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Abstract. In this paper we consider a standard Brownian motion in R
d , starting at 0 and

observed until time t . The Brownian motion takes place in the presence of a Poisson random
field of traps, whose centers have intensity νt and whose shapes are drawn randomly and
independently according to a probability distribution �, on the set of closed subsets of R

d ,
subject to appropriate conditions. The Brownian motion is killed as soon as it hits one of the
traps. With the help of a large deviation technique developed in an earlier paper, we find the
tail of the probability St that the Brownian motion survives up to time t when

νt =
{
ct−2/d , d ≥ 3,
ct−1 log2 t, d = 2,

where c ∈ (0,∞) is a parameter. This choice of intensity corresponds to a critical scaling.
We give a detailed analysis of the rate constant in the tail of St as a function of c, including
its limiting behaviour as c → ∞ or c ↓ 0. For d ≥ 3, we find that there are two regimes,
depending on the choice of�. In one of the regimes there is a collapse transition at a critical
value c∗ ∈ (0,∞), where the optimal survival strategy changes from being diffusive to being
subdiffusive. At c∗, the slope of the rate constant is discontinuous. For d = 2, there is again
a collapse transition, but the rate constant is independent of � and its slope at c = c∗ is
continuous.

1. Introduction and main results

1.1. Motivation

The model studied in this paper has two random ingredients:

1. Let β = {β(s) : s ≥ 0} be the standard Brownian motion in R
d – the Markov

process with generator�/2 – starting at 0. We write P,E to denote probability
and expectation with respect to β.
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2. For t ≥ 0, let

Kt =
⋃
x∈ωt

[x + Ax], (1.1.1)

where ωt is a Poisson point process with intensity

νt =
{
ct−2/d , d ≥ 3,

ct−1 log2 t, d = 2,
(1.1.2)

c ∈ (0,∞) is a parameter and, given ωt ,

Ax, x ∈ ωt , (1.1.3)

are i.i.d. random sets drawn from C = {A ⊂ R
d : A closed} according to a prob-

ability distribution�. We write Pt ,Et to denote probability and expectation with
respect to Kt .

Formally, C is endowed with the topology generated by the Hausdorff metric
ρH : C × C → [0,∞] given by

ρH (A1, A2) = inf{ε > 0 : A1 ⊂ Aε2, A2 ⊂ Aε1}, (1.1.4)

where Aε = ∪x∈ABε(x) is the ε-environment of A (with Bε(x) the closed ball of
radius ε centred at x). The probability distribution� lives on the Borel sigma-alge-
bra generated by ρH .

Throughout the paper, we assume that� satisfies the following two conditions:

(C1) �(Q) = 1 with

Q =
{
A ⊂ R

d : A compact, A = cl(int(A)), A 	= ∅
}
, (1.1.5)

where cl(A) denotes the closure of A and int(A) the interior of A.
(C2) limM→∞ δM = 0 with

δM =
∫
Q

|(A+ BM) ∩ BcM |
|BM | �(dA), (1.1.6)

whereBM = [−M/2,M/2]d ,BcM = R
d \BM andA+BM = ∪x∈BM [x+A].

Condition (C1) is a regularity property for A, while condition (C2) allows us to
control large A.

Let

τKt = inf{s ≥ 0 : β(s) ∈ Kt } (1.1.7)

and

St = (Et × P)(τKt > t). (1.1.8)
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In other words, we view Kt as a collection of randomly located and randomly
shaped traps, τKt as the trapping time for the Brownian motion, and St as the prob-
ability of survival up to time t . The goal of the present paper is to identify the
asymptotic behaviour of St for large t . As will become clear later on, the choice
of intensity in (1.1.2) corresponds to a critical scaling. Our main results show that
the tail of St has an interesting dependence on the parameter c, with two regimes
for d ≥ 3, depending on the choice of �, and one regime for d = 2. The proof
of these results relies on a large deviation technique developed in van den Berg,
Bolthausen and den Hollander [2]. For each of the regimes we provide a detailed
analysis of the rate constant controlling the tail behaviour of St , including its scal-
ing as c → ∞ or c ↓ 0. We show that for d ≥ 3, in one of the regimes, the rate
constant exhibits a collapse transition in the optimal survival strategy at a critical
value c∗ ∈ (0,∞). We analyse the behaviour of the rate constant near c∗ and show
that a slope discontinuity occurs. For d = 2 there is a collapse transition too, but
no slope discontinuity at c = c∗.

1.2. Representation in terms of Wiener sausages

The starting point of our analysis is a representation formula expressing St as an
exponential functional of a family of Wiener sausages with varying shape. This
formula is the analogue of the well-known formula for the fixed shape case.

The Wiener sausage with shape A ∈ Q is the random process defined by

WA(t) =
⋃

0≤s≤t
[β(s)+ A], t ≥ 0. (1.2.1)

Proposition 1.2.1. For any d ≥ 1, � ∈ M+
1 (Q) and t ≥ 0,

St = E

(
exp

[
−νt

∫
Q
�(dA) |WA(t)|

])
. (1.2.2)

Proof. The trap field is a marked Poisson point process: the points x ∈ ωt carry ran-
dom labelsAx . Consider those points whose label is in dA, an infinitesimally small
subset of Q. These points form a Poisson point process with intensity νt�(dA).
The probability, under the law Pt , that up to time t these traps avoid a given Brown-
ian path β equals exp[−νt�(dA) |WA(t)|]. The probability that up to time t all
the traps avoid the given β therefore equals exp[−νt

∫
Q�(dA) |WA(t)|]. Average

over β to get the claim. �
Since

∫
Q�(dA)|A| ≤ |BM |(1 + δM) for all M > 0, condition (C2) implies

that
∫
Q�(dA)|A|< ∞. The integral in the right-hand side of (1.2.2) is finiteP -a.s.

for all t ≥ 0. Indeed, letM(t) = inf{M > 0 : β(s) ∈ BM for all 0 ≤ s ≤ t}. Then

|WA(t)| ≤ |BM(t)| + |(A+ BM(t)) ∩ BcM(t)|, (1.2.3)

and hence ∫
Q
�(dA) |WA(t)| ≤ |BM(t)|(1 + δM(t)), (1.2.4)

with M(t) < ∞ P -a.s.
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1.3. Survival theorems

This section contains our main results for the tail behaviour of St as t → ∞.
For d ≥ 3, let κ(A) be the Newtonian capacity of A associated with the Green

function of (−�/2)−1.

Theorem 1.3.1. Let d ≥ 3 and let � satisfy (C1) and (C2). For every c > 0,

lim
t→∞

1

t (d−2)/d
log St = −J�d (c) (1.3.1)

with

J�d (c) = inf
{ 1

2‖∇φ‖2
2 + cF�d (φ

2) : φ ∈ H 1(Rd), ‖φ‖2
2 = 1

}
, (1.3.2)

where

F�d (φ
2) =

∫
Rd
dx

∫
Q
�(dA)

(
1 − e−κ(A)φ

2(x)
)
. (1.3.3)

Theorem 1.3.1 identifies the tail of St for d ≥ 3 in terms of a variational problem
involving�. Since the dependence on� enters only via the capacity of the random
set A, we may rewrite (1.3.3) as

F�d (φ
2) =

∫
Rd
dx

∫ ∞

0
�(dκ)

(
1 − e−κφ

2(x)
)

(1.3.4)

with � = � ◦ κ−1 the probability distribution on (0,∞) induced from � by κ .
Therefore actually F�d = F�d and J�d = J�d . Nevertheless, we prefer to keep� in
the notation. Note that κ(A) ∈ (0,∞) for all A ∈ Q.

A similar result holds for d = 2, but without a role for �.

Theorem 1.3.2. Let d = 2 and let � satisfy (C1) and (C2). For every c > 0,

lim
t→∞

1

log t
log St = −J2(c) (1.3.5)

with

J2(c) = inf
{ 1

2‖∇φ‖2
2 + cF2(φ

2) : φ ∈ H 1(R2), ‖φ‖2
2 = 1

}
, (1.3.6)

where

F2(φ
2) =

∫
R2
dx
(

1 − e−2πφ2(x)
)
. (1.3.7)

The scale of the large deviation in Theorem 1.3.2 is different from that in Theorem
1.3.1. This is due to the different choice of intensity in (1.1.2). However, the vari-
ational formula has the same structure. The difference is that κ(A) is replaced by
2π , so that the dependence on � drops out. This fact turns out to be related to the
recurrence of planar Brownian motion.
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1.4. Analysis of the variational problems

In this section we give a detailed analysis of c �→ J�d (c) in (1.3.2) and c �→ J2(c)

in (1.3.6). We first note the following.

Proposition 1.4.1. Let d ≥ 3 and let � satisfy (C1) and (C2). Then

〈κ〉 =
∫
Q
�(dA)κ(A) < ∞. (1.4.1)

The variational problem in (1.3.2) certainly makes sense also when 〈κ〉 = ∞, but
apparently this regime is not caught by our conditions (C1) and (C2).

Let 〈·〉 denote expectation over �. For d ≥ 3 there are two regimes:

(I) There exists c∗ ∈ (0,∞) such that

J�d (c) = c〈κ〉, for 0 ≤ c ≤ c∗,
< c〈κ〉, for c > c∗. (1.4.2)

(II) (1.4.2) with c∗ = 0.

We consider two subclasses for �:

SI = {� : there exist 0 < κ0 < ∞ and 0 < K < ∞ such that

�(dκ) ≤ Kκ−1− d+2
d dκ for all κ > κ0

}
,

SII = {� : there exist 0 < κ1 < ∞ and L : (κ1,∞) → (0,∞)

non-decreasing with limκ→∞ L(κ) = ∞ such that

�(dκ) ≥ L(κ)κ−1− d+2
d dκ for all κ > κ1

}
.

(1.4.3)

Note that the separation between the classes SI and SII is thin, and is very close
to where 〈κ(d+2)/d〉 diverges.

Theorem 1.4.2. Let d ≥ 3.
(i) For every �, c �→ J�d (c) is continuous, strictly increasing and concave on
(0,∞), with J�d (0) = 0.
(ii) If� ∈ SI , then J�d falls in regime (I). Moreover, if 〈κη〉 < ∞ for some η > d+2

d
,

then

[J�d ]′(c∗+) < 〈κ〉. (1.4.4)

(iii) If � ∈ SII , then J�d falls in regime (II), and

[J�d ]′(0+) = 〈κ〉. (1.4.5)

(iv) The variational problem in (1.3.2) has a minimiser with full support for

c > c∗, when � ∈ SI ,
c > 0, when � ∈ SII ,
c = c∗, when 〈κη〉 < ∞ for some η > d+2

d
.

(1.4.6)
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Theorem 1.4.3. Let d ≥ 3.
(i) For every �,

J�d (c) ≤ c2/(d+2) d + 2

2

(
λd

d

)d/(d+2)

, c ∈ (0,∞), (1.4.7)

and

lim
c→∞ c

−2/(d+2)J�d (c) = d + 2

2

(
λd

d

)d/(d+2)

, (1.4.8)

where λd is the principal Dirichlet eigenvalue of −� on the ball of unit volume.
(ii) For� ∈ SII , let�(dκ) = θ(κ)dκ with θ(κ) = Kκ−1−γ [1 +o(1)] as κ → ∞
and 1 < γ < d+2

d
, 0 < K < ∞. Then

lim
c↓0

{2K�(−γ )c}−2/(2−d(γ−1)) [c〈κ〉 − J�d (c)
] = 1

2Md(γ ), (1.4.9)

where

Md(γ ) = − inf

{
‖∇ψ‖2

2 −
∫

|ψ |2γ : ψ ∈ H 1(Rd), ‖ψ‖2
2 = 1

}
∈ (0,∞).

(1.4.10)

The analogous results for d = 2 read as follows.

Theorem 1.4.4. Let d = 2.
(i) c �→ J2(c) is continuous, strictly increasing and concave on (0,∞), with
J2(0) = 0.
(ii) There exists a number c∗ ∈ (0,∞), given by

c∗ = 1

4π2 inf

{
‖∇φ‖2

2

‖φ‖4
4

: φ ∈ H 1(R2), ‖φ‖2
2 = 1

}
, (1.4.11)

such that

J2(c) = 2πc, for 0 ≤ c ≤ c∗,
< 2πc, for c > c∗, (1.4.12)

and

[J2]′(c∗+) = 2π. (1.4.13)

(iii) Equations (1.4.7–1.4.8) hold with d = 2.
(iv) The variational problem in (1.3.6) has a minimiser if and only if c > c∗. This
minimiser has full support.

The qualitative behaviour of c �→ J�d (c) found in Theorems 1.4.2, 1.4.3 and
1.4.4 is summarised as follows:
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0 c∗

d ≥ 3 (I)

�

0

d ≥ 3 (II)

0 c∗

d = 2

�

Fig. 1. Qualitative picture of c �→ J�d (c) for d ≥ 3, regimes (I) and (II), and d = 2,
respectively.

1.5. Discussion

The idea behind Theorem 1.3.1 is that for d ≥ 3 the optimal strategy for the Brown-
ian motion to survive the traps is to behave like a Brownian motion in a drift field
xt1/d �→ (∇φ/φ)(x) for some smooth φ : R

d �→ [0,∞). The cost, under the law
P , of adopting this drift during a time t is

exp

[
−t × t−2/d 1

2

∫
Rd
dx |∇φ(x)|2

]
. (1.5.1)

The effect of the drift is to push the Brownian motion towards the origin, so that it
lives on space scale t1/d , which is well below the diffusive scale. Conditioned on
adopting the drift, the Brownian motion spends time φ2(x) per unit volume in the
neighbourhood of xt1/d . It turns out that, for eachA, the Wiener sausage with shape
A associated with the Brownian motion covers a fraction 1 − exp[−κ(A)φ2(x)] of
that unit volume. The cost, under the law Pt , of the traps avoiding the Brownian
motion is

exp

[
−ct−2/d × t

∫
Rd
dx

∫
Q
�(dA)

(
1 − e−κ(A)φ

2(x)
)]

(1.5.2)

(recall the proof of Proposition 1.2.1). Combining (1.5.1) and (1.5.2), we see that
the best choice of the drift field is therefore given by a minimiser of the variational
problem in (1.3.2), or by a minimising sequence.

Theorem 1.3.2 shows that for d = 2 the survival probability decays polynomi-
ally rather than exponentially fast. The optimal survival strategy is of the same type
as for d ≥ 3, but now the Brownian motion lives on space scale

√
t/ log t , which

is only slightly below the diffusive scale. The limiting behaviour does not depend
on �. Apparently, the Brownian motion manages to stay far away from the traps.

Theorems 1.4.2 and 1.4.3 show that for d ≥ 3 there are two regimes: 1

1 Even though we interpret our results in terms of an optimal survival strategy, we have
no pathwise statements to offer. More work would be needed to prove that, conditional
on survival, the Brownian motion and the trap field indeed behave as suggested. Thus, all
interpretations in this section remain to be proved.
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(I) There is a critical threshold (c∗ > 0). For c < c∗, the Brownian motion
prefers to ignore the survival strategies parametrised by φ and to move on
space scale

√
t . In doing so, it behaves like a typical Brownian motion and

sees the average trap capacity, i.e., also the trap field is typical. For c > c∗, on
the other hand, the Brownian motion prefers to follow the survival strategy
parametrised by a minimiser φ̄ and to move on space scale t1/d . In doing
so, it does a large deviation and sees less than the average trap capacity.
Also the trap field does a large deviation, because it keeps traps out of the
“spongy structure” that is formed by the Brownian motion. Since φ̄ has full
support, the Brownian motion “sneaks around the traps and moves about”
rather than “finds a large trap free hole and stays there”. At c = c∗ there is
a collapse transition from diffusive behavior to subdiffusive behavior. This
collapse transition is discontinuous because a minimiser persists at the critical
threshold, which leads to a slope discontinuity of J�d at c = c∗.

(II) There is no critical threshold (c∗ = 0). There is a minimiser φ̄ for all c > 0,
meaning that the optimal survival strategy is always subdiffusive. As c ↓ 0,
this minimiser flattens out, the Brownian motion gradually covers more space
and gradually sees the average trap capacity. The thinner the tail of � (i.e.,
the closer � to the boundary with regime (I)), the faster J�d approaches the
line with slope 〈κ〉.

Theorem 1.4.4 shows that for d = 2 the behaviour is similar to that for d ≥ 3
in regime (I). There is again a collapse transition, associated with a crossover in
the optimal strategy. This collapse transition is continuous because no minimiser
persists as c ↓ c∗.

The high intensity limit c → ∞ corresponds to the minimiser contracting to
a high and narrow peak. This corresponds to the optimal survival strategy looking
more and more like “find a large trap free hole and stay there”. This is the optimal
survival strategy for all intensities that are larger than the one in (1.1.2), which is
why the choice in (1.1.2) is critical.

Finally, the results in the present paper belong to a regime of critical scaling. A
related reference is Merkl and Wüthrich [7], [8], [9]. Here, the principal eigenvalue
of the Schrödinger operator −� + Vt on a box of size t with Dirichlet boundary
conditions is considered, with Vt a potential consisting of a Poisson field of obsta-
cles with a fixed shape but with a height that shrinks to zero in a critical manner
with t . A critical threshold similar to the one in our regime (I) is found. Another
related reference is van den Berg, Bolthausen and den Hollander [3], where the
large deviation behaviour of the volume of the intersection of two Wiener sau-
sages is identified. A critical threshold appears in the time horizon up to which the
intersection volume is observed.

1.6. Examples

In this section we give examples of discrete � for which regimes (I) and (II) hold.
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Let d ≥ 3, choose α, β, γ with α > 1 and 0 < β < γ ∧ d
2 , and, for n ∈ N,

define

An = Bnβ + Cn with Cn = {knγ : k ∈ Z
d , ‖k‖∞ ≤ n}. (1.6.1)

Then An consists of (2n+ 1)d cubes of volume nβd that are disjoint for all n ≥ 2
because γ > β. Let � be given by

�(An) = 1

ζ(α)
n−α, n ∈ N, (1.6.2)

where ζ is the Riemann function. For this�, condition (C1) trivially holds, while it
is easily checked that condition (C2) holds if and only if α > d+βd+1. Moreover,
for γ sufficiently large, κ(An) is asymptotically subadditive, i.e.,

κ(An) = κd (2n+ 1)d nβ(d−2) [1 + o(1)] as n → ∞, (1.6.3)

where κd is the capacity of the unit cube in R
d . Combining (1.6.2–1.6.3), we see

that

〈κ(d+2)/d〉 < ∞ : α ∈ (β d2−4
d

+ d + 3,∞),

〈κ(d+2)/d〉 = ∞ : α ∈ (d + βd + 1, β d
2−4
d

+ d + 3].
(1.6.4)

The latter interval is non-empty since 0 < β < d
2 .

1.7. Outline

Theorems 1.3.1 and 1.3.2 are proved in Section 2. The proof closely follows Sec-
tions 2, 3 and 4 in van den Berg, Bolthausen and den Hollander [2] (henceforth
referred to as vdBBdH). We sketch the main line of the argument, so that the pres-
ent paper can be read almost independently. Proposition 1.4.1 and Theorems 1.4.2,
1.4.3 and 1.4.4 are proved in Section 3 and rely on variational calculus and Sobolev
inequalities.

2. Proof of Theorems 1.3.1 and 1.3.2

2.1. Scaling, compactifying and coarse-graining

Recalling (1.1.2), we have from Proposition 1.2.1 that

St =


E
(
exp
[−t (d−2)/d × cV �(t)

])
, d ≥ 3,

E
(
exp
[− log t × cV �(t)

])
, d = 2,

(2.1.1)

where we define

V�(t) =



1
t

∫
Q�(dA) |WA(t)|, d ≥ 3,

log t
t

∫
Q�(dA) |WA(t)|, d = 2.

(2.1.2)
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It follows from Spitzer [10] that, for every A ∈ Q,

E|WA(t)| = [1 + o(1)] ×
{
κ(A)t, d ≥ 3,

2πt/ log t, d = 2,
t → ∞. (2.1.3)

Hence

lim
t→∞EV

�(t) =
{

〈κ〉, d ≥ 3,

2π, d = 2.
(2.1.4)

(Condition (C2) allows us to interchange limit and integral. For d � 3, by subad-
ditivity, we have E|WA(t)|/t ≤ E|WA(1)| for t ≥ 1, while, by (1.2.4) and (C2),
this bound is integrable. Recall also Proposition 1.4.1.) Thus, in (2.1.1), the large
deviations of V�(t) driving Theorems 1.3.1 and 1.3.2 take place on the scale of its
mean.

2.1.1. Scaling

By Brownian scaling,

1

t
|WA(t)| .= |WAt−1/d

(t (d−2)/d)|,d ≥ 3,

log t

t
|WA(t)| .= |WA

√
log t/t (log t)|, d = 2,

(2.1.5)

where
.= denotes equality in distribution. Hence, abbreviating

τ =
{
t (d−2)/d , d ≥ 3,

log t, d = 2,
Tτ =

{
τ 2/(d−2), d ≥ 3,

eτ /τ, d = 2,
(2.1.6)

we find from (2.1.1) and (2.1.2) that

St = E
(
exp
[−cτV �τ (τ )]) (2.1.7)

with

V�τ (τ) =
∫
Q
�(dA) |WA/

√
Tτ (τ )|. (2.1.8)

The right-hand side involves Wiener sausages at time τ with a shape that shrinks
with 1/

√
Tτ . We are aiming for the large deviations of V�τ (τ).

2.1.2. Compactifying

We will obtain upper and lower bounds on St by wrapping the scaled Brownian
motion around a finite torus, respectively, by killing it at the boundary of this torus.
This compactification will be exploited in Sections 2.2 and 2.3, where we prove a
large deviation principle (LDP) for (V �τ (τ ))τ>0 restricted to the torus and use it
to compute asymptotics of exponential moments. This LDP will lead to a lower,
respectively, upper bound on the variational characterisation of the rate functions
J�d and J2 in Theorems 1.3.1 and 1.3.2. By letting the torus tend to R

d after-
wards, we will obtain the variational characterisation as claimed. We will do the
compactification for � with finite support and remove this restriction afterwards.
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2.1.3. Coarse-graining

The proof of the LDP for the Brownian motion on the torus consists of three steps,
taken from vdBBdH:

• Step 1: For ε > 0, we chop the Brownian motion into excursions of length ε,
and define

Xτ,ε = {βN(iε)}1≤i≤τ/ε, (2.1.9)

which is the collection of the endpoints of the excursions. The lower index
N refers to the restriction to the torus of size N , and for notational conve-
nience we assume that τ/ε is integer. Let V�τ,N(τ ) be the analogue of (2.1.8)

for the Brownian motion on the torus of size N . We approximate V�τ,N(τ ) by

Eτ,ε(V
�
τ,N (τ )), where Eτ,ε denotes the conditional expectation given Xτ,ε . We

prove that the difference between V�τ,N(τ ) and Eτ,ε(V
�
τ,N (τ )) is negligible in

the limit as τ → ∞ followed by ε ↓ 0. This is done by an application of a
concentration inequality of Talagrand.

• Step 2: We represent Eτ,ε(V
�
τ,N (τ )) as a functional of the bivariate empirical

measure

Lτ,ε = ε

τ

τ/ε∑
i=1

δ(
βN ((i−1)ε),βN (iε)

). (2.1.10)

According to Donsker and Varadhan, (Lτ,ε)τ>0 satisfies an LDP. We need some
further approximations to get the dependence of Eτ,ε(V

�
τ,N (τ )) on Lτ,ε in a suit-

able form. Based on just this LDP we get an LDP for (Eτ,ε(V �τ,N (τ )))τ>0 via a
contraction principle.

• Step 3: We take the limit ε ↓ 0. By Step 2, we already know that V�τ,N(τ ) is

well approximated by Eτ,ε(V
�
τ,N (τ )). It therefore suffices to have an appropriate

approximation for the variational formula in the LDP for (Eτ,ε(V �τ,N (τ )))τ>0.

These three steps were used in vdBBdH to derive an LDP for the quantity in
(2.1.8) when � = δBa(0), the point measure on the ball of radius a ∈ (0,∞)

centred at 0. In the present context, the integral over � represents an additional
ingredient, and we have to see how this can be incorporated and carried along. The
argument in vdBBdH is rather delicate, involving various estimates on Brownian
motion and hitting times of shrinking balls. We need to check that these estimates
can be handled when the balls are replaced by sets with a random shape. Therefore
we provide a sketch of the main ingredients.

2.1.4. Outline

In Sections 2.2 and 2.3 we give the proof for d ≥ 3 when� has finite support, i.e.,

� =
n∑

m=1

amδAm,

n∑
m=1

am = 1, am ≥ 0, Am ∈ Q, n ∈ N. (2.1.11)
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In Section 2.4 we explain why the proof for arbitrary� follows from that for finite
� via a sandwiching argument in combination with a truncation argument. Here
conditions (C1) and (C2) in Section 1.1 will play a crucial role. In Section 2.5 we
briefly indicate how to amend the proof for d = 2, taking (2.1.6), (2.1.7) and (2.1.8)
into account.

2.2. Upper bound in d ≥ 3

Write�N to denote the torus of sizeN , i.e., [−N/2, N/2]d with periodic boundary
conditions. Let βN(s), s ≥ 0, be the Brownian motion wrapped around �N . Let

W
A/

√
Tτ

N (s), s ≥ 0, (2.2.1)

denote its Wiener sausage with shape A scaled down by
√
Tτ , and let

V�τ,N(τ ) =
∫
Q
�(dA) |WA/

√
Tτ

N (τ )|. (2.2.2)

The wrapping lowers the volume of the Wiener sausages, and so we have, recalling
(2.1.7) and (2.1.8),

St ≤ E
(
exp
[−cτV �τ,N (τ )]) . (2.2.3)

The desired upper bound on St will therefore come out of the following LDP:

Theorem 2.2.1. (V �τ,N (τ ))τ>0 satisfies the LDP on (0,∞) with rate τ and with

rate function I�d,N given by

I�d,N (b) = inf
{ 1

2‖∇φ‖2
2 : φ ∈ H 1(�N), ‖φ‖2

2 = 1, F�d (φ
2) = b

}
(2.2.4)

with F�d given by (1.3.3).

Proof. We assume that� has the form (2.1.11) and follow the three steps indicated
in Section 2.1.3.
Step 1:

Proposition 2.2.2. For any δ > 0,

lim
ε↓0

lim sup
τ→∞

1

τ
logP

(|V�τ,N(τ )− Eτ,ε(V
�
τ,N (τ ))| ≥ δ

) = −∞. (2.2.5)

Proof. For � of the form (2.1.11), we decompose (2.2.2) as

V�τ,N(τ ) =
n∑

m=1

am|WAm/
√
Tτ

N (τ )|. (2.2.6)

The proof of Proposition 4 in vdBBdH (p. 366), which consists of a series of
estimates, can be copied to show that, for any δ > 0 and 1 ≤ m ≤ n,

lim
ε↓0

lim sup
τ→∞

1

τ
logP

(∣∣∣ |WAm/
√
Tτ

N (τ )| − Eτ,ε

(
|WAm/

√
Tτ

N (τ )|
) ∣∣∣ ≥ δ

)
= −∞,

(2.2.7)
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which yields the claim. The only property we need to check for (2.2.7) is the ana-
logue of Equation (2.23) in vdBBdH (p. 367), which plays a pivotal role in the
proof and which reads here

sup
T≥1

E

(
exp

[
1

T
|WAm(T )|

])
< ∞. (2.2.8)

Now, the left-hand side is bounded above by the same expression withAm replaced
by BR(0), where R = max1≤m≤n R(Am) with R(Am) the radius of the smallest
ball containing Am centred at 0. But for a ball with an arbitrary finite radius the
bound in (2.2.8) is known to be true (see van den Berg and Bolthausen [1]). �
Step 2: Let I (2)ε : M+

1 (�N ×�N) �→ [0,∞] be the entropy function

I (2)ε (µ) =
{
h(µ|µ1 ⊗ πε), if µ1 = µ2,

∞, otherwise,
(2.2.9)

where h( · | · ) denotes relative entropy between measures, µ1 and µ2 are the two
marginals of µ, and πε(x, dy) = pε(y− x)dy is the Brownian transition kernel on
�N associated with an ε-excursion. Furthermore, let ��1/ε : M+

1 (�N × �N) �→
[0,∞) be the function

��1/ε(µ) =
∫
Q
�(dA)

∫
�N

dx

×
(

1 − exp

[
−κ(A)

ε

∫
�N×�N

ϕε(y − x, z− x)µ(dy, dz)

])
(2.2.10)

with

ϕε(y, z) =
∫ ε

0 ds ps(−y)pε−s(z)
pε(z− y)

. (2.2.11)

Proposition 2.2.3. (Eτ,ε(V �τ,N (τ )))τ>0 satisfies the LDP on (0,∞) with rate τ
and with rate function

b �→ inf

{
1

ε
I (2)ε (µ) : µ ∈ M+

1 (�N ×�N), �
�
1/ε(µ) = b

}
. (2.2.12)

Proof. The claim is the analogue of Proposition 5 in vdBBdH (p. 371). We indicate
how the proof is adapted.

First, we fix K > 0 and cut out holes of radius K/
√
Tτ around the endpoints

of the ε-excursions. To that end, we define

W
A,K
i,N = WA

i,N \
[
BK/

√
Tτ
(βN((i − 1)ε)) ∪ BK/√Tτ (βN(iε))

]
(2.2.13)

with

WA
i,N =

⋃
(i−1)ε≤s≤iε

[
β(s)+ A/

√
Tτ

]
, (2.2.14)
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and we put

V
�,K
τ,N (τ ) =

∫
�(dA)

∣∣∣∣∣∣
τ/ε⋃
i=1

W
A,K
i,N

∣∣∣∣∣∣ , (2.2.15)

which is V�τ,N(τ ) in (2.2.2) but with the holes cut out. Note that

0 ≤ V�τ,N(τ )− V
�,K
τ,N (τ ) ≤ (τ/ε + 1) ωd(K/

√
Tτ )

d ≤ 2Kdωd/εTτ (2.2.16)

(recall (2.1.6); ωd is the volume of the ball with unit radius). The right-hand side
tends to zero as τ → ∞ for any K < ∞, so the cutting is harmless when we let
K → ∞ afterwards.

Next, we express Eτ,ε(V
�,K
τ,N (τ )) in terms of the empirical measureLτ,ε defined

in (2.1.10):

Eτ,ε

(
V
�,K
τ,N (τ )

)

=
∫
Q
�(dA)

∫
�N

dx


1 − Pτ,ε


x /∈ τ/ε⋃

i=1

W
A,K
i,N






=
∫
Q
�(dA)

∫
�N

dx


1 −

τ/ε∏
i=1

{
1 − Pτ,ε

(
x ∈ WA,K

i,N

)}
=
∫
Q
�(dA)

∫
�N

dx
(

1 − exp
[τ
ε

∫
�N×�N

Lτ,ε(dy, dz)

× log
(

1 − qAτ,ε(y − x, z− x) 1{y−x,z−x /∈BK/√Tτ (0)}
) ])

. (2.2.17)

Here,

qAτ,ε(y, z) = Pε,y,z

(
σA/

√
Tτ

≤ ε
)

(2.2.18)

with σA/
√
Tτ

the first time the Brownian motion enters A/
√
Tτ , and

Pε,y,z(·) = P
(
βN([0, ε]) ∈ · | βN(0) = y, βN(ε) = z

)
(2.2.19)

the probability law of the Brownian bridge of length ε from y to z.
The key property of the quantity in (2.2.18) needed in the proof is the following

analogue of Lemma 2 in vdBBdH (p. 372):

(a) lim
K→∞

lim sup
τ→∞

sup
y,z/∈BK/√Tτ (0)

qAτ,ε(y, z) = 0 for all A ∈ Q, ε > 0,

(b) lim
τ→∞ sup

y,z/∈Bρ(0)
|τqAτ,ε(y, z)− κ(A)ϕε(y, z)| = 0

for all 0 < ρ < N/4 and A ∈ Q, ε > 0.

(2.2.20)
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Property (2.2.20)(a) is immediate, since qAτ,ε(y, z) is non-decreasing in A and for
A = BR(0) the proof is in vdBBdH. For property (2.2.20)(b) the key ingredient is
the analogue of Equation (2.64) in vdBBdH (p. 374), which reads

lim
b↓0

1

κ(bA)
Py (σbA ≤ t) =

∫ t

0
ps(−y)ds for all y ∈ R

d , t ≥ 0, A ∈ Q
(2.2.21)

with Py(·) = Py(β([0,∞)) ∈ · | β(0) = y) (see Le Gall [5]). It is through this
relation that κ(A) appears on the stage.

Next, (2.2.20) allows us to linearise the logarithm in the last line of (2.2.17)
and to replace it by −κ(A)ϕε(y − x, z − x)/τ , which brings us to the expression
in (2.2.10) with µ = Lτε . To do this properly we need some continuity properties,
which are the analogues of Lemmas 3 and 4 in vdBBdH (pp. 375–376) and which
rely on (2.2.20)(b). Since � has finite support, this part of the extension is again
straightforward.

The combination of (2.2.16), (2.2.17) and (2.2.20) leads us to the conclusion
that

lim
τ→∞

∥∥∥Eτ,ε(V �τ,N (τ ))−��1/ε(Lτ,ε)

∥∥∥∞
= 0 for all ε > 0. (2.2.22)

Finally, we note the following:

(1) µ �→ ��1/ε(µ) is continuous in the total variation norm.

(2) (Lτ,ε)τ>0 satisfies the LDP on M+
1 (�N × �N) with rate τ and with rate

function 1
ε
I
(2)
ε .

Therefore the claim in Proposition 2.2.3 now follows by using the contraction prin-
ciple in combination with (2.2.22). �

Step 3: This step consists of two approximation lemmas.

• Let ��1/ε : M+
1 (�N) �→ [0,∞) be the function

��
1/ε(ν) =

∫
Q
�(dA)

∫
�N

dx

(
1 − exp

[
−κ(A)

ε

∫ ε

0
ds

∫
�N

ps(x − y)ν(dy)

])
.

(2.2.23)

Lemma 2.2.4. For any K > 0,

lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

∣∣∣��1/ε(µ)−��1/ε(µ1)

∣∣∣ = 0. (2.2.24)

Proof. For � of the form (2.1.11), we decompose (2.2.10) and (2.2.23) as

��1/ε(µ) =
n∑

m=1

am�
δAm
1/ε (µ), ��1/ε(ν) =

n∑
m=1

am�
δAm
1/ε (ν). (2.2.25)
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The proof of Lemma 6 in vdBBdH (p. 379) can be copied to show that, for any
K > 0 and 1 ≤ m ≤ n,

lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

∣∣∣�δAm1/ε (µ)−�
δAm
1/ε (µ1)

∣∣∣ = 0, (2.2.26)

which yields the claim. The only property needed for the proof of (2.2.26) is
κ(Am) < ∞. �

• Let I : M+
1 (�N) �→ [0,∞] be the standard large deviation rate function for the

empirical distribution of the Brownian motion, given by

I (ν) = 1
2

∫
�N

|∇φ|2(x)dx, if dν
dx

= φ2 with φ ∈ H 1(�N),

= ∞, otherwise.
(2.2.27)

Let Iε : M+
1 (�N) �→ [0,∞] be the projection of I (2)ε onto M+

1 (�N), given by

Iε(ν) = inf
{
I (2)ε (µ) : µ1 = ν

}
. (2.2.28)

Then

lim
ε↓0

1

ε
Iε(ν) = I (ν) for all ν ∈ M+

1 (�N) (2.2.29)

(see Lemma 5 in vdBBdH (p. 378)).

Lemma 2.2.5. For any K > 0,

lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

∣∣∣��1/ε(ν)− F�d
(
dν
dx

)∣∣∣ = 0 (2.2.30)

withF�d given by (1.3.3). (Note that if Iε(ν) < ∞, then dν � dx because ν⊗πε �
dx ⊗ dy by (2.2.9) and (2.2.28)).

Proof. For � of the form (2.1.11), we decompose (2.2.23) and (1.3.3) as

��1/ε(ν) =
n∑

m=1

am�
δAm
1/ε (ν), F�d (φ

2) =
n∑

m=1

amF
δAm
d (φ2). (2.2.31)

The proof of Lemma 7 in vdBBdH (p. 380) can be copied to show that, for any
K > 0 and 1 ≤ m ≤ n,

lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

∣∣∣�δAm1/ε (ν)− F
δAm
d

(
dν
dx

)∣∣∣ = 0, (2.2.32)

which yields the claim. The only property needed for the proof of (2.2.32) is
κ(Am) < ∞. �
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Having completed Steps 1–3, the proof of Theorem 2.2.1 now follows easily.
Indeed, for any f : (0,∞) �→ R bounded and continuous we have

lim
τ→∞

1

τ
logE

(
exp
[
τf (V �τ,N (τ ))

])
= lim

ε↓0
lim
τ→∞

1

τ
logE

(
exp
[
τf (Eτ,ε(V

�
τ,N (τ )))

])
= lim

ε↓0
sup
µ

{
f (��1/ε(µ))− 1

ε
I (2)ε (µ)

}

= lim
K→∞

lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

{
f (��1/ε(µ))− 1

ε
I (2)ε (µ)

}

= lim
K→∞

lim
ε↓0

sup
µ : 1

ε
I
(2)
ε (µ)≤K

{
f (��1/ε(µ1))− 1

ε
I (2)ε (µ)

}
(2.2.33)

= lim
K→∞

lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

{
f (��1/ε(ν))− 1

ε
Iε(ν)

}

= lim
K→∞

lim
ε↓0

sup
ν : 1

ε
Iε(ν)≤K

{
f

(
F�d

(
dν

dx

))
− 1

ε
Iε(ν)

}

= sup
ν

{
f

(
F�d

(
dν

dx

))
− I (ν)

}

= sup
φ∈H 1(�N ) : ‖φ‖2

2=1

{
f (F�d (φ

2))− 1

2
‖∇φ‖2

2

}
.

Here, the first equality uses Proposition 2.2.2, the second equality Proposition
2.2.3, the fourth equality Lemma 2.2.4, the fifth equality (2.2.29), the sixth equality
Lemma 2.2.5, while the last equality comes from (2.2.27). The claim in Theorem
2.2.1 follows by applying to (2.2.33) the inverse of Varadhan’s lemma due to Bryc
[4]. �

It follows from (2.2.3) and Theorem 2.2.1 that

lim sup
τ→∞

1

τ
log St ≤ −J�d,N(c) (2.2.34)

with

J�d,N(c) = inf
{
cb + I�d,N (b) : b ∈ (0,∞)

}
= inf

{ 1
2‖∇φ‖2

2 + cF�d (φ
2) : φ ∈ H 1(�N), ‖φ‖2

2 = 1
}
.

(2.2.35)

This is the same as (1.3.2), but with R
d replaced by �N . Thus, to complete the

proof of the upper bound for � with finite support it suffices to show that

lim
N→∞

J�d,N(c) = J�d (c). (2.2.36)
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The latter is a standard exercise, for which the reader is referred to vdBBdH Section
2.6. There a proof was given for � = δBa(0), which easily extends to � with finite
(or countable) support.

2.3. Lower bound in d ≥ 3

We again assume that � has the form (2.1.11). Let

R = inf{M > 0 : Am ⊂ BM for m = 1, . . . , n}. (2.3.1)

Fix N . Consider the event CN,R(τ) that the Brownian motion does not hit
∂�N−R/√Tτ until time τ . Then, recalling (2.1.7) and (2.1.8), we have

St ≥ E
(
exp
[−cτV �τ (τ )] 1CN,R(τ)

)
. (2.3.2)

On the event CN,R(τ), recalling (2.2.2), we have

V�τ (τ) = V�τ,N(τ ). (2.3.3)

Hence

lim inf
τ→∞

1

τ
log St ≥ −λN + lim

τ→∞
1

τ
logE

(
exp
[−cτV �τ,N (τ )] | CN,R(τ)

)
= −λN − J�d,N,∗(c),

(2.3.4)

where

−λN = lim
τ→∞

1

τ
logP(CN,R(τ)) (2.3.5)

is minus the principal Dirichlet eigenvalue of −�/2 on�N , and J�d,N,∗(c) is given
by (2.2.4), except that φ has the additional restriction supp(φ) ∩ ∂�N = ∅. Here,
note that the dependence onR drops out with the limit τ → ∞, becauseCN,R keeps
the Brownian motion a distance R/

√
Tτ away from ∂�N , while limτ→∞ Tτ = ∞.

Let N → ∞ and use that limN→∞ λN = 0, to see that it suffices to show that

lim
N→∞

J�d,N,∗(c) = J�d (c). (2.3.6)

The latter is again a standard exercise, for which the reader is referred to vdBBdH
Section 2.6.

2.4. Continuum limit of �

In Sections 2.2 and 2.3 we proved Theorem 1.3.1 for�with finite support. It remains
to show that the result can be extended to arbitrary� subject to the conditions (C1)
and (C2) in Section 1.1. For this we need the notion of stochastic ordering by
inclusion, namely, �1 is stochastically smaller than �2, written

�1 � �2, (2.4.1)

if there exists a coupling �1,2 of �1 and �2 such that �1,2(A1 ⊂ A2) = 1.
We begin by noting the following continuity property of the variational problem

in (1.3.2).
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Lemma 2.4.1. Suppose that (�n) and � satisfy (C1) and (C2). If

(i) �n � � for all n,
(ii)

∫
Q�n(dA) κ(A) → ∫

Q�(dA) κ(A) as n → ∞,
(2.4.2)

then J�nd (c) → J�d (c) as n → ∞ for all c ∈ (0,∞).

Proof. Note that

{An,A ∈ Q, ρH (An,A) → 0} �⇒ {κ(An) → κ(A)}. (2.4.3)

Consequently, under condition (C1),

(�n ⇒ �) �⇒ (�n ⇒ �) (2.4.4)

with� = � ◦ κ−1. Hence it suffices to prove continuity of the variational problem
in � = � ◦ κ−1.

Since A �→ κ(A) is non-decreasing in the partial order induced by inclusion,
(2.4.2)(i) implies that �n � � for all n. It therefore follows from (1.3.4) that
F
�n
d ≤ F�d for all n. For a reverse estimate, write

0 ≤ F�d (φ
2)− F

�n
d (φ2)

=
∫

Rd
dx

∫ ∞

0
[�(dκ)−�n(dκ)]

(
1 − e−κφ

2(x)
)

≤
∫

Rd
dx φ2(x)

∫ ∞

0
[�(dκ)−�n(dκ)] κ

=
∫ ∞

0
�(dκ) κ −

∫ ∞

0
�n(dκ) κ.

(2.4.5)

The right-hand side tends to zero as n → ∞ by (2.4.2)(ii), where we recall from
Section 1.6 that condition (C2) implies that both integrals are finite. �

We will now prove the extension of Theorem 1.3.1 via a sandwiching argument
in combination with a truncation argument. Note that �1 � �2 implies

St (�
1) ≥ St (�

2), t ≥ 0. (2.4.6)

Upper bound: Any � satisfying conditions (C1) and (C2) can be approximated
from below, as in (2.4.2), by a sequence (�n) with finite support. By (2.4.6), we
have St (�) ≤ St (�n), t ≥ 0, for each n. Since Theorem 1.3.1 holds for �n, we
therefore have

lim sup
τ→∞

1

τ
log St (�) ≤ lim sup

τ→∞
1

τ
log St (�n) = −J�nd (c). (2.4.7)

Lemma 2.4.1 now gives us the desired upper bound.
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Lower bound: If � has unbounded support, then it cannot be approximated from
above, as in (2.4.2), by a sequence (�n) with finite support. However, we can use
the following truncation argument based on (C2). Fix N and R. Let

QR = {A ∈ Q : A ⊂ BR}. (2.4.8)

On the event CN,R(τ) defined in Section 2.3, we have

|WA/
√
Tτ (τ )| ≤




|WA/
√
Tτ

N (τ )| + ∣∣(A/√Tτ + BN
) ∩ BcN

∣∣ , A ∈ QR,

|BN | + ∣∣(A/√Tτ + BN
) ∩ BcN

∣∣ , A ∈ Q \ QR.

(2.4.9)

Therefore, on the event CN,R(τ), we get the bound

V�τ (τ) =
∫
Q
�(dA) |WA/

√
Tτ (τ )|

≤ V�τ,N,R(τ )+ |BN |pR +
∫
Q
�(dA)

∣∣∣(A/√Tτ + BN

)
∩ BcN

∣∣∣
(2.4.10)

with

V�τ,N,R(τ ) =
∫
QR

�(dA) |WA/
√
Tτ

N (τ )|,

pR =
∫
Q\QR

�(dA).

(2.4.11)

The third term in the right-hand side of (2.4.10) equals |BN |δN√
Tτ

(recall (1.1.6))
and tends to zero as τ → ∞ for fixedN by (C2). The key observation now is that�
can be approximated from above, as in (2.4.2), by a sequence (�n) with countable
support such that�n1QR

has finite support for eachR. By (2.4.10–2.4.11), we have

St (�) ≥ E
(
exp
[−cτV �τ (τ )] 1CN,R(τ)

)
≥ e

−c|BN |[pR+δN√
Tτ

]
E
(

exp
[
−cτV �n1QR

τ,N,R (τ )
]

1CN,R(τ)
)
.

(2.4.12)

We can now apply the argument in Section 2.3 to the expectation in the right-hand
side of (2.4.12), for fixed N and R, and take the limit τ → ∞, to obtain

lim inf
τ→∞

1

τ
log St (�) ≥ −c|BN |pR − λN − J

�n1QR

d,N,∗ (c)

≥ −c|BN |pR − λN − J
�n
d,N,∗(c).

(2.4.13)

Note that J�nd,N,∗(c) depends on �n only via �n = �n ◦ κ−1. Therefore no harm
was done in the last inequality of (2.4.13), which removes the truncation in (2.4.8)
on the finite torus. We can now let R → ∞ and use that limR→∞ pR = 0, to get

lim inf
τ→∞

1

τ
log St (�) ≥ −λN − J

�n
d,N,∗(c). (2.4.14)
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Let N → ∞, use that limN→∞ λN = 0 and recall (2.3.6), to get

lim inf
τ→∞

1

τ
log St (�) ≥ −J�nd (c). (2.4.15)

Finally, use Lemma 2.4.1 to arrive at the desired lower bound.

2.5. Extension to d = 2

The extension to d = 2 is minor and follows vdBBdH Section 4. The ingredients
(2.2.8), (2.2.20) and (2.2.21) need to be properly modified, so as to adapt them
to the different scaling (recall (2.1.6)). We refer to Equation (4.8), Lemma 8 and
Equation (4.14) in vdBBdH (pp. 385–386). The rest of the argument is the same:
the formulas in terms of τ and Tτ are unaltered. We leave the details to the reader.

3. Proof of Proposition 1.4.1 and of Theorems 1.4.2, 1.4.3 and 1.4.4

3.1. Proof of Proposition 1.4.1

Proof. By Lieb and Loss [6], p. 255, for A ∈ Q we have

κ(A) = 1

2
inf
{‖∇φ‖2

2 : φ ∈ D1(Rd) ∩ C0(Rd), φ ≥ 1 on A
}
. (3.1.1)

For A ∈ Q, define ρA : R
d → [0,∞) by ρA(x) = inf{|y − x| : y ∈ A} and, for

M > 0, put

φA,M(x) =
(

1 − 2ρA(x)

M

)
∨ 0. (3.1.2)

Then φA,M ∈ D1(Rd) ∩ C0(Rd), φA,M ≥ 1 on A, and

|∇φA,M(x)| =
{

2
M
, when 0 < ρA(x) <

M
2 ,

0, otherwise.
(3.1.3)

Hence

κ(A) ≤ 2

M2

∣∣∣{x ∈ R
d : 0 < ρA(x) <

M
2

}∣∣∣
≤ 2

M2 |A+ BM | ≤ 2

M2

(|BM | + |(A+ BM) ∩ BcM |) . (3.1.4)

By (1.1.6),

〈κ〉 =
∫
Q
�(dA) κ(A) ≤ 2

M2 |BM |(1 + δM) = 2Md−2(1 + δM), (3.1.5)

which is finite for M large enough by (C2). �
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3.2. Proof of Theorem 1.4.2(i) and Theorem 1.4.4(i)

According to (1.3.2) and (1.3.6), c �→ J�d (c) and c �→ J2(c) are infima over func-
tions that are linear. Consequently, both are concave, and therefore also continuous
except possibly at the boundary point c = 0. It is obvious that J�d (0) = J2(0) = 0.
From the general upper bound in Theorems 1.4.3(i) and 1.4.4(iii), it follows that
limc↓0 J

�
d (c) = limc↓0 J2(c) = 0. Therefore continuity extends to the boundary. It

is further obvious from (1.3.2) and (1.3.6) that J�d (c) and J2(c) are non-decreasing
in c. By concavity, both are strictly increasing in c unless they are constant from
some finite c onwards. But this is ruled out by the asymptotics for c → ∞ in
Theorems 1.4.3(i) and 1.4.4(iii).

3.3. Proof of Theorem 1.4.2(ii)

Lemma 3.3.1. Let d ≥ 3. Then J�d (c) ≤ c〈κ〉 for all c ≥ 0.

Proof. Since 1 − e−x ≤ x, x ≥ 0, we have from (1.3.3) that F�d (φ
2) ≤ 〈κ〉‖φ‖2

2.
Hence the claim follows from (1.3.2), since inf{‖∇φ‖2

2 : ‖φ‖2
2 = 1} = 0. �

The critical value c∗ is the unique threshold such that J�d (c) < c〈κ〉 if and only
if c > c∗. It follows from Theorem 1.4.3(i) that c∗ < ∞. In Lemma 3.3.2 below
we derive a lower bound on c∗ in regime (I). To do so, we first rewrite (1.3.2) as

c〈κ〉 − J�d (c) = − inf
{ 1

2‖∇φ‖2
2 − cG�d (φ

2) : ‖φ‖2
2 = 1, φ RSNI

}
, (3.3.1)

where RSNI means radially symmetric and non-increasing (see Lemma 10 in
vdBBdH (p. 387)), and

G�d (φ
2) =

∫
Rd
dx

∫ ∞

0
�(dκ)

(
e−κφ

2(x) − 1 + κφ2(x)
)
. (3.3.2)

From (3.3.1) we see that

c∗ = inf

{
1
2‖∇φ‖2

2

G�d (φ
2)

: ‖φ‖2
2 = 1, φ RSNI

}
. (3.3.3)

Lemma 3.3.2. Let d ≥ 3. If � ∈ SI , then

c∗ ≥ Sd

(
4κd/(d−1)

0 + d2K

d − 2

)−1

(3.3.4)

with Sd the Sobolev constant in (3.3.15) below.

Proof. We estimate the contribution to the double integral in (3.3.2) as follows.
First, letA < ∞. The contribution of the rectangle (0, κ0)×{x ∈ R

d : φ2(x) <

A} is bounded from above by∫ κ0

0
�(dκ)

∫
{φ2<A}

dx κ2φ4(x) ≤ κ2
0A

2(d−2)/d
∫

Rd
dx φ2(d+2)/d(x), (3.3.5)
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where we use that e−x − 1 + x ≤ x2, x ≥ 0. On the other hand, the contribution
of the rectangle (0, κ0)× {x ∈ R

d : φ2(x) ≥ A} is bounded from above by

∫ κ0

0
�(dκ)

∫
{φ2≥A}

dx κφ2(x) ≤ κ0

∫
{φ2≥A}

dx φ2(x)

(
φ2(x)

A

)2/d

(3.3.6)

≤ κ0A
−2/d

∫
Rd
dx φ2(d+2)/d(x).

We choose A = κ
−d/2(d−1)
0 to get from (3.3.5) and (3.3.6) that the contribution of

(0, κ0) is bounded from above by

2κd/(d−1)
0

∫
Rd
dx φ2(d+2)/d(x). (3.3.7)

Next, the contribution of the rectangle [κ0,∞)× {x ∈ R
d : φ2(x) < 1/κ0} is

bounded from above by

∫
{φ2<1/κ0}

dx

∫ 1/φ2(x)

κ0

�(dκ) κ2φ4(x)

+
∫

{φ2<1/κ0}
dx

∫ ∞

1/φ2(x)

�(dκ) κφ2(x)

≤ K

∫
{φ2<1/κ0}

dx

∫ 1/φ2(x)

κ0

dκ κ−2/dφ4(x)

+K

∫
{φ2<1/κ0}

dx

∫ ∞

1/φ2(x)

dκ κ−(d+2)/dφ2(x)

≤ K

∫
{φ2<1/κ0}

dx φ4(x)

∫ 1/φ2(x)

0
dκ κ−2/d

+K

∫
{φ2<1/κ0}

dx φ2(x)

∫ ∞

1/φ2(x)

dκ κ−(d+2)/d

= d2K

2(d − 2)

∫
{φ2<1/κ0}

dx φ2(d+2)/d(x), (3.3.8)

where we use the upper bound on �(dκ) that defines SI . On the other hand, the
contribution of the rectangle [κ0,∞)× {x ∈ R

d : φ2(x) ≥ 1/κ0} is bounded from
above by∫

{φ2≥1/κ0}
dx

∫ ∞

κ0

�(dκ) κφ2(x) ≤ K

∫
{φ2≥1/κ0}

dx φ2(x)

∫ ∞

κ0

dκ κ−(d+2)/d

= dK

2

∫
{φ2≥1/κ0}

dx φ2(x) κ
−2/d
0 (3.3.9)

≤ dK

2

∫
{φ2≥1/κ0}

dx φ2(d+2)/d(x).
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Combining (3.3.7), (3.3.8) and (3.3.9), we arrive at

G�d (φ
2) ≤

(
2κd/(d−1)

0 + d2K

2(d − 2)

)∫
Rd
dx φ2(d+2)/d(x). (3.3.10)

Next, for any 0 < α < 1 and conjugate exponents p, q > 1, we estimate∫
φ2(d+2)/d ≤

(∫
φ[2(d+2)/d]αp

)1/p (∫
φ[2(d+2)/d](1−α)q

)1/q

. (3.3.11)

Choosing α, p, q such that

[2(d + 2)/d]αp = 2d/(d − 2), [2(d + 2)/d](1 − α)q = 2, (3.3.12)

i.e.,

p = d/(d − 2), q = d/2, α = d/(d + 2), (3.3.13)

and using that ‖φ‖2
2 = 1, we obtain

∫
φ2(d+2)/d ≤

(∫
φ2d/(d−2)

)(d−2)/d

= ‖φ‖2
2d/(d−2). (3.3.14)

Together with the Sobolev inequality (see Lieb and Loss [6], p. 190)

‖∇φ‖2
2 ≥ Sd ‖φ‖2

2d/(d−2) (3.3.15)

this gives ∫
φ2(d+2)/d ≤ 1

Sd
‖∇φ‖2

2. (3.3.16)

We obtain the claim in (3.3.3) by combining (3.3.10) and (3.3.16). �
Lemma 3.3.3. Let d ≥ 3. For � ∈ SI , if 〈κη〉 < ∞ for some η > d+2

d
, then

limc↓c∗ [J�d (c)− J�d (c
∗)]/(c − c∗) < 〈κ〉.

Proof. Let ψc∗ be any minimiser for (1.3.2) at c = c∗, the existence of which we
prove in Lemma 3.5.2 below under the condition stated. Then

J�d (c
∗) = 1

2‖∇ψc∗‖2
2 + c∗ F�d (ψ

2
c∗). (3.3.17)

But, for any δ > 0, we have

J�d (c
∗ + δ) ≤ 1

2‖∇ψc∗‖2
2 + (c∗ + δ)F�d (ψ

2
c∗). (3.3.18)

Combining this with (3.3.17), we get

1

δ

[
J�d (c

∗ + δ)− J�d (c
∗)
] ≤ F�d (ψ

2
c∗) <

1

c∗
J�d (c

∗) = 〈κ〉. (3.3.19)

�
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3.4. Proof of Theorem 1.4.2(iii)

Lemma 3.4.1. Let d ≥ 3. If � ∈ SII , then c∗ = 0.

Proof. By (3.3.2) and the lower bound on �(dκ) that defines SII , we have

G�d (φ
2) ≥

∫
Rd
dx

∫ ∞

κ1

dκ L(κ)κ−1−(d+2)/d
(
e−κφ

2(x) − 1 + κφ2(x)
)
. (3.4.1)

Hence we get, for all φ ∈ H 1(Rd) that are RSNI with ‖φ‖2
2 = 1 and κ1φ

2(0) ≤ 1,

G�d (φ
2) ≥

∫
Rd
dx

∫ ∞

1/φ2(x)

dκ L(κ)κ−1−(d+2)/d
(
e−κφ

2(x) − 1 + κφ2(x)
)

≥ L

(
1

φ2(0)

)∫
Rd
dx

∫ ∞

1/φ2(x)

dκ κ−1−(d+2)/d
(
e−κφ

2(x) − 1 + κφ2(x)
)

≥ L

(
1

φ2(0)

)∫
Rd
dx

∫ ∞

1/φ2(x)

dκ κ−1−(d+2)/d
(
κφ2(x)

e

)
(3.4.2)

= d

2e
L

(
1

φ2(0)

)∫
Rd
dx φ2(d+2)/d(x),

where we have used that e−x − 1 + x ≥ x/e, x ≥ 1. Inserting (3.4.2) into (3.3.3),
we find

c∗ ≤ e

d
inf

{
1

L(1/φ2(0))

‖∇φ‖2
2∫

φ2(d+2)/d
: ‖φ‖2

2 = 1, φ RSNI, κ1φ
2(0) ≤ 1

}
.

(3.4.3)

The choice

φ(x) = εd/2e−πε
2|x|2/2, ε > 0, (3.4.4)

yields that, for all 0 < ε ≤ κ
−1/d
1 ,

c∗ ≤ eπ

2
[(d + 2)/d]d/2

1

L(ε−d)
. (3.4.5)

We obtain the claim by letting ε ↓ 0 and using that limκ→∞ L(κ) = ∞. �

Lemma 3.4.2. Let d ≥ 3. If � ∈ SII , then limc↓0
1
c
J�d (c) = 〈κ〉.

Proof. As shown in Lemma 3.5.1 below, for all c > 0 we have the existence of a
minimiser for (1.3.2), say ψc. Hence

1

c
J�d (c) = 1

c
‖∇ψc‖2

2 +
∫

Rd
dx

∫ ∞

0
�(dκ)

(
1 − e−κψ

2
c (x)
)
. (3.4.6)
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Let ε > 0 and R < ∞. Then, since e−x − 1 + x ≤ 1
2x

2, x ≥ 0, we have

1

c
J�d (c) ≥

∫
{ψ2
c≤ε}

dx

∫
{κ≤R}

�(dκ)
(

1 − e−κψ
2
c (x)
)

≥
∫

{ψ2
c≤ε}

dx

∫
{κ≤R}

�(dκ)

(
κψ2

c (x)− 1

2
κ2ψ4

c (x)

)
(3.4.7)

≥
∫

{ψ2
c≤ε}

dx ψ2
c (x)

∫
{κ≤R}

�(dκ) κ − 1

2
R2ε,

where we use that ‖ψc‖2
2 = 1. We will show that, for any ε > 0,

lim
c↓0

∫
{ψ2
c >ε}

dx ψ2
c (x) = 0. (3.4.8)

Combining this with (3.4.7) and again using that ‖ψc‖2
2 = 1, we obtain

lim inf
c↓0

1

c
J�d (c) ≥

∫
{κ≤R}

�(dκ) κ − 1

2
R2ε. (3.4.9)

By letting ε ↓ 0 and then letting R → ∞, we arrive at

lim inf
c↓0

1

c
J�d (c) ≥ 〈κ〉. (3.4.10)

This proves the claim, since we already know from Lemma 3.3.1 that 1
c
J�d (c) ≤ 〈κ〉.

It remains to prove (3.4.8). We have

∫
{ψ2
c >ε}

dx ψ2
c (x) ≤

∫
{ψ2
c >ε}

dx ψ2
c (x)

(
ψ2
c (x)

ε

)2/(d−2)

≤ ε−2/(d−2)
∫

Rd
dx ψ

2d/(d−2)
c (x)

≤ ε−2/(d−2)S
−d/(d−2)
d ‖∇ψc‖2d/(d−2)

2 ,

(3.4.11)

where we use the Sobolev inequality (3.3.15). But limc↓0 J
�
d (c) = 0 by Lemma

3.3.1, and therefore limc↓0 ‖∇ψc‖2
2 = 0. Consequently, (3.4.11) implies (3.4.8). �

3.5. Proof of Theorem 1.4.2(iv)

Lemma 3.5.1. Let d ≥ 3. In regimes (I) and (II), (1.3.2) has a minimiser with full
support for all c > c∗ (with c∗ = 0 in regime (II)).
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Proof. By the definition of c∗, we have J�d (c) < c〈κ〉 for c > c∗. For c > 0, define

K�
d (c) = inf

{
1

2
‖∇ψ‖2

2 − c

∫ ∞

0
�(dκ)

×
∫

Rd
dx
(
e−κψ

2(x) − 1 + κψ2(x)
)

: ‖ψ‖2
2 = 1, ψ RSNI

}
,

K̂�
d (c) = inf

{
1

2
‖∇ψ‖2

2 − c

∫ ∞

0
�(dκ)

×
∫

Rd
dx
(
e−κψ

2(x) − 1 + κψ2(x)
)

: ‖ψ‖2
2 ≤ 1, ψ RSNI

}
.

(3.5.1)

Then, for c > c∗,

K̂�
d (c) ≤ K�

d (c) < 0. (3.5.2)

Let (ψj ) be a minimising sequence of the variational problem for K̂�
d (c). Then, by

a compactness argument along the lines of the proof of Lemma 13 in vdBBdH (pp.
390–391), we may extract a subsequence, also denoted by (ψj ), such thatψj → ψc
as j → ∞ for some ψc almost everywhere and in D1(Rd). It follows that ψc is
RSNI and a minimiser for K̂�

d (c). Moreover, ‖ψc‖2
2 > 0 (because ‖ψc‖2

2 = 0
would imply ψc = 0 almost everywhere, which in turn would imply K̂�

d (c) = 0,
in contradiction with (3.5.2)). Suppose that ‖ψc‖2

2 = 1−ρ with 0 ≤ ρ < 1. Define

φ(x) = 1

q
ψc(qx), (3.5.3)

where we choose q > 0 such that ‖φ‖2
2 = 1, i.e.,

q = (1 − ρ)1/(d+2). (3.5.4)

Then

‖∇φ‖2
2 = (1 − ρ)−d/(d+2)‖∇ψc‖2

2 (3.5.5)

and

c

∫ ∞

0
�(dκ)

∫
Rd

(
e−κφ

2(x) − 1 + κφ2(x)
)

= c(1 − ρ)−d/(d+2)
∫ ∞

0
�(dκ)

∫
Rd
dx

×
(
e−κ(1−ρ)−2/(d+2)ψ2

c (x) − 1 + κ(1 − ρ)−2/(d+2)ψ2
c (x)

)
≥ c(1 − ρ)−d/(d+2)

∫ ∞

0
�(dκ)

∫
Rd
dx
(
e−κψ

2
c (x) − 1 + κψ2

c (x)
)
.

(3.5.6)
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Inserting (3.5.5) and (3.5.6) into the definition of K�
d (c), and using the definition

of K̂�
d (c), we get

K�
d (c) ≤ (1 − ρ)−d/(d+2)K̂�

d (c). (3.5.7)

By (3.5.2) and (3.5.7), we conclude that ρ = 0. Hence ‖ψc‖2
2 = 1, and ψc is a

minimiser for K�
d (c) = J�d (c) − c〈κ〉. The fact that ψc has full support follows

from the analogue of Lemma 11 in vdBBdH (p. 388): ψc satisfies the Euler-Lag-
range equation associated with the variational problem, from which it follows that
ψc is smooth and strictly decreasing in the radial component. �
Lemma 3.5.2. Let d ≥ 3. For � ∈ SI , if 〈κη〉 < ∞ for some η > d+2

d
, then

(1.3.2) has a minimiser for c = c∗.

Proof. Define

ĉ = inf

{
1
2‖∇φ‖2

2

G�d (φ
2)

: 0 < ‖φ‖2
2 ≤ 1, φ RSNI

}
. (3.5.8)

We begin by showing that ĉ = c∗. Trivially, by comparing (3.3.3) and (3.5.8), we
get ĉ ≤ c∗. To prove the converse, let (φ̂j ) be a minimising sequence for (3.5.8).
Put 0 < aj = ‖φ̂j‖2

2 ≤ 1, and

φj (x) = a
−1/(d+2)
j φ̂j

(
a

1/(d+2)
j x

)
. (3.5.9)

Then ‖φj‖2
2 = 1, and

c∗ ≤
1
2‖∇φj‖2

2

G�d (φ
2
j )

=
1
2‖∇φ̂j‖2

2

G�d (a
−2/(d+2)
j φ̂ 2

j )
≤

1
2‖∇φ̂j‖2

2

G�d (φ̂
2
j )
. (3.5.10)

But the right-hand side of (3.5.10) converges to ĉ as j → ∞. Hence, c∗ ≤ ĉ.
By extracting a subsequence, also denoted by (φ̂j ), we may assume that φ̂j → φ̂

as j → ∞ for some φ̂ almost everywhere and weakly in D1(Rd). It follows that
φ̂ is RSNI. Below we will show that ‖φ̂‖2

2 > 0. If ‖φ̂‖2
2 = 1, then φ̂ is a minimiser

of (3.3.3). If, on the other hand, 0 < ‖φ̂‖2
2 = 1 − ρ < 1, then define, as in (3.5.3),

φ∗(x) = 1

q
φ̂(qx), (3.5.11)

where q is given by (3.5.4). Then ‖φ∗‖2
2 = 1 and, as in (3.5.10),

c∗ ≤
1
2‖∇φ∗‖2

2

G�d (φ
∗ 2)

≤
1
2‖∇φ̂‖2

2

G�d (φ̂
2)

= ĉ = c∗. (3.5.12)

It follows that φ∗ is a minimiser of (3.3.3). It then obviously also is a minimiser
of (1.3.2) for c = c∗ (recall (3.3.1), (3.3.2) and (3.3.3)). The fact that ψ∗ has full
support again follows from the analogue of Lemma 11 in vdBBdH (p. 388).
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It remains to prove that ‖φ̂‖2
2 > 0. For this it suffices to show that there exist

δ, ε > 0 such that, for any minimising sequence (φ̂j ) of (3.5.8),

|{x ∈ R
d : φ̂ 2

j (x) ≥ ε}| ≥ δ for all j. (3.5.13)

Indeed, (3.5.13) implies that ‖φ̂j‖2
2 ≥ εδ for all j , and hence that

‖φ̂‖2
2 ≥ εδ. (3.5.14)

To prove (3.5.13), we argue by contradiction. Suppose that there exists a mini-
mising sequence (φ̂j ) of (3.5.8) with the property that, for all ε > 0,

lim
j→∞

|{x ∈ R
d : φ̂ 2

j (x) ≥ ε}| = 0. (3.5.15)

Then, for all ε > 0, there exists an L1(ε) ∈ N such that, for all j ≥ L1(ε),

|{x ∈ R
d : φ̂ 2

j (x) ≥ ε}| < εd[η−(d+2)/d]/2. (3.5.16)

We already know that there exists an L2 ∈ N such that, for all j ≥ L2,

1
2‖∇φ̂j‖2

2

G�d (φ̂
2
j )

≤ 2 ĉ. (3.5.17)

To arrive at a contradiction, we will show that the left-hand side of (3.5.17) is at
least 5 ĉ/2 for j ≥ L1(ε0) ∨ L2 for some ε0 > 0.

By the Sobolev inequality (3.3.15), we have

‖∇φ̂j‖2
2 ≥ Sd‖φ̂j‖2

2d/(d−2). (3.5.18)

Since 〈κη′ 〉 < ∞ implies that 〈κη〉 < ∞ for η ≤ η′, we may assume that d+2
d
<

η ≤ 2. To estimate the contribution of the strip {φ̂ 2
j < ε} to the integral inG�d (φ̂

2
j ),

we use that e−x + 1 − x ≤ xη, x ≥ 0, to obtain, via (3.3.14),∫ ∞

0
�(dκ)

∫
{φ̂ 2
j <ε}

dx (κφ̂ 2
j (x))

η = 〈κη〉
∫

{φ̂ 2
j <ε}

dx φ̂
2η
j (x)

≤ 〈κη〉εη−(d+2)/d
∫

{φ̂ 2
j <ε}

dx φ̂
2(d+2)/d
j (x)

≤ 〈κη〉εη−(d+2)/d‖φ̂j‖2
2d/(d−2). (3.5.19)

Furthermore, by Hölder’s inequality and (3.5.16) we have, for j ≥ L1(ε),∫ ∞

0
�(dκ)

∫
{φ̂ 2
j ≥ε}

dx κφ̂ 2
j (x) = 〈κ〉

∫
Rd
dx φ̂ 2

j (x)1{φ̂ 2
j (x)≥ε}

≤ 〈κ〉
(∫

Rd
dx φ̂

2d/(d−2)
j (x)

)(d−2)/d

×
(∫

Rd
dx 1{φ̂ 2

j (x)≥ε}

)2/d

≤ 〈κ〉‖φ̂j‖2
2d/(d−2)ε

η−(d+2)/d . (3.5.20)
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Combining (3.5.18), (3.5.19) and (3.5.20) we have, for j ≥ L1(ε),

G�d (φ̂
2
j ) ≤ (〈κ〉 + 〈κη〉) 1

Sd
εη−(d+2)/d‖∇φ̂j‖2

2, (3.5.21)

or
1
2‖∇φ̂j‖2

2

G�d (φ̂
2
j )

≥ 1

2
Sdε

−[η−(d+2)/d] (〈κ〉 + 〈κη〉)−1
. (3.5.22)

Now choose ε = ε0 with ε0 the root of

1

2
Sdε

−[η−(d+2)/d]
0

(〈κ〉 + 〈κη〉)−1 = 5

2
ĉ, (3.5.23)

to get that (3.5.22) contradicts (3.5.17) for all j ≥ L1(ε0) ∨ L2. �

3.6. Proof of Theorem 1.4.3(i) and Theorem 1.4.4(iii)

We give the proof for d ≥ 3. The proof for d = 2 is the same but uses (1.3.7)
instead of (1.3.4).

From (1.3.4) we have

F�d (φ
2) ≤ |supp(φ)|, (3.6.1)

and so (1.3.2) gives

J�d (c) ≤ inf
{ 1

2 ‖∇φ‖2
2 + c |supp(φ)| : ‖φ‖2

2 = 1
}
. (3.6.2)

We get an upper bound on the infimum by restricting supp(φ) to a ball B with
volume |B|. Therefore

J�d (c) ≤ inf

{
1

2

‖∇φ‖2
2

‖φ‖2
2

+ c |B| : supp(φ) ⊂ B

}
= 1

2λd(B)+ c |B|, (3.6.3)

with λd(B) the principal Dirichlet eigenvalue of −� on B. By scaling B, we have

λd(B) = |B|−2/dλd, (3.6.4)

Substituting this into (3.6.3) and taking the infimum over |B|, we arrive at

J�d (c) ≤ inf
|B|

{
1

2
λd |B|−2/d + c|B|

}
= d + 2

2

(
λd

d

)d/(d+2)

c2/(d+2). (3.6.5)

This proves the upper bound in (1.4.8).
To prove the lower bound, we first scale φ to obtain

c−2/(d+2)J�d (c) = inf

{
1

2
‖∇φ‖2

2 +
∫

Rd
dx

×
∫ ∞

0
�(dκ)

(
1 − e−κc

d/(d+2)φ2(x)
)

: ‖φ‖2
2 = 1, φ RSNI

}
.

(3.6.6)
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We know that this variational problem has a minimiser when c > c∗. Call this
minimiser ψ . Pick 0 < δ < 1/(2 ∨ λd), and let

Bδ =
{
x ∈ R

d : ψ(x) ≥ δ
}
. (3.6.7)

Restricting the x-integration to Bδ , we get

rhs (3.6.6) ≥ 1

2

∫
Bδ

dx |∇ψ(x)|2 + |Bδ| −
∫
Bδ

dx

∫ ∞

0
�(dκ) e−κc

d/(d+2)δ2
.

(3.6.8)

By Lebesgue’s dominated convergence theorem, for every ε > 0 there exists a
C = C(δ, ε,�) such that

∫
Bδ

dx

∫ ∞

0
�(dκ) e−κc

d/(d+2)δ2 ≤ ε ∀ c ≥ C. (3.6.9)

Hence

rhs (3.6.8) ≥ 1
2

∫
Bδ
dx |∇ψ(x)|2 + |Bδ| − ε. (3.6.10)

Next, define φ by

φ(x) =
{
ψ(x)− δ, x ∈ Bδ,
0, x ∈ R

d \ Bδ.
(3.6.11)

Then φ is RSNI and satisfies the Dirichlet boundary condition on ∂Bδ . Since
‖ψ‖2

2 = 1, we have

∫
Bδ

φ =
∫
Bδ

ψ − δ|Bδ| ≤ |Bδ|1/2 − δ|Bδ|. (3.6.12)

Hence

1 =
∫

Rd
ψ2 =

∫
Bδ

(φ + δ)2 = δ2|Bδ| + 2δ
∫
Bδ

φ +
∫
Bδ

φ2

≤ −δ2|Bδ| + 2δ|Bδ|1/2 +
∫
Bδ

φ2 ≤ 2δ|Bδ|1/2 + ‖φ‖2
2. (3.6.13)

By (3.6.11) and the Rayleigh-Ritz variational characterisation of λd(Bδ), we have

∫
Bδ

|∇ψ |2 =
∫
Bδ

|∇φ|2 ≥ λd(Bδ) ‖φ‖2
2. (3.6.14)
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Combining (3.6.6), (3.6.8), (3.6.10), (3.6.13) and (3.6.14), we obtain for c ≥ C,

c−2/(d+2)J�d (c) ≥ 1

2
λd(Bδ)

(
1 − 2δ|Bδ|1/2

)
+ |Bδ| − ε

= 1

2
λd |Bδ|−2/d

(
1 − 2δ|Bδ|1/2

)
+ |Bδ| − ε

≥ 1

2
λd |Bδ|−2/d (1 − 2δ)+ |Bδ| (1 − δλd)− ε

≥
(

1

2
λd |Bδ|−2/d + |Bδ|

)
[1 − δ(2 ∨ λd)] − ε

≥ d + 2

2

(
λd

d

)d/(d+2)

[1 − δ(2 ∨ λd)] − ε,

(3.6.15)

where the second line uses (3.6.4) and the fifth line uses (3.6.5). Now let c → ∞,
and subsequently let δ, ε ↓ 0, to get the lower bound in (1.4.8).

3.7. Proof of Theorems 1.4.3(ii)

Fix ε ∈ (0,K/2). Then there exists an Rε ∈ (0,∞) such that

(K − ε)κ−1−γ ≤ θ(κ) ≤ (K + ε)κ−1−γ , κ ≥ Rε. (3.7.1)

By (3.3.1) and (3.3.2),

c〈κ〉 − J�d (c)

= − inf

{
1

2
‖∇φ‖2

2 − cG�d (φ
2) : ‖φ‖2

2 = 1

}

≥ − inf

{
1

2
‖∇φ‖2

2 − c

∫
Rd
dx

∫ ∞

Rε

dκ θ(κ)

×
(
e−κφ

2(x) − 1 + κφ2(x)
)

: ‖φ‖2
2 = 1

}
≥ − inf

{
1

2
‖∇φ‖2

2 − c

∫
Rd
dx

∫ ∞

Rε

dκ (K − ε)κ−1−γ

×
(
e−κφ

2(x) − 1 + κφ2(x)
)

: ‖φ‖2
2 = 1

}
= − inf

{
1

2
‖∇φ‖2

2 − c(K − ε)

×
∫

Rd
dx |φ(x)|2γ

∫ ∞

Rεφ2(x)

dκ κ−1−γ (e−κ − 1 + κ
)

: ‖φ‖2
2 = 1

}
,

(3.7.2)

where the second inequality uses the lower bound in (3.7.1). Inserting the scaling
φ(x) = δd/2ψ(δx), δ > 0, we obtain
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c〈κ〉 − J�d (c) ≥ − inf
{1

2
δ2‖∇ψ‖2

2 − c(K − ε)δd(γ−1)
∫

Rd
dx |ψ(x)|2γ

×
∫ ∞

δdRεψ2(x)

dκ κ−1−γ (e−κ − 1 + κ
)

: ‖ψ‖2
2 =1

}
.

(3.7.3)

We choose δ to be the root of 1
2δ

2 = c(K − ε)δd(γ−1). Since this root is at least
(cK)1/(2−d(γ−1)), we obtain

(2cK)−2/(2−d(γ−1))
[
c〈κ〉 − J�d (c)

] ≥ −1

2

(
K

K − ε

)−2/(2−d(γ−1))

× inf

{
‖∇ψ‖2

2−
∫

Rd

dx |ψ(x)|2γ
∫ ∞

(cK)d/(2−d(γ−1))Rεψ2(x)

dκ κ−1−γ (e−κ−1+κ) : ‖ψ‖2
2 =1

}
.

(3.7.4)

Next, we note that∫ ∞

0
dκ κ−1−γ (e−κ − 1 + κ

) = �(−γ ) ∈ (0,∞). (3.7.5)

Let β ∈ (γ, 2]. Since e−κ − 1 + κ ≤ κβ , κ ≥ 0, we may estimate

∫ (cK)d/(2−d(γ−1))Rεψ
2(x)

0
dκ κ−1−γ (e−κ − 1 + κ

)
≤ 1

β − γ

(
(cK)d/(2−d(γ−1))Rεψ

2(x)
)β−γ

. (3.7.6)

By (3.7.4), (3.7.5) and (3.7.6), we obtain that

(2cK)−2/(2−d(γ−1)) [c〈κ〉 − J�d (c)
] ≥ −1

2

(
K

K − ε

)−2/(2−d(γ−1))

× inf

{
‖∇ψ‖2

2 − �(−γ )
∫

Rd
dx |ψ(x)|2γ + Eβ,γ (ε, c;ψ2) : ‖ψ‖2

2 = 1

}
(3.7.7)

with an error term

Eβ,γ (ε, c;ψ2) = 1

β − γ
Rβ−γ
ε (cK)(β−γ )/(2−d(γ−1))

∫
Rd
dx |ψ(x)|2β. (3.7.8)

Furthermore, for 0 < α < 1 and conjugate exponents p, q > 1, we estimate

∫
Rd

|ψ |2β ≤
(∫

Rd
|ψ |2αβp

)1/p (∫
Rd

|ψ |2(1−α)βq
)1/q

. (3.7.9)

Choosing α, β, p, q such that

2αβp = 2d/(d − 2), p = d/(d − 2), 2(1 − α)βq = 2, (3.7.10)
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i.e.,

α = d/(d + 2), β = (d + 2)/d, p = d/(d − 2), q = d/2,
(3.7.11)

we obtain from (3.7.9), using ‖ψ‖2
2 = 1 and the Sobolev inequality (3.3.15), that

(2cK)−2/(2−d(γ−1)) [c〈κ〉 − J�d (c)
] ≥ −1

2

(
K

K − ε

)−2/(2−d(γ−1))

× inf

{(
1 + Eγ (ε, c)

) ‖∇ψ‖2
2 − �(−γ )

∫
Rd
dx |ψ(x)|2γ : ‖ψ‖2

2 = 1

}
(3.7.12)

with an error term

Eγ (ε, c) = R(2−d(γ−1))/d
ε

d

Sd(2 − d(γ − 1))
cK. (3.7.13)

Finally, we insert the scaling φ(x) = ηd/2ψ(ηx), η > 0, and choose η to be
the root of η2(1+ Eγ (ε, c)) = �(−γ )ηd(γ−1), to arrive at

{2cK�(−γ )}−2/(2−d(γ−1)) [c〈κ〉 − J�d (c)
] ≥ 1

2

×
(

K

K − ε

1

1 + Eγ (ε, c)

)−2/(2−d(γ−1))

Md(γ ), (3.7.14)

where we have used the definition ofMd(γ ) in (1.4.10). Now let c ↓ 0 and use that
limc↓0 Eγ (ε, c) = 0 for all ε > 0. Then let ε ↓ 0, to get

lim inf
c↓0

{2cK�(−γ )}−2/(2−d(γ−1)) [c〈κ〉 − J�d (c)
] ≥ 1

2
Md(γ ), (3.7.15)

which is the desired lower bound.
The proof of the upper bound runs as follows. Let ε and Rε be as before. We

estimate, similarly as in (3.7.2),

c〈κ〉 − J�d (c)

≤ − inf
{1

2
‖∇φ‖2

2 − c

∫
Rd
dx

∫ ∞

Rε

dκ θ(κ)

×
(
e−κφ

2(x) − 1 + κφ2(x)
)

− Eθ(ε, c;φ2) : ‖φ‖2
2 = 1

}
(3.7.16)

with an error term

Eθ(ε, c;φ2) = c

∫
Rd
dx

∫ Rε

0
dκ θ(κ)

(
e−κφ

2(x) − 1 + κφ2(x)
)
. (3.7.17)
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Since e−x − 1 + x ≤ x(d+2)/d , x ≥ 0, we may use the Sobolev inequality (3.3.15)
to estimate

Eθ(ε, c;φ2) ≤ c

∫
Rd
dx

∫ Rε

0
dκ θ(κ) (κφ2(x))(d+2)/d ≤ cmθ(ε) S

−1
d ‖∇φ‖2

2,

(3.7.18)

where we abbreviate mθ(ε) = ∫ Rε
0 dκ θ(κ) κ(d+2)/d . Combining (3.7.16) and

(3.7.18), we obtain for c small enough,

c〈κ〉 − J�d (c)

≤ − inf
{(1

2
− cmθ(ε)S

−1
d

)
‖∇φ‖2

2

− c(K + ε)

∫
Rd
dx

∫ ∞

Rε

dκ κ−1−γ
(
e−κφ

2(x) − 1 + κφ2(x)
)

: ‖φ‖2
2 = 1

}
(3.7.19)

≤ − inf
{(1

2
− cmθ(ε)S

−1
d

)
‖∇φ‖2

2

− c(K + ε)�(−γ )
∫

Rd
dx |φ(x)|2γ − Eγ (ε, c;φ2) : ‖φ‖2

2 = 1
}
,

where in the second inequality we use the upper bound (3.7.1) and the identity
(3.7.5), and introduce an error term

Eγ (ε, c;φ2) = c(K + ε)

∫
Rd
dx

∫ Rε

0
dκ κ−1−γ

(
e−κφ

2(x) − 1 + κφ2(x)
)
.

(3.7.20)

The integral in (3.7.20) can be estimated from above along the lines of the argu-
ment connecting (3.7.7), (3.7.8) with (3.7.12), (3.7.13). After some computation,
this leads to

c〈κ〉 − J�d (c)

≤ − inf
{(1

2
− Eγ (ε, c)

)
‖∇φ‖2

2 − c(K + ε)�(−γ )

×
∫

Rd
dx |φ(x)|2γ : ‖φ‖2

2 = 1
}

(3.7.21)

with an error term

Eγ (ε, c) = cmθ(ε)+ c(K + ε)R(2−d(γ−1))/d
ε

d

Sd(2 − d(γ − 1))
. (3.7.22)

Via the scaling φ(x) = δd/2ψ(δx), δ > 0, with δ the root of δ2( 1
2 − cEγ (ε, c)) =

c(K + ε)�(−γ )δd(γ−1), we arrive at

{2Kc�(−γ )}−2/(2−d(γ−1)) [c〈κ〉 − J�d (c)
]

≤ 1

2

(
K + ε

K

1

1 − 2Eγ (ε, c)

)2/(2−d(γ−1))

Md(γ ). (3.7.23)
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Now let c ↓ 0 and use that limc↓0 Eγ (ε, c) = 0 for all ε > 0. Then let ε ↓ 0, to get

lim sup
c↓0

{2Kc�(−γ )}−2/(2−d(γ−1)) [c〈κ〉 − J�d (c)
] ≤ 1

2
Md(γ ), (3.7.24)

which is the desired upper bound.
It remains to prove thatMd(γ ) ∈ (0,∞) for all γ ∈ (1, (d+ 2)/d). By scaling

we have, for any ε > 0,

Md(γ ) = −ε2 inf

{
‖∇ψ‖2

2 − ε−(2−d(γ−1))
∫

|ψ |2γ : ‖ψ‖2
2 = 1

}
. (3.7.25)

We get a strictly positive lower bound by choosing for ψ the function

ψ(x) = π−d/4e−|x|2/2 (3.7.26)

and by subsequently choosing ε sufficiently small.
To prove thatMd(γ ) is finite for γ ∈ (1, d+2

d
), we apply the Sobolev inequality

(3.3.15) to (1.4.10). This gives

Md(γ ) ≤ − inf

{
Sd‖ψ‖2

2d/(d−2) −
∫

|ψ |2γ : ‖ψ‖2
2 = 1

}
. (3.7.27)

Since ‖ψ‖2
2 = 1 and γ ∈ (1, d/(d − 2)), Hölder’s inequality gives

∫
|ψ |2γ ≤

(∫
|ψ |2d/(d−2)

)(d−2)(γ−1)/2

. (3.7.28)

Inserting this into (3.7.27), we get

Md(γ ) ≤ sup
{
‖ψ‖d(γ−1)

2d/(d−2) − Sd‖ψ‖2
2d/(d−2) : ‖ψ‖2

2 = 1
}

≤ sup
ρ∈(0,∞)

{
ρd(γ−1) − Sdρ

2
}
. (3.7.29)

The supremum in the right-hand side is finite because d(γ − 1) < 2.

3.8. Proof of Theorem 1.4.4(ii) and Theorem 1.4.4(iv)

In d = 2 the analogue of (3.3.3) reads (recall that κ is replaced by 2π )

c∗ = inf

{
1
2‖∇φ‖2

2

G2(φ2)
: ‖φ‖2

2 = 1

}
(3.8.1)

with

G2(φ
2) =

∫
R2
dx
(
e−2πφ2(x) − 1 + 2πφ2(x)

)
. (3.8.2)

Lemma 3.8.1. (3.8.1) has no minimiser. If (φn) is a minimising sequence that is
RSNI, then limn→∞

∫
{φn>δ} dx = 0 for any δ > 0.



Brownian survival among Poissonian traps with random shapes at critical intensity 199

Proof. Suppose that the variational problem in the right-hand side of (3.8.1) has a
minimiser, say ψ∗. Then

c∗ =
1
2‖∇ψ∗‖2

2

G2(ψ∗2)
. (3.8.3)

For ε > 0, put

ψ∗
ε (x) = εψ∗(εx). (3.8.4)

Since ‖ψ∗
ε ‖2

2 = 1, we have

c∗ ≤
1
2‖∇ψ∗

ε ‖2
2

G2(ψ∗2
ε )

=
1
2‖∇ψ∗‖2

2

ε−4G2(ε2ψ∗2)
. (3.8.5)

Next, we claim that

y �→ 1

y2

(
e−κy − 1 + κy

)
, y > 0, (3.8.6)

is strictly decreasing on (0,∞) for any κ > 0. Indeed, its derivative at y equals

2

y3

[(
1 − κy

2

)
−
(

1 + κy

2

)
e−κy

]
. (3.8.7)

Abbreviate z = κy/2 and note that z �→ (1 + z)e−2z + z, z ≥ 0, is strictly
increasing on [0,∞), and equal to 1 at z = 0, to get the claim. Finally, using that
(3.8.6) is strictly decreasing, we get from (3.8.2) that ε �→ ε−4G2(ε

2ψ∗2) is strictly
decreasing, which clearly contradicts (3.8.3) and (3.8.5) when ε < 1.

To prove the last claim, let (φn) be a minimising sequence for (3.8.1). Then, for
any δ > 0,

lim
n→∞

∫
{φn>δ}

dx = 0. (3.8.8)

Indeed, if (3.8.8) fails, then there exists an η > 0 and a subsequence (φnj ) such
that ∫

{φnj >δ}
dx ≥ η. (3.8.9)

But now the above argument shows that the sequence (φεnj )withφεnj (x) = εφnj (εx)

yields a strictly lower infimum when ε < 1, which is a contradiction. �
Lemma 3.8.2. Let d = 2. Then

c∗ = 1

4π2 inf

{
‖∇φ‖2

2

‖φ‖4
4

: ‖φ‖2
2 = 1

}
(3.8.10)

and c∗ ∈ [ 27
64π ,

1
2π

]
.
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Proof. Since e−x ≤ 1 − x + 1
2x

2, x ≥ 0, we get from (3.8.2) that

G2(φ
2) ≤ 2π2‖φ‖4

4. (3.8.11)

Substituting (3.8.11) into (3.8.1), we obtain the desired lower bound

c∗ ≥ 1

4π2 inf

{
‖∇φ‖2

2

‖φ‖4
4

: ‖φ‖2
2 = 1

}
. (3.8.12)

To prove the converse of (3.8.12), let (φn) be a minimising sequence for (3.8.10)
that is RSNI. Then (φεn) with φεn(x) = εφn(εx) is a minimising sequence too.
Replacing ε by ε/φn(0), we may assume that φn(0) = 1. It suffices to show that

lim sup
ε↓0

lim sup
n→∞

(
‖∇φεn‖2

2

G2(φε 2
n )

− ‖∇φεn‖2
2

2π2‖φεn‖4
4

)
≤ 0. (3.8.13)

Since (φεn) is a minimising sequence, there exists an N such that for n ≥ N ,

φεn(0) = ε, ‖∇φεn‖2
2/‖φεn‖4

4 < ∞, ‖φεn‖2
2 = 1. (3.8.14)

Since e−x − 1 + x − 1
2x

2 ≥ − 1
6x

3, x ≥ 0, it follows from (3.8.2) that

G2(φ
ε 2
n ) ≥

∫ [
1

2
(2πφε 2

n )
2 − 1

6
(2πφε 2

n )
3
]

≥ 2π2
[

1 − 2πε2

3

] ∫
φε 4
n ,

(3.8.15)

where we have used that φn ≤ φn(0) = ε. Hence, for n ≥ N ,

‖∇φεn‖2
2

(
1

G2(φε 2
n )

− 1

2π2‖φεn‖4
4

)
≤ 1

2π2

([
1 − 2πε2

3

]−1

− 1

)
‖∇φεn‖2

2

‖φεn‖4
4

.

(3.8.16)

As n → ∞, the quotient in the right-hand side converges to 2c∗. Now let ε ↓ 0, to
get the claim in (3.8.13).

Finally, the numerical bounds on c∗ are obtained as follows. First note that in
d = 2 we have the Sobolev inequality

‖∇φ‖2
2 ≥ S−2

2,4‖φ‖2
4 − ‖φ‖2

2 (3.8.17)

(see Lieb and Loss [6] page 190). With the substitution φp(x) = φ(x/p), p > 0,
this inequality transforms into

‖∇φ‖2
2 ≥ S−2

2,4 p ‖φ‖2
4 − p2 ‖φ‖2

2. (3.8.18)

After optimisation over p this yields the Sobolev inequality

‖∇φ‖2
2 ≥ 1

4S
−4
2,4‖φ‖4

4 ‖φ‖−2
2 . (3.8.19)
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Substituting (3.8.19) into (3.8.12), we find the lower bound

c∗ ≥ 1

16π2 S
−4
2,4. (3.8.20)

This implies that c∗ ≥ 27/64π , because S−4
2,4 = 27π/4. To obtain the upper bound

on c∗, we pick ψ as in (3.7.26) with d = 2. Since ‖∇ψ‖2
2 = 1, ‖ψ‖2

2 = 1 and
‖ψ‖4

4 = 1
2π , substitution into (3.8.10) yields that c∗ ≤ 1/2π . �

Lemma 3.8.3. Let d = 2. Then limc↓c∗ [J2(c)− J2(c
∗)]/(c − c∗) = 2π .

Proof. By the concavity of c �→ J2(c) stated in Theorem 1.4.4(i), it suffices to
prove that

lim inf
c↓c∗

J2(c)− J2(c
∗)

c − c∗
≥ 2π. (3.8.21)

Since J2 does not depend on�, it is given by the expression we obtained in Theo-
rem 2 (p. 358) and Corollary 2 (p. 363) in vdBBdH, for the case where� = δBa(0)
with a > 0 arbitrary, namely,

J2(c) = inf
0<b≤2π

[bc + I2(b)] (3.8.22)

with

I2(b) =
{

1

2
‖∇φ‖2

2 : φ ∈ H 1(R2), ‖φ‖2
2 = 1,

∫
(1 − e−2πφ2

) = b

}
(3.8.23)

(see also Lemma 9 (p. 387) and Lemma 12 (p. 389) in vdBBdH). Now, from The-
orems 3(i) and 4(ii) in vdBBdH (pp. 359–360) we know that

b �→ I2(b)

2π − b
(3.8.24)

is strictly decreasing on (0, 2π), with

lim
b↑2π

I2(b)

2π − b
= 1

4π2 inf
{
‖∇φ‖2

2 : φ ∈ H 1(R2), ‖φ‖2
2 = 1, ‖φ‖4

4 = 1
}

= c∗

(3.8.25)

(compare with (3.8.10)). Put

�(b) = I2(b)

2π − b
− c∗. (3.8.26)

Using (3.8.22), we may then write

J2(c)− J2(c
∗)

c − c∗
= inf

0<b≤2π

[
b + (2π − b)�(b)

c − c∗

]
. (3.8.27)

Since �(b) > 0 for all 0 < b < 2π , the minimiser in the right-hand side tends to
2π as c ↓ c∗, which yields (3.8.21). �
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Lemma 3.8.4. Let d = 2. Then (1.3.6) has a minimiser if and only if c > c∗. This
minimiser has full support.

Proof. The fact that there is no minimiser for c = c∗ is a direct consequence of the
first claim in Lemma 3.8.1. The proof that there is a minimiser for c > c∗ is the
same as that of Lemma 3.5.1. The fact that this minimiser has full support again
follows from the analogue of Lemma 11 in vdBBdH (p. 388). �
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