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Abstract. The paper combines two objects rather different at first glance: spaces of stochas-
tic processes having weighted bounded mean oscillation (weighted BMO) and the approxi-
mation of certain stochastic integrals, driven by the geometric Brownian motion, by integrals
over piece-wise constant integrands. The consideration of the approximation error with
respect to weighted BMO implies Lp and uniform distributional estimates for the approxi-
mation error by a John-Nirenberg type theorem. The general results about weighted BMO
are given in the first part of the paper and applied to our approximation problem in the second
one.

1. Introduction

The approximation of stochastic integrals by integrals over piece-wise constant
integrands has, for example, in stochastic finance a natural interpretation: the pay-
off of a continuously re-balanced portfolio is replaced by the pay-off of a portfolio,
re-balanced at finitely many trading dates only. The approximation error between
the stochastic integral, we are starting from, and its approximation can be inter-
preted as risk.

Usually, the approximation error is measured in a distributional way by limit
distributions, like for example in [20], or with respect toL2. The latterL2-approach
has some drawbacks: the resulting distributional tail-estimates are rather weak. Sec-
ondly, if one considers a sequence of time-nets realizing the asymptotically optimal
L2-approximation rate, where the n-th net consists of n+ 1 time-knots, then there
are very different such sequences in general (cf. [13]). Hence it might not be clear
what sequence of time-nets one should really take.

The present paper approaches both problems. In order to replace the L2-crite-
rion by a stronger one, one would useLp-spaces with 2 < p < ∞ in a first instance.
However, spaces of weighted bounded mean oscillation (weighted BMO) provide
much more information for our purpose, while getting the same upper bound for
the asymptotics as in theL2-case. The BMO-spaces are of advantage because of the
following two reasons: in general estimates with respect to the used BMO-spaces
imply Lp-estimates (see Theorem 9) and secondly, by a weighted John-Nirenberg

S. Geiss: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35
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type theorem we obtain significant better tail-estimates than we would get fromL2-
estimates (see Theorem 10). Moreover, Theorem 7 gives an example how to single
out those time-nets from the asymptotically L2-optimal ones which are optimal
with respect to the stronger weighted BMO-condition as well.

The paper is divided into two rather different parts. Section 2 deals with the
weighted BMO-spaces. In Section 3 we apply these results to our approximation
problem for stochastic integrals.

2. Weighted BMO-spaces

In this section we consider some basic properties of the weighted BMO-spaces
used later in Section 3. At the same time we introduce a concept of measuring the
mean-oscillation of a stochastic process in a pure distributional way which seems
to be the right approach in our situation and might be of interest in other situations
as well. Parts of this section are the final outline of some results announced in the
discrete time setting without proofs in the preprints [9] and [11].

Let (�,F,P) be a complete probability space and F = (Ft )t∈[0,T ] be a right-
continuous filtration with FT ⊆ F such that F0 contains all F-null sets. By CL(F)
we denote the set of all F-adapted processes A = (At )t∈[0,T ] such that all paths
are right-continuous and have finite left-hand side limits. The symbol CL+(F)
stands for the subclass of these processes such that At(ω) > 0 on [0, T ] × �,
whereas CL0(F) stands for the A ∈ CL(F) with A0 ≡ 0. Given a stopping time
σ : � → [0, T ] and A ∈ CL0(F) we let Aσ− := limn→∞A((

σ− 1
n

)
∨0
). For a

stochastic process X = (Xt )t∈[0,T ] we let X∗
t := supu∈[0,t] |Xu|. For a, b ≥ 0

and c > 0, the expression a ∼c b will stand for a/c ≤ b ≤ ca. Finally, we use
PB(·) := P(B ∩ ·)/P(B) for B ∈ F of positive measure and

S := {σ : � → [0, T ] | σ stopping time} .
Definition 1. For θ ∈ (0, 1), p ∈ (0,∞), A ∈ CL0(F), and � ∈ CL+(F) we
define

‖A‖BMO�p (P)
:= sup

σ∈S

∥∥∥∥E
[ |AT − Aσ−|p

�
p
σ

∣∣ Fσ
]∥∥∥∥

1
p

L∞
,

‖A‖BMO�,∗p (P)
:= sup

σ∈S

∥∥∥∥E
[

supu∈[σ,T ] |Au − Aσ−|p
�
p
σ

∣∣ Fσ
]∥∥∥∥

1
p

L∞
,

‖A‖BMO�0,θ (P)
:= inf

{
c > 0 :

∥∥∥∥P
[ |AT − Aσ−|

�σ
> c

∣∣ Fσ
]∥∥∥∥

L∞
≤ θ, σ ∈ S

}
,

and ‖A‖BMO�,∗0,θ (P)
:=

inf

{
c > 0 :

∥∥∥∥P
[

supu∈[σ,T ] |Au − Aσ−|
�σ

> c
∣∣ Fσ

]∥∥∥∥
L∞

≤ θ, σ ∈ S
}
,

with inf ∅ := ∞ and where the defined quantities are allowed to be infinite.
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If we are working under P and there is no risk of confusion we drop the depen-
dence on P in the notation of the BMO-spaces (and the Lp-spaces as well). The
definition of ‖·‖BMO�p

and ‖·‖BMO�,∗p
models a classical approach to weighted BMO

in the probabilistic setting connected to the Garsia-Neveu lemma and related results
of Garsia, Stroock, and many others (see for example [7], [19], [18], [17], [1], [5],
and [2]). The approach to exploit ‖ ·‖BMO�0,θ

and ‖ ·‖BMO�,∗0,θ
has at least two sources:

firstly, Strömberg [22] measured the mean-oscillation of complex-valued functions
defined on R

n in a distributional way by the sharp functionM�
0,sf . Secondly, in the

non-weighted probabilistic setting, which means here �t ≡ 1, the distributional
approach can be found in Emery [6] and in [10].

Our results about the spaces introduced in Definition 1 follow immediately from
Theorem 1 below. One motivation of this theorem is a result proved by Lépingle
[18] (Theorem 1) in the discrete time setting: assuming a filtration (Fn)∞n=0, an inte-
grable predictable increasing process (An)∞n=0 starting in zero such that An ↑ A∞
a.s. with A∞ ∈ L1, one has

P (A∞ > λ+ µν) ≤ 2e−
µ
2 P(A∞ > λ)+ P(Z∗ > ν)

whereλ,µ, ν > 0 andZn := E(A∞−An|Fn) is the potential. For instance, in order
to get assertions about ‖ · ‖BMO�p

with p ∈ (0, 1) the usage of the potential (Zn)∞n=0

yields to an assumption too strong for our purpose. In the following we replace
this assumption by a distributional assumption as weak as possible. In this way we
transfer Emery [6] (Proposition 2) and [10] (Theorem 4.6) to the weighted case and
Strömberg [22] (Lemma 3.4) from the classical setting of functions defined on R

n

to the setting of stochastic processes. What is an appropriate replacement for the
potential (Zn)∞n=0? For example, taking a path-wise continuous A ∈ CL0(F), we
are interested in the distribution of supu∈[σ,T ] |Au−Aσ | given B ∈ Fσ , equivalent
to supu,v∈[σ,T ] |Au − Av| by a factor 2, and look for upper bounds of

WA(B, λ; σ) := P

(
B ∩

{
sup

u,v∈[σ,T ]
|Au − Av| > λ

})
for λ ≥ 0.

What are the abstract properties of WA? Given 0 ≤ σ ≤ τ ≤ T , B ⊆ D, both
belonging to Fσ , and 0 ≤ λ ≤ µ < ∞ we get that WA(B,µ; τ) ≤ WA(D, λ; σ).
This is exactly the inequality we are starting from.

Definition 2. A family W(·, λ; σ) : Fσ → [0,∞), σ ∈ S, λ ∈ [0,∞), belongs to
the class W provided that

W(B,µ; τ) ≤ W(D, λ; σ)
for all 0 ≤ σ ≤ τ ≤ T , 0 ≤ λ ≤ µ < ∞, and B,D ∈ Fσ with B ⊆ D.

Theorem 1. Let A ∈ CL0(F), θ ∈ (0, 1/2), and W ∈ W . Assume that

PB (|AT − Aσ−| > ν) ≤ θ + W(B, ν; σ)
P(B)

(1)
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for all ν > 0, σ ∈ S, and B ∈ Fσ of positive measure. Then there are constants
α, a > 0, depending on θ only, such that

PB

(
sup

u∈[σ,T ]
|Au − Aσ−| > λ+ aµν

)

≤ e1−µ
PB

(
sup

u∈[σ,T ]
|Au − Aσ−| > λ

)
+ α

W (B, ν; σ)
P(B)

(2)

for all λ,µ, ν > 0, σ ∈ S, and B ∈ Fσ of positive measure. Consequently, for all
p ∈ (0,∞) and B ∈ Fσ one has that

(∫

B

sup
u∈[σ,T ]

|Au − Aσ−|p dP

) 1
p

≤ cp

(∫ ∞

0
pλp−1W(B, λ; σ)dλ

) 1
p

(3)

where the right-hand side or both sides may be infinite, cp > 0 depends on (p, α, a)
only, and sup1≤p<∞(cp/p) < ∞.

Proof. Before we start we extend W(·, λ; σ) to F by

W̃ (B, λ; σ) := inf {W(A, λ; σ) : A ⊇ B,A ∈ Fσ }
for B ∈ F . We get that W̃ (B, λ; σ) = W(B, λ; σ) for B ∈ Fσ and that

W̃ (B,µ; τ) ≤ W̃ (D, λ; σ) ≤ W(�, λ; σ) < ∞
for all 0 ≤ σ ≤ τ ≤ T , 0 ≤ λ ≤ µ < ∞, and B,D ∈ F with B ⊆ D. After
having this we denote W̃ again by W and start with the proof.

(a) We fix a stopping time σ ∈ S and B ∈ Fσ of positive measure. For λ > 0 we
let

σλ := inf
{
t ∈ [σ, T ]

∣∣ |At − Aσ−| > λ
} ∧ T

with inf ∅ := ∞ and

Bλ := B ∩
{

sup
u∈[σ,T ]

|Au − Aσ−| > λ

}
∈ Fσλ .

Given λ, ν > 0 it is known and standard to derive that

P(Bλ+ν) ≤ P
(
Bλ ∩ {∣∣Aσλ+ν − Aσλ−

∣∣ ≥ ν
})

so that

P(Bλ+ν)

≤ P

(
Bλ ∩

{∣∣Aσλ+ν − AT
∣∣ > ν

2

})
+ P

(
Bλ ∩

{∣∣AT − Aσλ−
∣∣ ≥ ν

2

})

≤ lim inf
n

P

(
Bλ ∩

{∣∣∣AT −A((σλ+ν+ 1
n )∧T )−

∣∣∣> ν
2

})
+P

(
Bλ ∩

{∣∣AT −Aσλ−
∣∣≥ ν

2

})

≤ lim inf
n

[
θP(Bλ)+W

(
Bλ,

ν

2
; (σλ+ν + 1

n

) ∧ T
)]

+ θP(Bλ)+W
(
Bλ,

ν

3
; σλ
)

≤ 2θP(Bλ)+ 2W
(
Bλ,

ν

3
; σ
)
.
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(b) Define g := supu∈[σ,T ] |Au − Aσ−|, s := 2θ ∈ (0, 1), and

V (C, ν) := 2
W (B ∩ C, ν/3; σ)

P(B ∩ C) for C ∈ F,

where V (C, ν) := 0 if P(B ∩ C) = 0. Step (a) implies that

PB (g > λ+ ν) ≤
[
s + V (g > λ, ν)

]
PB (g > λ) for λ, ν > 0.

Now we iterate this estimate (in the non-weighted case iterations can be found,
for example, in [21] (p. 154), [6], and [10]). Exploiting the monotonicity
V (C1, ν)PB(C1) ≤ V (C2, ν)PB(C2) for C1 ⊆ C2 we deduce

PB (g > λ+Nν) ≤
[
sN + V (g > λ, ν)

(
N∑
k=1

sk−1

)]
PB (g > λ)

for λ, ν > 0 and N = 1, 2, ... by induction over N . Hence

PB (g > λ+Nν) ≤ sNPB (g > λ)+ 1

1 − s
V (�, ν).

For b := 1 ∨ (− log s)−1 and λ,µ, ν > 0 this implies

PB(g > λ+ µν) ≤ e1−(µ/b)
PB(g > λ)+ 1

1 − s
V (�, ν)

= e1−(µ/b)
PB(g > λ)+ 2

1 − s

W (B, ν/3; σ)
P(B)

so that Formula (2) follows with α := 2/(1 − s) and a := 3b.
(c) The consequently-part: Since λ → W(B, λ; σ) is monotone it is measurable

so that the right-hand side of Formula (3)makes sense. To prove the inequality
we proceed like in [4] (Lemma 7.1): for δ, λ, µ > 0 and B ∈ Fσ of positive
measure, Formula (2) (with λ replaced by aλ/δ and ν by λ) implies

PB

(
g > λ

(
a + aµδ

δ

))
≤ e1−µ

PB

(
g >

aλ

δ

)
+ α

W(B, λ; σ)
P(B)

.

Letting c > 0, we integrate the inequality with respect to pλp−1dλ, where we
integrate the left-hand side over (0, cδ/(a + aµδ)), the first term on the right-
hand side over (0, cδ/a), and the remaining one over (0,∞). After a change
of variables we get

[(
δ

a + aµδ

)p
− e1−µ

(
δ

a

)p] ∫ c

0
PB (g > λ) pλp−1dλ

≤ α

∫ ∞

0

W(B, λ; σ)
P(B)

pλp−1dλ.

Choosing µ = p + 1, δ = (e − 1)/((e + 1)(p + 1)), and sending c ↑ ∞
concludes the proof. ��
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Remark 1. (i) Given η ∈ (0, 1) and analyzing the proof of Theorem 1 one real-
izes that one can replace Formula (1) by

PB

(
sup

u∈[σ,T ]
|Au − Aσ−| > ν

)
≤ η + W(B, ν; σ)

P(B)
. (4)

(ii) In view of [6] it might be of interest to investigate θ ∈ [1/2, 1) in Formula
(1) and in Corollary 1 below.

Example 1. For � ∈ CL+(F), B ∈ Fσ , λ ≥ 0, and σ ∈ S we set

W�(B, λ; σ) := P

(
B ∩

{
sup

u∈[σ,T ]
�u > λ

})
.

For ‖A‖BMO�0,θ
≤ 1, B ∈ Fσ of positive measure, and ν, ε > 0 this implies via

PB(|AT − Aσ−| > (1 + ε)ν)≤PB(|AT − Aσ−| > (1 + ε)�σ )+ PB(�σ > ν)

≤θ + PB(�σ > ν)

Formula (1)withW = W�. In the same way ‖A‖BMO�,∗0,η
≤ 1 gives (4) and Theorem

1 applies in both cases. For θ ∈ (0, 1/2), A ∈ CL0(F), and µ, ν > 0 we deduce

P

(
A∗
T > aµν ‖A‖BMO�0,θ

)
≤ e1−µ + α P(�∗

T > ν) (5)

where a, α > 0 depend at most on θ . Finally, for p ∈ (0,∞) and �∗
T ∈ Lp the

right-hand side of Formula (3) can be computed by
∫ ∞

0
pλp−1W�(B, λ; σ)dλ =

∫

B

sup
u∈[σ,T ]

�
p
udP

so that

‖A∗
T ‖Lp ≤ c(p, θ)‖�∗

T ‖Lp ‖A‖BMO�0,θ
. (6)

We come back to the introduced BMO-spaces and need

Definition 3. Given p, d ∈ (0,∞) and � ∈ CL+(F) with �0 ∈Lp(�,F,P), we
let � ∈ SMp(P, d) provided that

E

(
sup

u∈[σ,T ]
�
p
u

∣∣ Fσ
)

≤ dp �pσ a.s. for all σ ∈ S.

It is clear that SMp(P, d) ⊆ SMr (P, d) for 0 < r < p. Typical elements of
SMp(P, d) are given by

Example 2. Taking a martingale (Mt)t∈[0,T ] ∈ CL+(F), 0 < p < q < ∞, and
�t := M

1/q
t gives (�t )t∈[0,T ] ∈ SMp(P, d) for some d > 0. To verify this we

use
∥∥supk=0,...,n Nk

∥∥
Lη

≤ cη ‖N0‖Lη for a non-negative martingale (Nk)nk=0 and

η ∈ (0, 1).
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Corollary 1. Let θ ∈ (0, 1/2), η ∈ (0, 1), p ∈ (0,∞), and � ∈ SMp(P, d).

(i) There is a constant c = c(θ, η, p, d) > 0 such that

‖·‖BMO�0,θ
∼c ‖·‖BMO�,∗0,η

∼c ‖·‖BMO�p
∼c ‖·‖BMO�,∗p

. (7)

(ii) GivenA ∈ CL0(F), the finiteness of the quantities in (7) is equivalent to each
of the following conditions:

(C1) There are constants β, b > 0 such that

PB (|AT − Aσ−| > bν) ≤ θ + β
W�(B, ν; σ)

P(B)

for all ν > 0, σ ∈ S, and B ∈ Fσ of positive measure.
(C2) There are constants α, a > 0 such that

PB

(
sup

u∈[σ,T ]
|Au − Aσ−| > aµν

)
≤ e1−µ + α

W�(B, ν; σ)
P(B)

for all µ, ν > 0, σ ∈ S, and B ∈ Fσ of positive measure.

Proof. (a) One easily has that

θ
1
p ‖·‖BMO�0,θ

≤ ‖·‖BMO�p
≤ ‖·‖BMO�,∗p

and η
1
p ‖·‖BMO�,∗0,η

≤ ‖·‖BMO�,∗p

and that conditions (C1) and (C2) are equivalent because of Theorem 1.
(b) If ‖A‖BMO�0,θ

≤ b with b ∈ (0,∞), then (C1) holds with β = 1 by the

argument given in Example 1. Continuing here with Theorem 1 and using
� ∈ SMp(P, d), we get ‖A/b‖BMO�,∗p

≤ c(1)(p, θ) d and

‖ · ‖BMO�,∗p
≤ c(1)(p, θ) d ‖ · ‖BMO�0,θ

.

Remark 1 (i) yields, via the same route,

‖ · ‖BMO�,∗p
≤ c′(1)(p, η) d ‖ · ‖BMO�,∗0,η

.

(c) The argument from (b) also shows ‖A‖BMO�,∗p
< ∞ if (C1) is true. ��

Remark 2. In Corollary 1 one cannot replace SMp(P, d) by SMr (P, d) for 0 <
r < p. This follows from adapting a discrete time example, formulated in [11]
without proof, to the continuous time case. Since the proof of this example would
exceed the scope of this paper and since this result is not needed here, the example
will be presented in a forthcoming paper [8].

Part (ii) of Corollary 1 can be viewed as a John-Nirenberg-type theorem. Next
we show that � is determined by ‖ · ‖BMO�p

up to a multiplicative constant under

the condition SMp(P, d).

Theorem 2. For p ∈ (0,∞), � ∈ SMp(P, d), and �′ ∈ SMp(P, d
′) the fol-

lowing assertions are equivalent:
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(i) ‖ · ‖BMO�p
∼c1 ‖ · ‖BMO�

′
p

for some c1 ≥ 1.

(ii) There is some c2 ≥ 1 such that �t ∼c2 �
′
t for t ∈ [0, T ] a.s.

Proof. We have to prove (i) ⇒ (ii) only because the converse is obvious. For
t0 ∈ (0, T ] we define A ∈ CL0(F) by At := 0 if t ∈ [0, t0) and At := �t0 if
t ∈ [t0, T ]. Then

E
(|AT − Aσ−|p|Fσ

) = E
(
χ{σ≤t0}�

p
t0

∣∣ Fσ
) ≤ dp�pσ a.s.

for a stopping time σ : � → [0, T ]. Hence

‖A‖BMO�
′

p
≤ c1‖A‖BMO�p

≤ c1d.

But this gives

�
p
t0

= E
(|AT − At0−|p ∣∣ Ft0

) ≤ (c1d)
p(�′

t0
)p a.s.

and �t ≤ c1d�
′
t for t ∈ [0, T ] a.s. The opposite inequality follows in the same

way. ��
Finally, we show that we can change the underlying measure in a moderate

way. We would like to note that, while changing the measure, we keep the whole
process. This is different from other settings (see for example [16] (Chapters 3.1
and 3.3)). We recall

Definition 4 (cf. [15]). Let Q be a probability measure on (�,F) with Q ∼ P

and L(ω) = (dQ/dP)(ω) > 0 for all ω ∈ �. Given v ∈ (1,∞) and c > 0, we let
Q ∈ RHv(P, c)

1 provided that L ∈ Lv(�,F,P) and

v

√
E
(
Lv
∣∣ Fσ

) ≤ c E
(
L
∣∣ Fσ

)
a.s. for all σ ∈ S.

Theorem 3. For p ∈ (0,∞), θ ∈ (0, 1), and Q ∈ RHv(P, c) there is a constant
d = d(p, θ, v, c) > 0 such that

‖·‖BMO�0,θ (Q)
≤ d ‖·‖BMO�p (P)

.

Proof. Assuming ‖A‖BMO�p (P)
< ∞, B ∈ Fσ of positive measure for some σ ∈ S,

and λ > 0, we get that

PB

( |AT − Aσ−|
�σ

> λ‖A‖BMO�p (P)

)
≤ 1

λp
.

Since for 1 = (1/u)+ (1/v), Q ∈ RHv(P, c), and D ∈ F one knows (cf. [3])

QB(D) ≤ c ‖P(D|Fσ )‖
1
u∞ ,

we conclude

QB

( |AT − Aσ−|
�σ

> λ‖A‖BMO�p (P)

)
≤ c

u

√
1

λp
.

Taking λ0 > 0 with θ := cλ
−p/u
0 we arrive at ‖·‖BMO�0,θ (Q)

≤ λ0 ‖·‖BMO�p (P)
. ��

Having an estimate for ‖·‖BMO�0,θ (Q)
one can continue with Theorem 1 because

of Example 1 or with Corollary 1.

1 RH stands for reverse Hölder inequality.
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3. Approximation error for discretizations of certain stochastic integrals

3.1. Setting

We consider a Black-Scholes option pricing model with time-horizon T > 0 and
constant volatility σ (for simplicity, we let σ = 1) after discounting under the
martingale measure. This means, we take S = (St )t∈[0,T ] with

St := exp

(
Wt − t

2

)

as price-process, where W = (Wt )t∈[0,T ] is a standard Brownian motion defined
on a probability space (�,F,P) withW0 ≡ 0 and continuous paths for all ω ∈ �.
Having W we agree that F is the completion of σ(Wt : t ∈ [0, T ]) and that
(Ft )t∈[0,T ] is the augmentation of the natural filtration ofW . Assume a Borel-func-
tion f : (0,∞) → R with Ef (ST )

2 < ∞ (for example the pay-off of an European
contingent claim). To obtain the stochastic integral representation of f (ST )we find
an ε > 0 (see for example [13]) such that

F(t, y) := Ef (yST−t ) gives F ∈ C∞((−ε, T )× (0,∞)) (8)

(we may think for a moment that St is given on [0, T + ε]) and

∂F

∂t
(t, y)+ y2

2

∂2F

∂y2 (t, y) = 0.

Itô’s formula implies that

F(t, St ) = Ef (ST )+
∫

(0,t]

∂F

∂y
(u, Su)dSu for t ∈ [0, T ) a.s.

Since limt↑T ‖F(t, St )− f (ST )‖L2
= 0, and (for example) with ∂F

∂y
(T , y) := 0

for y > 0, we end up with the desired representation

f (ST ) = Ef (ST )+
∫

(0,T ]

∂F

∂y
(u, Su)dSu a.s.

To formulate the approximation problem, we are interested in, we introduce the
error-processes C(τ) and C(τ, v).

Definition 5. (i) We define

T := {(ti)ni=0

∣∣ 0 = t0 < · · · < tn = T , n = 1, 2, ...
}

and TN := {(ti)ni=0 ∈ T
∣∣ n ≤ N

}
for N ≥ 1.

(ii) For τ = (ti)
n
i=0 ∈ T we let ‖τ‖∞ := supi |ti − ti−1| and

P(τ ) :=
{
v = (vi)

n−1
i=0

∣∣ vi : � → R Fti -measurable, E
∣∣viSti

∣∣2 < ∞
}
.
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(iii) Given τ ∈ T and v ∈ P(τ ), we define C(τ, v) = (Ct (τ, v))t∈[0,T ] to be

Ct(τ, v) := E (f (ST )|Ft )− Ef (ST )−
n∑
i=1

vi−1
(
Sti∧t − Sti−1∧t

)
,

where all paths of C(τ, v) are assumed to be continuous, C0(·, ·) ≡ 0, and

C(τ) := C(τ, v0) with v0 :=
(
∂F

∂y
(ti , Sti )

)n−1

i=0
.

In the definition above we used that E(St
∂F
∂y
(t, St ))

2 < ∞ for t ∈ [0, T ) (see for
example [13]). The definition of C(τ) gives

Ct(τ ) =
∫

(0,t]

∂F

∂y
(u, Su)dSu −

n∑
i=1

∂F

∂y
(ti−1, Sti−1)

(
Sti∧t − Sti−1∧t

)
a.s.

which is the error-process of a simple approximation of a stochastic integral. There
are two results we would like to start from. The first one is due to Zhang and can
be formulated in our setting as follows:

Theorem 4 ([23]). Let K : [0,∞) → R be a Borel-function and assume that
supx≥0(1 + x)−m|K(x)| < ∞ for some m ≥ 1. If

f (y) :=
∫ y

0
K(x)dx, y ≥ 0,

is not linear and if τn := (iT /n)ni=0, then there is a constant c = c(K, T ) ≥ 1
such that, for n = 1, 2, ...,

1

c
√
n

≤ inf
v(n)∈P(τn)

∥∥∥CT (τn, v(n))
∥∥∥
L2

≤ ‖CT (τn)‖L2 ≤ c√
n
.

Next, it was shown by Gobet and Temam [14] that certain irregular pay-off func-
tions f do not give the approximation rate 1/

√
n for equidistant nets. After that, in

[13] the considerations have been extended to general, not necessarily equidistant,
time-nets, which yields to the second result we want to mention explicitly:

Theorem 5 ([13]). Let f : (0,∞) → R be a Borel function with f (ST ) ∈ L2 and
let F be given by formula (8).

(i) There is an increasing function c : [0,∞) → [1,∞) such that

1

c(T )
a(f (ST ); τ) ≤ inf

v∈P(τ )
‖CT (τ, v)‖L2 ≤ ‖CT (τ)‖L2

≤ c(T ) a(f (ST ); τ)
for all T > 0, f , and τ = (ti)

n
i=0 ∈ T where

a(f (ST ); τ) :=
(

n∑
i=1

∫ ti

ti−1

(ti − u)E

∣∣∣∣S2
u

∂F 2

∂y2 (u, Su)

∣∣∣∣
2

du

) 1
2

.
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(ii) If there are no constants c0, c1 ∈ R such that f (ST ) = c0 + c1ST a.s., then

inf
n=1,2,...

inf
τ∈Tn

√
n a(f (ST ); τ) > 0.

Item (i) follows from [13] (Theorem 4.4) and item (ii) from the same paper if one
uses there Lemma A.3, Theorem 4.6, and the arguments of the proof of Theorem
6.2. In [13] only non-negative f : (0,∞) → [0,∞) are considered because of their
interpretation as pay-off functions, however the proofs are valid for f : (0,∞) →
R as well without modification.Applying Theorem 5 tof (y) = (y−K0)

+,K0 > 0,
gives

1

c
a((ST −K0)

+; τ) ≤
(

n∑
i=1

∫ ti

ti−1

ti − u√
T − u

du

) 1
2

≤ c a((ST −K0)
+; τ),

(9)

where c = c(T ,K0) ≥ 1 (see [13] (Section 5)). Formula (9) shows that in this case
there are time nets, quite different from the equidistant ones, realizing the optimal
rate 1/

√
n in Theorem 4. For instance, exploiting [13] (proof of Theorem 6.2) one

could use

τ εn :=
(
T − T

(
n− i

n

)ε)n
i=0

for ε ∈
(

2

3
, 1

]
(10)

in order to get

inf
τ∈Tn

a((ST −K0)
+; τ) ∼c′ a((ST −K0)

+; τ εn ) ∼c′
1√
n

(11)

for some c′ = c′(T ,K0, ε) ≥ 1. From the above, two problems naturally arise:
firstly, is it possible to replace in Theorem 4 the L2-norm by a stronger quantity?
This is of particular interest if one wants to control uniformly the distribution of
CT (τ). Up to now, Theorem 4 only implies that

P

(
|CT (τn)| > λ√

n

)
≤
(c(4)
λ

)2
, λ > 0, (12)

which is far from being optimal in general, as we shall see later. Secondly, it is not
clear which of the time-nets, giving the order 1/

√
n in Formula (9), is the best one in

a certain sense. Both problems are connected to each other and will be approached
now.

3.2. The basic technical estimate

We provide the main technical upper estimate for the expected quadratic error in
Theorem 6, which will be used later on.
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Theorem 6. Assume a Borel-function K : [0,∞) → R, which is integrable over
compact intervals, and define

f (y) :=
∫ y

0
K(x)dx and �(y) := yK(y) for y ≥ 0. (13)

Assume that

E

∣∣∣∣
∫ ST

0
|K(x)|dx

∣∣∣∣
2

+ E�(ST )
2 < ∞, (14)

τ = (ti)
n
i=0 ∈ T , and a ∈ [ti0−1, ti0) for some i0 ∈ {1, ..., n}. Then

E

(
|CT (τ)− Ca(τ)|2

∣∣ Fa
)

≤ c2 ‖τ‖∞
[
E

(
�(ST )

2
∣∣ Fa

)
+
(
Sa/Sti0−1

)2 (
E

(
�(ST )

∣∣ Fti0−1

))2
]

a.s.

where c > 0 depends on T only.

Let us turn to the proof. Through the whole Section 3.2 we assume that Formu-
las (13) and (14) are satisfied and that F is given by (8), that means F(t, y) =
Ef (yST−t ). We shall use the Gaussian measure

dγ (x) := (2π)−1/2 exp
(
−x2/2

)
dx.

Lemma 1. For u ∈ [0, T ) and y > 0 one has

(i) y ∂F
∂y
(u, y) = ∫

R
�
(
ye

√
T−uη− T−u

2

)
dγ (η),

(ii) y2 ∂2F
∂y2 (u, y) = ∫

R
�
(
ye

√
T−uη− T−u

2

) [
η√
T−u − 1

]
dγ (η).

Proof. For u∗ := T − u ∈ (0, T ] we have (see for example [13] (Lemma A.2))

y
∂F

∂y
(u, y) = Ef (ySu∗)

Wu∗

u∗ ,

y2 ∂
2F

∂y2 (u, y) = Ef (ySu∗)

(
W 2
u∗

u∗2 − Wu∗

u∗ − 1

u∗

)
. (15)

We restrict ourself to assertion (ii), the first one can be verified in the same way.
We get

y2 ∂
2F

∂y2 (u, y) = E

∫

(0,∞)

χ[η,∞)(ySu∗)K(η)dη

(
W 2
u∗

u∗2 − Wu∗

u∗ − 1

u∗

)

=
∫

(0,∞)

K(η)E

[
χ[η,∞)(ySu∗)

(
W 2
u∗

u∗2 − Wu∗

u∗ − 1

u∗

)]
dη

= −
∫

(0,∞)

K(η)
1√
2π

exp

(
−1

2

(
log(y/η)− u∗/2√

u∗

)2
)

×
(

1 + log(y/η)− u∗/2
u∗

)
dη√
u∗
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where the last equality can be checked by using Formula (15). Substituting
η′ := − log(y/η)−(u∗/2)√

u∗ , assertion (ii) follows. ��

Given σ ≥ 0, (u, x) ∈ [0, 1)× R, and ψ ∈ L2(γ ), we let

(Aσψ)(u, x) :=
∫

R

ψ
(√
ux + √

1 − uη
) [ η√

1 − u
− √

σ

]
dγ (η).

The operator is related to the Ornstein-Uhlenbeck semi-group and satisfies

Lemma 2. ‖Aσψ‖L2([0,1)×R,λ×γ ) ≤ (1 + √
σ) ‖ψ‖L2(R,γ )

where λ is the Lebes-
gue measure on [0, 1).

Proof. Let (hm)∞m=0 be the orthonormal basis of Hermite polynomials inL2(R, γ ).
It is easy to check that

(Aσhm)(u, x) = √
mu

m−1
2 hm−1(x)− √

σu
m
2 hm(x)

for m = 1, 2, ... with 00 := 1 and (Aσh0)(u, x) = −√
σh0(x) so that the claim

follows since the functions gm(u, x) := √
m+ 1um/2hm(x),m = 0, 1, ..., form an

orthonormal system in L2([0, 1)× R, λ× γ ). ��

Lemma 3. Let 0 ≤ a ≤ u < T , v := u−a
T−a ∈ [0, 1), y := e

√
u−ax− u−a

2 , x ∈ R,
and y0 > 0, where y0 = 1 in case of a = 0. Then

(y0y)
2 ∂

2F

∂y2 (u, y0y) = (AT−aψ)(v, x)√
T − a

with ψ(x) := �(y0e
√
T−ax− T−a

2 )

where � is given in (13).

Proof. Because of E�(ST )
2 < ∞ one gets ψ ∈ L2(γ ). The rest follows by a

computation and Lemma 1 (ii). ��

Proof of Theorem 6. We recall that a ∈ [ti0−1, ti0) for some i0 ∈ {1, ..., n}. Letting
ri0−1 := a and rk := tk for i0 ≤ k ≤ n, we obtain, a.s.,

|CT (τ)− Ca(τ)|

≤
∣∣∣∣∣∣

∫

(a,T ]

∂F

∂y
(u, Su)dSu −

n∑
k=i0

∂F

∂y
(rk−1, Srk−1)

(
Srk − Srk−1

)
∣∣∣∣∣∣

+
∣∣∣∣
[
∂F

∂y
(a, Sa)− ∂F

∂y
(ti0−1, Sti0−1)

] (
Sti0

− Sa

)∣∣∣∣
=: I1 + I2.

We first consider I2. From the proof of [13] (Corollary 4.1) we know that
E ((∂F/∂y)(t, St )St )

2 < ∞ for all t ∈ [0, T ) (this was shown for f (ST ) ≥ 0, but
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the proof remains the same) so that E ((∂F/∂y)(t, St )Sb)
2 < ∞ for 0 ≤ t ≤ b ≤ T

with t < T . Consequently, EI 2
2 < ∞. Moreover, a.s.,

E

(
I 2

2

∣∣ Fa
)

=
[
E

∣∣∣Sti0 −a − 1
∣∣∣
2
]
S2
a

[
∂F

∂y
(a, Sa)− ∂F

∂y

(
ti0−1, Sti0−1

)]2

≤ 2eT |ti0 − a|
[[
Sa
∂F

∂y
(a, Sa)

]2

+(Sa/Sti0−1)
2
[
Sti0−1

∂F

∂y

(
ti0−1, Sti0−1

)]2
]

= 2eT |ti0 − a|
[
E
(
�(ST )

∣∣ Fa
)2 + (Sa/Sti0−1)

2
E

(
�(ST )

∣∣ Fti0−1

)2
]

where we have used Lemma 1 (i). Now let us consider I1. Take y0 > 0 where
y0 = 1 in case of a = 0. Defining f̃ (y) := f (y0y), T̃ := T − a, and F̃ (t, y) :=
Ef̃ (yST̃−t ) for (t, y) ∈ [0, T̃ ) × (0,∞), we get f̃ (ST̃ ) ∈ L2 and F̃ (t, y) =
F(t + a, y0y). Applying [13] (Theorem 4.4) (see Theorem 5 of this paper) gives
that

E

∣∣∣∣∣∣
[
f̃ (ST̃ )− Ef̃ (ST̃ )

]−
n∑

k=i0

∂F̃

∂y
(rk−1 − a, Srk−1−a)

(
Srk−a − Srk−1−a

)
∣∣∣∣∣∣

2

≤ c(T̃ )2
n∑

k=i0

∫ rk−a

rk−1−a
(rk − a − u)E

∣∣∣∣S2
u

∂2F̃

∂y2 (u, Su)

∣∣∣∣
2

du

≤ c(T̃ )2 ‖τ‖∞
∫ T̃

0
E

∣∣∣∣S2
u

∂2F̃

∂y2 (u, Su)

∣∣∣∣
2

du.

Substituting f̃ , F̃ , and T̃ , noticing 1 ≤ c(T̃ ) ≤ c(T ), letting St (x) := e
√
tx− t

2 for
t ≥ 0 and x ∈ R, and using Lemmas 3 and 2, gives that

E

∣∣∣ [f (y0ST−a)− F(a, y0)
]

−
n∑

k=i0

∂F

∂y
(rk−1, y0Srk−1−a)

(
y0Srk−a − y0Srk−1−a

) ∣∣∣
2

≤ c(T )2 ‖τ‖∞
∫ T

a

E

∣∣∣∣(y0Su−a)2
∂2F

∂y2 (u, y0Su−a)
∣∣∣∣
2

du

= c(T )2 ‖τ‖∞
∫ T

a

∫

R

[
(y0Su−a(x))2

∂2F

∂y2 (u, y0Su−a(x))
]2

dγ (x)du
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= c(T )2 ‖τ‖∞∫

[a,T )

∫

R

1

T − a

(
AT−a�(y0ST−a(·))

)2
(
u− a

T − a
, x

)
dγ (x)du

= c(T )2 ‖τ‖∞
∫

[0,1)

∫

R

(
AT−a�(y0ST−a(·))

)2
(v, x) dγ (x)dv

≤ c(T )2 ‖τ‖∞ (1 +
√
T )2

∫

R

�(y0ST−a(x))2dγ (x).

But this gives, a.s.,

E

(
I 2

1 |Fa
)

= E



∣∣∣∣∣∣
[f (ST )− F(a, Sa)] −

n∑
k=i0

∂F

∂y
(rk−1, Srk−1)

(
Srk − Srk−1

)
∣∣∣∣∣∣

2
∣∣ Fa




≤ c(T )2 ‖τ‖∞ (1 +
√
T )2E

(
�(ST )

2
∣∣ Fa

)
.

Combining the estimates for E
(
I 2

1 |Fa
)

and E
(
I 2

2 |Fa
)

we are done. ��

3.3. The case f being a Lipschitz function

Now we start to measure the size of the error processes C(τ, v) and C(τ) from
Section 3.1 with respect to the BMO-spaces ‖ · ‖BMO�p

. Motivated by the pay-off

functions of the European Call- and Put-Option, f (y) = (y − K0)
+ and f (y) =

(K0 − y)+, we first consider the case of Lipschitz functions f . What is the weight
process �, we take? As pointed out by Example 4 below we cannot use � ≡ 1 so
that BMO�p becomes the usual BMOp-space. Instead of� ≡ 1 we shall take� = S,
the geometric Brownian motion, which is natural in view of Theorem 6. Taking this
weight we are allowed to change the underlying measure P in a moderate way: let
dQ = LdP with

L = eMT− 1
2 〈M〉T

where M = (Mt)t∈[0,T ] is a (path-wise continuous) L2-martingale starting in zero
such that ‖〈M〉T ‖L∞(P) < ∞. It is standard to check that

S ∈ SMp(P, dp) ∩ SMp(Q, d
′
p) (16)

for all p ∈ (0,∞) and appropriate dp, d ′
p > 0 and that

Q ∈ RHv(P, cv) and P ∈ RHv(Q, c
′
v)

for all v ∈ (1,∞) and appropriate cv, c′v > 0. Corollary 1 and Theorem 3 imply
that

‖ · ‖BMOSp(P)
∼ ‖ · ‖BMOSq (Q)
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for all p, q ∈ (0,∞). Moreover,

‖CT (τ)‖Lq(Q) ≤ ‖C(τ)‖BMOSq (Q)

so that measuring ‖C(τ)‖BMOS2 (P)
is more restrictive than ‖CT (τ)‖Lq(Q), for exam-

ple. In the following we restrict ourself to the measure P and drop, as done earlier, the
dependence on P in the notation of the BMO and Lp-spaces. The following result
should be compared with the equivalence proved for the L2-error in Theorem 5.

Theorem 7. Let K : [0,∞) → R be a Borel function, supx≥0 |K(x)| < ∞,
f (y) := ∫ y

0 K(x)dx, y ≥ 0, and assume that f is non-linear. Then there is a
constant c = c(T ,K) ≥ 1 such that for all τ ∈ T one has

1

c

√
‖τ‖∞ ≤ inf

v∈P(τ )
‖C (τ, v)‖BMOS2

≤ ‖C (τ)‖BMOS2
≤ c

√
‖τ‖∞.

For the situation of Theorem 7 it turns out that an asymptotically optimal sequence
of time nets σn ∈ Tn is characterized by supn=1,2,... n‖σn‖∞ < ∞ or in other
words: the nets have to be uniformly dense like the equidistant nets. One might ask
whether it is necessary that f is a Lipschitz function in Theorem 7. This is clarified
by the second result we prove in this section:

Theorem 8. Let f : (0,∞) → R be a Borel-function such that f (ST ) ∈ L2,
θ ∈ (0, 1/2), and τn := (iT /n)ni=0 for n = 1, 2, ... Then the following assertions
are equivalent:

(i) There is a constant c > 0 such that, for n = 1, 2, ...,

inf
v(n)∈P(τn)

∥∥∥C(τn, v(n))
∥∥∥

BMOS2
≤ c√

n
.

(ii) There is a constant c > 0 such that for all n = 1, 2, ... there are v(n) ∈ P(τn)
with

P

({∣∣CT (τn, v(n))− Cσ (τn, v
(n))
∣∣

Sσ
>

c√
n

}
∩ B

)
≤ θP(B)

for all stopping times σ : � → [0, T ] and B ∈ Fσ .
(iii) There is a Borel function K : [0,∞) → R with supx≥0 |K(x)| < ∞ and

d ∈ R such that f (y) = d + ∫ y0 K(x)dx for λ-almost all y > 0, where λ is
the Lebesgue measure.

In Stochastic Finance Theorem 8 (ii) can be interpreted as upper bound for the
shortfall probability that the expected path-wise error, conditioned on B ∈ Fσ and
weighted by Sσ , exceeds c/

√
n at time T . Before we turn to the proof of Theorem 8

let us compare Theorems 5 and 7 by an example already mentioned in Section 3.1.
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Example 3. Let fK0(y) := (y −K0)
+ with K0 > 0 and ε ∈ (2/3, 1]. Combining

Formula (9), Theorems 5 and 7, and using the nets τ εn from Formula (10) together
with Formula (11), we can compare the approximation with respect to L2 and
BMOS2 and get, for τ = (ti)

n
i=0 ∈ T ,

‖CT (τ)‖L2 ∼c

(
n∑
i=1

∫ ti

ti−1

ti − u√
T − u

du

) 1
2

,

‖C(τ)‖BMOS2
∼d

√
‖τ‖∞,

inf
σ∈Tn

‖CT (σ)‖L2 ∼c′ ‖CT (τ εn )‖L2 ∼c′
1√
n
,

inf
σ∈Tn

‖C(σ)‖BMOS2
∼d ′ ‖C(τ 1

n )‖BMOS2
∼d ′

1√
n

for some c, d, d ′ ≥ 1 depending at most on (T ,K0) and c′ ≥ 1 on (T ,K0, ε).
However, the nets τ εn with ε ∈ (2/3, 1) are not optimal for BMOS2 since

‖C(τεn )‖BMOS2
∼d

√‖τ εn‖∞ =
√
T

n
ε
2
.

Proof of Theorem 7 and Theorem 8.

(a) The upper bound for ‖C (τ)‖BMOS2
in Theorem 7 follows by Theorem 6 since

E

(
|CT (τ)− Ca(τ)|2

∣∣ Fa
)

≤ c2
(6) ‖τ‖∞ sup

x≥0
|K(x)|2(ES2

T + 1)S2
a a.s.

and since we can replace in this inequality a by a stopping time.
(b) The implication (iii) ⇒ (i) in Theorem 8 is evident because of step (a).
(c) The equivalence (i) ⇔ (ii) in Theorem 8 follows from Formula (16) and

Corollary 1 (i).
(d) Assume that f : (0,∞) → R is a general Borel function with f (ST ) ∈ L2

and that τ = (ti)
n
i=0 ∈ T and a ∈ (ti0−1, ti0). As in the proof of Theorem 6

we let y0 > 0 with y0 = 1 if a = 0, f̃ (y) := f (y0y), T̃ := T − a, and
F̃ (t, y) := Ef̃ (yST̃−t ) = F(t + a, y0y) for (t, y) ∈ [0, T̃ ) × (0,∞). Let
ξ ∈ R. Applying [13] (Corollary 3.3) (which is justified by f̃ (ST̃ ) ∈ L2 and
the arguments given in the proof of [13] (Corollary 4.1), where ti0 − a = T̃ in
Corollary 3.3 is a straightforward limit case) gives

E

∫ ti0 −a

0

(
∂F̃

∂y
(u, Su)− y0ξ

)2

S2
udu

= E

∣∣∣∣∣
∫

(0,ti0 −a]

(
∂F̃

∂y
(u, Su)− y0ξ

)
dSu

∣∣∣∣∣
2

≥ 1

c(T̃ )2
(ti0 − a)

(
∂F̃

∂y
(0, 1)− y0ξ

)2
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with 1 ≤ c(T̃ ) ≤ c(T ). Consequently,

E

∫ ti0

a

(
∂F

∂y
(u, y0Su−a)− ξ

)2

(y0Su−a)2 du

≥ 1

c(T )2
(ti0 − a)

(
∂F

∂y
(a, y0)− ξ

)2

y2
0 .

For v = (vi)
n−1
i=0 ∈ P(τ ) and B ∈ Fa this implies

∫

B

|CT (τ, v)− Ca(τ, v)|2 dP

≥
∫

B

∫ ti0

a

(
∂F

∂y
(u, Su)− vi0−1

)2

S2
ududP

=
∫

B

E

∫ ti0

a

(
∂F

∂y
(u, SaSu−a)− vi0−1

)2 (
SaSu−a

)2
dudP

≥ 1

c(T )2

∫

B

(ti0 − a)

(
∂F

∂y
(a, Sa)− vi0−1

)2

S2
adP

and

(ti0 − a)

∫

B

(
∂F

∂y
(a, Sa)− vi0−1

)2

S2
adP ≤ c(T )2‖C(τ, v)‖2

BMOS2

∫

B

S2
adP.

Consequently,

‖C (τ, v)‖BMOS2
≥ 1

c(T )

√
ti0 − a

∣∣∣∣
∂F

∂y
(a, Sa)− vi0−1

∣∣∣∣ a.s.

and, by considering an appropriate product measure P × P,

‖C (τ, v)‖BMOS2
≥ 1

c(T )

√
ti0 − a

∣∣∣∣
∂F

∂y
(a, Sti0−1(ω0)Sa−ti0−1)− vi0−1(ω0)

∣∣∣∣
(17)

P-almost surely for someω0 ∈ � via Fubini’s theorem. By the triangle inequal-
ity and the continuity of (∂F/∂y)(a, ·) we conclude that

‖C (τ, v)‖BMOS2
≥ 1

2c(T )

√
ti0 − a sup

y1,y2>0

∣∣∣∣
∂F

∂y
(a, y1)− ∂F

∂y
(a, y2)

∣∣∣∣ . (18)

(e) Implication (i) ⇒ (iii) of Theorem 8: Assuming n ∈ {1, 2, ...}, τ := τn,
i0 := n, and an := T − T

2n , Formula (18) and our assumption imply

c√
n

≥ inf
v(n)∈P(τn)

∥∥∥C
(
τn, v

(n)
)∥∥∥

BMOS2

≥ 1

2c(T )

√
T

2n
sup

y1,y2>0

∣∣∣∣
∂F

∂y
(an, y1)− ∂F

∂y
(an, y2)

∣∣∣∣ . (19)
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We know that for all a ∈ (0, T ) there is a ya > 0 such that (∂F/∂y)(a, ya) =
(∂F/∂y)(0, 1). For instance, this follows from the continuity of (∂F/∂y)(a, ·)
and the martingale property of
(
St
∂F

∂y
(t, St )

)

t∈[0,T )
so that ESa

(
∂F

∂y
(a, Sa)− ∂F

∂y
(0, 1)

)
= 0

(for the martingale property use
(
(∂/∂t)+ (y2/2)(∂2/∂y2)

)
(y(∂F/∂y)) = 0

and E supt∈[0,b] |St (∂F/∂y)(t, St )|2 < ∞ for b ∈ [0, T ) coming from the
arguments used for example in [13] (Corollary 4.1)). From Formula (19) we
may conclude that

sup
n=1,2,...

sup
y1>0

∣∣∣∣
∂F

∂y
(an, y1)− ∂F

∂y
(0, 1)

∣∣∣∣ ≤ 2
√

2cc(T )√
T

and

L := sup
n=1,2,...

sup
y>0

∣∣∣∣
∂F

∂y
(an, y)

∣∣∣∣ < ∞.

Now let A be the set of all y > 0 such that there are z1, z2,... > 0 with
|F(an, zn)−f (y)|+ |zn−y| → 0. The set is Borel measurable and by almost
sure martingale convergence we have that P(ω : ST (ω) ∈ A) = 1. Hence
µT ((0,∞)\A) = 0, where µT is the law of ST . Consequently, (0,∞)\A is
of Lebesgue measure zero and for all y1, y2 ∈ A there are positive z(i)n →n yi
with

|f (y1)− f (y2)| = lim
n

|F(an, z(1)n )− F(an, z
(2)
n )| ≤ L lim

n
|z(1)n − z(2)n |

= L|y1 − y2|.
Properly redefining f in (0,∞)\A and extending to [0,∞) gives a Lipschitz
function f̃ : [0,∞) → R with Lipschitz-constant L for that a representation
like in (iii) is known.

(f) Lower bound for ‖C (τ, v)‖BMOS2
in Theorem 7: Again we fix i0 ∈ {1,..., n}

and a ∈ (ti0−1, ti0). Formula (18) and Lemma 1 imply

‖C(τ, v)‖BMOS2

≥ 1

2c(T )

√
ti0 − a sup

y1,y2>0
EST−a (K(y1ST−a)−K(y2ST−a))

= 1

2c(T )

√
ti0 − a E Sa sup

y1,y2>0
EST−a

(
K(y1SaST−a)−K(y2SaST−a)

)

≥ 1

2c(T )

√
ti0 − a sup

y1,y2>0
EST (K(y1ST )−K(y2ST ))

so that

‖C(τ, v)‖BMOS2
≥ 1

2c(T )

√
‖τ‖∞ sup

y1,y2>0
EST (K(y1ST )−K(y2ST )) .
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It remains to verify that

sup
y1,y2>0

EST (K(y1ST )−K(y2ST )) > 0. (20)

Assuming the contrary implies

E�(yST ) = yEST K(yST ) = ay (21)

for some a ∈ R and all y > 0. Representing�
(
e
√
T ξ− T

2

)
=∑∞

m=0 αmhm(ξ)

in L2(γ ), where (hm)∞m=0 are the normalized Hermite polynomials and where∑∞
m=0 α

2
m < ∞, a short computation yields to

ae
√
T x = E�

(
e
√
T xST

)
=

∞∑
m=0

αm
xm√
m!

so that αm = a
T

m
2√
m!

and
∑∞
m=0 αmhm(x) = a exp(

√
T x− (T /2)). This implies that�(ST ) = aST

a.s. and that K is λ-a.s. constant on (0,∞) with λ being the Lebesgue mea-
sure. But this is a contradiction to our assumption that f is non-linear. Hence
Formula (21) cannot be true and we get Formula (20). ��

Remark 3. The paper in its early preprint-form only considered Theorem 7 for
fK0(y) = (y − K0)

+, K0 > 0, for which the proof can be done more directly.
As an application of this, [12] was showing: given one knows the upper estimate
for ‖C(τ)‖BMOS2

for all fK0 , one can deduce estimates when K in Theorem 7 is
non-negative, bounded, and monotone. However, this argument does not apply to
Theorem 7 in our meanwhile general form (the estimate on ‖C(τ)‖BMOS2

for fK0

is not shown in [12], but taken from this paper). Moreover, if we know a-priori
that f (y) = ∫ y

0 K(x)dx with a monotone K , then the reader can find a further
equivalence in [12] which can be added to Theorem 8.

We conclude this section by two examples showing that we cannot use the
non-weighted BMO-spaces in our considerations.

Example 4. We let

BMO2 := BMO�2 with �t ≡ 1

be the non-weighted BMO-space. Given a Borel function f : (0,∞) → R with
f (ST ) ∈ L2, τ ∈ T , v = (vi)

n−1
i=0 ∈ P(τ ), and a ∈ (ti0−1, ti0), the arguments used

for Formula (17) imply that
∣∣∣∣
∂F

∂y

(
a, Sti0−1(ω)Sa−ti0−1(ω)

)
− vi0−1(ω)

∣∣∣∣ Sti0−1(ω)Sa−ti0−1(ω) ≤ d (22)

P × P-a.s., where d := (ti0 − a)− 1
2 c(T ) ‖C(τ, v)‖BMO2 ∈ [0,∞]. On this estimate

the following two examples are based:
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(i) For f (y) := (y −K0)
+,K0 > 0, one has ‖C(τ, v)‖BMO2 < ∞ if and only if

P(vi−1 = 1) = 1 for i = 1,..., n. (23)

If-part: We let g(y) := f (y)− y so that |g(y)| ≤ K0 and obtain

Ct(τ ) = [E(f (ST )|Ft )− Ef (ST )] − [St − 1]

= E(g(ST )|Ft )− Eg(ST ) a.s.

Only if-part: Assume P(vi0−1 = 1) < 1 for some i0 ∈ {1,..., n} and that
‖C(τ, v)‖BMO2 is finite. Again by Fubini’s theorem there is some ω0 ∈ �

such that vi0−1(ω0) �= 1 and, P-a.s.,
∣∣∣∣
∂F

∂y

(
a, Sti0−1(ω0)Sa−ti0−1

)
− vi0−1(ω0)

∣∣∣∣ Sti0−1(ω0)Sa−ti0−1 ≤ d.

Hence
∣∣∣ ∂F∂y (a, y)− vi0−1(ω0)

∣∣∣ y ≤ d for all y > 0 since (∂F/∂y)(a, ·) is con-

tinuous. But this contradicts to the known fact limy→∞ ∂F
∂y
(a, y) = 1, which

can be checked by Lemma 1. Obviously, the case described by Formula (23)
is irrelevant for the purpose of this paper.

(ii) For a general Borel function f : (0,∞) → R with f (ST ) ∈ L2 and a time
net τ with τ �= {0, T } one has ‖C(τ)‖BMO2 < ∞ if and only if

f (ST ) = c0 + c1ST a.s. for some c0, c1 ∈ R.

If-part: This follows trivially since Ct(τ ) = 0 a.s. for t ∈ [0, T ].
Only if-part: We use vi := (∂F/∂y)(ti , Sti ) and fix i0 ≥ 2 so that ti0−1 ∈
(0, T ). Formula (22) implies

∣∣∣∣
∂F

∂y

(
a, Sti0−1Sa−ti0−1

)
− ∂F

∂y

(
ti0−1, Sti0−1

)∣∣∣∣ Sti0−1Sa−ti0−1 ≤ d

P × P-a.s. and
∣∣∣∣
∂F

∂y
(a, y0y1)− ∂F

∂y

(
ti0−1, y0

)∣∣∣∣ y0y1 ≤ d (24)

for all y0, y1 > 0 (here we use ti0−1 > 0 and again the continuity of ∂F/∂y).
If supy≥1 |(∂F/∂y)(a, y)| = ∞, then we get immediately a contradiction.
The contrary gives the existence of y(n) ≥ 1 with limn y

(n) = ∞ and

lim
n

∂F

∂y
(a, y(n)) = c1 ∈ R.

Letting y0y1 = y(n), Formula (24) implies (∂F/∂y)(ti0−1, y0) = c1 for all
y0 > 0 and F(ti0−1, y) = c0 + c1y for some c0 ∈ R. Now it is known that
this implies that f (y) = c0 + c1y for λ-almost all y > 0 (for a probabilistic
argument see [13] (Lemma 4.8)).
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3.4. The case K(ST ) ∈ Lq

In this section we extend by Theorem 9 the error estimate of Theorem 4 from L2 to
Lp and we improve Formula (12) by Theorem 10. We shall work under the measure
P only. Letting p ∈ (0,∞) and � ∈ CL+((Ft )t∈[0,T ]), we define

asim
n (f (ST )

∣∣ Lp) := inf
τ∈Tn

‖CT (τ)‖Lp ,

a
opt
n (f (ST )

∣∣ Lp) := inf
τ∈Tn

inf
v∈P(τ )

‖CT (τ, v)‖Lp ,

asim
n (f (ST )

∣∣ BMO�2 ) := inf
τ∈Tn

‖C(τ)‖BMO�2
,

a
opt
n (f (ST )

∣∣ BMO�2 ) := inf
τ∈Tn

inf
v∈P(τ )

‖C(τ, v)‖BMO�2
.

The superscripts sim and opt are standing for simple approximation and optimal
approximation, respectively. Throughout the whole subsection we again assume
that K : [0,∞) → R is a Borel function, integrable over compact intervals, and

f (y) :=
∫ y

0
K(x)dx for y ≥ 0.

Theorem 9. Let 2 ≤ p < q < ∞ and assume that

E

[∣∣∣∣
∫ ST

0
|K(x)|dx

∣∣∣∣
2

+ |K(ST )|q
]
< ∞ and �t := St (M

∗
t )

1
r ,

where Mt := 1 + E (|K(ST )|r |Ft ) 2 for some r ∈ (p, q). If the function f is not
linear and if E ∈ {Lp,BMO�2

}
, then one has that

1

c
√
n

≤ a
opt
n (f (ST )

∣∣ E) ≤ asim
n (f (ST )

∣∣ E) ≤ c√
n

for n = 1, 2, ..., where c ≥ 1 depends at most on (T ,K, p, r). To obtain the optimal
asymptotic approximation rate 1/

√
n, equidistant nets can be used.

Proof. (a) Using Hölder’s inequality and Doob’s maximal inequality one quickly
checks that �∗

T ∈ Lp.
(b) Recall �(y) = yK(y). Letting 0 ≤ t ≤ a ≤ T , the conditional Hölder

inequality yields to

E

(
�(ST )

2
∣∣ Fa

)
+ (Sa/St )

2 (
E
(
�(ST )

∣∣ Ft
))2 ≤ c2

1�
2
a a.s.

where c1 = c1(T , r) > 0. By Theorem 6 we get

E

(
|CT (τ)− Ca(τ)|2

∣∣ Fa
)

≤ c2
(6) ‖τ‖∞ c2

1�
2
a a.s. (25)

2 For convenience we assume that all paths of the martingale (Mt)t∈[0,T ] are continuous
and strictly positive.
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for τ ∈ T and a ∈ [0, T ]. We can replace in the last inequality a by a stopping
time to deduce that

asim
n (f (ST )

∣∣ BMO�2 ) ≤ ‖C(τn)‖BMO�2
≤ c(6)c1

√
T

n

with τn := (iT /n)ni=0 being the equidistant net.
(c) Since our assumption and the continuity of f imply that there are no c0, c1 ∈ R

with f (ST ) = c0 + c1 ST a.s., Theorem 5 gives, for some c2 = c2(T ,K) > 0,
that

1

c2
√
n

≤ a
opt
n (f (ST )

∣∣ L2) ≤ a
opt
n (f (ST )

∣∣ Lp).

(d) To conclude the proof we observe that, for τ ∈ T and v ∈ P(τ ),

‖CT (τ, v)‖Lp ≤ c ‖�∗
T ‖Lp ‖C(τ, v)‖BMO�

0, 1
4

≤ 2c ‖�∗
T ‖Lp ‖C(τ, v)‖BMO�2

,

where c = c(p, 1/4) > 0 comes from Formula (6) and the factor 2 from
Corollary 1, so that

‖CT (τ, v)‖Lp ≤ c3 ‖C(τ, v)‖BMO�2

with c3 = c3(T ,K, p, r) > 0. (In order to get the last inequality one can also
take classical results without using BMO�0,θ .) ��

Remark 4. Letting 2 < q < ∞, T = 1,

f (y) :=


e

1
2q

(
log y+ 1

2

)2

− 1 : y ≥ e−
1
2

0 : y < e−
1
2

, and K(x) := f ′(x) ≥ 0

yields toK(S1) ∈ Lq , f (S1) ∈ L2, but f (S1) �∈ Lq . The latter implies for instance
that aopt

1 (f (S1)
∣∣ Lq) = ∞. Hence one cannot take p = q in Theorem 9.

Theorem 10. Let γ ≥ 0, c > 0, and assume that |K(x)| ≤ c[1 + xγ ] for x ≥ 0.
Then

lim sup
λ→∞,λ≥e

log

[
supτ∈T P

(
C∗
T (τ ) > ‖τ‖

1
2∞ λ

)]

[
log λ

]2 ≤ − 1

2T (γ + 1)2
.

For all γ ≥ 0 there are K such that one has equality.

The theorem improves Formula (12) since the assertion of the theorem is equivalent
to: for all δ > 0 there is a λ0 ≥ e such that

P

(
C∗
T (τ ) > ‖τ‖

1
2∞λ
)

≤ λ

[
− 1

2T (γ+1)2
+δ
]

log λ
(26)

for all λ ≥ λ0 and τ ∈ T .
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Proof. Theorem 10. Fix r = 4 and let � be defined as in Theorem 9. We get that

�t ≤ c1(S
∗
t )
γ+1 a.s.

for t ∈ [0, T ] and some c1 = c1(T , c, γ ) > 0. Using Formula (25) gives

E

(
|CT (τ)− Cσ (τ)|2

∣∣ Fσ
)

≤ c2
(6) ‖τ‖∞ c2

2(S
∗
σ )

2(γ+1) a.s.

for all τ ∈ T and stopping times σ : � → [0, T ], and a c2 = c2(T , c, γ ) > 0.
Using Formula (5) with the weight process �̃t := (S∗

t )
γ+1, exploiting

‖ · ‖
BMO�̃0,1/4

≤ 2‖ · ‖
BMO�̃2

and P(S∗
T > η) ≤

√
2

π
e−

1
2T (log η)2

for η ≥ exp(
√
T ) (for the latter we used the reflection principle for the Brownian

motion), we continue to

P

(
C∗
T (τ ) > 2c(6)c2 ‖τ‖

1
2∞ µν

)
≤ e1−µ + αP

((
S∗
T

)γ+1
>
ν

a

)

≤ e1−µ + α

√
2

π
e
− 1

2T (γ+1)2
(log ν

a )
2

for µ > 0 and ν ≥ a exp((γ + 1)
√
T ), where α, a > 0 are the absolute constants

from Formula (5). Given ε ∈ (0, 1), we choose ν := aλ1−ε and µ := λε/a to
arrive at

P

(
C∗
T (τ ) > 2c(6)c2 ‖τ‖

1
2∞ λ

)
≤ e1− λε

a + α

√
2

π
e
− (1−ε)2

2T (γ+1)2
(log λ)2

whenever λ ≥ exp((γ + 1)
√
T /(1 − ε)). Now the first assertion of our theorem

follows with ‖τ‖
1
2∞ replaced by 2c(6)c2 ‖τ‖

1
2∞ by ε ↓ 0 after having estimated the

lim sup. To end up, one quickly checks that the factor 2c(6)c2 does not change the
limit on the left hand side so that we obtain our assertion as stated.

The examples for equality are given by f (y) = (K0 − y)+ with K0 > 0 for
γ = 0 and f (y) = yγ+1 for γ > 0. To check this we take τ = {0, T } so that

CT (τ) = f (ST )− Ef (ST )− v0(ST − 1) a.s.

with v0 := (∂F/∂y)(0, 1) and assume A > 1/(2T (γ + 1)2) such that (compare
Formula (26))

P(|CT (τ)| >
√
T λ) ≤ e−A(log λ)2

for λ ≥ λ0 ≥ e. Knowing this distributional estimate, a straightforward computa-
tion yields

sup
p∈[1,∞)

e−
p

4A ‖CT (τ)‖Lp < ∞.
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On the other hand, from the definition of CT (τ) we may deduce directly that

lim
p→∞ e

− T
2 [p(γ+1)2−(γ+1)] ‖CT (τ)‖Lp ∈ (0,∞)

where we use ‖SBT ‖Lp = exp((T /2)(pB2 − B)) for B ≥ 0 and v0 �= 0 in case of
γ = 0. But this gives a contradiction. ��

3.5. Concluding remark

In view of [14] and [13] it might be of interest to investigate more irregular pay-off
functions f than considered here. This is supported by the fact that the basic ingre-
dients taken from [13], in order to handle the error-processes C(τ, v), are available
for all Borel-functions f such that f (ST ) ∈ L2.
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