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Abstract. We determine for a super-Brownian motion {Xt : t ≥ 0} in R
d , d ≥ 3, the precise

gauge function ϕ such that, almost surely on survival up to time t ,

0 < lim inf
r↓0

sup
x∈supp Xt

Xt (B(x, r))

ϕ(r)
≤ lim sup

r↓0
sup

x∈supp Xt

Xt (B(x, r))

ϕ(r)
< ∞,

improving a result of Barlow, Evans and Perkins about the most visited sites of super-
Brownian motion. We also determine upper and lower bounds for the Hausdorff dimension
spectrum of thick points refining the multifractal analysis of super-Brownian motion by
Taylor and Perkins. The upper bound, conjectured to be sharp, involves a constant which can
be characterized in terms of the upper tails of the associated equilibrium Palm distribution.

1. Introduction and statement of results

1.1. Motivation

Distributions with spatially extremely varying intensity are frequently encountered
in the natural sciences. Examples include the distributions of resources in the ground
and of galaxies in the universe, models from population biology, or the dissipation
of energy in a highly turbulent fluid flow. The multifractal spectrum is an important
means to evaluate the degree of variation in the intensity of such a spatial distri-
bution, or, in other words, to describe quantitatively the irregularities of a fractal
measure µ. The value f (a) of the multifractal spectrum is, loosely speaking, the
Hausdorff dimension of the set of points x with local dimension

lim
r↓0

log µ(B(x, r))

log r
= a,

where B(x, r) denotes the ball of radius r centred in x. In the mid eighties, a so-
called multifractal formalism emerged in the physics literature, see e.g. Halsey et
al. [HJ86], which makes a prediction of the multifractal spectrum based on large-
deviation heuristics. Mathematically rigorous statements can be found, for example,
in [Ol00].
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Recently, it turned out that this formalism fails for some important (random)
measures, which arise naturally in probability theory. The simplest example is the
local time of standard Brownian motion, see Dolgopyat and Sidorov [DS95], or
Hu and Taylor [HT97]. In [PT98], Perkins and Taylor investigate the multifractal
spectrum of the states Xt of a super-Brownian motion1 in dimension d ≥ 3, at a
fixed time t > 0. In this case the multifractal formalism predicts a trivial spectrum.
However, Perkins and Taylor show that albeit the lower part of the spectrum is
trivial in the sense that there are no points of local dimension exceeding 2,

lim inf
r↓0

log Xt

(
B(x, r)

)

log r
= 2 for all x ∈ supp Xt,

the upper part of the spectrum is nontrivial,

dim

{

x ∈ R
d : lim sup

r↓0

log Xt

(
B(x, r)

)

log r
= a

}

= 8

a
− 2 for all a ∈ [2, 4].

Note that points with local dimension exceeding two have exceptionally small mass
in small centred balls, whereas a local dimension below two would indicate excep-
tionally large mass in such balls. Hence, the results show that whilst there are
points which are, in certain radii, exceptionally thin, no points are, when seen on a
logarithmic scale, exceptionally thick.

In the present paper we initiate a refined multifractal analysis, which provides
deeper insight into the lower part of the spectrum by studying thick points defined
on a more precise scale. The idea of this finer notion of a dimension spectrum of
thick points is based on identifying a slowly varying gauge function L defined on
a small interval (0, ε), such that

0 < sup
x∈Rd

lim sup
r↓0

Xt(B(x, r))

r2L(r)
< ∞.

Note that such an L can only exist if the lower part of the multifractal spectrum
is trivial. Having found such a function, we now call a point x ∈ R

d thick if
lim supr↓0 Xt(B(x, r))/r2L(r) > 0 and ask, how many thick points there are.
We give a partial answer in terms of upper and lower bounds for the Hausdorff
dimension spectrum for the thick points, which is the function

f (a) = dim
{
x ∈ R

d : lim sup
r↓0

Xt(B(x, r))

r2L(r)
≥ a

}
.

Thick points in this sense were studied for some of the most important random
measures of probability theory. Examples include the occupation measure of a sta-
ble subordinator, studied by Shieh and Taylor [ST98], the occupation measure of
Brownian motion, studied by Dembo, Peres, Rosen and Zeitouni [DP00], [DP01],
and the intersection local times of several Brownian paths, studied by Dembo,
Peres, Rosen and Zeitouni [DP02], and König and Mörters [KM02].

1 In this paper we assume that the reader is familiar with the definition and basic properties
of super-Brownian motion. A recommended introduction to the subject is [Et00].
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Beyond the numerical values provided by these spectra, each thick points analy-
sis offers new insight into the nature of the investigated process. Our analysis in the
case of super-Brownian motion requires a study of the genealogy of the branching
process, which is performed by means of Le Gall’s Brownian snake. In this way we
gain insight into the mechanism how the thick points of a super-Brownian motion
arise.

1.2. Formulation of the main results

To formulate our results for the thick points of super-Brownian motion, we intro-
duce a parameter θ as follows: Let X0∞ be a random measure distributed according
to the Palm distribution in 0 of a canonical cluster of the equilibrium measure of
a super-Brownian motion in R

d for d ≥ 3. This object is carefully introduced in
Subsection 1.3. We define the upper tail exponent

θ := θ(d) := − lim sup
a↑∞

1

a
log P

{
X0

∞ (B(0, 1)) > a
}

. (1.1)

We show in Section 4 that θ is strictly positive and finite. The next theorem is our
main result.

Theorem 1.1 (Spectrum of thick points). Suppose {Xt : t ≥ 0} is a super-Brown-
ian motion in dimension d ≥ 3, started in an arbitrary finite measure, and t > 0.
Then, conditionally on survival up to time t , almost surely,

0 < sup
x∈Rd

lim sup
r↓0

Xt(B(x, r))

r2 log(1/r)
< ∞, (1.2)

and, moreover, for all 0 ≤ a ≤ 2
θ

,

2 − θ∗a ≤ dim

{

x ∈ R
d : lim sup

r↓0

Xt(B(x, r))

r2 log(1/r)
≥ a

}

≤ 2 − θa, almost surely, (1.3)

where θ is as specified in (1.1) and θ∗ is a positive, finite constant.

Remark 1. We conjecture that the upper bound given in (1.3) is sharp, but we
are unable to identify θ∗ with θ . Also, it is an open problem to identify the exact
numerical value of the constant θ = θ(d).

Our analysis gives some insight how a super-Brownian motion creates excep-
tionally large mass in a small ball B(x, r). Look at the path of the backbone particle,
which ends in x, and follow this path, starting from x, backwards in time. If we
only consider particles which split off the backbone up to a time of order r2, it turns
out that the contribution from these particles is enough to produce a point with
Xt(B(x, r)) ≈ r2 log(1/r). Unfortunately, we have not been able to show that this
truncation does not affect constants. If this was the case it would be a major step
towards our conjecture. 	
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Remark 2. It is worth noting that the behaviour of thick points is quite different
from the behaviour of typical points. Typical points obey the following law of the
iterated logarithm, proved by Dawson and Perkins [DP91, Theorem 5.5]: There
exists a positive, finite constant c such that,

lim sup
r↓0

Xt(B(x, r))

r2 log log(1/r)
= c, for Xt -almost all x, almost surely.

It is easy to show that c ≤ 1/θ with θ defined as in (1.1), and we conjecture that
equality holds. 	


Finally, we have a look at the balls of fixed small radius containing maximal
mass. These balls indicate, loosely speaking, the sites most visited by particles at
time t . Barlow, Evans and Perkins [BE91, Theorem 4.7] show that

lim sup
r↓0

sup
x∈ supp Xt

Xt (B(x, r))

r2 log(1/r)
< ∞.

In [BE91] it remains open whether this is sharp. We provide an affirmative answer.

Theorem 1.2 (Most visited sites). Suppose {Xt : t ≥ 0} is a super-Brownian
motion in dimension d ≥ 3 started in an arbitrary finite measure. Then, almost
surely on survival up to time t ,

0 < lim inf
r↓0

sup
x∈ supp Xt

Xt (B(x, r))

r2 log(1/r)
. (1.4)

Remark 3. The results of Theorems 1.1 and 1.2 hold in supercritical dimensions
d ≥ 3 only. It is a challenging open problem to study analogous questions in the
critical dimension d = 2. No problem arises in d = 1, when super-Brownian
motion has a well-understood random density with respect to Lebesgue measure,
see e.g. [Et00]. 	


1.3. The equilibrium measure and its tail behaviour

In this section we review two natural constructions of the equilibrium Palm mea-
sure and highlight its role in the study of the states of super-Brownian motion. Fix
d ≥ 3 and denote by M(Rd) the set of locally finite measures on R

d .
A natural construction is based on the long-term behaviour of the super-

Brownian motion. For this purpose it is important to view super-Brownian motion
as a Markov process {Xt : t ≥ 0} in time. We consider as a state space the space
of p-tempered measures for p ≥ 1,

Mp(Rd) =
{
µ ∈ M(Rd) :

∫
ϕp dµ < ∞

}
,

for ϕp(x) = (1 + ‖x‖2)−p, equipped with the p-vague topology, generated by the
functionals µ �→∫

ϕ dµ for all ϕ :Rd → [0, ∞) satisfying sup |ϕ(x)/ϕp(x)| < ∞.
Then we can start super-Brownian motion in the d-dimensional Lebesgue measure
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�d ∈ Mp(Rd), if p ∈ (d/2, d/2+1), so that we do not have finite time extinction.
It is not hard to check (see e.g. [DP91]) that

lim
t→∞ Xt = X∞ in law on Mp(Rd),

for some random variable X∞ on the space Mp(Rd).
X∞ is called the equilibrium random measure of the super-Brownian motion.

This random measure is infinitely divisible without deterministic part and hence
we can associate a canonical cluster measure Q∞ with X∞, which means that
X∞ can be constructed from a Poisson random field � on Mp(Rd) with intensity
measure Q∞ as

X∞ =
∑

X∈�

X.

Q∞ is a σ -finite and translation invariant measure on M(Rd) and hence we can
associate a Palm distribution Q

0∞ (in the origin). Recall that the Palm distribution
is characterized by the formula

∫
Q∞(dX)

∫
X(dx)F (x, X) =

∫
�d(dx)

∫
Q

0
∞(dX)F (x, Xx),

for any measurable F : R
d × Mp(Rd) → [0, ∞), where the measures Xx ∈

Mp(Rd) are defined by Xx(A) = X(A − x). We call the probability measure Q
0∞

the equilibrium Palm distribution.
The approach above requires us to look at super-Brownian motion as a process

in time. The equilibrium Palm distribution can however also be defined from the
law of a single state of super-Brownian motion (irrespective of the chosen time
t > 0 or starting measure X0). This second approach is closer in spirit to the use
we make of the equilibrium measure in the following sections.

To follow this approach we note that Xt is infinitely divisible and look at the
associated canonical cluster measure Qt , which again is a σ -finite (but not trans-
lation invariant) measure on M(Rd). We randomly pick a cluster X and choose
a point x ∈ R

d at random according to X, then we zoom into that point. More
precisely, let, for r > 0,

Q
r
(
M
)

:=
∫

Qt (dX)

∫
X(dx)1M(Xr

x), for M ⊂ M(Rd) Borel,

where the measures Xr
x ∈ M(Rd) are defined by Xr

x(A) = r−2X(rA − x). Then

lim
r↓0

Q
r = Q

0
∞ weakly in M(Rd) equipped with the vague topology.

Here Q
0∞ is again the equilibrium Palm distribution, see [Mo01a] for the proof.

Recall that Q
0∞ is defined only in dimension d ≥ 3, which is one of the reasons

why our methods break down in lower dimensions.

Remark 4. It is easy to check that a random measure X0∞ with distribution Q
0∞ has

the following scale invariance property. For all r > 0 and A ⊂ R
d , we have that

X0
∞(A) = 1

r2 X0
∞(rA) in law.
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This scaling relation, together with the Palm property, shows that the random mea-
sure X0∞ is statistically self-similar in the sense of U. Zähle [Za88]. In other words,
X0∞ is the natural self-similar object associated with super-Brownian motion. 	


1.4. Outline of the paper

In Section 2 we discuss the applications of snake constructions in our proofs. Snake
constructions are extremely useful for us, as they give a natural parametrisation of
the particles in a super-Brownian motion, which enables us to pick particles without
size or location bias. We first provide a snake representation for the equilibrium
Palm distribution X0∞, which is a variant of Le Gall’s Brownian snake construc-
tion of super-Brownian motion. We introduce the intuitive backbone picture, which
gives us the right point of view to tackle the problems related to the genealogical
structure of the superprocess. We then see that the backbone picture enables us to
define easily truncations of X0∞ and the states of super-Brownian motion and to
establish a coupling link between these measures. Finally, we recall that the support
of the random measure Xt is, via the Brownian snake, parametrised by a Brown-
ian level set, and quote a uniform dimension stability property, which reduces our
problem to the investigation of the dimension of a random subset of a Brownian
level set.

In Section 3 we link the asymptotics of large integer moments and the upper
tail asymptotics of X0∞(B(0, 1)). We provide rough bounds for large moments of
X0∞(B(0, 1)), using an iteration method very similar to techniques in [LP95]. Only
the lower bound we establish here enters into our result, the upper bound ensures
that the upper tail exponent θ(d) is finite. We then use the couplings established in
Section 2 to relate the tail asymptotics of X0∞(B(0, 1)) to corresponding quantities
embedded in the Brownian snake, preparing the proofs of our dimension results.

Section 4 contains the main body of the fractal geometry part of the proof of
Theorem 1.1, based on the tail estimates provided in the previous section. The upper
bounds follow from a fairly standard first moment technique, for the lower bounds
a percolation technique is used. This idea as such is not new in fractal geometry, see
e.g. [KPX00] and references therein, but its use for super-Brownian motion is new
and the fact that here the thick points are themselves a subset of a highly irregular
fractal makes some new ideas necessary. Once these tools are provided, we com-
plete the proof of Theorem 1.1 in Section 5 and we give details of the modifications
needed to establish Theorem 1.2.

2. The Brownian snake representation

2.1. The snake representation of the equilibrium Palm distribution

In this section we introduce a path-valued process, essentially Le Gall’s Brownian
snake, which can be used to give a representation of both the equilibrium Palm dis-
tribution and the states of the super-Brownian motion. We first explain the former,
which, although implicit in [DP91, LG93], is less well-documented in the literature.
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Our starting point is a contour process, which encodes the underlying branching
structure of X0∞. In the current setup this process is a two-sided Brownian motion
ζ = {ζs : s ∈ R} with ζ0 = 0, though later we will also encounter other contour
processes. We denote by Lt the local time at level t of the contour process ζ . The
path space P is defined by

P =
{
f : (−∞, u] → R

d : f continuous and u ∈ R

}
.

The Brownian snake with contour-process ζ is the Markov processW ={Ws :s ∈ R}
with state space P, which (given ζ ) has the following transition kernel. Given the
state Ws : (−∞, ζs] → R

d at time s ∈ R, we obtain the state Wt : (−∞, ζt ] → R
d

at time t ∈ R by letting

Wt(v) =
{

Ws(v) if v ≤ m := infr∈[s,t] ζr ,

Ws(m) + B(v − m) if m ≤ v ≤ ζt ,

where B is an independent Brownian motion started in the origin. We are interested
in the process W = {Ws : s ∈ R} when the initial distribution on P is the law
of Brownian motion W0 = B : (−∞, 0] → R

d starting in B(0) = 0. Note that,
although we have described W as a Markov process conditional on the contour
process ζ , the Brownian snake W is also an unconditional Markov process.

Proposition 2.1 (Representation of the equilibrium Palm distribution ). The ran-
dom measure X0∞ given by

X0
∞(A) =

∫ ∞

−∞
1{Ws(ζs )∈A} L0(ds) , for A ⊂ R

d Borel, (2.1)

is distributed according to the equilibrium Palm distribution. Alternatively, let
Nx(dW) be the ‘law’ of the path valued process obtained by running a Brownian
snake started in the constant process x with the Itô measure of positive excursions
as the ‘law’ of the contour process. We put

Zt = Zt [W ] =
∫ σ

0
1{Ws(ζs )∈ · } Lt(ds),

where σ is the length of the excursion. For a given (backward Brownian) path
B = {B(−t) : t ≥ 0}, B(0) = 0, we let � be a Poisson random measure with
intensity 4 dt NB(t)(dW). Then

X0
∞(A) =

∫∫ 0

−∞
Z−t [W ](A) �(dtdW), for A ⊂ R

d Borel. (2.2)

Remark 5. The representation (2.2) is based on the decomposition of the contour
process into its excursions above the minimum up to date, which provides a very
useful and intuitive representation of X0∞: First we are sampling a Brownian path
B = {B(−t) : t ≥ 0} with B(0) = 0, which can be interpreted as the path of a
backbone particle. Focusing on positive (snake) times s > 0, let Ms = min0≤r≤s ζr

be the minimum of the contour process up to time s, so that (ζs − Ms : s ≥ 0)
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is a reflected Brownian motion by Lévy’s theorem. The decomposition of this
process into excursions above zero (formally given, e.g., in [RY94, XII (2.5)]) cor-
responds to a decomposition of the contour process into excursions representing
the branching structure of offspring born at time t = −Ms from the backbone par-
ticle. Inserting the path-valued process into these excursions, we obtain measures
Z−t [W ] representing the family of a particle split off from the backbone t time
units before the present. We will frequently refer to this as the backbone picture of
X0∞. This is very close in spirit to Kallenberg’s idea of backward trees (see [Ka77])
in a different setting. 	

Proof of Proposition 2.1. The equivalence of (2.1) and (2.2) follows from the the
decomposition of the contour process into its excursions above the minimum up
to date, exactly as in [LG94, Proposition 2.5], taking into account that our contour
process is two-sided.

By [DP91, 6.1] the Palm distribution Q
0∞ is characterised by

Q
0
∞
[
e− ∫

ϕ dX0∞
]

= E

[
e−4

∫∞
0 Utϕ(B(t)) dt

]
,

for ϕ : R
d → [0, ∞) smooth and bounded,

where (Ut : t ≥ 0) is the nonlinear semigroup associated with the super-Brownian
motion, and (B(t) : t ∈ R) is a Brownian motion with B(0) = 0. Because the
law of Zt [W ] under Nx(dW) is the canonical cluster measure for Xt started in the
Dirac measure δx , we have

Utϕ(x) = − log Eδx

[
e− ∫

ϕ dXt
] =

∫
1 − e− ∫

ϕ dZt [W ]
Nx(dW),

and therefore, using (2.2),

E

[
e− ∫

ϕ dX0∞
]

= E exp
(

−
∫∫ 0

−∞
1 − e− ∫

ϕ dZ−t [W ]�(dt dW)
)

= E exp
(

− 4
∫ 0

−∞
dt

∫
1 − e− ∫

ϕ dZ−t [W ]
NB(t)(dW)

)

= E

[
e−4

∫∞
0 Utϕ(B(t)) dt

]
,

as required. 	

For the lower bound in Theorem 1.1, we also use a one-sided version of X0∞.

Indeed, define, using the notation from above,

X̄0
∞ :=

∫ ∞

0
1{Ws(ζs )∈·} L0(ds),

and note that similar to (2.2) we have, for a Poisson random measure �̄ with inten-
sity 2 dt NB(t)(dW),

X̄0
∞(A) =

∫ ∫ 0

−∞
Z−t [W ](A)�̄(dt dW), for A ⊂ R

d Borel.

Observe that X0∞ stochastically dominates X̄0∞, we write X̄0∞ ≤st X0∞ for this fact.
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2.2. Genealogical truncation and coupling links

One of the crucial advantages of the backbone picture is that genealogical trunca-
tions may be defined easily. Let 0 ≤ S < T be stopping times for the Brownian
motion B = {B(−t) : t ≥ 0}. Then we define the truncated measure XS

T con-
sisting of all particles splitting from the backbone particle between times S and T

by

XS
T (A) =

∫∫ −S

−T

Z−t [W ](A) �(dt dW), for A ⊂ R
d Borel. (2.3)

One of our main concerns in Section 3 will be to identify stopping times S, T such
that the tail behaviour of XS

T is comparable to the tail behaviour of X0∞.
We now explain how the truncation idea helps us to establish a coupling link

between the states of a super-Brownian motion and the equilibrium Palm distri-
bution. To prepare this, we recall briefly the Brownian snake representation of the
state Xt of a super-Brownian motion started with a Dirac mass δ0. Let W = {Ws :
s ≥ 0} be the Brownian snake process, however with a reflected Brownian motion
ζ = {ζs : s ≥ 0} as a contour process and start in the constant path W0(t) = 0 for
all t ≤ 0 = ζ0. Let τ = inf{s > 0 : L0(s) = 1}, where Lt is the local time of the
contour process ζ at level t . Then the process {Xt : t ≥ 0} with

Xt =
∫ τ

0
1{Ws(ζs )∈ · } Lt(ds) (2.4)

is a super-Brownian motion with X0 = δ0, see [LG91]. From this representation
one can immediately derive the following fact: Suppose that W = {Ws : s ≥ 0}
is the Brownian snake with a reflected Brownian motion ζ = {ζs : s ≥ 0},
ζ0 = 1, as a contour process started with a Brownian path W0 : (−∞, 1] → R

d

with W0(0) = x ∈ R
d . Then, for

σ = inf{s > 0 : ζ(s) = 0}, (2.5)

the measure

Z1 =
∫ σ

0
1{Ws(ζs )∈ · } L1(ds) (2.6)

is a super-Brownian cluster at time one emerging from x and conditioned to survive.
Now let 0 ≤ t ≤ 1. Define the stopping times T := inf{s > 0 : ζs = t}. Then,
the law of

∫ T

0
1B(0,r)

(
Ws(ζs) − W0(1)

)
L1(ds) (2.7)

equals the law of the truncated one-sided measure X̄0
1−t (B(0, r)) defined as in (2.3)

with �̄ replacing �. This idea will be used in various forms later, see in particular
Corollary 3.6.
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2.3. The dimension stability property

We conclude this section by recalling a result which is crucial for the use of the
Brownian snake in dimension calculations. Given a Brownian snake W = {Ws :
s ≥ 0} with a reflected Brownian motion ζ = {ζs : s ≥ 0} as a contour process,
let A ⊂ [0, ∞) be a subset of its time domain. We denote by

Ŵ (A) = {
Ws(ζs) : s ∈ A}

the image of A under the snake. This provides a parametrization of the range of
super-Brownian motion. Most importantly, for each t > 0, almost surely,

Ŵ
{
s ∈ [0, τ ] : ζs = t

} = supp Xt .

Lemma 2.2 (Uniform dimension quadrupling). Let W be the Brownian snake in
dimension d ≥ 2 with a reflected Brownian motion ζ = {ζs : s ≤ τ } as a contour
process. Then, almost surely, for all t >0 and all A⊂{s ∈ [0, τ ] : ζs = t}, we have

dim Ŵ (A) = 4 dim A.

The result is due to Serlet [Se95] for d ≥ 4 and to Mörters [Mo01b] for d = 2, 3.

3. Tail asymptotics

3.1. Rough bounds for large moments

In this section we calculate rough bounds for the limit behaviour of E
[
X0∞(B(0, 1))n

]

as n tends to infinity, which help us to identify the tail asymptotics of X0∞(B(0, 1)),
and of related one-sided and truncated measures. Recall the definitions of X̄0∞ and
X̄S

T from Section 2.2. We have the following stochastic domination relations:

X̄S
T ≤st X̄0

∞ ≤st X0
∞ and X̄S

T ≤st XS
T ≤st X0

∞. (3.1)

Lemma 3.1. Fix 0 ≤ S < T ≤ ∞. Then there exist two strictly positive, finite
constants c1 = c1(S, T ), c2 = c2(S, T ), such that for all n ≥ 1, we have

c1n
d/2cn

2 ≤ 1

n!
E

[
X̄S

T (B(0, 1))n
]

≤ 1

n!
E

[
X0

∞(B(0, 1))n
]

≤ (n + 1)

(
2

d − 2

)n

.

Proof of the upper bound in Lemma 3.1. We mimic the calculation in the proof of
Lemma 3.1 in [LP95] and use the representation of X0∞ by a Brownian snake with
a two-sided Brownian motion ζ as a contour process.

1

n!
E
[
X0

∞(B(0, 1))n
] = 1

n!
E

[(∫ ∞

−∞
1B(0,1)(Wu(ζu)) L0(du)

)n]

=
n∑

j=0

E

∫
· · ·

∫

u1<···<uj <0

j∏

i=1

1B(0,1)(Wui
(ζui

)) L0(du1) · · · L0(duj )

×
∫

· · ·
∫

0<uj+1<···<un

n∏

i=j+1

1B(0,1)(Wui
(ζui

)) L0(duj+1) · · · L0(du1) .
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By the strong Markov property, we can estimate each term as follows,

E

∫
· · ·

∫

0<uj+1<···<un

n∏

i=j+1

1B(0,1)(Wui
(ζui

)) L0(duj+1) · · · L0(dun)

=
∫

· · ·
∫

0<uj+1<···<un−1

n−1∏

i=j+1

1B(0,1)(Wui
(ζui

))

×E
Wun−1

[∫ ∞

0
1B(0,1)(Wu(ζu)) L0(du)

]
L0(duj+1) · · · L0(dun−1),

where E
B refers to expectation for a Brownian snake started in the path B. To bound

the innermost expectation, recall e.g. from [LP95, (2.6)], that

Nx

[∫
φ dZt

]
= Ptφ(x), (3.2)

where (Pt , t ≥ 0) denotes the transition semigroup of standard Brownian motion
and φ is some positive, measurable function. We have

E
Wun−1

[∫ ∞

0
1B(0,1)(Wu(ζu)) L0(du)

]
= 2

∫ 0

−∞
NWun−1 (t)[Z−t (B(0, 1))] dt,

recalling the backbone representation and the first moment of a Poisson process.
Using (3.2) and Fubini’s theorem, we continue

E
Wun−1

[∫ ∞

0
1B(0,1)(Wu(ζu)) L0(du)

]
= 2

∫ ∞

0
Ps[1B(0,1)](Wun−1(−s)) ds

≤ 2
∫ ∞

0
sup
x∈Rd

Ps[1B(0,1)](x) ds = 2
∫ ∞

0
Ps[1B(0,1)](0) ds

= 2
∫

B(0,1)

G(x) dx,

where G denotes Green’s function. Iterating this argument gives

1

n!
E

[
X0

∞(B(0, 1))n
]

≤ (n + 1)

[
2
∫

B(0,1)

G(x) dx

]n

. (3.3)

An easy calculation shows that 2
∫
B(0,1)

G(x) dx = 2/(d − 2), which completes
the upper bound. 	


We now deal with the lower bound. Observe that by the above stochastic dom-
ination results we may assume S > 0 and that

E

[
X0

∞(B(0, 1))n
]

≥ E

[
X̄S

T (B(0, 1))n
]

≥ 2E

∫ −S

−T

∫
Z−t (B(0, 1))n NB(t)(dW) dt, (3.4)
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where the expectation on the right hand side refers to the sampling of the backbone
path B = {B(−t) : t ≥ 0}. Therefore, the computation of suitable lower bounds
for the moments of Zt(B(0, 1)) under the excursion measure N is sufficient to finish
our argument. The proof of the following lemma consists of a calculation similar
to that in the proof of [LP95, Corollary 3.3], using a recursive moment formula and
induction.

Lemma 3.2. Fix ε > 0 and let t > ε. Then there exist positive, finite constants
c3, c4 = c4(ε), such that

1

n!
Nx

[
Zt(B(0, 1))n

] ≥ c3n
d/2cn−1

4 e−2n
|x|2

t t−d/2. (3.5)

Proof. We argue by induction. For n = 1, we have, by (3.2),

Nx [Zt(B(0, 1))] = Pt [1B(0,1)](x) = (2πt)−d/2
∫

B(0,1)

e− |x−y|2
2t dy

≥ (2πt)−d/2
[
e−2|x|2/t ∧ e−2/t

]
≥ c3t

−d/2e−2|x|2/t ,

as, for the first inequality, if |x| ≥ 1, we have |x − y| ≤ 2|x|, and if |x| < 1,
then |x − y| < 2. In the second inequality, we choose c3 = (2π)−d/2e−2. For the
induction step, use a moment formula (see e.g. [LP95], Proposition 3.2) and the
induction hypothesis, which give

Nx

[
Zt(B(0, 1)n

] = 2
n−1∑

j=1

(n

j

) ∫ t

0
Ex

[
NBt−s

[
Zs(B(0, 1))j

]
NBt−s

[
Zs(B(0, 1))n−j

]]
ds

≥ 2
n−1∑

j=1

n!c2
3c

n−2
4 (n − j)d/2jd/2

∫ t

ε/2
s−d

Ex

[
e−2n|Bt−s |2/s

]
ds.

This already looks promising, we only have to deal with the expectation under
the integral. Denote by (p(t, x, y), t ≥ 0, x, y ∈ R

d) the transition density of
Brownian motion and use the equation of Chapman-Kolmogorov to see

Ex

[
e−2n

|Bt−s |2
s

]
= (2πs/4n)d/2

∫

Rd

p(t − s, x, y)p(s/4n, y, 0) dy

= (2πs/4n)d/2p(t − s(1 − 1/4n), x, 0)

= (2πs/4n)d/2(2π(t − s(1 − 1/4n)))−d/2e
− |x|2

2(t−s(1−1/4n))

≥ (s/4n)d/2t−d/2e−2n
|x|2

t ,

since 2(t − s(1 − 1/4n)) for 0 ≤ s ≤ t becomes minimal for s = t (in that case
it equals t/2n). We now restrict our attention to one term in the sum, for which j

and n − j are at least n/4. Then

Nx

[
Zt(B(0, 1)n

] ≥ 2n!c2
3c

n−2
4 (n/4)d

∫ t

ε/2
s−d(s/4n)d/2t−d/2e−2n

|x|2
t ds

≥ n!c3n
d/2cn−2

4 t−d/2e−2n
|x|2

t

[
4−d4−d/22c3

∫ ε

ε/2
s−d/2 ds

]
,

which ends the proof if we choose c4 = 21−3dc3
∫ ε

ε/2 s−d/2 ds. 	




616 J. Blath, P. Mörters

Proof of the lower bound in Lemma 3.1. Plugging (3.5) into (3.4) for 0 < ε = S,
we see that

1

n!
E

[
X̄S

T (B(0, 1))n
]

≥ 2E

[
c3(n/2)d/2cn−1

4

∫ T

S

e−2n
|B(t)|2

t dt

]
≥ c1n

d/2cn
2 ,

if we choose c1 = 21−d/2 c3
c4

∫ T

S
P {|Bt |2 ≤ t} dt, and c2 = c4e

−2. 	


3.2. A Tauberian theorem and tail estimates

To switch from moment asymptotics to tail asymptotics, we make use of the fol-
lowing Tauberian Theorem, which can be proved easily adapting the arguments of
[KM02, Lemma 2.3].

Lemma 3.3 (Tauberian Theorem). Let Y be any nonnegative random variable, and
κ ∈ R. Then

lim sup
n→∞

1

n
log E

[Yn

n!

]
= −κ implies lim sup

a↑∞
1

a
log P {Y > a} = −eκ .

Now we define

κ := − lim sup
n→∞

1

n
log

1

n!
E

[
X0

∞(B(0, 1))n
]
, (3.6)

and, as κ is finite, our Tauberian Theorem shows that

lim sup
a↑∞

1

a
log P {X0

∞(B(0, 1)) > a} = −eκ = −θ. (3.7)

Corollary 3.4. Fix 0 ≤ S < T < ∞ and abbreviate θ∗ = θ∗(S, T ) = ec2(S,T )

and θ∗ = e2/(d−2). Then

−θ∗ ≤ lim sup
a↑∞

1

a
log P{X̄S

T (B(0, 1)) > a}

≤ lim sup
a↑∞

1

a
log P{X0

∞(B(0, 1)) > a} ≤ −θ∗. (3.8)

Remark 6. Corollary 3.4 shows that the tail behaviour of X0∞(B(0, 1)) and of the
one-sided truncated version X̄S

T (B(0, 1)) are of the same order. To close the gap be-
tween the lower and upper bound in Theorem 1.1 it would suffice to strengthen (3.8)
and give converging upper and lower bounds as S ↓ 0, T ↑ ∞. It is however unclear
whether this holds true. 	
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3.3. Tail estimates for measures embedded in the Brownian snake

The following tail estimates are corollaries to the rough bounds and will be use-
ful in the proof of the lower bounds in Section 5. In what follows, we consider
θ∗ = θ∗(1/2, 1) only. From the scaling properties of X0∞, see Remark 4, we get
that, for all r > 0 and A ⊂ R

d ,

X̄0
1(A) = 1

r2 X̄0
r2(rA) in law,

and this immediately implies the following bound.

Corollary 3.5. Fix 0 ≤ β ≤ 2. Then, for all a > 0,

−θ∗a ≤ lim sup
r↓0

1

log(1/r)
log P

{
X̄0

r2−β (B(0, r)) ≥ ar2 log(1/r)
}

≤ −θ∗a.

We now look at random measures embedded in a Brownian snake {Ws : s ≥ 0}
with Brownian motion {ζs : s ≥ 0}, reflected in 0, as contour process started in
W0 : (−∞, 1] → R

d , W0(0) = x ∈ R
d . For 0 ≤ β ≤ 2 fix a level t = 1 − r2−β

and recall the definition of the stopping time T and (2.7) from Section 2.2.

Corollary 3.6. For all a > 0, we have

−θ∗a ≤ lim sup
r↓0

1

log(1/r)
log P

{
X̄0

r2−β (B(0, r)) ≥ ar2 log(1/r)
}

= lim sup
r↓0

1

log(1/r)
log

P

{∫ T

0
1B(0,r)(Ws(1) − W0(1)) L1(ds) ≥ ar2 log(1/r)

}

≤ −θ∗a.

We conclude this section with a tail estimate used in our upper bounds using
the same framework as above. Given s > 0 we define S = sup

{
u < s : ζu = 0

}
,

with S = 0 if ζu > 0 for all u ∈ [0, s]. Also define T = inf
{
u > s : ζu = 0

}
, and

X
(s)
1 (A) =

∫ T

S
1A(Wu(ζu)) L1(du), for A ⊂ R

d Borel. (3.9)

The idea is that X
(s)
1 is the cluster which contains the particle parametrised by s.

Lemma 3.7. Fix s > 0 and let L : (0, 1) → (0, ∞) satisfy limr↓0 L(r) log(1/r)2

= 0. Then, for all a > 0,

lim sup
r↓0

1

log(1/r)
log

P

{
X

(s)
1

(
B(Ws(ζs), r)

) ≥ ar2 log(1/r)

∣
∣∣ |ζs − 1| < r2L(r)

}
≤ −θa.
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Proof. We may, if ζs < 1, extend the Brownian path Ws by adding an independent
piece, so that it is defined on (−∞, 1 ∨ ζs]. Denoting by Y a standard normal
random variable we obtain that

lim sup
r↓0

1

log(1/r)
log P

{∣∣Ws(ζs) − Ws(1)
∣∣ > r

√
L(r) log(1/r)

∣∣
∣ |ζs − 1| < r2L(r)

}

≤ lim sup
r↓0

1

log(1/r)
log P {|Y | > log(1/r)} = −∞.

On the other hand, if |Ws(ζs) − Ws(1)| ≤ r
√

L(r) log(1/r), we infer that, given
ε > 0,

X
(s)
1

(
B(Ws(ζs), r)

) ≤ X
(s)
1

(
B(Ws(1), r(1 +

√
L(r) log(1/r))

)

≤ X
(s)
1

(
B(Ws(1), r(1 + ε)

)
,

for sufficiently small values of r > 0. Now, irrespective of the fixed value of ζs , we
have

X
(s)
1 (B(Ws(1), r(1 + ε)) ≤st X0

∞(B(0, r(1 + ε))).

Indeed, if ζs < 1 the left hand side is stochastically dominated by X
1−ζs

1 (B(0, r(1+
ε))), and if ζs ≥ 1 it is dominated by X0

1(B(0, r(1 + ε))). Hence, we have shown
that

lim sup
r↓0

1

log(1/r)
log P

{
X

(s)
1

(
B(Ws(ζs), r)

) ≥ ar2 log(1/r)

∣∣∣ |ζs − 1| < r2L(r)
}

≤ lim sup
r↓0

1

log(1/r)
log P

{
X0

∞
(
B(0, r(1 + ε))

) ≥ ar2 log(1/r)
}

= lim sup
r↓0

1

log(1/r)
log P

{
X0

∞
(
B(0, 1)

) ≥ a

(1 + ε)2 log(1/r)

}

= −θ
a

(1 + ε)2 ,

using the scaling relation of Remark 4 in the penultimate step and (1.1) in the final
step. The result follows, as ε > 0 was arbitrary. 	


4. Limsup-subfractals of Brownian level sets

By results of Evans and Perkins [EP91] the laws of Xt for different finite start-
ing measures and times t > 0 are mutually absolutely continuous. Therefore it
suffices to give the proof for the case of a super-Brownian motion cluster at time 1
emerging from the point 0. We therefore assume that {ζs : s ≥ 0} is a reflected
Brownian motion started in ζ0 = 1 acting as a contour process for the Brown-
ian snake {Ws : s ≥ 0} started in a Brownian path W0 : (−∞, 1] → R

d with
W0(0) = 0. Then we define Z1 by (2.6) and we recall that the support of Z1 is
parametrised by {s ∈ [0, σ ] : ζs = 1}, where σ is defined in (2.5). This setup will
be in place for all of this and the next section.

Our proof of the dimension spectrum (1.3) indicates a fairly general method
for obtaining the Hausdorff dimension of a class of fractal subsets of Brownian
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level sets constructed by a limsup mechanism. It should be pointed out that the
theory of limsup-fractals provided recently by Dembo, Peres, Rosen and Zeito-
uni [DP00, DP01], and Khoshnevisan, Peres and Xiao [KPX00] cannot be applied
here, because the embedding of our fractal into the random environment given by
the Brownian level sets causes too much dependence between various parts. Still,
many of the basic ingredients of their method are retained. New ingredients, in
particular, exploit the strong regularity features of the Brownian level sets, see e.g.
Proposition 4.4 below.

4.1. The upper bounds

Key ingredients for the upper bound are uniform continuity results for the involved
processes, which we now recall. Let b > 0. By Lévy’s modulus of continuity, for
every c >

√
2, there exists a random �1(c) > 0 such that, almost-surely,

|ζs − ζt |√|s − t | log(1/|s − t |) ≤ c for all s, t ∈ [0, b] with |s − t | < �1(c), (4.1)

and by the Dawson-Perkins modulus of continuity, for every c > 2, there exists a
random �2(c) > 0 such that, almost-surely,

|Ws(u)−Ws(v)|√
|u−v| log(1/|u−v|) ≤ c for all

s ∈ [0, b], u, v ∈ [0, ζs) with |u − v| < �2(c). (4.2)

We also need a simple uniform continuity result for the Brownian snake.

Lemma 4.1. For c > 27/4 there exists �3(c) > 0 such that

|Ws(ζs) − Wt(ζt )|
|s − t |1/4 log(1/|s − t |)3/4 ≤ c, for all s, t ∈ [0, b] with |s − t | ≤ �3(c).

Proof. Pick c1 >
√

2 and c2 > 2 such that
√

2c2
√

c1 < c. Given s, t ∈ [0, b] (with-
out loss of generality with s < t) let m ∈ [s, t] be the point where the Brownian
motion ζ attains its minimum over [s, t]. Now, if t − s is small enough and satisfies
in particular t − s < �1(c1) and max[s,t] ζ −min[s,t] ζ < �2(c2), we get, recalling
the definition of the Brownian snake,

|Ws(ζs) − Wt(ζt )| ≤ |Ws(ζs) − Ws(ζm)| + |Wt(ζm) − Wt(ζt )|
≤ c2

√
|ζs − ζm| log(1/|ζs − ζm|)

+c2
√

|ζm − ζt | log(1/|ζm − ζt |)
≤ 2c2

√
c1(t − s)1/4 log(1/(t − s))1/4 log(1/

√
2(t − s))1/2

≤ c (t − s)1/4 log(1/(t − s))3/4, (4.3)

which completes the proof. 	

Recall the definition (3.9) of the cluster X

(s)
1 and abbreviate, for a ≥ 0,

F(a) =
{
s ∈ [0, ∞) : ζs = 1 and lim sup

r↓0

X
(s)
1 (B(Ws(1), r))

r2 log(1/r)
≥ a

}
. (4.4)

The following lemma is the main step in the proof of the upper bounds.
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Lemma 4.2. Almost surely, we have

(i) if a > 2/θ , then F(a) = ∅,
(ii) if a ≤ 2/θ , then dim F(a) ≤ 1

2 − θa
4 .

Proof. It suffices to give the bounds for F(a) ∩ [δ, b], for any δ, b > 0. Let ε > 0
and fix rn = (1 + ε)−n, kn = rn(1 + ε) and

sn = (ε/4)4r4
n log(1/rn)

−7.

Hence we may assume that n is sufficiently large to ensure

sn ≤ 1
4 r4

n log(1/rn)
−6 log(1/sn)

−1, (4.5)

and

sn ≤ (
ε/4

)4
r4
n log(1/sn)

−3. (4.6)

We introduce a collection of intervals of length sn covering [δ, b] by

In =
{

[ksn, (k + 1)sn) : δ/sn − 1 ≤ k ≤ b/sn, k ∈ N

}
,

and define a sub-collection

Jn =
{
I = [s, t] ∈ In :

∣∣ζs − 1
∣∣ ≤ r2

n log(1/rn)
−3 and

X
(s)
1 (B(Ws(ζs), kn)) ≥ a(1 + ε)−5k2

n log(1/kn)
}
.

We now use our continuity arguments to show that, almost surely, for sufficiently
large n,

{
s ∈ [δ, b] : ζs = 1 and X

(s)
1

(
B(Ws(1), rn)

)

≥ a(1 + ε)−3r2
n log(1/rn)

}
⊂ ⋃

I∈Jn

I . (4.7)

Indeed, suppose that n is large enough to ensure sn < �1(2) ∧ �3(4) and s̃ ∈ I =
[s, t] ∈ In is an element of the set on the left hand side of (4.7). Then, using (4.5),

∣∣ζs − 1
∣∣ = ∣∣ζs − ζs̃

∣∣ ≤ 2
√

sn log(1/sn) ≤ r2
n log(1/rn)

−3,

and, using Lemma (4.1) and (4.6),

X
(s)
1

(
B(Ws(ζs), kn)

) ≥ X
(s)
1

(
B(Ws̃(1), kn − 4s

1/4
n log(1/sn)

3/4)
)

≥ X
(s̃)
1

(
B(Ws̃(1), rn)

) ≥ a(1 + ε)−3r2
n log(1/rn)

≥ a(1 + ε)−5k2
n log(1/kn),

hence s ∈ I ∈ Jn, showing (4.7). If s̃ ∈ F(a) ∩ [δ, b], we have

lim sup
n→∞

X
(s̃)
1

(
B(Ws̃(1), rn)

)

r2
n log(1/rn)

≥ lim sup
r↓0

X
(s̃)
1

(
B(Ws̃(1), r)

)

r2 log(1/r)

( 1

1 + ε

)2 ≥ a(1+ε)−2.
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and therefore

X
(s̃)
1

(
B(Ws̃(1), rn)

) ≥ a(1 + ε)−3r2
n log(1/rn), for infinitely many n .

In other words, we have established the covering

F(a) ∩ [δ, b] ⊂
∞⋂

j=1

∞⋃

n=j

⋃

I∈Jn

I. (4.8)

For sufficiently large n, we have, for all I = [s, t] ∈ In, that

P
{|ζs − 1| ≤ r2

n log(1/rn)
−3} ≤ r2

n,

where we use that |ζs − 1| has a density which is bounded, uniformly in s ≥ δ. Fix
a small η > 0. For all sufficiently large n and any I ∈ In, by Lemma 3.7,

P
{
I ∈ Jn

} = P
{
X

(s)
1 (B(Ws(ζs), kn)) ≥ a(1 + ε)−5k2

n log(1/kn)|
|ζs − 1| ≤ r2

n log(1/rn)
−3}

×P{|ζs − 1| ≤ r2
n log(1/rn)

−3}
≤ (1 + ε)−2 k2+θa(1+ε)−5−η

n .

For any α ∈ R, we thus have

E

[ ∞∑

n=1

#Jns
α
n

]
=

∞∑

n=1

sα
n

∑

I∈In

P
{
I ∈ Jn

} ≤
∞∑

n=1

#In sα
n k2+θa(1+ε)−5−η

n . (4.9)

As sn is at most a constant multiple of k4
n log(1/kn)

−7, and #In ≤ b/sn is no
bigger than a constant multiple of k−4

n log(1/kn)
7, the right hand side is finite if

4α − 2 + θa(1 + ε)−5 − η > 0. Hence, for all α > 1/2 − θa/4, we can find ε > 0
and η > 0 such that

∞∑

n=1

#Jns
α
n < ∞ almost surely. (4.10)

By (4.8), the set F(a) ∩ [δ, b] can be covered, for each j , by the family
⋃

n≥j Jn

consisting, for each n ≥ j , of #Jn cubes of sidelength sn. Hence (4.10) implies that
dim F(a) ≤ 1/2 − θa/4. If the right hand side is negative, F(a) must be empty
almost surely, so that both parts of Lemma 4.2 are proved. 	

4.2. The lower bounds

For the lower bounds we use the method of intersection with an independent per-
colation limit set. Suppose that an interval [0, b] is fixed and denote by Dn the
collection of compact dyadic intervals (relative to [0, b]) of sidelength b2−n. We
also let D = ⋃∞

n=0 Dn.
Given γ ∈ [0, 1] we construct a random compact set �[γ ] ⊂ [0, b] inductively

as follows: We keep each of the two intervals in D1 independently with probability
p = 2−γ . Let S1 be the collection of intervals kept in this procedure and pass
from Sn to Sn+1 by keeping each interval of Dn+1, which is not contained in a
previously rejected interval, independently with probability p. Then the random set
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�[γ ] :=
∞⋂

n=1

⋃

I∈Sn

I

is called a percolation limit set in [0, b]. The usefulness of percolation limit sets in
fractal geometry is due to the following lemma, see [Pe96] or [Ha81] for a proof.

Lemma 4.3. For every γ ∈ [0, 1] and every Borel set A ⊂ [0, b] the following
properties hold

(i) if dim A < γ , then almost surely, A ∩ �[γ ] = ∅,
(ii) if dim A > γ , then A ∩ �[γ ] �= ∅ with positive probability,

(iii) if dim A > γ , then almost surely dim
(
A ∩ �[γ ]

) ≤ dim A − γ and, for all
ε > 0, with positive probability dim

(
A ∩ �[γ ]

) ≥ dim A − γ − ε.

Observe that the first part of the lemma gives a lower bound γ for the Hausdorff
dimension of a set A, once we can show that A∩�[γ ] �= ∅ with positive probability.
This is the trick we use to prove the lower bound in the dimension spectrum.

The key to the investigation of limsup-subfractals of Brownian level sets is the
following regularity property of Brownian level sets, which may be of independent
interest.

Proposition 4.4. Suppose that {ζs : s ≥ 0} is a standard Brownian motion with
ζ0 = 1 and � = �[γ ] ⊂ [0, b] an independent percolation limit set on [0, b], for
some γ < 1/2. Let L = {s ∈ [0, b] : ζs = 1}, then

P

{
dim(� ∩ L) = 1

2 − γ

∣∣∣ dim(� ∩ L) > 0
}

= 1. (4.11)

Proof. It certainly suffices to show that, for all 0 < δ < η < 1
2 − γ ,

P
{
δ < dim(� ∩ L) < η

} = 0.

For convenience we extend � to the whole halfline [0, ∞) by placing indepen-
dent copies in each interval [(k − 1)b, kb], k ∈ N. We introduce the filtration
F = {Ft : t ≥ 0} by

Ft = σ
(
ζs : s ≤ t

) ∨ σ
({s ∈ �} : s ≤ t

)
.

We fix an n ∈ N for the moment and introduce stopping times

T1 = inf
{
s ≥ 0 : ζs = 1 and s ∈ �

}
,

Tk+1 = inf
{
s ≥ Tk + b2−n : ζs = 1 and s ∈ �

}
, for k ≥ 0.

Let N := N(n) := max{k : Tk < b}. Given j ∈ N we choose the smallest m ≥ n

such that Tj is in the left half of the dyadic interval of length b2−m. We denote by
Ĩj ∈ Dm the m-th stage interval containing Tj and by Ij ∈ Dm+1 the right half of
this interval. Crucially, as Tj ∈ Ĩj , the dyadic interval Ĩj is kept in the percolation
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construction and therefore � ∩ Ij is a percolation limit set in Ij and independent
of F(Tj ). The events

Ej :=
{

dim(� ∩ L ∩ Ij ) > η
}

are F(Tj+1)-measurable. Moreover, by scaling and using Lemma 4.3 (iii) we see
that there is a p > 0, which does not depend on n, with the property that

P

{
dim(� ∩ L ∩ Ij ) ≥ η

∣∣
∣F(Tj )

}
≥ p.

We clearly have, for all k,

P

{
δ < dim(� ∩ L) < η

}
≤ P

{
neither of E1, . . . , Ek occurs

}

+P

{
N ≤ k and dim(� ∩ L) > δ

}
.

Our strategy is to choose k = k(n) on the right hand side such that both terms get
arbitrarily close to zero as n → ∞. Let k(n) = 2δn. For the first term we easily get

P

{
neither of E1, . . . , Ek(n) occurs

}
≤ (1 − p)k(n) −→ 0 as n → ∞.

To study the second term observe that N ≤ 2k(n) implies that there exists a cov-
ering of � ∩ L by 2k(n) intervals of length b2−n. If this happened for arbitrarily
large values of n we could infer dim(� ∩ L) ≤ δ. Hence,

0 = P

{
lim inf
n→∞

N(n)

k(n)
≤ 1 and dim(� ∩ L) > δ

}

≥ lim
n→∞ P

{
there is m ≥ n with N(m) ≤ k(m) and dim(� ∩ L) > δ

}

≥ lim sup
n→∞

P

{
N(n) ≤ k(n) and dim(� ∩ L) > δ

}
.

We thus infer that P{δ < dim(� ∩ L) < η} = 0 and this completes the proof. 	

From the lemma we infer that, almost surely, for all open intervals I ,

either dim
(
I ∩ L ∩ �

) = 0 or dim
(
I ∩ L ∩ �

) = 1

2
− γ.

We can therefore define a regularisation of the random set � ∩ L by putting

E := (� ∩ L) \
⋃{

I : I an open interval with dim(I ∩ � ∩ L) = 0
}
.

The regularity features of E are,

• for any open interval I which intersects E, we have dim (E ∩ I ) = 1
2 − γ ;

• E �= ∅ with positive probability;
• E is compact.

The main lemma of this section is the following.
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Lemma 4.5. Fix a ∈ [0, 2/θ∗] and let γ = 1
2 − θ∗a/4. Define, for N ∈ N, the

open set

U(N) :=
{
s ∈ E : there exists 0 < r < 2−N with X

(s)
1

(
B(Ws(ζs), r))

)

>
(
a − 1

N

)
r2 log(1/r)

}
.

Then, almost surely, U(N) is dense in E.

Once this is established, the following lemma can be inferred easily with
arguments analogous to the argument in [KPX00]. Recall the definition of F(a)

from (4.4).

Lemma 4.6. Suppose a ∈ [0, 2/θ∗] and γ = 1
2 − θ∗a/4. Then

P
{
F(a) ∩ �[γ ] �= ∅} = P

{
E �= ∅} > 0.

Hence, dim F(a) ≥ γ with positive probability.

Proof. Recall from Lemma 4.5 that, almost surely, U(N) is open and dense in the
compact set E. By Baire’s Theorem

∞⋂

N=1

U(N) = F(a) ∩ E

is dense in E. Hence, P
{
F(a) ∩ �[γ ] �= ∅} = P

{
E �= ∅} > 0 , and Lemma 4.3 (i)

yields dim F(a) ≥ γ with positive probability. 	

The rest of this section is devoted to the proof of Lemma 4.5. We let G =

{Gt : t ≥ 0} be the right continuous filtration generated by the contour process,
and F = {Ft : t ≥ 0} be the filtration given by Ft = Gt ∨ σ(�). By the right
continuity of G we have {s ∈ E} ∈ Fs .

Let I = (b0, b1) ⊂ [0, b] be an open interval, and let N ∈ N. We need to show
that almost surely E ∩ I �= ∅ implies U(N) ∩ I �= ∅. Let ε > 0, which we shall
fix appropriately later in the proof.

For the moment, fix n ∈ N, and let rn = 2−n. Define two series of F-stopping
times by letting T0 = inf(E ∩ I ) and, for k ≥ 1,

Sk = inf
{
s ≥ Tk−1 : ζs = 1 − r2−ε

n

}
, and Tk = inf

{
s ≥ Sk : s ∈ E

}
.

Let M = M(n) = max{k ∈ N : Sk < b1} the number of downcrossings by the
contour process of the interval [1 − r2−ε

n , 1] in the time interval I .
Observe that the path-valued processes

(
(WTk+s(1−r2−ε

n +t)−WTk
(1) : t ∈ [0, ζTk+s−1+r2−ε

n )) : s ∈ [0, Sk+1−Tk]
)
,

for k ≥ 1, are independent and equal in law to a Brownian snake started in a Brown-
ian motion path of length r2−ε

n ending in 0, and stopped upon hitting the zero path.
Therefore, for every k ∈ N, we may define the independent events
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Ek := Ek(n)

:=
{∫ Sk+1

Tk

1B(0,rn)

(
Ws(ζs) − WTk

(1)
)
L1(ds) > r2

n log(1/rn)
(
a − 1

N

)
}

.

From Corollary 3.6 we know that P(Ek) ≥ r
θ∗(a− 1

2N
)

n . We use the features of E to
get, for all m ∈ N,

P

{
neither of E1, . . . , EM holds and E ∩ I �= ∅

}

≤ P

{
neither of E1, . . . , Em holds

}
(4.12)

+ P

{
M ≤ m and dim(E ∩ I ) ≥ 1

2 − γ
}
. (4.13)

The strategy for the remainder of the proof is to choose m dependent on n as

m(n) :=
⌊
r
−θ∗(a− 1

3N
)

n

⌋
,

where � � denotes the integer part of a positive real, and show that both (4.12) and
(4.13) vanish as n → ∞. Once this is done we can infer that

P

{
I ∩ U(N) �= ∅

}
≥ lim sup

n→∞
P

({
E ∩ I �= ∅} ∩ (

E1(n) ∪ . . . ∪ EM(n)(n)
))

≥ lim sup
n→∞

[
P

{
E ∩ I �= ∅

}
− P

{
neither of E1(n), . . . , Em(n)(n) holds

}

− P

{
M(n) ≤ m(n) and E ∩ I �= ∅

}]

= P

{
E ∩ I �= ∅

}
,

and this is the required statement.

Estimate of (4.12). Note that the events E1(n), . . . , Em(n)(n) are independent and

identically distributed, and recall that P(Ek(n)) ≥ r
θ∗(a− 1

2N
)

n . Hence

P

{
neither of E1(n), . . . , Em(n)(n) holds

}
≤

(
1 − r

θ∗(a− 1
2N

)
n

)m(n)

−→ 0 as n → ∞,

because m(n)r
θ∗(a− 1

2N
)

n → ∞.

Estimate of (4.13). This is slightly more involved. Denote by K(k, n) the number
of intervals of length r4−3ε

n needed to cover the set L ∩ [Tk, Sk+1]. We first need to
prove that there are constants A, B > 0 such that, for a(n) = A exp(−Br−ε

n ),

P
{
K(k, n) ≥ r−ε

n

} ≤ a(n). (4.14)

For simplicity we first subject the problem to a Brownian scaling. So let B be a
Brownian motion started at B0 = 0 and T be the first hitting time of level −1. We
let K be the number of intervals of length r−ε

n needed to cover Z ∩ [0, T ] where Z

denotes the zero set of B, so that K has the same distribution as K(k, n).
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We define stopping times T0 = 0, and for k ≥ 1,

Sk = inf
{
s ≥ Tk−1 : |Bs | = 1

}
, and Tk = inf

{
s ≥ Sk : Bs = 0

}
.

Note that the number N := max{k : Sk ≤ T } is geometrically distributed with
success parameter 1/2. Hence

P
{
N ≥ r−ε

n

} ≤ (1/2)r
−ε
n . (4.15)

Moreover, Sk − Tk−1 is the exit time from the interval (−1, 1), which is a random
variable with finite exponential moments. Hence, by the exponential Chebyshev
inequality, for suitable positive constants C, D, we have

P
{
Sk − Tk−1 > r−ε

n

} ≤ C exp
(− Dr−ε

n

)
. (4.16)

Putting (4.15) and (4.16) together shows that, up to a probability of the right order,
the intervals [Tk−1, Sk], for k ≤ �r−ε

n �, form a cover of Z ∩ [0, T ] by intervals of
length at most r−ε

n . This proves (4.14).
We infer from (4.14) that

P

{
K(k, n) ≥ r−ε

n for some k ≤ 2m(n)
}

≤ 2m(n)a(n).

Hence, we have

P

{
lim sup
n→∞

sup
k≤2m(n)

K(k, n)

r−ε
n

≥ 2
}

≤ 2
∞∑

i=n

m(i)a(i) −→ 0. (4.17)

Moreover, if M(n) ≤ 2m(n) and K(k, n) ≤ 2r−ε
n for all k ≤ M(n), then there

is a covering of E ∩ I by 4m(n)r−ε
n intervals of length r4−3ε

n . Now, for any small
δ > 0,

4m(n)r−ε
n

[
r4−3ε
n

]( 1
2 −γ−δ) ≤ 4r

−θ∗(a− 1
3N

)+(4−3ε)( 1
2 −γ−δ)−ε

n .

Depending on N only, we may make the choice of ε, δ > 0 such that the exponent
is positive. If this holds for all large n, it implies an upper bound of 1/2 − γ − δ

for the dimension of E ∩ I . Hence the events

lim inf
n→∞

M(n)

m(n)
≤ 1 and lim sup

n→∞
sup

k≤2m(n)

K(k, n)

r−ε
n

< 2

imply
dim(E ∩ I ) ≤ 1

2 − γ − δ.

Recalling (4.17) we get

0 = P

{
lim inf
n→∞

M(n)

m(n)
≤ 1, lim sup

n→∞
sup

k≤2m(n)

K(k, n)

r−ε
n

< 2 and dim(E ∩ I ) > 1
2 − γ − δ

}

= P

{
lim inf
n→∞

M(n)

m(n)
≤ 1 and dim(E ∩ I ) > 1

2 − γ − δ
}

≥ lim sup
n↑∞

P

{
M(n)

m(n)
≤ 1 and dim(E ∩ I ) > 1

2 − γ − δ

}
.

This completes the estimate of (4.13), and hence the proof of Lemma 4.5. 	
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5. Completion of the proofs

5.1. The dimension spectrum

We remain in the framework introduced at the start of Section 4. Recall the definition
(4.4) of the set F(a) and define F(a, b) = F(a)∩ [0, b]. The proof of Theorem 1.1
is completed with the following lemma, an appeal to the snake construction (2.6),
and Lemma 2.2.

Lemma 5.1. For the stopping time σ introduced in (2.5), we have, almost surely,

1

2
− θ∗a

4
≤ dim F(a, σ ) ≤ 1

2
− θa

4
,

for a ∈ [0, 2/θ ], and F(a, σ ) = ∅, for a > 2/θ .

Proof. For the upper bounds we pick ε > 0 arbitrary and choose b such that
P{σ > b} < ε. Lemma 4.2 yields that F(a, b) = ∅ if a > 2/θ and dim F(a, b) ≤
1/2 − θa/4 otherwise. The upper bounds follow, as ε > 0 was arbitrary.

For the lower bounds we fix a < 2/θ∗ and for the moment also a small b > 0.
Let γ = 1/2− θ∗a/4 and let �[γ ] be an independent percolation limit set in [0, b].
By Lemma 4.6 we have

P
{
F(a, b) ∩ �[γ ] �= ∅} = P

{
E �= ∅} > 0 .

Now note that, by scaling P
{
E �= ∅} is bounded from zero by a constant indepen-

dent of b. In fact, by scaling this probability only depends on b via the marginal
effect coming from a possible reflection of ζ in [0, b], which for decreasing b

becomes increasingly unlikely. Together with Lemma 4.3 (i) this implies that

P
{

dim F(a, b) ≥ γ for all b > 0
} = lim

b↓0
P
{

dim F(a, b) ≥ γ
}

> 0.

By Blumenthal’s zero-one law the event on the left-hand side has probability zero
or one, so we infer that

P
{

dim F(a, σ ) ≥ γ
} ≥ P

{
dim F(a, b) ≥ γ for all b > 0

} = 1,

which completes the proof. 	


5.2. The most visited sites

Some extra work is needed to complete the proof of the lower bound in (1.4). We
fix a small ε > 0 and let r > 0. Define two series of stopping times by T0 = 0 and,
for k ≥ 1,

Sk = inf
{
s ≥ Tk−1 : ζs = 1 − r2−ε

}
, and Tk = inf

{
s ≥ Sk : ζs = 1

}
.
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Denote by N := max{k ∈ N : Tk < σ } the number of downcrossings by the con-
tour process of the interval [1 − r2−ε, 1] before σ . Recall that N is geometrically
distributed with success parameter p = r2−ε. We define events

Ek :=
{ ∫ Sk+1

Tk

1B(0,r)(Ws(ζs) − WTk
(1)

)
L1(ds) ≥ ar2 log(1/r)

}
.

Again, these events are independent and identically distributed, moreover they are
independent of N . Note that for k ≤ N the event Ek implies

sup
x∈supp Z1

Z1(B(x, r)) ≥ ar2 log(1/r),

where Z1 is as in (2.6). Corollary 3.6 shows that for a < 2/θ∗ there exists δ > 0
such that P(Ek) ≥ r2−δ . Hence we have,

P

{
there is no x ∈ supp Z1 with Z1

(
B(x, r)

) ≥ ar2 log(1/r)
}

≤ P
{
Ek fails for all 1 ≤ k ≤ N

}

≤
∞∑

k=1

(1 − p)k−1p(1 − r2−δ)k ≤ 2r2
∞∑

k=1

(1 − r2−δ)k ≤ 2rδ.

For any η > 1, we may choose the sequence rn = η−n and the Borel-Cantelli
Lemma tells us that there is a random M such that, almost surely, for all n ≥ M ,

sup
x∈supp Z1

Z1
(
B(x, rn)

)

r2
n log(1/rn)

≥ a.

And, for all 0 < r < rM , we can choose n ≥ M with rn+1 ≤ r < rn such that

sup
x∈supp Z1

Z1
(
B(x, r)

)

r2 log(1/r)
≥ sup

x∈supp Z1

Z1
(
B(x, rn+1)

)

r2
n log(1/rn+1)

≥ a

η2 .

Hence, we have

lim inf
r↓0

sup
x∈supp Z1

Z1
(
B(x, r)

)

r2 log(1/r)
≥ a

η2 > 0.
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