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Abstract. An extensible beam equation with a stochastic force of a white noise type is stud-
ied, Lyapunov functions techniques being used to prove existence of global mild solutions
and asymptotic stability of the zero solution.

0. Introduction

The nonlinear beam equation

∂2y

∂t2
+ γ

∂4y

∂x4 =

a + b

l∫

0

(
∂y

∂x

)2

dx


 ∂2y

∂x2 (0.1)

was proposed by S. Woinowsky-Krieger [34] as a model for the transversal deflec-
tion of an extensible beam of natural length l, having the ends fixed at the support,
under an axial force. In [11] it was shown that the properties of solutions to (0.1)
may be related to the phenomenon of dynamic buckling. An equation in two space
variables, analogous to (0.1), has been discussed as a model of nonlinear oscilla-
tions of a plate in a supersonic flow of gas (see [9], Chapter 4, and the references
therein). (For the physical background, the papers [14], [29] or [18] may be also
consulted.) It is not obvious that solutions to (0.1) do not blow up at finite time,
however, the equation (0.1) as well as its abstract version discussed below have
already attracted considerable attention and their properties are rather well under-
stood nowadays. Let us quote at least the papers [1], [24], [16], [32], [20] and [33],
in which nonexplosion results and further references may be found.

Motivated by problems arising in aeroelasticity (the description of large ampli-
tude vibrations of an elastic panel excited by aerodynamic forces), Chow and Me-
naldi in [8] considered a beam described by the equation (0.1) and subjected to
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a force including random fluctuations. Namely, they studied a stochastic partial
differential equation

∂2u

∂t2
−
[
a + b

∫ l

0

(∂u
∂x

)2
dx

]
∂2u

∂x2 + γ
∂4u

∂x4

= g
(
t, x,

∂u

∂t
,
∂u

∂x

)
+

∞∑
k=1

σk

(
t, x,

∂u

∂t
,
∂u

∂x

)
ẇk, x ∈ [0, l], t ≥ 0,

u(t, 0) = u(t, l) = ∂u

∂x
(t, 0) = ∂u

∂x
(t, l) = 0, t ≥ 0, (0.2)

where wk are independent standard Brownian motions, and they established exis-
tence and uniqueness of global solutions. The goal of our paper is threefold. First,
we shall treat a wide class of abstract stochastic beam equations with a nonlocal
term and nonlinear damping

utt + A2u+ g(u, ut )+m(‖B1/2u‖2)Bu = σ(u, ut )Ẇ (0.3)

in a Hilbert spaceH , where the operatorsA and B are positive selfadjoint andW is
an (infinite-dimensional) Wiener process (see the next section for details), showing
that results concerning the problem (0.3) apply to (0.2) under reasonable assump-
tions. Secondly, we prove nonexplosion of mild solutions to (0.3) by a relatively
straightforward method based on a choice of a suitable Lyapunov function (which
may be interpreted as energy). Thirdly, by modifying the Lyapunov function, the
same argument will be adapted to yield stability of solutions to (0.3). It should be
noted, however, that whilst our nonexplosion results are fully comparable with the
deterministic ones, the stability results in the deterministic and stochastic cases are
rather different. In particular, to establish asymptotic stability we have to assume
that the damping term g is of the form g(u, ut ) = βut , β > 0. If σ ≡ 0, many
results on the stabilizing effect of nonlinear damping terms are available (see e.g.
[7], [9], [13], [15], [20], [33] for various stability results). Stability of the zero solu-
tion of stochastic evolution equations has been studied recently in many papers, but
mainly in the parabolic case (see e.g. [5], [21] or the survey [22] and the references
therein). Stochastic hyperbolic equations were treated in [23], however, the results
are not applicable to the equation (0.3). In fact, the stability conditions proposed in
the present paper utilize in a substantial way the specific form of the problem (0.3).

The paper is organized as follows: In the next section, the problem is intro-
duced precisely and main results are stated, their proofs being deferred to Sections
2 (existence of global solutions) and 3 (stability of the zero solution). In Section 4
we show that the abstract model we study covers in particular problems of the type
(0.2) and in Appendix we provide a lemma justifying the definition of a local mild
solution we use.

1. Main results

Let H be a separable Hilbert space, the norm and inner product of which will be
denoted by ‖ · ‖ and 〈·, ·〉, respectively. Suppose that
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(A1) A : Dom(A) −→ H and B : Dom(B) −→ H are self-adjoint oper-
ators in H , B > 0, A ≥ µI for some µ > 0, Dom(B) ⊇ Dom(A)
and B ∈ L (Dom(A),H), Dom(A) being endowed with the graph norm
‖x‖Dom(A) ≡ ‖Ax‖.

(A2) W is a (possibly cylindrical) Wiener process in another real separable Hil-
bert space U with a covariance operator Q, defined on a stochastic basis
(Ω,F , (F t ),P) such that F 0 contains all P-null sets.

(A3) m ∈ C 1([0,∞[) is a nonnegative function, m ≥ 0.

We shall investigate an equation, written symbolically

utt + A2u+ g(u, ut )+m(‖B1/2u‖2)Bu = σ(u, ut )Ẇ ,

u(0) = u0, ut (0) = u1. (1.1)

To interpret (1.1) rigorously and to state hypotheses upon the coefficients g and σ ,
we rewrite (1.1) as a first order system in a standard way. Let the space RngQ1/2

be endowed with its natural Hilbert space structure (see [10], Section 4.2), and let
L 2 denote the space of Hilbert-Schmidt operators. Set

H = Dom(A)×H,

∥∥∥∥
(
x

y

)∥∥∥∥
2

H

= ‖Ax‖2 + ‖y‖2,

Dom(A) = Dom(A2)× Dom(A), A =
(

0 I

−A2 0

)
,

F : H −→ H ,

(
x

y

)

−→

(
0

−m(‖B1/2x‖2)Bx − g(x, y)

)
.

Assume that

(A4) σ : H −→ L 2(RngQ1/2, H) is Lipschitz continuous on bounded sets in
H and of a linear growth, that is

∃Lσ < ∞ ∀x ∈ H
∥∥σ(x)Q1/2

∥∥
HS ≤ Lσ

(
1 + ‖x‖H

)
,

∀N ∈ N ∃Lσ (N) < ∞ ∀x, y ∈ H , ‖x‖H, ‖y‖H ≤ N∥∥[σ(x)− σ(y)]Q1/2
∥∥

HS ≤ Lσ (N)‖x − y‖H ;
by ‖ · ‖HS we denote the norm of both L 2(U,H) and L 2(U,H ). Obviously, this
implies that the mapping

Σ : H −→ L 2(RngQ1/2,H ),

(
x

y

)

−→

(
0

σ(x, y)

)

is Lipschitz on bounded subsets of H and of a linear growth (with the same con-
stants). Further, suppose that g satisfies the following growth estimate:

(A5) g : H −→ H is Lipschitz on bounded subsets of H and there exists a
Lg ∈ ]0,∞[ such that

〈y, g(x, y)〉 ≥ −Lg
(
1 + ‖x‖2

H

)
(1.2)

for any x = (x, y)� ∈ H .
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Finally, set u0 = (u0, u1)
�. In this notation, (1.1) reads as

du = (
Au + F(u)

)
dt +Σ(u)dW, (1.3)

u(0) = u0. (1.4)

The components of the solution u will be denoted by u = (u, ut )
�.

The operator A is densely defined and skew-symmetric, hence both A and −A
are dissipative. To show that A is m-dissipative it suffices to check that Rng(IH −
A) = H . For this we take (u, v)� ∈ H and we want to find (x, y)� ∈ Dom(A)
such that x − y = u, y + A2x = v. This system is equivalent to x − y = u,
x + A2x = u + v which has a solution as −1 does not belong to the spectrum of
A2. We can verify in an analogous way that −A ism-dissipative, hence the operator
A is skew-adjoint and generates a C0-group of unitary operators on H (see e.g.
[6], Corollary 2.4.11 and Theorem 3.2.3). It is easy to check that F : H −→H
is Lipschitz continuous on bounded sets (hence also bounded on bounded sets).
Let u0 : Ω −→ H be F 0-measurable. Under the above assumptions, it is pos-
sible to find a unique maximal local mild solution u to (1.3), (1.4) with lifespan
ζ by proceeding in a standard way (compare, for example, [30], Theorem 1.5, or
[2], Theorem 4.10). That is, ζ is a stopping time, strictly positive P-almost surely,
(u(t), t < ζ ) is a progressively measurable process satisfying

lim sup
t↗ζ

‖u(t)‖H = +∞ P-almost surely on {ζ < ∞},

and

u(t ∧ τk) = eA(t∧τk)u(0)+
∫ t∧τk

0
eA(t∧τk−r)F (u(r))dr + Iτk (Σ)(t ∧ τk)

for all t ≥ 0 and k ∈ N, where we define

τk = inf
{
t ≥ 0; ‖u(t)‖H ≥ k

}
,

Iτk (Σ)(t) =
∫ t

0
1[0,τk[(r)e

A(t−r)Σ(u(r ∧ τk))dW(r).

(The choice of the process Iτk (Σ) is explained in Appendix, see Lemma A.1.) Note
that τk ↗ ζ as k → ∞. The process u has continuous paths, u ∈ C ([0, ζ [ ; H )

P-almost surely.
Now we are ready to state our first main result:

Theorem 1.1. Suppose that the hypotheses (A1)–(A5) are satisfied andu0 : Ω −→
H is F0-measurable. Let u be the unique maximal local mild solution to (1.3)–
(1.4) with lifespan ζ . Then ζ = +∞ P-almost surely, i.e. there exists a unique mild
solution u to (1.3)–(1.4) on [0,∞[ and u ∈ C ([0,∞[ ; H ) P-almost surely.

Set

M(s) =
∫ s

0
m(r)dr, s ≥ 0,



Stochastic nonlinear beam equations 123

and define a mapping E from the set of all random variables v = (v, z)� : Ω −→
H into [0,+∞] by

E (v) = E
{
‖v‖2

H +M(‖B1/2v‖2)
}
.

In the course of the proof of Theorem 1.1 we arrive at

Corollary 1.2. Let the hypotheses (A1)–(A5) be satisfied. If we set

C = 2(Lg + L2
σ ),

then

E (u(t)) ≤ eCt
(
2 + E (u0)

)
(1.5)

holds for all t ≥ 0 whenever u is a solution to (1.3)–(1.4) the initial datum u0 of
which satisfies E (u0) < ∞.

Remark 1.1. Theorem 1.1 implies, in particular, that there is a unique global mild
solution to (1.3) (with continuous trajectories) for every deterministic initial con-
dition u(0) = x ∈ H and it follows from [26], Theorem 27, that (1.3) defines a
Markov process (u,Px) on H .

Corollary 1.3. Assume (A1)–(A5). Then the Markov process (u,Px) associated
with (1.3) is Feller, the function

x 
−→ Exϕ(u(t)) (1.6)

being continuous on H for every bounded continuous function ϕ : H −→ R and
for all t ≥ 0.

Let us turn to stability results now. The problem (1.1) with the damping term g

of the form

g(x) = βy for some β ≥ 0 and all x = (x, y)� ∈ H (1.7)

will be considered. In addition, we strengthen the linear growth hypothesis on σ to

∃Rσ < ∞ ∀x ∈ H ‖σ(x)Q1/2‖HS ≤ Rσ‖x‖H. (1.8)

This implies, in particular, that (1.3) admits a trivial solution u ≡ 0.

Theorem 1.4. Suppose that (A1)–(A4), (1.7), (1.8) are satisfied, and

R2
σ < β. (1.9)

Let there exist α > 0 such that

ym(y) ≥ αM(y) for all y ≥ 0. (1.10)
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Then the zero solution to (1.3) is exponentially mean-square stable and exponen-
tially stable with probability one: there exist constants C < ∞, λ > 0 such that if
u is a solution to (1.3)–(1.4) satisfying E (u0) < ∞, then we have:

(i) E‖u(t)‖2
H ≤ Ce−λtE (u0) for all t ≥ 0,

and
(ii) for every λ∗ ∈ ]0, λ[ a P-almost surely finite function t0 : Ω −→ [0,∞] may
be found such that

‖u(t)‖2
H ≤ Ce−λ

∗tE (u0) for all t ≥ t0 P-almost surely.

Besides exponential stability our method yields stability in probability.

Theorem 1.5. Under the hypotheses of Theorem 1.4, the zero solution of (1.3) is
stable in probability: for every ε > 0 there exists a δ > 0 such that for any solution
u to (1.3)–(1.4) with E (u0) < ∞,

P
{‖u(0)‖H > δ

}
< δ implies P

{
sup
t≥0

‖u(t)‖H > ε

}
< ε.

Remark 1.2. Note that ifm(r) = a+ br for some a, b ≥ 0 and all r ≥ 0, as in the
equation (0.2), then the condition (1.10) is always satisfied (with α = 1).

Remark 1.3. Let u be a solution to (1.3) with an arbitrary F0-measurable initial
condition. Set Ωn = {ω ∈ Ω; ‖u(0, ω)‖H ≤ n}, n ≥ 1, by Theorem 1.1 there
exists a solution un to (1.3) with the initial condition un(0) = 1Ωnu(0). By pathwise
uniqueness, un(t) = u(t) for all t ≥ 0 P-almost surely on Ωn. Suppose that the
hypotheses of Theorem 1.4 are satisfied and λ∗ ∈ ]0, λ[ is chosen. Since 1Ωnu(0)
is bounded, E (1Ωnu(0)) < ∞ and there exist almost surely finite random times
tn such that ‖u(t)‖2

H = ‖un(t)‖2
H ≤ C exp(−λ∗t)E (1Ωnu(0)) for all t ≥ tn P-

almost everywhere on Ωn. Define t0 = tn, K = CE (1Ωnu(0)) on Ωn \Ωn−1 for
n ≥ 1, setting Ω0 = ∅. Then t0 and K are almost surely finite random functions
and ‖u(t)‖2

H ≤ K exp(−λ∗t) for all t ≥ t0 P-almost surely. Therefore, under the
assumptions of Theorem 1.4 the zero solution to (1.3) is exponentially stable with
probability one in the class of all solutions of (1.3).

Remark 1.4. A simple analysis of the proof of Theorem 1.4 shows that we may
study equations with a more general damping term using exactly the same proce-
dure, if we are interested in ultimate boundedness of solutions instead of in stability.
Let us consider the problem (1.1) with g(x) = g̃(x) + βy, x = (x, y)� ∈ H , for
some β ≥ 0 and a bounded function g̃ : H −→ H Lipschitz continuous on
bounded sets. IfL2

σ < β and the condition (1.10) is satisfied, then solutions to (1.3)
are exponentially ultimately bounded in mean square: there exist constants C̄ < ∞
and λ̄ > 0 such that

E‖u(t)‖2
H ≤ C̄

(
1 + e−λ̄tE (u(0))

)
for all t ≥ 0

holds for any solution u of (1.3) satisfying E (u(0)) < ∞.
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2. Proofs: Nonexplosion

Proof of Theorem 1.1. First, solutions u to (1.3) satisfying E (u(0)) < ∞ will be
considered. Let u be such solution, denote by ζ its lifespan and define

τk = {
t ≥ 0; ‖u(t)‖H ≥ k

}
, k ∈ N,

as above. According to Khas’minskii’s test for nonexplosions (see [19], Theorem
III.4.1, for the finite-dimensional case), to prove that ζ = +∞ P-almost surely it
suffices to find a Lyapunov function V : H −→ R satisfying

V ≥ 0 on H , (2.1)

qR ≡ inf
‖x‖H≥R

V (x) −→
R→∞

+∞, (2.2)

EV (u(0)) < ∞ (2.3)

and

EV (u(t ∧ τk)) ≤ EV (u(0))+ C

∫ t

0

(
1 + EV (u(s ∧ τk))

)
ds (2.4)

for a constant C < ∞ and all t ≥ 0, k ∈ N. Let us recall the simple argument:
Once a function V satisfying (2.1)–(2.4) is found, we get

EV (u(t ∧ τk)) ≤ eCt
(
1 + EV (u(0))

)
, t ≥ 0, (2.5)

by the Gronwall lemma, which implies easily

P
{
τk < t

} ≤ 1

qk
E1{τk<t}V (u(t ∧ τk))

≤ 1

qk
eCt
(
1 + EV (u(0))

)
,

so

lim
k→∞

P
{
τk < t

} = 0

for each fixed t ≥ 0, and P{ζ < t} = 0 follows.
Set

V (x) = 1

2
‖x‖2

H + 1

2
M(‖B1/2x‖2), x =

(
x

y

)
∈ H .

Obviously, V ∈ C 2(H ), V is uniformly continuous on bounded sets and satisfies
(2.1), (2.2). Moreover, (2.3) is equivalent to E (u(0)) < ∞. To verify (2.4) we use
the Itô formula. Although the underlying idea is lucid and simple, the computations
are involved and bit cumbersome, so to explain the argument we first derive the
estimate (2.4) assuming that there exists a global strong solution u of (2.1). Let us
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denote by DV and D2V the first and second Fréchet derivative of the function V ,
respectively. In a straightforward way we may obtain

DV (x)h = 〈x, h〉H +m(‖B1/2x‖2)〈B1/2x, B1/2h1〉,
D2V (x)(h, k) = 〈h, k〉H +m(‖B1/2x‖2)〈B1/2k1, B

1/2h1〉
+2m′(‖B1/2x‖2)〈B1/2x, B1/2h1〉〈B1/2x, B1/2k1〉,

whenever x = (x, y)�, h = (h1, h2)
�, k = (k1, k2)

� ∈ H , that is, representing
DV (x) as an element in H and D2V (x) as an operator in L (H ) we have

DV (x) = x +m(||B1/2x||2)
(
A−2Bx

0

)
, (2.6)

D2V (x) = IH +m(‖B1/2x‖2)

(
A−2B 0

0 0

)

+2m′(‖B1/2x‖2)

(
A−2Bx

0

)
⊗
(
A−2Bx

0

)
(2.7)

for x = (x, y)� ∈ H . In particular, the functions DV and D2V are uniformly
continuous on bounded subsets of H . From (2.6) and (2.7) we get

〈DV (x),Ax〉H = m(‖B1/2x‖2)〈Bx, y〉
for any x = (x, y)� ∈ Dom(A), and

〈DV (x), F (x)〉H = −m(‖B1/2x‖2)〈y, Bx〉 − 〈y, g(x, y)〉
for any x = (x, y)� ∈ H , whence also

〈DV (x),Ax + F(x)〉H = −〈y, g(x)〉, x =
(
x

y

)
∈ Dom(A).

Indeed,

〈DV (x),Ax〉H
=
〈(
x

y

)
,

(
y

−A2x

)〉

H

+m(‖B1/2x‖2)

〈(
A−2Bx

0

)
,

(
y

−A2x

)〉

H

= 〈Ax,Ay〉 − 〈y,A2x〉 +m(‖B1/2x‖2)〈AA−2Bx,Ay〉
= m(‖B1/2x‖2)〈Bx, y〉,

and

〈DV (x), F (x)〉H
= −m(‖B1/2x‖2)

〈(
x

y

)
,

(
0
Bx

)〉

H

−m2(‖B1/2x‖2)

〈(
A−2Bx

0

)
,

(
0
Bx

)〉

H

−
〈
x,

(
0
g(x)

)〉

H

−m(‖B1/2x‖2)

〈(
A−2Bx

0

)
,

(
0
g(x)

)〉

H

= −m(‖B1/2x‖2)〈y, Bx〉 − 〈y, g(x, y)〉.
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Further, we have

Tr
(
Q1/2Σ(x)∗D2V (z)Σ(x)Q1/2) = ‖Σ(x)Q1/2‖2

HS, x, z ∈ H . (2.8)

To check this identity, let us first realize that

Σ(x)∗ : H −→ RngQ1/2,

(
h1
h2

)

−→ σ(x)∗h2.

The operatorΣ(x)Q1/2 is Hilbert-Schmidt, soQ1/2Σ(x)∗D2V (z)Σ(x)Q1/2 is nu-
clear, its trace is well defined and does not depend on the choice of an orthonormal
basis. Hence take an arbitrary orthonormal basis {ei}i∈I in U and x, z = (w, z)� ∈
H . By definition,

Tr
(
Q1/2Σ(x)∗D2V (z)Σ(x)Q1/2)

=
∑
i∈I

〈
Q1/2Σ(x)∗D2V (z)Σ(x)Q1/2ei, ei

〉
U

=
∑
i∈I

〈
Σ(x)∗D2V (z)

(
0

σ(x)Q1/2ei

)
,Q1/2ei

〉

U

=
∑
i∈I

〈
Σ(x)∗

[(
0

σ(x)Q1/2ei

)
+m(‖B1/2w‖2)

(
A−2B 0

0 0

)(
0

σ(x)Q1/2ei

)

+2m′(‖B1/2w‖2)

〈(
A−2Bw

0

)
,

(
0

σ(x)Q1/2ei

)〉

H

(
A−2Bw

0

)]
,Q1/2ei

〉

U

=
∑
i∈I

〈
Σ(x)∗

(
0

σ(x)Q1/2ei

)
,Q1/2ei

〉

U

=
∑
i∈I

〈
σ(x)∗σ(x)Q1/2ei,Q

1/2ei
〉
U

=
∑
i∈I

∥∥σ(x)Q1/2ei
∥∥2 =

∑
i∈I

∥∥Σ(x)Q1/2ei
∥∥2

H

= ‖Σ(x)Q1/2‖2
HS.

Finally,

Σ(x)∗DV (z) = Σ(x)∗
(
w

z

)
+m(‖B1/2w‖2)Σ(x)∗

(
A−2Bw

0

)

= σ(x)∗z (2.9)

for all x, z = (w, z)� ∈ H .
Were u a global strong solution to (1.3), an application of the Itô formula (see

e.g. [10], Theorem 4.17) would yield

V (u(t ∧ τn))− V (u(0)) =
∫ t∧τk

0

{〈
DV (u(s)),Au(s)+ F(u(s))

〉
H

+1

2
Tr
(
Q1/2Σ(u(s))∗D2V (u(s))Σ(u(s))Q1/2)}ds
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+
∫ t∧τk

0
Σ(u(s))∗DV (u(s))dW(s)

=
∫ t∧τn

0

{
−〈ut (s), g(u(s))〉 + 1

2
‖Σ(u(s))Q1/2‖2

HS

}
ds

+
∫ t∧τn

0
σ(u(s))∗ut (s)dW(s).

So

EV (u(t ∧ τn)) = EV (u(0))+ E
∫ t∧τn

0

{
−〈ut (s), g(u(s))〉

+1

2
‖Σ(u(s))Q1/2‖2

HS

}
ds

≤ EV (u(0))+ (Lg + L2
σ )

∫ t

0

(
1 + E‖u(s ∧ τn)‖2

H

)
ds

≤ EV (u(0))+ 2(Lg + L2
σ )

∫ t

0

(
1 + EV (u(s ∧ τn))

)
ds

and (2.4) holds.
To justify the above considerations, we have to overcome two difficulties: first,

the solution u may have only a finite lifespan, and second, the Itô formula cannot
be applied to mild solutions directly. To treat the first problem, fix k ∈ N arbitrarily
for a while and set

f (t) = 1[0,τk[(t)F (u(t ∧ τk)), κ(t) = 1[0,τk[(t)Σ(u(t ∧ τk)), t ≥ 0.

Then f : R+ ×Ω −→ H and κ : R+ ×Ω −→ L2(RngQ1/2,H ) are progres-
sively measurable processes, bounded by the very definition of τk , thus

E
∫ T

0

{
‖f (t)‖H + ‖κ(t)Q1/2‖2

HS

}
dt < ∞

for every T ≥ 0 and the linear problem

dv(t) = (
Av(t)+ f (t)

)
dt + κ(t)dW(t), v(0) = u(0) (2.10)

has a unique (global) mild solution. We have

v(t ∧ τk) = u(t ∧ τk) for all t ≥ 0 P-almost surely. (2.11)

Indeed,

v(t ∧ τk) = eA(t∧τk)u(0)+
∫ t∧τk

0
eA(t∧τk−r)f (r)dr + Iτk (κ)(t ∧ τk)

for all t ≥ 0, where

Iτk (κ)(t) =
∫ t

0
1[0,τk[(r)e

A(t−r)κ(r)dW(r)

=
∫ t

0
1[0,τk[(r)e

A(t−r)Σ(u(r ∧ τk))dW(r)
= Iτk (Σ)(t),

so (2.11) follows.
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As the next step, we approximate (2.10) by equations having strong solutions.
Towards this end, let us consider the Yosida approximations An, n ≥ 1, to A:

An = nA(nI − A)−1 = n2(nI − A)−1 − nI.

Recall that An’s are dissipative if A is dissipative. The operator An being bounded
on H , the equation

dvn(t) = (
Anvn(t)+ f (t)

)
dt + κ(t)dW(t), vn(0) = u(0),

has a unique strong solution. Obviously,

vn(t)− v(t) = [
eAnt − eAt

]
u(0)+

∫ t

0

[
eAn(t−r) − eA(t−r)]f (r)dr

+
∫ t

0

[
eAn(t−r) − eA(t−r)]κ(r)dW(r).

As

E
∫ T

0

∥∥κ(s)Q1/2
∥∥p

HSds < ∞

for any p ∈ ]2,∞[ and every T ≥ 0, Proposition 7.3 in [10] implies

E sup
0≤t≤T

∥∥∥∥
∫ t

0

[
eAn(t−r) − eA(t−r)]κ(r)dW(r)

∥∥∥∥
p

H

−→
n→∞ 0, T ≥ 0,

therefore

E sup
0≤t≤T

‖v(t)− vn(t)‖2
H −→

n→∞ 0, T ≥ 0, (2.12)

by properties of the Yosida approximations (see e.g. [27], Section 1.3).
Since vn’s are strong solutions, we may compute V (vn) using the Itô formula

arriving, for any bounded stopping time �, at

V (vn(�))− V (vn(0)) =
∫ �

0
〈DV (vn(s)),Anvn(s)+ f (s)〉H ds

+1

2

∫ �

0
Tr
{
Q1/2κ(s)∗D2V (vn(s))κ(s)Q

1/2}ds

+
∫ �

0
κ(s)∗DV (vn(s))dW(s).

We want to pass n → ∞; as the first step, we simplify the integrand of the first
integral on the right hand side. Let us introduce the canonical projections

π1 : H −→ Dom(A) ↪→ H,

(
x

y

)

−→ x,

π2 : H −→ H,

(
x

y

)

−→ y.
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Using (2.6), dissipativity of An and the obvious fact π1f = 0 we get

〈DV (vn(s)),Anvn(s)+ f (s)〉H
= 〈vn(s),Anvn(s)〉H + 〈vn(s), f (s)〉H

+m(‖B1/2π1vn(s)‖2)〈Bπ1vn(s), π1Anvn(s)+ π1f (s)〉
≤ 〈vn(s), f (s)〉H +m(‖B1/2π1vn(s)‖2)〈Bπ1vn(s), π1Anvn(s)〉.

To proceed further, we show that

lim
n→∞ E sup

0≤t≤T
‖π1Anvn(t)− π1Av(t)‖2 = 0, T ≥ 0. (2.13)

Note that π1A((x, y)
�) = y, so ‖π1A‖L(H,H) = 1. Plainly, (2.13) will eas-

ily follow from (2.12), if we prove that π1An, n ≥ 1, are uniformly bounded as
operators from H to H . To see it, we find an explicit formula for π1An. Since
An = n2(nI − A)−1 − nI , we have to compute (nI − A)−1. We claim that

(nI − A)−1
(
ϕ

ψ

)
=
(

(n2I + A2)−1(nϕ + ψ)

−A2(n2I + A2)−1ϕ + n(n2I + A2)−1ψ

)
,

(
ϕ

ψ

)
∈ H .

By definition,

(nI − A)−1
(
ϕ

ψ

)
=
(
x

y

)
if and only if

(
ϕ

ψ

)
= (nI − A)

(
x

y

)
=
(
nx − y

A2x + ny

)
,

i.e. componentwise
nx − y = ϕ, A2x + ny = ψ.

Solving this system of equations we get (n2I + A2)x = nϕ + ψ , consequently

y = nx − ϕ = [
n2(n2I + A2)−1 − I

]
ϕ + n(n2I + A2)−1ψ

= −A2(n2I + A2)−1ϕ + n(n2I + A2)−1ψ

and our claim follows. Taking into account that ϕ ∈ Dom(A) we obtain

π1An

(
ϕ

ψ

)
= −nϕ + n2(n2I + A2)−1(nϕ + ψ)

= n
[
n2(n2I + A2)−1 − I

]
ϕ + n2(n2I + A2)−1ψ

= −nA2(n2I + A2)−1ϕ + n2(n2I + A2)−1ψ

= −nA(n2I + A2)−1Aϕ + n2(n2I + A2)−1ψ.

and

π2An

(
ϕ

ψ

)
= −n2A(n2I + A2)−1Aϕ − nA2(n2I + A2)−1ψ.

Let E(λ) be the spectral measure associated with the positive self-adjoint operator
A, by the spectral theorem

nA(n2I + A2)−1 =
∫ ∞

0

nλ

n2 + λ2 dE(λ),

n2(n2I + A2)−1 =
∫ ∞

0

n2

n2 + λ2 dE(λ),
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so

sup
n≥1

‖nA(n2I + A2)−1‖L(H) ≤ sup
n≥1

sup
λ≥0

nλ

n2 + λ2 ≤ 1

2
,

sup
n≥1

‖n2(n2I + A2)−1‖L(H) ≤ sup
n≥1

sup
λ≥0

n2

n2 + λ2 ≤ 1,

which yields

sup
n≥1

‖π1An‖L(H,H) ≤
√

2. (2.14)

As theYosida approximations satisfy Anx → Ax as n → ∞ for every x ∈ Dom(A),
(2.14) implies π1Anx → π1Ax for all x ∈ H , the convergence being uniform on
compact subsets of H , hence

sup
0≤t≤T

∥∥(π1An − π1A)v(t)
∥∥ −→
n→∞ 0 P-almost surely

(note that the set {v(t, ω); 0 ≤ t ≤ T } is compact for almost all ω by continuity
of trajectories). Then

E sup
0≤t≤T

∥∥(π1An − π1A)v(t)
∥∥2 −→

n→∞ 0

follows by the dominated convergence theorem and, as

E sup
0≤t≤T

∥∥π1An(vn(t)− v(t))
∥∥2 −→

n→∞ 0

is an immediate consequence of (2.12) and (2.14), the proof of (2.13) is completed.
Further, by (2.8) and the definition of κ we obtain

Tr
{
Q1/2κ(s)∗D2V (vn(s))κ(s)Q

1/2} = ∥∥κ(s)Q1/2
∥∥2

HS.

Analogously, (2.9) yields

κ(s)∗DV (vn(s)) = 1[0,τk[(s)σ (u(s ∧ τk))∗π2vn(s).

Since 1[0,τk[(s)
(
σ(u(s ∧ τk))Q1/2

)∗ is bounded and � is a bounded stopping time,

E

∣∣∣∣
∫ �

0
κ(s)∗DV (vn(s))dW(s)−

∫ �

0
κ(s)∗DV (v(s))dW(s)

∣∣∣∣
2

= E
∫ �

0
1[0,τk[(s)

∥∥(σ(u(s ∧ τk))Q1/2)∗π2
[
vn(s)− v(s)

]∥∥2
U

−→
n→∞ 0

by (2.12), whence
∫ �

0
κ(s)∗DV (vn(s))dW(s)

P−→
n→∞

∫ �

0
κ(s)∗DV (v(s))dW(s). (2.15)
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Finally, note that applying (2.12) we may find a subsequence {vnk } of {vn} such
that vnk (·, ω) → v(·, ω) uniformly on

[
0, �(ω)

]
as k → ∞ for P-almost every ω.

Accordingly,

V (vn(�)) ≤ V (u(0))+
∫ �

0
〈vn(s), f (s)〉H ds

+
∫ �

0
m(‖B1/2π1vn(s)‖2)〈Bπ1vn(s), π1Anvn(s)〉ds

+1

2

∫ �

0
‖κ(s)Q1/2‖2

HSds

+
∫ �

0
κ(s)∗DV (vn(s))dW(s)

and using (2.12), (2.13), (2.15) and continuity of B on Dom(A) we get

V (v(�)) ≤ V (u(0))+
∫ �

0
〈v(s), f (s)〉H ds

+
∫ �

0
m(‖B1/2π1v(s)‖2)〈Bπ1v(s), π1Av(s)〉ds

+1

2

∫ �

0
‖κ(s)Q1/2‖2

HSds

+
∫ �

0
κ(s)∗DV (v(s))dW(s)

P-almost surely. Hence

EV (v(�)) ≤ EV (u(0))+ E
∫ �

0
〈v(s), f (s)〉H ds

+E
∫ �

0
m(‖B1/2π1v(s)‖2)〈Bπ1v(s), π1Av(s)〉ds

+1

2
E
∫ �

0
‖κ(s)Q1/2‖2

HSds,

taking � = t ∧ τk and recalling v(t) = u(t) for t < τk we arrive at

EV (u(t ∧ τk))
≤ EV (u(0))+ E

∫ t∧τk

0
〈u(s), F (u(s))〉H ds

+E
∫ t∧τk

0
m(‖B1/2u(s)‖2)〈Bu(s), ut (s)〉ds

+1

2
E
∫ t∧τk

0
‖Σ(u(s))Q1/2‖2

HSds

= EV (u(0))+ E
∫ t∧τk

0

{
−〈ut (s), g(u(s))〉 + 1

2
‖Σ(u(s))Q1/2‖2

HS

}
ds.
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Since k ≥ 1 was arbitrary, the proof of (2.4) may be completed in an obvious way,
as we have already shown above.

Therefore, we see that Theorem 1.1 holds under an additional hypothesis
E (u(0)) < ∞. In particular, a unique global mild solution to (1.3) may be found
for every deterministic initial condition u(0) = x ∈ H . (Pathwise uniqueness
obviously holds for (1.3) owing to the Lipschitz continuity of F andΣ on bounded
sets.) Consequently, for any Borel probability measure µ on H there exists a mar-
tingale solution (as defined in [10], Chapter 8) to (1.3) with the initial condition
µ by [26], Corollary 22. Using pathwise uniqueness and a suitable version of the
Yamada-Watanabe theory (see [25], Theorem 2) we find a (unique) global mild
solution to (1.3), defined on the given stochastic basis, for every F0-measurable
initial condition u(0) : Ω −→ H . ��

Remark 2.1. One may avoid theYamada-Watanabe theory by considering first trun-
cated initial conditions and then passing to the limit, which is possible due to path-
wise uniqueness. (Such a procedure was used in Remark 1.3.)

Proof of Corollary 1.2. We know that τn ↗ +∞ P-almost surely. Consequently,
(2.5), continuity of trajectories of u and the Fatou lemma yield

EV (u(t)) ≤ eCt
(
1 + EV (u(0))

)
, t ≥ 0.

This estimate implies (1.5) immediately due to our choice of V ; the computations
above show that C = 2(Lg + L2

σ ). ��

Proof of Corollary 1.3. It suffices to check that the function (1.6) is continuous for
every bounded Lipschitz function ϕ (see e.g. [12], Theorem 11.3.3). So, let us fix
an arbitrary t > 0, a bounded Lipschitz continuous function ϕ : H −→ R, and a
convergent sequence {xn} in H , xn → x0 as n → ∞. We aim at proving that

lim
n→∞ Exnϕ(u(t)) = Ex0ϕ(u(t)).

Let us denote by uj the solution to (1.3) with the initial condition uj (0) = xj ,
j ≥ 0. Since {xj } is a bounded sequence, there exists a constant H < ∞ such that
2 + E (uj (0)) ≤ H for all j ≥ 0, therefore

sup
j≥0

E (uj (t)) ≤ eCtH

by Corollary 1.2. Let k ≥ 1 ∨H be fixed for a while, set

�j = inf
{
v ≥ 0; ‖uj (v)‖H ≥ k

} ∧ inf
{
v ≥ 0; ‖u0(v)‖H ≥ k

}
, j ≥ 1.

In the first part of the proof of Theorem 1.1 we have already shown that

sup
j≥0

P
{
�j < t

} ≤ 2eCtH

qk
.
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The function ϕ being Lipschitz, there exists a constant Lϕ < ∞ such that |ϕ(y)−
ϕ(z)| ≤ Lϕ‖y − z‖H for all y, z ∈ H ; set ‖ϕ‖∞ = supH |ϕ|. Fix an arbitrary
p ∈ ]2,∞[, we may estimate

∣∣Exnϕ(u(t))− Ex0ϕ(u(t))
∣∣ = ∣∣Eϕ(un(t))− Eϕ(u0(t))

∣∣
≤ E

∣∣ϕ(un(t))− ϕ(u0(t))
∣∣

= E1{�n<t}
∣∣ϕ(un(t))− ϕ(u0(t))

∣∣+ E1{�n≥t}
∣∣ϕ(un(t))− ϕ(u0(t))

∣∣
≤ 2P

{
�n < t

}‖ϕ‖∞ + LϕE1{�n≥t}
∥∥un(t)− u0(t)

∥∥
H

≤ 4‖ϕ‖∞
eCtH

qk
+ LϕE

∥∥un(t ∧ �n)− u0(t ∧ �n)
∥∥

H

≤ 4‖ϕ‖∞
eCtH

qk
+ Lϕ

(
E
∥∥un(t ∧ �n)− u0(t ∧ �n)

∥∥p
H

)1/p
.

(Note that ‖un(v∧�n)− u0(v∧�n)‖H is bounded, hence in Lp(Ω), for all v ≥ 0
by the definition of �n.) We have

E
∥∥un(v ∧ �n)− u0(v ∧ �n)‖p
≤ 3p−1E

∥∥eA(v∧�n)(xn − x0)
∥∥p

H

+3p−1E

∥∥∥∥
∫ v∧�n

0
eA(v∧�n−s)[F(un(s))− F(u0(s))

]
ds

∥∥∥∥
p

H

+3p−1E
∥∥J�n(v ∧ �)∥∥pH ,

where

J�n(v) =
∫ v

0
1[0,�n[(s)e

A(v−s)[Σ(un(s))−Σ(u0(s))
]
dW(s).

Let us denote by hi generic constants (that may depend on k and t). By the maximal
inequality for stochastic convolutions (see e.g. [10], Proposition 7.3),

E
∥∥J�n(v ∧ �n)

∥∥p
H ≤ E sup

0≤r≤v

∥∥J�n(r)
∥∥p

H

≤ h1E
∫ v

0
1[0,�n[(s)

∥∥Σ(un(s))Q1/2 −Σ(u0(s))Q
1/2
∥∥p

HSds

≤ h1E
∫ v

0

∥∥Σ(un(s ∧ �n))Q1/2 −Σ(u0(s ∧ �))Q1/2
∥∥p

HSds.

Taking into account that un(s), u0(s) remain in the ball with radius k and center at
0 for s ≤ �n and using Lipschitz continuity of F and Σ on this ball we obtain

E
∥∥un(v ∧ �n)− u0(v ∧ �n)

∥∥p
H

≤ h2‖xn − x0‖pH + h3E
∫ v

0

∥∥un(s ∧ �n)− u0(s ∧ �n)
∥∥p

H ds

for 0 ≤ v ≤ t . The Gronwall lemma yields

E
∥∥un(t ∧ �n)− u0(t ∧ �n)

∥∥p
H ≤ h4‖xn − x0‖pH ,
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thus ∣∣Exnϕ(u(t))− Ex0ϕ(u(t))
∣∣ ≤ 4‖ϕ‖∞

eCtH

qk
+ h5

∥∥xn − x0‖H.

The constant h5 depends on k in general, so given ε > 0 we first realize that
qk ↗ ∞ and find k such that the first term on right hand side is less than ε/2; the
second term is then less than ε/2 for all n sufficiently large as xn → x0. ��

3. Proofs: Stability

Define an operator P by

P : H −→ H ,

(
x

y

)

−→

(
β2A−2x + 2x + βA−2y

βx + 2y

)
,

that is,

P =
(
β2A−2 + 2I βA−2

βI 2I

)
.

The properties of P needed in the sequel are summarized in the following lemma.

Lemma 3.1. The operatorP is a self-adjoint linear isomorphism of H . Moreover,

‖P ‖−1
L(H )

〈Pw,w〉H ≤ ‖w‖2
H ≤ 〈Pw,w〉H, (3.1)

〈(
0

−βy
)
, Pw

〉

H

= −β2〈x, y〉 − 2β‖y‖2 (3.2)

for all w = (x, y)� ∈ H , and

〈Aw, Pw〉H = −β‖Ax‖2 + β2〈y, x〉 + β‖y‖2 (3.3)

for every w = (x, y)� ∈ Dom(A).

Proof. It is easy to see that P ∈ L (H ) and for wi = (xi, yi)
� ∈ H , i = 1, 2,

we have

〈Pw1,w2〉H = β2〈x1, x2〉 + 2〈Ax1, Ax2〉 + β〈y1, x2〉 + β〈x1, y2〉 + 2〈y1, y2〉
= 〈w1, Pw2〉H,

so P = P ∗. Obviously,

〈Pw,w〉H = 2‖Ax‖2 + ‖y‖2 + ‖βx + y‖2

and (3.1) follows. Similar straightforward computations yield (3.2) and (3.3). ��
The Lyapunov functionΦ: H → R+, which plays a key role in the proofs of both
Theorem 1.4 and 1.5 is defined in terms of the operator P by setting

Φ(w) = 1

2
〈w, Pw〉H +M(‖B1/2x‖2), w =

(
x

y

)
∈ H . (3.4)

Let us note that a Lyapunov function w 
→ 〈Pw,w〉H appeared for the first time
in the paper [28] in connection with a stability analysis of linear deterministic
hyperbolic equations and was applied to stochastic hyperbolic problems in [23].
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Lemma 3.2. Suppose that the hypotheses of Theorem 1.4 are satisfied. Then there
exists a constant λ > 0 such that if u is a solution of (1.3) with E (u(0)) < ∞, then
the process

(
eλtΦ(u(t))

)
t≥0 is a nonnegative continuous supermartingale.

Unlike other proofs in this section, the proof of Lemma 3.2 is rather technical,
so it is deferred to the end of the section.

Proof of Theorem 1.4. Lemma 3.2 yields

EΦ(u(t)) ≤ e−λtEΦ(u(0)) (3.5)

for all t ≥ 0, so using (3.1) and nonnegativity of M we obtain

1

2
E‖u(t)‖2

H ≤ e−λtEΦ(u(0))

for all t ≥ 0, and (i) follows, since plainly

EΦ(u(0)) ≤
(1

2
‖P ‖H + 1

)
E (u(0)).

Further, taking an arbitrary λ∗ ∈ ]0, λ[ and setting ε = λ− λ∗ > 0 we have

P
{

sup
t∈[k,k+1]

eλ
∗tΦ(u(t)) ≥ EΦ(u(0))

}

≤ P
{

sup
t∈[k,k+1]

eλtΦ(u(t)) ≥ eεkEΦ(u(0))
}

(3.6)

for any k ∈ N. We may assume that EΦ(u(0)) > 0, otherwise there is nothing to
prove. In view of Lemma 3.2 we may use Doob’s supermartingale inequality and
(3.5) to obtain

P

{
sup

t∈[k,k+1]
eλtΦ(u(t)) ≥ eεkEΦ(u(0))

}
≤ eλkEΦ(u(k))

EΦ(u(0))
e−εk ≤ e−εk, (3.7)

thus ∞∑
k=0

P
{

sup
t∈[k,k+1]

eλ
∗tΦ(u(t)) ≥ EΦ(u(0))

}
< ∞

by (3.6) and (3.7), hence (ii) follows by the Borel-Cantelli lemma. ��
Proof of Theorem 1.5. Owing to the Markov property of solutions to (1.3), we may
suppose that u is a solution with a deterministic initial condition u(0) ∈ H . For a
given ε > 0 denote by σε the first exit time of u from the ball in H centered at the
origin with radius ε,

σε = inf
{
t ≥ 0; ‖u(t)‖H ≥ ε

}
.

By Lemma 3.2 and the optional sampling theorem we have

EΦ(u(t ∧ σε)) ≤ Φ(u(0))
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for t ∈ R+, and hence in view of (3.1)

ε2

2
P{σε < t} ≤ Φ(u(0))

for all t ∈ R+. Since {σε < t} ↑ {σε < ∞} as t → ∞ we get

P{σε < ∞} ≤ 2Φ(u(0))

ε2

or equivalently

P
{

sup
t≥0

‖u(t)‖H ≥ ε
}

≤ 2Φ(u(0))

ε2 . (3.8)

Now we use the fact that Φ(0) = 0 and Φ: H −→ R+ is continuous. Taking
δ > 0 such that Φ(z) < 1

2ε
3 for z ∈ H , ‖z‖H ≤ δ, the proof is completed by

(3.8). ��
Remark 3.1. From the proof of Theorem 1.4 it is easily seen that a slightly stron-
ger version of (i), (ii) has been proven: In fact, Φ(u(t)) decays exponentially fast
to zero (in L2 and almost surely). In view of (3.1) we have V ≤ Φ, where V is
the Lyapunov function introduced in Section 2, which may be interpreted as the
energy of the system. So we have proved exponential dissipation of the energy in
the respective sense.

The rest of the present section is devoted to proving Lemma 3.2. Recall that An
is the Yosida approximation of the operator A, introduced in Section 2.

Lemma 3.3. There exists a constant C < ∞ such that

sup
n≥1

〈Anw, Pw〉H ≤ C‖w‖2
H (3.9)

for each w ∈ H . Moreover,

lim sup
n→∞

〈Anwn, Pwn〉H ≤ −β‖Ax‖2 + β2〈y, x〉 + β‖y‖2 (3.10)

for every sequence wn ∈ H such that wn → w = (x, y)� ∈ H .

Proof. SetRn = (n2I+A2)−1 and Jn = n2Rn. The computations following (2.13)
show that

An =
(−nA2Rn Jn

−A2Jn −nA2Rn

)
,

hence for a w = (x, y)� ∈ H we get

〈Anw, Pw〉H = −β2n〈A2Rnx, x〉 − 2n〈A3Rnx,Ax〉 − βn〈A2Rnx, y〉
+β2〈Jny, x〉 + 2〈A2Jny, x〉 + β〈Jny, y〉
−β〈A2Jnx, x〉 − 2〈A2Jnx, y〉
−βn〈A2Rny, x〉 − 2n〈A2Rny, y〉

= −β
2

n
〈A2Jnx, x〉 − 2

n
〈A2JnAx,Ax〉 − 2β

n
〈A2Jnx, y〉

+β2〈Jny, x〉 + β〈Jny, y〉 − β〈A2Jnx, x〉 − 2

n
〈A2Jny, y〉,
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because 〈A2Jny, x〉 = 〈A2Jnx, y〉 due to self-adjointness of A. The operators
−A2Jn are dissipative as the Yosida approximations to the operator −A2, thus we
obtain

〈Anw, Pw〉H ≤ −2β

n
〈AJny,Ax〉 + β2〈Jny, x〉 + β〈Jny, y〉

−β〈JnAx,Ax〉. (3.11)

The norms ‖Jn‖L(H) are obviously bounded uniformly in n and

sup
n≥1

∥∥∥1

n
AJn

∥∥∥
L(H)

= sup
n≥1

‖nA(n2I + A2)−1‖L(H) ≤ 1

2
, (3.12)

as it was verified in Section 2. Therefore,

〈Anw, Pw〉H ≤ C(‖Ax‖2 + ‖y‖2) = C‖w‖2
H

for a constant C < ∞ and each w = (x, y)� ∈ H , which proves (3.9).
Further, let wn = (xn, yn)

� ∈ H be a sequence converging to a w = (x, y)�
in H . By (3.11) we have

〈Anwn, Pwn〉H ≤ −2β

n
〈AJnAxn, yn〉 + β2〈Jnyn, xn〉 + β〈Jnyn, yn〉

−β〈JnAxn,Axn〉. (3.13)

Obviously, Jnzn → z in H if zn, z ∈ H , zn → z. Moreover, if z ∈ Dom(A),
z = A−1v then n−1AJnz = n−1Jnv → 0, which together with (3.12) and density
of Dom(A) inH yields n−1AJnz → 0 for all z ∈ H . So n−1AJnzn → 0 whenever
zn → z in H and (3.13) implies

lim sup
n→∞

〈Anwn, Pwn〉H ≤ β2〈y, x〉 + β‖y‖2 − β‖Ax‖2.

The proof of (3.10) is completed. ��

Proof of Lemma 3.2. Obviously we have Φ ∈ C 2(H ) and

DΦ(w)h = 〈Pw, h〉H + 2m(‖B1/2x‖2)〈B1/2x, B1/2h1〉,
D2Φ(w)(h, k) = 〈Ph, k〉H + 4m′(‖B1/2x‖2)〈B1/2x, B1/2k1〉〈B1/2x, B1/2h1〉

+2m(‖B1/2x‖2)〈B1/2k1, B
1/2h1〉

for all w = (x, y)�, h = (h1, h2)
�, k = (k1, k2)

� ∈ H . The derivativeD2Φ may
be also written in the form

D2Φ(w) = P + 4m′(‖B1/2x‖2)

(
A−2Bx

0

)
⊗
(
A−2Bx

0

)

+2m(‖B1/2x‖2)

(
A−2B 0

0 0

)
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for w = (x, y)� ∈ H . Now we compute the terms that would appear in the Itô
formula for Φ(u(t)), were u(t) a strong solution of the equation. Using (3.2) and
(3.3) we have

〈Aw,DΦ(w)〉H = −β‖Ax‖2 + β2〈y, x〉 + β‖y‖2

+2m(‖B1/2x‖2)〈y, Bx〉

for all w = (x, y)� ∈ Dom(A), and

〈F(w),DΦ(w)〉H = −β2〈x, y〉 − 2β‖y‖2 − βm(‖B1/2x‖2)〈Bx, x〉
−2m(‖B1/2x‖2)〈Bx, y〉,

for all w = (x, y)� ∈ H . Note that, consequently, 〈Aw + F(w),DΦ(w)〉H ≤
−β‖w‖2

H since β > 0 andm ≥ 0. The term containing the second order derivative
may be computed in a similar manner as (2.8). Namely:

Tr
(
Q1/2Σ(w)∗D2Φ(z)Σ(w)Q1/2)

=
∑
k∈I

〈
Q1/2Σ(w)∗D2Φ(z)

(
0

σ(w)Q1/2ek

)
,Q1/2ek

〉

=
∑
k∈I

〈
Σ(w)∗P

(
0

σ(w)Q1/2ek

)
,Q1/2ek

〉

=
∑
k∈I

〈
Σ(w)∗

(
βA−2σ(w)Q1/2ek

2σ(w)Q1/2ek

)
,Q1/2ek

〉

=
∑
k∈I

〈
2σ(w)∗σ(w)Q1/2ek,Q

1/2ek
〉

= 2
∥∥Σ(w)Q1/2

∥∥2
HS

for all w, z ∈ H . For the “stochastic” term we have

Σ(z)∗DΦ(w) = σ(z)∗π2DΦ(w) = σ(z)∗(βx + 2y)

for z,w = (x, y)� ∈ H . The Itô formula cannot be applied directly to Φ(u(t))
and we make use of the approximating strong solution vn defined in Section 2
changing, however, slightly the definition of the stopping times τk . Given s ≥ 0, let
τk = inf{t ≥ s; ‖u(t)‖H ≥ k}, k ∈ N. (The definition from Section 1 corresponds
to the case s = 0; fromTheorem 1.1 we already know that the solutionu(t) is defined
globally, so we may consider any s ≥ 0 now.) Set f (t) = 1[0,τk[(t)F (u(t ∧ τk)),
κ(t) = 1[0,τk[(t)Σ(u(t ∧ τk)), t ≥ 0. For k ∈ N fixed we consider the equations

dv(t) = (Av(t)+ f (t))dt + κ(t)dW(t), v(0) = u(0),

dvn(t) = (Anvn(t)+ f (t))dt + κ(t)dW(t), vn(0) = u(0).
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Since vn are strong solutions we may apply the Itô formula on an interval [s, t],
t > s, to the process eλrΦ(vn(r)) (where λ > 0 will be specified later) to obtain

Φ(vn(t))e
λt = Φ(vn(s))e

λs

+
∫ t

s

eλr
[
λΦ(vn(r))+ 〈Anvn(r),DΦ(vn(r))〉H
+ 〈f (r),DΦ(vn(r))〉H
+1

2
Tr
(
Q1/2κ(r)∗D2Φ(vn(r))κ(r)Q

1/2)]dr

+
∫ t

s

eλrκ(r)∗DΦ(vn(r))dW(r).

Hence

Φ(vn(t))e
λt = Φ(vn(s))e

λs +
∫ t

s

eλr
[
λΦ(vn(r))+ 〈Anvn(r), P vn(r)〉H

+2m(‖B1/2π1vn(r)‖2)

〈
Anvn(r),

(
A−2Bπ1vn(r)

0

)〉

H

+〈f (r), P vn(r)〉H
+2m(‖B1/2π1vn(r)‖2)

〈
f (r),

(
A−2Bπ1vn(r)

0

)〉

H

+‖κ(r)Q1/2‖2
HS

]
dr

+
∫ t

s

eλrκ(r)∗DΦ(vn(r))dW(r)

and it follows that

Φ(vn(t))e
λt = Φ(vn(s))e

λs +
∫ t

s

eλr
[
λΦ(vn(r))+ 〈Anvn(r), P vn(r)〉H

+2m(‖B1/2π1vn(r)‖2)〈π1Anvn(r), Bπ1vn(r)〉
+〈π2f (r), βπ1vn(r)+ 2π2vn(r)〉 + ‖κ(r)Q1/2‖2

HS

]
dr

+
∫ t

s

eλrκ(r)∗DΦ(vn(r))dW(r). (3.14)

Now we pass to the limit for n → ∞. Recall the convergence (2.12) (so, possibly
for a subsequence, we have vn → v in C ([s, t]; H ) almost surely). In virtue of
Lemma 3.3 and the Fatou lemma we thus have

lim sup
n→∞

∫ t

s

eλr 〈Anvn(r), P vn(r)〉H dr

≤
∫ t

s

eλr
(−β‖Aπ1v(r)‖2 + β2〈π2v(r), π1v(r)〉 + β‖π2v(r)‖2)dr.
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The limit passage in the other terms of (3.14) is justified as in the similar case in
the proof of Theorem 1.1 (in particular, cf. (2.13)), so we arrive at

Φ(v(t))eλt ≤ Φ(v(s))eλs +
∫ t

s

eλr
[
λΦ(v(r))− β‖Aπ1v(r)‖2

+β2〈π2v(r), π1v(r)〉 + β‖π2v(r)‖2

+2m(‖B1/2π1v(r)‖2)〈Bπ1v(r), π2v(r)〉
+β〈π2f (r), π1v(r)〉 + 2〈π2f (r), π2v(r)〉 + ‖κ(r)Q1/2‖2

HS

]
dr

+
∫ t

s

eλrκ(r)∗DΦ(v(r))dW(r).

Since v(r) = u(r) for r < τk , it follows that

Φ(u(t ∧ τk))eλ(t∧τk) ≤ Φ(u(s))eλs +
∫ t∧τk

s

eλr
[
λΦ(u(r))

−β‖Au(r)‖2 + β2〈u(r), ut (r)〉 + β‖ut (r)‖2

+2m(‖B1/2u(r)‖2)〈Bu(r), ut (r)〉 + β〈−βut (r), u(r)〉
+2〈−βut (r), ut (r)〉 − 2m(‖B1/2u(r)‖2)〈Bu(r), ut (r)〉
−βm(‖B1/2u(r)‖2)〈Bu(r), u(r)〉
+‖σ(u(t))Q1/2‖2

HS

]
dr

+
∫ t∧τk

s

σ (u(r))∗(βu(r)+ 2ut (r))dW(r)

= Φ(u(s))eλs +
∫ t∧τk

s

eλr
[
λΦ(u(r))− β‖u(r)‖2

H

−βm(‖B1/2u(r)‖2)〈Bu(r), u(r)〉
+ ‖σ(u(r))Q1/2‖2

HS

]
dr

+
∫ t∧τk

s

eλrσ (u(r))∗(βu(r)+ 2ut (r))dW(r)

for all t ≥ s P-almost surely. Taking into account (3.4), (3.1), (1.8), (1.10) and
setting for brevity cP = ‖P ‖L(H ) we obtain

Φ(u(t ∧ τk))eλ(t∧τk) ≤ Φ(u(s))eλs

+
∫ t∧τk

s

eλr
[(1

2
λcP + R2

σ − β
)
‖u(r)‖2

H

+
(λ
α

− β
)
m(‖B1/2u(r)‖2)‖B1/2u(r)‖2

]
dr

+
∫ t∧τk

s

eλrσ (u(r))∗(βu(r)+ 2ut (r))dW(r).
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Choosing 0 < λ < 2c−1
P (β − R2

σ ) ∧ αβ, which is possible by (1.9), we arrive at

Φ(u(t ∧ τk))eλ(t∧τk) ≤ Φ(u(s))eλs

+
∫ t∧τk

s

eλrσ ∗(u(r))(βu(r)+ 2ut (r))dW(r)

for all t ≥ s P-almost surely. Passing k → ∞ we have in view of Theorem 1.1

Φ(u(t))eλt ≤ Φ(u(s))eλs

+
∫ t

s

eλrσ (u(r))∗(βu(r)+ 2ut (r))dW(r),

for t ≥ s, P-almost surely, and Lemma 3.2 easily follows by taking into account
Corollary 1.2. ��

4. Stochastic beam equations

The purpose of this section is to show that results we obtained about the equation
(1.3) are applicable to problems like (0.2). Let D ⊆ R

n be a bounded domain
with a C ∞-boundary ∂D. Let W be a Wiener process in L2(D) with a nuclear
covariance operator Q. Let G,Π : D × R × R

n × R −→ R be Borel functions,
m ∈ C 1([0,∞[) a nonnegative function, γ > 0 a positive constant. We shall
consider an equation

∂2u

∂t2
−m

(∫
D

|∇u|2dx

)
�u+ γ�2u+G

(
x, u,∇u, ∂u

∂t

)

= Π
(
x, u,∇u, ∂u

∂t

)
Ẇ (4.1)

with either the clamped boundary conditions

u = ∂u

∂ν
= 0 on ∂D (4.2)

(by ∂/∂ν we denote the outer normal derivative) or the hinged boundary conditions

u = �u = 0 on ∂D. (4.3)

First, we have to show that (4.1) may be turned in the form (1.3). To simplify nota-
tion, we set γ = 1. Let H = L2(D) and let B be the Laplacian with Dirichlet
boundary conditions, i.e.

Dom(B) = W 2,2(D) ∩W 1,2
0 (D), Bψ = −�ψ for ψ ∈ Dom(B).

Note that

‖B1/2ψ‖2
L2(D)

= 〈Bψ,ψ〉L2(D) = −
∫
D

�u·udx =
∫
D

|∇ψ|2dx, ψ ∈ Dom(B),

since ψ = 0 on ∂D.
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For the boundary conditions (4.2) we set A = C1/2, where

Dom(C) =
{
ψ ∈ W 4,2(D); ψ = ∂ψ

∂ν
= 0 on ∂D

}
,

Cψ = �2ψ for ψ ∈ Dom(C).

Then

Dom(A) =
{
ψ ∈ W 2,2(D); ψ = ∂ψ

∂ν
= 0 on ∂D

}
,

as follows e.g. by combining Theorems 4.3.3 and 1.15.3 in [31]. For the bound-
ary conditions (4.3) we set A = B. In both cases, the hypotheses on A and B,
adopted in Section 1, are satisfied. The only assumption that might require a proof
is the uniform positivity of the operator C. Take u ∈ Dom(C), then the Green for-
mula yields 〈Cu, u〉 = ‖�u‖2

L2(D)
. By [17], Lemma 9.17, we have ‖v‖W 2,2(D) ≤

h‖�v‖L2(D) for any v ∈ W 2,2(D)∩W 1,2
0 (D), for a constant h > 0 dependent only

onD. Since Dom(C) ⊆ W 2,2(D)∩W 1,2
0 (D), we obtain in particular ‖�u‖2

L2(D)
≥

h−2‖u‖2
L2(D)

for all u ∈ Dom(C).
Further, we have to find assumptions on G and Π so that the hypotheses on

nonlinear terms in (1.3) may be verified. Set

g : Dom(A)× L2(D) −→ L2(D), (ψ, ϕ) 
−→ G(·, ψ(·),∇ψ(·), ϕ(·)).
(4.4)

If G(·, 0, 0, 0) ∈ L2(D) and G(x, ·, ·, ·) is Lipschitz continuous uniformly in (al-
most every) x ∈ D, then g is well defined, takes values in L2(D) and is globally
Lipschitz on Dom(A) × L2(D). Global Lipschitz continuity of G is, however, a
rather restrictive hypothesis. Suppose instead that G is globally Lipschitz only in
the last variable and locally Lipschitz in the second and third ones: there exists
L < ∞ and for eachN ≥ 0 there existsLN < ∞ such that for almost every x ∈ D
and all r, r̃, z, z̃ ∈ R and s, s̃ ∈ R

n we have

|G(x, r, s, z)−G(x, r̃, s̃, z̃)|2 ≤ LN |r − r̃|2 + LN |s − s̃|2 + L|z− z̃|2

whenever |r|, |r̃|, |s|, |s̃| ≤ N . Let G(·, 0, 0, 0) ∈ L2(D). Assume moreover that
the space dimension n = 1. SinceW 2,2(D) ↪→ C 1(D̄) by the Sobolev embedding
theorem, there exists a constant K < ∞ such that

‖ξ‖L∞(D) + ‖∇ξ‖L∞(D) ≤ K‖ξ‖W 2,2(D), ξ ∈ W 2,2(D). (4.5)

Now we may check easily that the function g defined by (4.4) maps Dom(A) ×
L2(D) into L2(D) and is Lipschitz on bounded sets: Fix N ≥ 0 and take arbitrary
ψ1, ψ2 ∈ Dom(A), ϕ1, ϕ2 ∈ L2(D), ‖ψi‖W 2,2(D) ≤ N . Then

∥∥g(ψ1, ϕ1)− g(ψ2, ϕ2)
∥∥2
L2(D)

=
∫
D

∣∣G(x,ψ1(x),∇ψ1(x), ϕ1(x))−G(x,ψ2(x),∇ψ2(x), ϕ2(x))
∣∣2dx

≤ LKN‖ψ1 − ψ2‖2
L2(D)

+ LKN‖∇ψ1 − ∇ψ2‖2
L2(D)

+ L‖ϕ1 − ϕ2‖2
L2(D)

.



144 Z. Brzeźniak, B. Maslowski, J. Seidler

If, in addition,G does not depend on the third variable, we may replace the assump-
tion n = 1 by n ≤ 3 and use the embedding W 2,2(D) ↪→ C (D̄) (which is valid
for n ≤ 3) to prove in a similar way that g : (ψ, ϕ) 
→ G(·, ψ(·), φ(·)) maps
Dom(A)× L2(D) to L2(D) and is Lipschitz on bounded sets.

To establish (1.2), it suffices to suppose

G(x, r, s, z)z ≥ −LG
(
1 + |z|2)

for some LG ≥ 0, all r, z ∈ R, s ∈ R
n and almost every x ∈ D.

Finally, we have to discuss the stochastic term. Again, we set

σ(ψ, ϕ) = Π(·, ψ(·),∇ψ(·), φ(·)), (ψ, ϕ) ∈ Dom(A)× L2(D).

If Π is bounded, then σ(ψ, ϕ) acts as a multiplication operator on L2(D) and

∥∥σ(ψ, ϕ)∥∥L(L2(D))
= ∥∥Π(·, ψ(·),∇ψ(·), ϕ(·))∥∥

L∞(D).

For the Lipschitz continuity of the mapping (ψ, ϕ) 
→ σ(ψ, ϕ) to hold additional
restrictions onΠ and the space dimension n are needed, as the considerations above
indicate. If Π does not depend on the last variable, n = 1 and

|Π(x, r, s)−Π(x, r̃, s̃)| ≤ L
(|r − r̃| + |s − s̃|)

for some L < ∞, almost every x ∈ D and all r, r̃, s, s̃ ∈ R, then

∥∥σ(ψ)− σ(ψ̃)
∥∥

L(L2(D))
= ess sup

x∈D

∣∣Π(x,ψ(x),∇ψ(x))−Π(x, ψ̃(x),∇ψ̃(x))∣∣

≤ L ess sup
x∈D

{
|ψ(x)− ψ̃(x)| + |∇ψ(x)− ∇ψ̃(x)|

}

≤ KL‖ψ − ψ̃‖W 2,2(D)

for allψ, ψ̃ ∈ Dom(A), the last estimate following from (4.5).Analogously we may
proceed if Π depends only on the first and second variable, σ(ψ) = Π(·, ψ(·)),
n ≤ 3 and

|Π(x, r)−Π(x, r̃)| ≤ L|r − r̃|
for some L < ∞, almost all x ∈ D and every r, r̃ ∈ R. Also the locally Lipschitz
case may be handled in a similar manner.

The hypotheses onΠ , and in particular the boundedness, may be relaxed if we
know more about the covariance operator Q. Assume that Q has a representation
Q = ∑∞

k=1 λiei ⊗ ei for some λi ≥ 0 and an orthonormal basis {ei} such that

sup
i≥1

‖ei‖L∞(D) < ∞.
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Then RngQ1/2 ⊆ L∞(D), since for each ϕ ∈ L2(D) we have

‖Q1/2ϕ‖L∞(D) =
∥∥∥

∞∑
i=1

λ
1/2
i 〈ϕ, ei〉ei

∥∥∥
L∞(D)

≤
∞∑
i=1

λ
1/2
i

∣∣〈ϕ, ei〉
∣∣‖ei‖L∞(D)

≤
( ∞∑
i=1

λi

)1/2 ( ∞∑
i=1

|〈ϕ, ei〉|2
)1/2

sup
i≥1

‖ei‖L∞(D)

=
√

TrQ
(

sup
i≥1

‖ei‖L∞(D)
)
‖ϕ‖L2(D) < ∞.

Assume that σ(ψ, ϕ) ∈ L2(D) for (ψ, ϕ) ∈ Dom(A)× L2(D), then σ(ψ, ϕ) acts
as a bounded multiplication operator from L∞(D) into L2(D) and

∥∥σ(ψ, ϕ)∥∥L(L∞(D),L2(D))
= ∥∥Π(·, ψ(·),∇ψ(·), ϕ(·))∥∥

L2(D)
.

Hence σ(ψ, ϕ)Q1/2 ∈ L (L2(D)) and

∥∥σ(ψ, ϕ)Q1/2
∥∥2

HS =
∞∑
i=1

∥∥σ(ψ, ϕ)Q1/2ei
∥∥2
L2(D)

=
∞∑
i=1

λi
∥∥σ(ψ, ϕ)ei

∥∥2
L2(D)

≤ TrQ
(

sup
i≥1

‖ei‖2
L∞(D)

)∥∥σ(ψ, ϕ)∥∥2
L(L∞(D),L2(D))

.

Just as in the case of the coefficient g we may find easily hypotheses onΠ implying
that (ψ, ϕ) 
→ σ(ψ, ϕ) is a mapping from Dom(A)×L2(D) intoL2(D), Lipschitz
on bounded sets.

Appendix: Stopped stochastic convolutions

In this Appendix we aim at justifying the definition of a local mild solution we
adopted in this paper. The approach we follow was used implicitly in several papers
(cf., in particular, the paper [3]), but it seems to have been discussed explicitly for
the first time only in [4], §4.3 (in a way different from the one presented below).

Let H , U be real separable Hilbert spaces, (St ) a C0-semigroup on H , and
(Ω,F , (F t ),P) a stochastic basis such that F 0 contains all P-null sets. Let W
be a Q-Wiener process in U defined on this stochastic basis, where Q ∈ L (U) is
nonnegative and self-adjoint. In this section, by ‖ · ‖HS the Hilbert-Schmidt norm
on L (RngQ1/2, H)will be denoted. Assume thatψ is a progressively measurable
L (RngQ1/2, H)-valued process such that

∫ t

0
‖St−sψs‖2

HSds < ∞ for all t ≥ 0 P-almost surely, (A.1)
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then the stochastic convolution

I (t) =
∫ t

0
St−sψsdWs, t ≥ 0, (A.2)

is well defined. Let τ be a stopping time, one often needs to consider the stopped
process I (t ∧ τ) and is tempted to write

I (t ∧ τ) =
∫ t∧τ

0
St∧τ−sψsdWs.

This formula, unfortunately, need not make sense since on the right hand side we
integrate a process which is not even adapted. To overcome this difficulty, let us set

Iτ (t) =
∫ t

0
St−s

(
1[0,τ [(s)ψs∧τ

)
dWs, t ≥ 0. (A.3)

We shall prove

Lemma A.1. Let ψ be a progressively measurable L (RngQ1/2, H)-valued pro-
cess satisfying (A.1). Let τ be an arbitrary stopping time, define processes I and
Iτ by (A.2) and (A.3), respectively. Suppose that both processes I and Iτ have
continuous paths almost surely. Then

St−t∧τ I (t ∧ τ) = Iτ (t) for all t ≥ 0 P-almost surely. (A.4)

In particular,

I (t ∧ τ) = Iτ (t ∧ τ) for all t ≥ 0 P-almost surely.

Remark A.1. Obviously, 1[0,τ [ψ = 1[0,τ [ψ(· ∧ τ). We have chosen a definition of
Iτ that makes sense also for processes ψ with a finite lifespan ζ > τ . Moreover, if
we are interested in behaviour of the process I only on the stochastic interval [0, τ [
we may use also the identity

I (t ∧ τ) = Ĩτ (t ∧ τ) for all t ∈ R+ P-almost surely, (A.5)

where

Ĩτ (t) =
∫ t

0
St−sψs∧τdWs.

The proof of (A.5) remains the same as that of (A.4).

Remark A.2. Many sufficient conditions are known for the processes I and Iτ
to have continuous modifications, see [10] for basic results in this direction. For
example, it suffices to assume that ‖ψ‖HS ∈ L2

loc(R+) P-almost surely and (St )

is quasi-contractive, or that ‖ψ‖HS ∈ Lploc(R+) P-almost surely for some p > 2.
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Proof. Let us start with recalling the following fact: if ξ , ϕ are progressively mea-
surable processes, ‖ξ‖HS, ‖ϕ‖HS ∈ L2

loc(R+) P-almost surely and there exists
Ω0 ∈ F such that ξ = ϕ on R+ ×Ω0, then

∫ t

0
ξdW =

∫ t

0
ϕdW for all t ≥ 0 P-almost everywhere on Ω0. (A.6)

First, we consider the case τ ≡ a ∈ R+. If t < a then

I (t ∧ a) = I (t) =
∫ t

0
St−sψsdWs =

∫ t

0
1[0,a[(s)St−sψs∧adWs = Ia(t).

If t ≥ a then

Ia(t) = St−a
∫ a

0
1[0,a[(s)Sa−sψs∧adWs +

∫ t

a

1[0,a[(s)St−sψadWs

= St−aI (a) = St−aI (t ∧ a).
Hence we see that (A.4) holds in this particular case. Consequently, (A.4) holds
whenever τ is a stopping time with a discrete range in [0,∞] owing to (A.6).

Finally, let τ be arbitrary. Then there exist stopping times τk having discrete
ranges and such that τk ↘ τ as k → ∞ on Ω . From the continuity of trajectories
of the process I we infer that I (t ∧ τk) → I (t ∧ τ) for all t ≥ 0 almost surely.
Further, it is easy to check that

∫ t

0

∥∥1[0,τk[(s)St−sψs∧τk − 1[0,τ [(s)St−sψs∧τ
∥∥2

HSds −→
k→∞

0

almost surely, which yields Iτk (t) → Iτ (t) in probability as k → ∞ for any t ≥ 0.
The proof may be completed in an obvious way. ��

Acknowledgements. We are indebted to M. Ondreját who offered valuable comments con-
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