPY ∗|M(dv)+
∫

�v−u>yPY,Y ∗|M(du, dv)

≤ t + y +
∫

�v−u>yPY,Y ∗|M(du, dv) .

In the same way,

1 − FY |M(t) ≤ 1 − (t − y)+
∫

�u−v>yPY,Y ∗|M(du, dv) .

Consequently,

|FY |M(t)− t | ≤ max
(
FY |M(t)− t, 1 − FY |M(t)− (1 − t)

)

≤ y +
∫

�|u−v|>yPY,Y ∗|M(du, dv) , (3.3)

and the result follows from (3.3) by taking the supremum in t and the expectation.

Proof of 3. The result also follows from (3.3). ��
Proof of Lemma 3. Note first that, for any ω in �,

sup
t∈R

|PX|M(]−∞, t])−PX(]−∞, t])| = sup
t∈R

|PX|M(]−∞, t[)−PX(]−∞, t[)| ,
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so that the definition of α(M, X), β(M, X) and φ(M, X) remains unchanged
by taking the sets ] − ∞, t[ instead of ] − ∞, t]. Now if g is nondecreasing the
set {x : g(x) ≤ t} is one of the sets ∅, R, ] − ∞, a] or ] − ∞, a[, a in R.
From this and the preceding remark, the first point follows. It remains to prove
the second point. From the first point, we know that α(M, F (X)) ≤ α(M, X).
Applying again the first point to the generalized inverse F−1 of F , we obtain that
α(M, F−1(F (X))) ≤ α(M, F (X)). Since F−1(F (X)) = X almost surely (if F
is constant on [a, b] (resp. [a, b[), that equality may be false on the setX−1(]a, b])
(resp.X−1(]a, b[)) of probability 0), the result follows. The same arguments apply
to β(M, X) and φ(M, X). ��

Proof of Proposition 2. Item 1. follows from the definition of α(M, X), β(M, X)

and φ(M, X). Item 2. has been proved in Lemma 6 of Dedecker and Prieur (2003)
and is based on a recent result by Peligrad (2002) (note that in Dedecker and Pri-
eur α(M, X) is one half of the coefficient α(M, X) we use here). It remains to
prove 3. Enlarging � if necessary, we know from Lemma 2 that there exists X∗
independent of M and distributed as X such that ‖X − X∗‖1 = τ(M, X). Since
|F(X)− F(X∗)| ≤ w(|X−X∗|), we obtain from 2 of Lemma 2 (with y = w(x))

β(M, X) ≤ w(x)+ P(w(|X −X∗|) > w(x)) ≤ w(x)+ P(|X −X∗| > x) .

(3.4)

Applying Markov in (3.4), we get that

β(M, X) ≤ w(x)+ τ(M, X)

x
.

Inequality (3.1) follows by noting that xw(x) = τ(M, X) for x = g−1(τ (M, X)).
��

4. Examples

We first define the coefficients τ(i), α(i), β(i) and φ(i) of a sequence of real-valued
random variables.

Definition 2. Let (�,A,P) be a probability space. Let (Xi)i≥0 be a sequence of
integrable real-valued random variables and (Mi )i≥0 be a sequence of σ -algebras
of A. The sequence of coefficients τ(i) is then defined by

τ(i) = sup
k≥0

τ(Mk, Xi+k) . (4.1)

The coefficients α(i), β(i) and φ(i) are defined in the same way.

Remark 2. One can also define the mixing coefficients α′(i), β ′(i) and φ′(i) as
in (4.1), by taking σ(Xi+k) instead of Xi+k . It is clear from the definition that
α(i) ≤ α′(i), β(i) ≤ β ′(i) and φ(i) ≤ φ′(i).
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In this section, we present four classes of examples for which we can compute
upper bounds for the coefficients τ(i), α(i), β(i) and φ(i). Among these examples,
many are not mixing, in the sense that α′(i) does not even tends to zero. Some of the
examples of Sections 4.1 and 4.2 have been also studied in Rio (1996, Section 1.2),
Doukhan and Louhichi (1999) and Borovkova et al. (2001), but these authors do
not provide any bounds for the coefficients we are interested in. In Section 4.1 and
4.2 we construct a sequence (X∗

k ) coupled with (Xk), and we derive upper bounds
for the coefficients by applying Lemma 2. In the context of functions of stationary
sequences (Section 4.1), our approach is similar to that of Borovkova et al. (2001,
Section 2), who used the coupling properties of the underlying sequence to obtain
informations on the sequence (Xk)k≥0. Some of the bounds for τ(i) in examples
4.1, 4.2 and 4.3 were given in Dedecker and Prieur (2003).

4.1. Example 1: causal functions of stationary sequences

Let (ξi)i∈Z be a stationary sequence of random variables with values in a measur-
able space X . Assume that there exists a function H defined on a subset of X N,
with values in R and such thatH(ξ0, ξ−1, ξ−2, . . . , ) is defined almost surely. The
stationary sequence (Xn)n∈Z defined by Xn = H(ξn, ξn−1, ξn−2, . . . ) is called a
causal function of (ξi)i∈Z.

Assume that there exists a stationary sequence (ξ ′
i )i∈Z distributed as (ξi)i∈Z

and independent of (ξi)i≤0. Define X∗
n = H(ξ ′

n, ξ
′
n−1, ξ

′
n−2, . . . ). Clearly X∗

n is
independent of σ(Xi, i ≤ 0) and distributed as Xn. For any p ≥ 1 (p may be
infinite) define the sequence (δi,p)i>0 by

‖Xi −X∗
i ‖p = δi,p . (4.2)

Let Mi = σ(Xj , j ≤ i). Arguing as in Lemma 2 and Proposition 2, we can easily
prove that the coefficients τ , β and φ of the sequence (Xn)n≥0 satisfy

1. τ(i) ≤ δi,1.
2. Assume thatX0 has a continuous distribution function with modulus of continu-

ityw. Define the function gp by gp(y) = y(w(y))1/p. Then for any 1 ≤ p < ∞
we have

α(i) ≤ β(i) ≤ 2

(
δi,p

g−1
p (δi,p)

)p
.

In particular, if X0 has a density bounded by K , we obtain that

β(i) ≤ 2(Kδi,p)
p
p+1 .

3. Assume that X0 has a continuous distribution function with modulus of conti-
nuity w. Then α(i) ≤ β(i) ≤ φ(i) ≤ w(δi,∞).

For φ(i), it is sometimes interesting to start from the first inequality in Lemma 2
item 3. For 1 ≤ p < ∞ define

δ′i,p = ‖E(|Xi −X∗
i |p|M0)‖1/p

∞ . (4.3)
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4. With the same notations as in item 2, we have φ(i) ≤ 2

(
δ′i,p

g−1
p (δ′i,p)

)p
.

In particular, these results apply to the case where the sequence (ξi)i∈Z is
β-mixing. According to Theorem 4.4.7 in Berbee (1979), if � is rich enough,
there exists (ξ ′

i )i∈Z distributed as (ξi)i∈Z and independent of (ξi)i≤0 such that
P(ξi 	= ξ ′

i for some i ≥ k) = β(σ(ξi, i ≤ 0), σ (ξi, i ≥ k)). If the sequence (ξi)i∈Z

is iid, it suffices to take ξ ′
i = ξi for i > 0 and ξ ′

i = ξ ′′
i for i ≤ 0, where (ξ ′′

i )i∈Z is
an independent copy of (ξi)i∈Z.

Application: causal linear processes. In that case Xn = ∑
j≥0 aj ξn−j . For any

p ≥ 1, we have that

δi,p ≤
∑
j≥0

|aj |‖ξi−j − ξ ′
i−j‖p ≤ ‖ξ0 − ξ ′

0‖p
∑
j≥i

|aj | +
i−1∑
j=0

|aj |‖ξi−j − ξ ′
i−j‖p .

From Proposition 2.3 in Merlevède and Peligrad (2002), we obtain that

δi,p ≤ ‖ξ0 −ξ ′
0‖p

∑
j≥i

|aj |+
i−1∑
j=0

|aj |
(

2p
∫ β(σ(ξk,k≤0),σ (ξk,k≥i−j))

0
Q
p
ξ0
(u)
)1/p

du .

where Qξ0 is defined in Proposition 2 (note that in Merlevède and Peligrad the
constant in front of the integral is 2p+2. In fact it works with the constant 2p).

If the sequence (ξi)i∈Z is iid, it follows that δi,p ≤ ‖ξ0 − ξ ′
0‖p

∑
j≥i |aj |.

Moreover, for p = 2 we have exactly δi,2 = (2Var(ξ0)
∑
j≥i a2

j )
1/2. For instance,

if ai = 2−i−1 and ξ0 ∼ B(1/2), then δi,∞ ≤ 2−i . SinceX0 is uniformly distributed
over [0, 1], we have φ(i) ≤ 2−i . Recall that this sequence is not strongly mixing
(see Andrews (1984)). More precisely, the coefficient α′(i) defined in Remark 2 is
equal to 1/2.

4.2. Example 2: iterated random functions

Let (Xn)n≥0 be a real-valued stationary Markov chain, such thatXn = F(Xn−1, ξn)

for some measurable function F and some i.i.d. sequence (ξi)i>0 independent of
X0. LetX∗

0 be a random variable distributed asX0 and independent of (X0, (ξi)i>0).
Define X∗

n = F(X∗
n−1, ξn) . The sequence (X∗

n)n≥0 is distributed as (Xn)n≥0 and
independent of X0. Let Mi = σ(Xj , 0 ≤ j ≤ i). As in Example 1, define the
sequence (δi,p)i>0 and (δ′i,p)i>0 by (4.2) and (4.3) respectively. The coefficients τ ,
β and φ of the sequence (Xn)n≥0 satisfy 1, 2, 3 and 4 of Example 1.

Let µ be the distribution of X0 and (Xxn)n≥0 the chain starting from Xx0 = x.
With these notations, we have that

δ
p
i,p =

∫∫
‖Xxi −X

y
i ‖ppµ(dx)µ(dy)

(δ′i,p)
p = inf

{
M : µ

(∫
‖Xxi −X

y
i ‖ppµ(dy) > M

)
= 0

}
.
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For instance, if there exists a sequence (di,p)i≥0 of positive numbers such that

‖Xxi −X
y
i ‖p ≤ di,p|x − y| ,

then δi,p ≤ di,p‖X0 − X∗
0‖p and δ′i,p ≤ di,p‖X0 − X∗

0‖∞. For instance, in the
usual case where ‖F(x, ξ0)−F(y, ξ0)‖p ≤ κ|x − y| for some κ < 1, we can take
di,p = κi .

An important example isXn = f (Xn−1)+ ξn for some κ-lipschitz function f .
If X0 has a moment of order p, then δi,p ≤ κi‖X0 −X∗

0‖p . In particular, if X0 is
bounded and has a density bounded by K then φ(i) ≤ 2K‖X0‖∞κi .

We refer to the nice review paper by Diaconis and Freedman (1999) for various
examples of iterative random maps.

4.3. Example 3: Markov kernels.

Let P be a Markov kernel defined on a measurable subset X of R. For any contin-
uous bounded function f from X to R we have P(f )(x) = ∫

X f (z)P (x, dz). Let
�m(X ) be the set of functions f from X to R such that |f (x)−f (y)| ≤ m|x−y|.
We make the following assumptions on P

H For some 0 < κ < 1, P maps �1(X ) to �κ(X ).
Let (Xn)n≥0 be a stationary Markov chain with values in X , with marginal dis-

tribution µ and transition kernel P satisfying H. Let Mi = σ(Xj , 0 ≤ j ≤ i). By
stationarity and the Markov property, we have that τ(i) = τ(σ (X0),Xi). Clearly
the function fi = E(f (Xi)|X0 = x) belongs to �κi (X ). Since

τ(σ (X0),Xi) ≤
∫∫

sup
f∈�1(X )

|fi(x)− fi(y)|µ(dx)µ(dy),

we infer that τ(i) ≤ κi‖X0 −X∗
0‖1 whereX∗

0 is independent and distributed asX0.
If furthermore X0 has a density bounded by K , we infer from (3.2) of Proposition

2 that β(i) ≤ 2
√
K‖X0 −X∗

0‖1κi .
In the case of iterated random maps (Example 2 above) the map F is a

measurable function from X × Y to X , and the kernel P has the form P(f )(x) =∫
Y f (F (x, z))ν(dz) for some probability measure ν on Y . Assumption H is satis-

fied as soon as
∫

|F(x, z)− F(y, z)|ν(dz) ≤ κ|x − y| ,

which was the condition previously found.

4.4. Example 4: dynamical systems on [0, 1].

Let I = [0, 1], T be a map from I to I and define Xi = T i . If µ is invariant by T ,
the sequence (Xi)i≥0 of random variables from (I, µ) to I is strictly stationary.
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For any finite measure ν on I , we use the notations ν(h) = ∫
I
h(x)ν(dx). For

any finite signed measure ν on I , let ‖ν‖ = |ν|(I ) be the total variation of ν. Denote
by ‖g‖1,λ the L

1-norm with respect to the Lebesgue measure λ on I .

Covariance inequalities. In many interesting cases, one can prove that, for any
BV function h and any k in L

1(I, µ),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1(‖h‖1,λ + ‖dh‖) , (4.4)

for some nonincreasing sequence an tending to zero as n tends to infinity.
Note that if (4.4) holds, then

|Cov(h(X0), k(Xn))| = |Cov(h(X0)− h(0), k(Xn))|
≤ an‖k(Xn)‖1(‖h− h(0)‖1,λ + ‖dh‖) .

Since ‖h− h(0)‖1,λ ≤ ‖dh‖, we obtain that

|Cov(h(X0), k(Xn))| ≤ 2an‖k(Xn)‖1‖dh‖ . (4.5)

Inequality (4.5) is similar to the second inequality in Proposition 1 item 2, with
X = X0 and Y = k(Xn), and one can wonder if φ(σ(Xn),X0) ≤ 2an. The answer
is positive, due to the following Lemma.

Lemma 4. Let (�,A,P) be a probability space,X a real-valued random variable
and M a σ -algebra of A. We have the equality

φ(M, X) = sup{|Cov(Y, h(X))| : Y is M-measurable, ‖Y‖1 ≤ 1 and h ∈ BV1} .
Hence, we obtain an easy way to prove that a dynamical system (T i)i≥0 is φ-depen-
dent:

If (4.4) holds, then φ(σ(Xn),X0) ≤ 2an. (4.6)

In many cases, Inequality (4.4) follows from the spectral properties of the Markov
operator associated to T . In these cases, due to the underlying Markovian structure,
(4.6) holds with Mn = σ(Xi, i ≥ n) instead of σ(Xn).

Proof of Lemma 4. Write first |Cov(Y, h(X))| = |E(Y (E(h(X)|M)−E(h(X))))|.
For any positive ε, there exists Aε in M such that P(Aε) > 0 and for any ω in Aε,

|E(h(X)|M)(ω)− E(h(X))| > ‖E(h(X)|M)− E(h(X))‖∞ − ε.

Define the random variable

Yε := �Aε
P(Aε)

sign (E(h(X)|M)− E(h(X))) .

Yε is M-measurable, E|Yε| = 1 and |Cov(Yε, h(X))| ≥ ‖E(h(X)|M) −
E(h(X))‖∞ − ε. This being true for any positive ε, we infer from Lemma 1 that

φ(M, X) ≤ sup{|Cov(Y, h(X))| : Y is M-measurable, ‖Y‖1 ≤ 1 and h ∈ BV1} .
The converse inequality follows straightforwardly from Lemma 1. ��
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Spectral gap. Define the operator L from L
1(I, λ) to L

1(I, λ) via the equality

∫ 1

0
L(h)(x)k(x)dλ(x)

=
∫ 1

0
h(x)(k ◦ T )(x)dλ(x) where h ∈ L

1(I, λ) and k ∈ L
∞(I, λ).

The operator L is called the Perron-Frobenius operator of T . In many interesting
cases, the spectral analysis of L in the Banach space of BV -functions equiped
with the norm ‖h‖v = ‖dh‖ + ‖h‖1,λ can be done by using the Theorem of
Ionescu-Tulcea and Marinescu (see Lasota and Yorke (1974) and Hofbauer and
Keller (1982)). Assume that 1 is a simple eigenvalue of L and that the rest of the
spectrum is contained in a closed disk of radius strictly smaller than one. Then there
exists a unique T -invariant absolutely continuous probability µ whose density fµ
is BV , and

Ln(h) = λ(h)fµ +�n(h) with ‖�n(h)‖v ≤ Kρn‖h‖v. (4.7)

for some 0 ≤ ρ < 1 and K > 0. Assume moreover that:

I∗ = {fµ 	= 0} is an interval, and there exists γ > 0 such that fµ > γ−1 on I∗.
(4.8)

Without loss of generality assume that I∗ = I (otherwise, take the restriction to I∗
in what follows). Define now the Markov kernel associated to T by

P(h)(x) = L(fµh)(x)
fµ(x)

. (4.9)

It is easy to check (see for instance Barbour et al. (2000)) that (X0, X1, . . . , Xn)

has the same distribution as (Yn, Yn−1, . . . , Y0) where (Yi)i≥0 is a stationary Mar-
kov chain with invariant distribution µ and transition kernel P . Since ‖fg‖∞ ≤
‖fg‖v ≤ 2‖f ‖v‖g‖v , we infer that, taking C = 2Kγ (‖dfµ‖ + 1),

Pn(h) = µ(h)+ gn with ‖gn‖∞ ≤ Cρn‖h‖v. (4.10)

This estimate implies (4.4) with an = Cρn. Indeed,

|Cov(h(X0), k(Xn))| = |Cov(h(Yn), k(Y0))|
≤ ‖k(Y0)(E(h(Yn)|σ(Y0))− E(h(Yn)))‖1

≤ ‖k(Y0)‖1‖Pn(h)− µ(h)‖∞
≤ Cρn‖k(Y0)‖1(‖dh‖ + ‖h‖1,λ) .

Collecting the above facts, we infer that φ(σ(Xn),X0) ≤ 2Cρn. Moreover, using
the Markov property we obtain that

φ(σ(Xn, . . . , Xm+n),X0) = φ(σ(Y0, . . . Ym), Yn+m)
= φ(σ(Ym), Yn+m) = φ(σ(Xn),X0) .
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This being true for any integer m, it holds for Mn = σ(Xi, i ≥ n). We conclude
that if (4.7) and (4.8) hold then there exists C > 0 and 0 ≤ ρ < 1 such that

φ(σ(Xi, i ≥ n),X0) ≤ 2Cρn . (4.11)

Application: Expanding maps. Let ([ai, ai+1[)1≤i≤N be a finite partition
of [0, 1[. We make the same assumptions on T as in Collet et al (2002).

1. For each 1 ≤ j ≤ N , the restriction Tj of T to ]aj , aj+1[ is strictly monotonic
and can be extented to a function T j belonging to C2([aj , aj+1]).

2. Let In be the set where (T n)′ is defined. There exists A > 0 and s > 1 such
that infx∈In |(T n)′(x)| > Asn.

3. The map T is topologically mixing: for any two nonempty open setsU,V , there
exists n0 ≥ 1 such that T −n(U) ∩ V 	= ∅ for all n ≥ n0.

If T satisfies 1. 2. and 3. then (4.7) holds. If furhtermore (4.8) holds (see Morita
(1994) for sufficient conditions), then (4.11) holds.

Remark 3. The spectral analysis may be done under weaker assumptions on T (see
Morita (1994) and Broise (1996)). In particular, the partition need not necessarily
be finite: the gauss map T (x) = x − [x] satisfies also (4.11). We have chosen this
class of examples because it is easy to describe, and because we can go further
in the analysis of the associated Markov chain (Yi)i≥0 by using a recent result of
Collet et al. (2002) (see Example 4, Section 7.2).

5. MISE for β-dependent sequences.

We consider the problem of estimating the unknown marginal density f from
the observations (X1, . . . , Xn) of a stationary sequence (Xi)i≥0. In this con-
text, Viennet (1997) obtained optimal results for the MISE under the condition∑
k>0 β(σ(X0), σ (Xk)) < ∞. We wish to extend Viennet’s results to sequences

satisfying only

∑
k>0

β(σ(X0),Xk) < ∞ . (5.1)

For kernel density estimators, this can be done by assuming only that the kernel
K is BV and Lebesgue integrable. For projection estimators, it works only if the
basis is well localized, because our variance inequality is less precise than that
of Viennet. Note that Condition (5.1) is much less restrictive than Viennet’s, for
it contains many non mixing examples. In particular, since f is supposed to be
square integrable with respect to the Lebesgue measure, the distribution function F
ofX0 is 1/2-Hölder. Hence, we infer from point 3 of Proposition 2 that (5.1) holds
as soon as

∑
k>0(τ (σ (X0),Xk))

1/3 < ∞. If f is bounded (5.1) holds as soon as∑
k>0(τ (σ (X0),Xk))

1/2 < ∞.
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5.1. Variance inequalities

According to Definition 2 and to the stationarity of (Xi)i≥0, we set β(i) =
β(σ(X0),Xi). The main results of this section are the following upper bounds
(compare to Theorems 1.2 and 1.3(a) in Rio (2000a) for the mixing coefficients
α(σ(X0), σ (Xi))).

Proposition 3. LetK be any BV function such that
∫ |K(x)|dx is finite. Let (Xi)i≥0

be a stationary sequence, and define

Yk,n = h−1K(h−1(x −Xk)) and fn(x) = 1

n

n∑
k=1

Yk,n . (5.2)

The following inequality holds

nh

∫
Var(fn(x))dx ≤

∫
(K(x))2dx + 2

(n−1∑
k=1

β(k)
)
‖dK‖

∫
|K(x)|dx .

Proposition 4. Let (ϕi)1≤i≤n be an orthonormal system of L2(R, λ) (λ is the Lebes-
gue measure) and assume that each ϕi is BV. Let (Xi)i≥0 be a stationary sequence,
and define

Yj,n = 1

n

n∑
k=1

ϕj (Xk) and fn =
m∑
j=1

Yj,nϕj . (5.3)

The following inequality holds

n

∫
Var(fn(x))dx ≤ sup

x∈R

( m∑
j=1

ϕ2
j (x)

)
+ 2

( n−1∑
k=1

β(k)
)

sup
x∈R

( m∑
j=1

‖dϕj‖ |ϕj (x)|
)
.

Remark 4. Since β(M, X) ≤ φ(M, X), Propositions 3 and 4 apply to dynamical
systems satisfying (4.4) with 2

∑n−1
i=1 ak instead of

∑n−1
i=1 β(k). For kernel estima-

tors this can be also deduced from a variance estimate given in Prieur (2001).

Proof of Proposition 3. We start from the elementary inequality

Var(fn(x)) ≤ 1

n
‖Y0,n‖2

2 + 2

n

n−1∑
i=1

|Cov(Y0,n, Yi,n)| .

Now h
∫ ‖Y0,n‖2

2(x)dx = ∫
(K(x))2dx. To complete the proof, we apply Proposi-

tion 1:

h

∫
|Cov(Y0,n, Yi,n)|(x)dx ≤ ‖dK‖E

(
b(σ (X0),Xi)

∫
|Y0,n(x)|dx

)

≤ β(i)‖dK‖
∫

|K(x)|dx .

��
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Proof of Proposition 4. Since (ϕi)1≤i≤n is an orthonormal system of L
2(R, λ) we

have that ∫
Var(fn(x))dx =

m∑
j=1

Var(Yj,n) .

Applying Proposition 1, we obtain that

Var(Yj,n) ≤ 1

n
‖ϕj (X0)‖2

2 + 2

n

n−1∑
k=1

|Cov(ϕj (X0), ϕj (Xk))|

≤ 1

n
‖ϕj (X0)‖2

2 + 2

n

n−1∑
k=1

‖dϕj‖E(|ϕj (X0)|b(σ (X0),Xk)) .

To complete the proof we sum in j :

n

∫
Var(fn(x))dx ≤ E

( m∑
j=1

ϕ2
j (X0)

)

+2
n−1∑
k=1

E

(
b(σ (X0),Xk)

m∑
j=1

‖dϕj‖ |ϕj (X0)|
)
.

��

5.2. Some function spaces

In this section we recall the definition of the spaces Lip∗(s, 2, I ), where I is either
R or some compact interval [a, b] (see DeVore and Lorentz (1993), Chapter 2). Let
Irh = R if I = R and Irh = [a, b − rh] otherwise. For any h ≥ 0, let Th be the
translation operator Th(f, x) = f (x+h) and�h = Th−T0 be the difference oper-
ator. By induction, define the operators �rh = �h ◦ �r−1

h . Let λ be the Lebesgue
measure on I and ‖.‖2,λ the usual norm on L

2(I, λ). The modulus of smoothness
of order r of a function f in L

2(I, λ) is defined by

ωr(f, t)2 = sup
0≤h≤t

‖�rh(f, .)�Irh‖2,λ ,

For s > 0, Lip∗(s, 2, I ) is the space of functions f in L
2(I, λ) such that

‖f ‖s,2,I = ‖f ‖2,λ + sup
t>0

ω[s]+1(f, t)2

t s
< ∞ .

These spaces are Banach spaces with respect to the norm ‖.‖s,2,I . Recall that
Lip∗(s, 2, I ) is a particular case of Besov spaces (precisely Lip∗(s, 2, I ) =
Bs,2,∞(I )) and that it contains Sobolev spaces Ws(I) = Bs,2,2(I ). Recall that,
if s is an integer, the spaceWs(I) is the space of functions for which f (s−1) is abso-
lutely continuous with almost everywhere derivative f (s) belonging to L

2(I, λ).
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5.3. Application to Kernel estimators

If fn is defined by (5.2), set fh = E(fn). Let r be some positive integer, and assume
that the kernelK is such that: for any f belonging to the Sobolev spaceWr(R) we
have ∫

(f (x)− fh(x))
2dx ≤ M1h

2r‖f (r)‖2
2 , (5.4)

for some constantM1 depending only on r . From (5.4) and Theorem 5.2 page 217
in DeVore and Lorentz (1993), we infer that, for any f in L

2(R, λ),∫
(f (x)− fh(x))

2dx ≤ M2(wr(f, h)2)
2 ,

for some constant M2 depending only on r . This last inequality imply that, if f
belongs to Lip∗(s, 2,R) for r − 1 ≤ s < r , then∫

(f (x)− fh(x))
2dx ≤ M2h

2s‖f ‖2
s,2,R .

This evaluation of the bias together with Proposition 3 leads to the following
Corollary.

Corollary 1. Let r be some positive integer. Let (Xi)i≥1 be a stationary sequence
with common marginal density f belonging to Lip∗(s, 2,R) with r − 1 ≤ s < r ,
or to Ws(R) with s = r . Let K be a BV function satsisfying (5.4) and such that∫ |K(x)|dx is finite. Let fn be defined by (5.2) with h = n−1/(2s+1). If (5.1) holds,
then there exists a constant C such that

E

(∫
(fn(x)− f (x))2dx

)
≤ Cn−2s/(2s+1) .

Here are two well known classes of kernel satisfying (5.4).

Example 1. One says that K is a kernel of order k, if

1.
∫
K(x)dx = 1,

∫
(K(x))2dx < ∞ and

∫
|x|k+1|K(x)|dx < ∞ .

2.
∫
xjK(x)dx = 0 for 1 ≤ j ≤ k .

If K is a Kernel of order k, then it satisfies (5.4) for any r ≤ k + 1. For instance,
the naive kernelK = (1/2)�]−1,1] is BV and of order 1. Consequently Corollary 1
applies to functions belonging to Lip∗(s, 2,R) for s < 2, or to W2(R).

Example 2. Assume that the fourier transform K∗ of K satisfies |1 − K∗(x)| ≤
M|x|r for some positive constantM . ThenK satisfies (5.4) for this r . For instance,
K(x) = sin(x)/(πx) satisfies (5.4) for any positive integer r . Unfortunately, it
is neither BV nor integrable. Another function satisfying (5.4) for any positive
integer r is the analogue of the de la vallée-Poussin kernel V (x) = (cos(x) −
cos(2x))/πx2 . This function is BV and integrable, so that Corollary 1 apply to any
function belonging to Lip∗(s, 2, I ) for s > 0.
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5.4. Application to unconditional systems.

Proposition 4 is of special interest for orthonormal systems (ϕi)i≥1 satisfying the
two conditions:

P1 There exists C1 independent of m such that max
1≤i≤m

‖dϕi‖ ≤ C1
√
m.

P2 There exists C2 independent of m such that sup
x∈R

( m∑
j=1

|ϕj (x)|
)

≤ C2
√
m.

An orthonormal system satisfying P2 is called unconditional. For such systems, we
obtain from Proposition 4 that

n

∫
Var(fn(x))dx ≤ m

(
C2

2 + 2C1C2

( n−1∑
k=1

β(k)
))
. (5.5)

Example 1: piecewise polynomials. Let (Qi)1≤i≤r+1 be an orthonormal basis of
the space of polynomials of order r on [0, 1] and define the function Ri on R by:
Ri(x) = Qi(x) if x belongs to ]0, 1] and 0 otherwise. We consider the regular
partition of ]0, 1] into k intervals (](j − 1)/k, j/k])1≤j≤k . Define the functions
Ri,j (x) = √

kRi(kx−(j−1)). Clearly the family (Ri,k)1≤i≤r+1 is an orthonormal
basis of the space of polynomials of order r on the interval [(j − 1)/k, j/k]. Let
m = k(r + 1) and (ϕi)i≥1 be any family such that

{ϕi, 1 ≤ i ≤ m} = {Ri,j , 1 ≤ j ≤ k, 1 ≤ i ≤ r + 1} . (5.6)

The orthonormal system (ϕi)i≥1 satisfies P1 and P2 with

C1 = (r + 1)−1/2 max
1≤i≤r+1

‖dRi‖ and C2 = (r + 1)−1/2 sup
x∈[0,1]

(r+1∑
i=1

|Ri(x)|
)
.

The case of histograms corresponds to r = 0. In that case ϕj = √
k�](j−1)/k,j/k].

Clearly C2 = 1 and ‖dϕj‖ = 2
√
k, so that C1 = 2.

Assume now thatX0 has a densityf such thatf �[0,1] belongs to Lip∗(s,2,[0, 1]).
Suppose that r > s − 1, and denote by f̄ the orthogonal projection of f on the
subspace generated by (ϕi)1≤1≤m. From Lemma 12 in Barron et al. (1999) we know
that there exists a constant K depending only on s such that

∫ 1

0
(f (x)− f̄ (x))2dx ≤ Km−2s . (5.7)

Since f̄ = E(fn), we obtain from (5.5) and (5.7) the following corollary.

Corollary 2. Let (Xi)i≥1 be a stationary sequence with common marginal density
f such that f �[0,1] belongs to Lip∗(s, 2, [0, 1]). Let r be any nonnegative integer
such that r > s − 1 and k = [n1/(2s+1)]. Let (ϕi)1≤i≤m be defined by (5.6) and fn
be defined by (5.3). If (5.1) holds, then there exists a constant C such that

E

(∫ 1

0
(fn(x)− f (x))2dx

)
≤ Cn−2s/(2s+1) .
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Example 2: wavelet basis. Let {ej,k, j ≥ 0, k ∈ Z} be an orthonormal wavelet
basis with the following convention: e0,k are translate of the father wavelet and for
j ≥ 1, ej,k = 2j/2ψ(2j x − k), where ψ is the mother wavelet. Assume that these
wavelets are compactly supported and have continuous derivatives up to order r
(if r = 0, the wavelets are supposed to be BV). Let g be some function with sup-
port in [−A,A]. Changing the indexation of the basis if necessary, we can write

g = ∑
j≥0

∑2jM
k=1 aj,kej,k , where M ≥ 1 is some finite integer depending on A

and on the size of the wavelets supports. Let m = ∑J
j=0 2jM and (ϕi)i≥1 be any

family such that

{ϕi, 1 ≤ i ≤ m} = {ej,k, 0 ≤ j ≤ J, 1 ≤ k ≤ 2jM} . (5.8)

The orthonormal system (ϕi)i≥1 satisfies P1 and P2.
Assume now that X0 has a density f belonging to Lip∗(s, 2,R) with compact

support in [−A,A]. Denote by f̄ the orthogonal projection of f on the subspace
generated by (ϕi)1≤i≤m. From Lemma 12 in Barron et al. (1999) we know that
there exist a constant K depending only on s such that

∫ 1

0
(f − f̄ (x))2dx ≤ K2−2J s . (5.9)

Since f̄ = E(fn), we obtain from (5.5) and (5.9) the following corollary.

Corollary 3. Let (Xi)i≥1 be a stationary sequence with common marginal density
f belonging to Lip∗(s, 2,R) and with compact support in [−A,A]. Let r be any
nonnegative integer such that r > s − 1 and J be such that J = [log2(n

1/(2s+1))].
Let (ϕi)1≤i≤m be defined by (5.8) and fn be defined by (5.3). If (5.1) holds, then
there exists a constant C such that

E

(∫
(fn(x)− f )2dx

)
≤ Cn−2s/(2s+1) .

Remark 5. More generally, if
∑n
i=1 β(σ(X0),Xi) = O(na) for some a in [0, 1[,

we obtain the rate n−2s(1−a)/(2s+1) for the MISE in Corollaries 1, 2 and 3. Note
that if (5.1) holds the rate n−2s/(2s+1) is known to be optimal for i.i.d. observations.

6. Exponential inequality for φ-dependent sequences

Starting from a moment inequality of Dedecker and Doukhan (2003) (see also
Theorem 2.5 in Rio (2000a) for the stationary case) we obtain an Hoeffding-type
inequality for partial sums. Given a filtration Mi , the coefficients φ(k) are defined
as in (4.1).

Proposition 5. Let (Xi)i≥0 be a sequence of random variables andMi = σ(Xj , 1 ≤
j ≤ i). For any BV function h, define

Sn(h) =
n∑
i=1

h(Xi) and bi,n =
(n−i∑
k=0

φ(k)
)
‖dh‖ ‖h(Xi)− E(h(Xi))‖p/2 .
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For any p ≥ 2 we have the inequality

‖Sn(h)− E(Sn(h))‖p ≤
(

2p
n∑
i=1

bi,n

)1/2 ≤ ‖dh‖
(

2p
n−1∑
k=0

(n− k)φ(k)
)1/2

.

(6.1)

We also have that

P(|Sn(h)− E(Sn(h))| > x) ≤ e1/e exp

(
−x2

4e‖dh‖2
∑n−1
k=0(n− k)φ(k)

)
. (6.2)

Remark 6. Applying the method of martingale differences, as in Deddens, Peligrad
and Yang (1987), we can also prove that

P(|Sn(h)− E(Sn(h))| > x) ≤ 2 exp

(
−x2

2‖dh‖2
∑n
i=1

(
1 + 2

∑n−i+1
k=1 φ(k)

)2
)
.

(6.3)

Both (6.2) and (6.3) yield the same kind of inequality provided that
∑
k>0 φ(k) is

finite. Note that this condition is realized for expanding maps considered in Exam-
ple 4. We shall see that for such maps we can also obtain a concentration inequality
for lipschitz functions (cf. Collet et al (2002) and Theorem 2, Section 7.4).

Proof of Proposition 5. Let Yi = h(Xi) − E(h(Xi)). Applying Proposition 4 in
Dedecker and Doukhan (2003), we obtain that

‖Sn(h)− E(Sn(h))‖p ≤
(

2p
n∑
i=1

max
i≤l≤n

∥∥∥Yi
l∑
k=i

E(Yk|Mi )

∥∥∥
p/2

)1/2
. (6.4)

From Item 4. of Lemma 1, we infer that

max
i≤l≤n

∥∥∥Yi
l∑
k=i

E(Yk|Mi )

∥∥∥
p/2

≤ ‖Yi‖p/2
n∑
k=i

‖E(Yk|Mi )‖∞ ≤ bi,n . (6.5)

The first inequality in (6.1) follows from (6.4) and (6.5). To prove the second
inequality in (6.1), it remains to bound bi,n. From Lemma 1, ‖Yi‖p/2 ≤ ‖Yi‖∞ ≤
‖dh‖φ(0) ≤ ‖dh‖, so that bi,n ≤ ‖dh‖2

2(φ(0)+· · ·+φ(n−i)) and (6.1) is proved.
To prove (6.2), let B = ‖dh‖2∑n−1

k=0(n− k)φ(k). For any p ≥ 2 we have

P(|Sn(h)− E(Sn(h))| > x) ≤ min
(

1,
E(|Sn(h)− E(Sn(h))|p)

xp

)

≤ min
(

1,
(2pB

x2

) p
2
)
.

Obvious computations show that the function p → (2pBx−2)p/2 has a unique
minimum in p0 = (2eB)−1x2 and is increasing on the interval [p0,+∞]. By
comparing p0 and 2, we infer that

P(|Sn(h)− E(Sn(h))| > x) ≤ g
( x2

4eB

)
,
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where g is the function from R+ to R+ defined by

g(y) = �y≤e−1 + (ey)−1�e−1<y≤1 + e−y�y>1 .

Finally, (6.2) follows by noting that g(y) ≤ exp(−y + e−1) for any positive y. ��
From Proposition 5 we obtain an empirical central limit theorem for classes of

BV functions. We need some notations. Let (Xi)i≥0 be a stationary sequence of
real-valued random variables with common marginal distribution P . Denote by Pn
the empirical probability measure and byZn the centered and normalized empirical
measure

Pn = 1

n

n∑
i=1

δXi , Zn = √
n(Pn − P) .

Let F be a class of measurable functions from R to R. The space �∞(F) is the
space of all functions z from F to R such that ‖z‖F = supf∈F |z(f )| is finite. A
random variable X with values in �∞(F) is tight if for any positive ε there exists
a compact set Kε of (�∞(F), ‖.‖F ) such that P(X ∈ Kε) ≥ 1 − ε.

For any P -integrable function f , let Pn(f ) = ∫
f (x)Pn(dx), P(f ) =∫

f (x)P (dx) and Zn(f ) = √
n(Pn(f ) − P(f )). Assume that P(|f |) is finite

for any f in F and that supf∈F |f (x) − P(f )| is finite for every x in R. Under
this minimal condition, the empirical process {Zn(f ), f ∈ F} can be viewed as
a variable with values in �∞(F), altough it may not be measurable with respect
to the Borel σ -algebra generated by ‖.‖F . Nevertheless, we say that Zn converges
weakly to a �∞(F)-valued random variable Z (i.e. Borel measurable) if, for every
continuous bounded function h from (�∞(F), ‖.‖F ) to R, the outer expectation
E

∗(h(Zn)) converges to E(h(Z)) (see for instance van der Vaart and Wellner (1996)
p. 4 for the definition of outer expectations and measures, and more details about
weak convergence for non-measurable maps).

If ρ is a seminorm on F , the metric entropy H(ε,F, ρ) is the logarithm of the
smallest number of balls with radius ε (with respect to ρ) needed to cover F .

Corollary 4. Let (Xi)i∈Z be a stationary and ergodic sequence of real-valued
random variables and Mi = σ(Xj , j ≤ i). Let F be a class of BV functions. On
F we put the seminorm |f |v = ‖df ‖. Let Mi = σ(Xj , j ≤ i) and assume that

∞∑
k=1

φ(k) < ∞ and
∫ 1

0

√
H(x,F, |.|v)dx < ∞ .

Then Zn converges weakly in �∞(F) to a tight gaussian process with covariance
function

�(f, g) =
∑
k∈Z

Cov(f (X0), g(Xk)) .

Application. Assume that X0 belongs to [0, 1] and that F is a class of absolutely
continuous functions from [0, 1] to R. In that case, |f |v = ∫ 1

0 |f ′(t)|dt = ‖f ′‖1,λ.
If F ′ = {f ′, f ∈ F} then the condition on the entropy can be written as

∫ 1

0

√
H(x,F ′, ‖.‖1,λ)dx < ∞ .
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For instance, it is satisfied if F ′ is the class of increasing functions from [0, 1] to
[−K,K], which means that F is the class of convex and K-lipschitz functions.

Proof of Corollary 4. Let C(φ) = ∑∞
k=0 φ(k). Applying (6.2) of Proposition 5,

we obtain

P(|Zn(f )− Zn(g)| > x) ≤ e1/e exp

( −x2

4e|f − g|2vC(φ)
)
. (6.6)

This means that for each n, the process {Zn(f ), f ∈ F} is subgaussian (cf.
Ledoux and Talagrand (1991), p. 322). We can therefore apply the chaining pro-
cedure of Theorem 11.6 in Ledoux and Talagrand (1991) (with the outer expec-
tation E

∗ instead of E) to obtain that: for each positive ε there exists a positive
real δ, depending only on ε and of the value of the entropy integral, such that
E

∗(sup|f−g|v<δ |Zn(f )− Zn(g)|) < ε . This prove that Zn is asymptotically |.|v-
equicontinuous.

To complete the proof, it remains to check the finite dimensional convergence
of the process Zn. Let f = (f1, . . . , fk) be an element of Fk and for any x in R

k

define the function < x, f − P(f) >= x1(f1 − P(f1)) + · · · + xk(fk − P(fk)).
Define the matrix C by Ci,j = �(fi, fj ). Since (Xi)i∈Z is ergodic, we infer from
Dedecker and Rio (2000) that the random variableZn(< x, f −P(f) >) converges
in distribution to a mean-zero normal distribution with variance xtCx as soon as

∑
k≥0

‖ < x, f − P(f) > (X0)E(< x, f − P(f) > (Xk)|M0)‖1 < ∞ . (6.7)

Consequently, if (6.7) holds, the random vector (Zn(f1), . . . , Zn(fk)) converges
in distribution to a Gaussian vector with covariance matrix C. Applying Lemma 1,
we obtain that

‖ < x, f − P(f) > (X0)E(< x, f − P(f) > (Xk)|M0)‖1

≤ ‖ < x, f − P(f) > (X0)‖∞| < x, f − P(f) > |v α(M0, Xk) ,

so that (6.7) holds as soon as
∑
k≥0 α(k) is finite. This completes the proof. ��

7. Extension to higher dimension

It seems difficult to extend coefficients based on the conditional distribution func-
tion in higher dimension. A way to proceed is to start from the functional definition
of the coefficients given in Lemma 1. For α(M, X), β(M, X) and φ(M, X) the
extension remains difficult because the notion of bounded variation is rather delicate
even in R

2. For τ , the extension is immediate and satisfactory.
Let (�,A,P) be a probability space, M a σ -agebra of A and X a random

variable with values in a Polish space (X , d). As in R there exists a conditional
distribution PX|M ofX given M (see Dudley (1989), Theorem 10.2.2). Let�1(X )
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be the space of 1-lipschitz functions from X to R. Assume that
∫
d(0, x)PX(dx)

is finite and define

τ(M, X) =
∥∥∥sup

{∣∣∣
∫
f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣∣, f ∈ �1(X )
}∥∥∥

1
.

(7.1)

We shall see in section 7.1 that this coefficient has the same coupling property as in
the real case. If d(0, X) is bounded, we can define the uniform version of τ , which
was first introduced by Rio (1996):

ϕ(M, X) = sup{‖E(f (X)|M)− E(f (X))‖∞, f ∈ �1(X )} .
Note that this definition slightly differs from Rio’s, who takes�1(X ) as the set of 1-
Lipschitz functions from X to [0, 1]. With our definitions, τ(M, X) and ϕ(M, X)

have an interpretation in terms of the Kantorovitch-Rubinstein distance (see Section
7.1 below).

The main advantage of such definitions in spaces of higher dimension is that it
allows to define the dependence between two sequences (Xi)i≥0 and (Mi )i≥0 by
considering k-tuples in the future and not only a single variable. More precisely,
put the distance d1(x, y) = d(x1, y1)+ · · · + d(xk, yk) on X k , and define

τk(i) = max
1≤l≤k

1

l
sup{τ(Mp, (Xj1 , . . . , Xjl )), p + i ≤ j1 < · · · < jl} and

τ∞(i) = sup
k>0

τk(i).

The coefficient ϕk and ϕ∞ are defined in the same way.

7.1. Coupling

Let P andQ be two probability measures on a Polish space (X , d,B(X )). In 1970
Dobrushin proved that there exists a probality measure µ on X × X such that
µ(· × X ) = P(·), µ(X × ·) = Q(·) and

1

2
‖P −Q‖ = µ({x 	= y, (x, y) ∈ X × X }) , (7.2)

where ‖.‖ is the variation norm. Starting from (7.2) (cf. Proposition 4.2.1 in Berbee
(1979)), Berbee obtained the following coupling result: let (�,A,P) be a proba-
bility space, M a σ -algebra of A and X a X -valued random variable. If � is rich
enough, there exists X∗ distributed as X and independent of M such that

1

2
‖PX|M − PX‖ = E(�X 	=X∗ |M) almost surely (7.3)

From (7.3), it follows that β(M, σ (X)) = P(X 	= X∗).
It is by now well known that Dobrushin’s result (7.2) is a particular case

of the Monge-Kantorovitch problem (see for instance Rachev and Rüschendorf
(1998), page 93). More precisely, let d0 be the discrete metric d0(x, y) = �x 	=y and
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�1(X , d0) be the set of Borel functions from X to R such that |f (x) − f (y)| ≤
d0(x, y). Property (7.2) is equivalent to: there exists a probabilityµ on X ×X such
that µ(· × X ) = P(·), µ(X × ·) = Q(·) and

Kd0(P,Q) := sup
{∣∣∣
∫
f (x)P (dx)−

∫
f (x)Q(dx)

∣∣∣, f ∈ �1(X , d0)
}

=
∫
d0(x, y)µ(dx, dy). (7.4)

In fact, (7.4) holds for a wide class of distances (for instance the distances satisfy-
ing the equality (4.5.1) in Rachev and Rüschendorf (1998)). In particular it holds
for any continuous (with respect to d) distance d0. In that case, one can prove an
analogue of Berbee’s result: if � is rich enough, there exists X∗ distributed as X
and independent of M such that

Kd0(PX|M,PX) = E(d0(X,X
∗)|M) almost surely. (7.5)

If d0 = d and M = σ(Z) for some random variable Z with values in a Pol-
ish space Z , property (7.5) has been proved in Dedecker and Prieur (2004). Our
proof is based on a conditional version of the Kantorovitch and Rubinstein theorem
(see Proposition 1.2). After this note was published, we read the book by Castaing
et al. (2004) onYoung measures. Using the equality (3.4.4) in Castaing et al. (2004)
instead of Proposition 1.2 in Dedecker and Prieur (2004), we see that (7.5) is true
for any σ -agebra M of A and any continuous distance d0 with respect to d. From
(7.5) with d0 = d we obtain that τ(M, X) = E(d(X,X∗)).

Starting from their coupling properties, one can compare the coefficients
β(M, σ (X)) and τ(M, X). Following the proof of Proposition 2.3 in Merlevède
and Peligrad (2002), we obtain that, for any x in X ,

τ(M, X) ≤ 2
∫ β(M,σ (X))

0
Qd(X,x)(u)du , (7.6)

where the function Qd(X,x) is defined as in Proposition 2 (note that (7.6) can be
deduced from Proposition 2.3 of Merlevède and Peligrad (2002) with a constant 8
instead of 2). If X = R, we know from item 2 of Proposition 2 that (7.6) holds for
x = 0 and the weak coefficient α(M, X). A reasonable question is then: can we
obtain a bound similar to (7.6) for any polish space X with the mixing coefficient
α(M, σ (X)) instead of β(M, σ (X))? In fact, this is not true in general, accord-
ing to a counter-example given by Dehling (1983). In this paper, he constructed
an example of a sequence (Xk)k>0 with values in the unit ball of �2, such that
α(σ(Xi, 1 ≤ i < k), σ (Xi, i ≥ k)) converges to 0, and which cannot be approx-
imated by independent random variables Yk distributed as Xk in such a way that
‖Xk − Yk‖�2 converges to 0 in probability. This proves that in infinite dimensional
Hilbert spaces the coefficients τ(M, X) and α(M, σ (X)) cannot be compared.

We shall give in equation (7.16) of Remark 7 an alternative definition for
τ(M, X) than that given in (7.1). With this other definition, (7.6) is true for
α(M, σ (X)) instead of β(M, σ (X)). For this weaker coefficient, according to
Dehling’s example, the equality τ(M, X) = E(d(X,X∗)) does not hold for any
Polish space X , although it holds for R.
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7.2. Examples

We proceed as in Examples 1, 2, 3 and 4 of Section 4. For ϕ, the case of causal
functions of uniformly mixing sequences has been studied in Rio (1996).

Example 1: causal functions of stationary sequences. (Xn)n∈Z, (X∗
n)n≥0 and Mi

be defined as in Example 1 of Section 4. Then for jk > · · · > j1 ≥ i, we have both

τ(M0, (Xj1 , . . . , Xjk )) ≤
k∑
l=1

‖Xjl −X∗
jl
‖1 (7.7)

ϕ(M0, (Xj1 , . . . , Xjk )) ≤
k∑
l=1

‖E(|Xjl −X∗
jl
| |M0)‖∞ . (7.8)

Let (δi)i≥0 and (δ′i )i≥0 be two nonincreasing sequence such that ‖Xi −X∗
i ‖1 ≤ δi

and ‖E(|Xi − X∗
i | |M0)‖∞ ≤ δ′i respectively. Then τ∞(i) ≤ δi and ϕ∞(i) ≤

δ′i . For instance, if (ξi)i∈Z is iid and Xn = ∑
j≥0 aj ξn−j , we can take δi =

2‖ξ0‖1
∑
j≥i |aj | and δ′i = 2‖ξ0‖∞

∑
j≥i |aj |.

Example 2: iterative random functions. Let (Xn)n≥0, (X∗
n)n≥0 and Mi be

defined as in Example 2 of Section 4. Then (7.7) and (7.8) hold. Let(δi)i≥0 and
(δ′i )i≥0 be two nonincreasing sequences such that ‖Xi −X∗

i ‖1 ≤ δi and ‖E(|Xi −
X∗
i | |M0)‖∞ ≤ δ′i respectively. Then τ∞(i) ≤ δi and ϕ∞(i) ≤ δ′i . Denote

by (Xxn)n≥0 the chain starting from Xx0 = x. If (di)i≥0 is some non increas-
ing sequence such that ‖Xxi − X

y
i ‖1 ≤ di |x − y| then δi ≤ 2‖X0‖1di and

δ′i ≤ 2‖X0‖∞di . If ‖F(x, ξ0) − F(y, ξ0)‖∞ ≤ κ|x − y| for some κ < 1, we
can take di = κi . For instance, ifXn = f (Xn−1)+ ξn for some κ-lipshitz function
f , then τ∞(i) ≤ 2‖X0‖1κ

i and ϕ∞(i) ≤ 2‖X0‖∞κi .

Example 3: Markov kernels. Let (Xn)n∈N be a stationary Markov chain with
values in X , with marginal distribution µ and transition kernel P satisfying Con-
dition H of Example 3, Section 4.3. Then for jk > · · · > j1 ≥ i and f in �1(X k),
the function E(f (Xj1 , . . . , Xjk )|Xj1=x) belongs to �1+κ+···+κk−1(X ) and con-
sequently the function fj1,... ,jk (x) = E(f (Xj1 , . . . , Xjk )|X0 = x) belongs to
�κi(1+κ+···+κk−1)(X ). One has that

τ(σ (X0), (Xj1 , . . . , Xjk )) ≤
∫∫

sup
f∈�1(X k)

|fj1,... ,jk (x)− fj1,... ,jk (y)|µ(dx)µ(dy)

ϕ(σ (X0), (Xj1 , . . . , Xjk )) ≤ sup
f∈�1(X k)

sup
(x,y)∈X 2

|fj1,... ,jk (x)− fj1,... ,jk (y)| .

Consequently, if X∗
0 is an independent copy of X0, we obtain the bounds

τ(σ (X0), (Xj1 , . . . , Xjk )) ≤ κi(1 + κ + · · · + κk−1)‖X0 −X∗
0‖1 (7.9)

ϕ(σ(X0), (Xj1 , . . . , Xjk )) ≤ κi(1 + κ + · · · + κk−1)‖X0 −X∗
0‖∞ . (7.10)

We infer that τ∞(i) ≤ 2‖X0‖1κ
i and ϕ∞(i) ≤ 2‖X0‖∞κi .
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Example 4: Expanding maps. Let T be a map from [0, 1] to [0, 1] satisfying Con-
ditions 1. 2. and 3. of Section 4.4 (see the application). Assume moreover that the
density fµ ot the invariant probabilityµ satisfies (4.8). LetXi = T i and defineP as
in (4.9). We know from Section (4.4) that on ([0, 1], µ), the sequence (Xn, . . . , X0)

has the same distribution as (Y0, . . . , Yn) where (Yi)i≥0 is the stationary Markov
chain with Markov Kernel P . Consequently

ϕ(σ(Xj , j ≥ i + k), (X0, . . . , Xk)) = ϕ(σ(Y0), (Yi, . . . , Yi+k)) . (7.11)

To bound ϕ(σ(Y0), (Yi, . . . , Yi+k)), the first step is to compute E(f (Y0, . . . ,

Yk)|Y0 = x). As for P , define the operator Qk by

∫ 1

0
Qk(f )(x)g(x)fµ(x)dx =

∫ 1

0
f (T k(x), . . . , x)g(T k(x))fµ(x)dx .

Clearly E(f (Y0, . . . , Yk)|Y0 = x) = Qk(f )(x) and by definition

ϕ(σ(Y0), (Yi, . . . , Yi+k)) = sup
f∈�1(Rk+1)

‖P i ◦Qk(f )− µ(Qk(f ))‖∞

= sup
f∈�1(Rk+1)

‖(P i − µ) ◦ (Qk(f )−Qk(f )(0)) ‖∞

(7.12)

Here, we use a recent result of Collet et al. (2002). Denote by �L1,... ,Ln the set of
functions f from R

n to R such that

|f (x1, . . . , xn)− f (y1, . . . , yn)| ≤ L1|x1 − y1| + · · · + Ln|xn − yn| . (7.13)

Adapting Lasota-Yorke’s approach to higher dimension Collet et al. prove (page
312 line 6) that there existK > 0 and 0 ≤ σ < 1 such that, for any f in�L1,... ,Lk+1 ,

‖dQk(f )‖ ≤ K

k∑
i=0

σ iLi+1 . (7.14)

Applying (4.10), we infer from (7.12) and (7.14) that

ϕ(σ(Y0), (Yi, . . . , Yi+k)) ≤ Cρi‖Qk(f )−Qk(f )(0)‖v

≤ Cρi2‖dQk(f )‖ ≤ Cρi2K
k∑
j=0

σ j .

Moreover, according to (7.11), the same bound holds for ϕ(σ(Xj , j ≥ i + k),

(X0, . . . , Xk)). For the Markov chain (Yi)i≥0 and the σ -algebras Mi = σ(Yj , j ≤
i) we obtain from (7.14) that

ϕ∞(i) ≤
(

2CK
∑
j≥0

σ j
)
ρi .
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7.3. Bennett-type inequalities and Functional LIL

In this section, we recall some recent results for τ -dependent sequences obtained
in Dedecker and Prieur (2003). The first Proposition extends Bennett’s inequality
for independent sequences to the case of τ -dependent sequences. For any positive
integer q, we obtain an upper bound involving two terms: the first one is the classi-
cal Bennett’s bound at level λ for a sum

∑
n of independent variables ξi such that

Var(
∑
n) = vq and ‖ξi‖∞ ≤ qM , and the second one is equal to nλ−1 τq(q + 1).

Proposition 6. Let (Xi)i>0 be a sequence of real-valued random variables bounded
by M , and Mi = σ(Xk, 1 ≤ k ≤ i). Let Sk = ∑k

i=1(Xi − E(Xi)) and Sn =
max1≤k≤n |Sk|. Let q be some positive integer, vq some nonnegative number such
that

vq ≥ ‖Xq[n/q]+1 + · · · +Xn‖2
2 +

[n/q]∑
i=1

‖X(i−1)q+1 + · · · +Xiq‖2
2 .

and h the function defined by h(x) = (1 + x) ln(1 + x)− x.

1. For any positive λ, P(|Sn| ≥ 3λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM
vq

))
+ n

λ
τq(q+1) .

2. For any λ ≥ Mq,

P(Sn ≥ (�q>1 + 3)λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM
vq

))
+ n

λ
τq(q + 1) .

Starting from the second inequality and using the coupling property of τ(M, X)

for real-valued random variables, we can prove a functional law of the iterated log-
arithm. We need some preliminary notations. Let (Xi)i∈Z be a stationary sequence
of real-valued random variables. let Q = QX0 be defined as in Proposition 2 and
letG be the inverse of x → ∫ x

0 Q(u)du. Let S be the subset ofC([0, 1]) consisting
of all absolutely continuous functions with respect to the Lebesgue measure such
that h(0) = 0 and

∫ 1
0 (h

′(t))2dt ≤ 1.

Theorem 1. Let (Xi)i∈Z be a stationary sequence of zero-mean square integrable
random variables, and Mi = σ(Xj , j ≤ i). Let Sn = X1 + · · · + Xn and define
the partial sum process Sn(t) = S[nt] + (nt − [nt])X[nt]+1. If

∞∑
k=1

∫ τ∞(k)

0
Q ◦G(u) du < ∞ (7.15)

then Var(Sn) converges to σ 2 = ∑
k∈Z

Cov(X0, Xk). If furthermore σ > 0 then
the process {σ−1 (2n ln ln n)−1/2 Sn(t) : t ∈ [0, 1]} is almost surely relatively
compact in C([0, 1]) with limit set S.
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Remark 7. Proposition 6 and Theorem 1 remain valid when replacing the definition
of τ(M, X) given in (7.1) by the weaker one

τ(M, X) = sup
f∈�1(X )

∥∥∥sup
{∣∣∣
∫
g ◦ f (x)PX|M(dx)

−
∫
g ◦ f (x)PX(dx)

∣∣∣, g ∈ �1(R)
}∥∥∥

1
. (7.16)

The coefficient τ∞(i) obtained from (7.16) instead of (7.1) is comparable to the
usual strong mixing coefficient α′∞(i) = α(M0, σ (Xk, k ≥ i)). In particular,
keeping the same notations as in Theorem 1, we have that

∫ τ∞(k)

0
Q ◦G(u) du ≤ 2

∫ α′∞(i)

0
Q2(u) du ,

so that condition (7.15) is weaker than Rio’s condition (1995) for the functional
LIL.

7.4. A concentration inequality for Lipschitz functions.

Recall that if (X , d) is a Polish space, we put the distance d1 on the product space
X n: d1(x, y) = d(x1, y1) + · · · + d(xn, yn). The space �1(X n) is the space of
1-Lipschitz functions from X n to R with respect to d1.

The following inequality is a straightforward consequence of Theorem 1 in Rio
(2000b).

Theorem 2. Let (X1, . . . , Xn) be a sequence of random variables with values in a
Polish space (X , d) and Mi = σ(X1, . . . , Xi). Let�i = inf{2‖d(Xi, x)‖∞, x ∈
X } and define

Bn = �n and for 1 ≤ i < n, Bi = �i + 2ϕ(Mi , (Xi+1, . . . , Xn)) .

For any f in �1(X n), we have that

P(f (X1, . . . , Xn)− E(f (X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

B2
1 + · · · + B2

n

)
.

This theorem applies to the examples given in Section 7.2. Recall that the set
�L1,... ,Ln has been defined in (7.13).

Examples 1 and 2: causal functions of stationary sequences and iterated ran-
dom functions. Keeping the same notations as in Examples 1 and 2 of Section 7.2,
let δ′i = ‖E(|Xi −X∗

i | |M0)‖∞ and define

Mn = Ln�0 and for 1 ≤ i < n, Mi = Li�0 + 2(Li+1δ
′
1 + · · · + Lnδ

′
n−i ) .

For f any function f belonging to �L1,... ,Ln , we have

P(f (X1, . . . , Xn)− E(f (X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

M2
1 + · · · +M2

n

)
.

(7.17)
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Example 3: Markov kernels. Let (Xn)n∈N be a stationary Markov chain with val-
ues in X , with marginal distribution µ and transition kernel P satisfying Condition
H of Example 3, Section 4.3. For any function f belonging to�L1,... ,Ln , the bound
(7.17) holds with

Mn = Ln�0 and for 1 ≤ i < n, Mi = �0(Li + 2Li+1κ + · · · + 2Lnκ
n−i ) .

Example 4: Expanding maps. Let T be an expending map from [0, 1] to [0, 1]
satisfying the assumptions of Section 7.2. Let Xi = T i and Yi be the associated
Markov chain (cf. Section 7.2). Starting from (7.14) and (4.10), we infer that the
bound (7.17) holds for f (Y1, . . . , Yn) with

Mn=Ln�0 and for 1 ≤ i < n, Mi = �0Li+4CKρ(Li+1+· · ·+Lnσn−i−1) .

Since (X1, . . . , Xn) has the same distribution as (Yn, . . . , Y1), we obtain the bound
(7.17) for f (X1, . . . , Xn) with

Mn = L1�0 and for 1 ≤ i < n,

Mi = �0Ln−i+1 + 4CKρ(Ln−i + · · · + L1σ
n−i+1) .

Remark 8. Assume that (7.17) holds forMi = δ0Li+δiLi+1+· · ·+δn−iLn (which
is the case in the four examples studied above) and letCn = δ0 +· · ·+δn−1. Apply-
ing Cauchy-Schwarz’s inequality, we obtain the boundM2

i ≤ Cn
∑n
j=i δj−iL2

i , and

consequently
∑n
i=1M

2
i ≤ C2

n

∑n
i=1 L

2
i . Hence, (7.17) yield the upper bound

P(f (X1, . . . , Xn)− E(f (X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

C2
n(L

2
1 + · · · + L2

n)

)
.

(7.18)

For expanding maps (Example 4 above) (7.18) has been proved by Collet et al
(2002).

7.5. A Berry-Esseen inequality

The following Berry-Esseen bound is due to Rio (1996), Theorem 1.

Theorem 3. Let (Xi)i∈Z be a stationary sequence of real-valued bounded and
centered random variables and Mi = σ(Xj , j ≤ i). Let Sn = X1 + · · · +Xn and
σn = ‖Sn‖2. If lim supn→∞ σn = ∞ and

∑
n>0

nϕ3(n) < ∞ , (7.19)

then σ 2
n converges to σ 2 = ∑

k∈Z
Cov(X0, Xk). Moreover σ > 0 and

sup
x∈R

∣∣∣P(Sn ≤ xσn)− 1√
2π

∫ x

−∞
exp(−x2/2)dx

∣∣∣ ≤ C√
n
,

where C depends only on ‖X0‖∞, (ϕ3(k))k≥0 and σ .
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Remark 9. In fact, in Rio’s theorem, the condition is
∑
n>0 nϕ

′
3(n) < ∞, where

ϕ′
3(i) = sup

p+i≤j1<j2<j3

sup{‖E(f (Xj1 , Xj2 , Xj3)|Mp)

−E(f (Xj1 , Xj2 , Xj3))‖∞, f ∈ �′
1(R

3)}
and�′

1(R
3) is the set off from R

3 to [0, 1] such that |f (x)−f (y)|≤max1≤i≤3 |xi−
yi |. Under the assumptions of Theorem 3, we have ϕ′

3(i)/3 ≤ ϕ3(i) ≤ (1 ∨
2‖X0‖∞)ϕ′

3(i), so that (7.19) is equivalent to Rio’s condition.
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30. Merlevède, F., Peligrad, M.: (2002) On the coupling of dependent random variables and

applications. Empirical process techniques for dependent data. 171–193 Birkhäuser
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