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Abstract. We investigate the random continuous trees called Lévy trees, which are obtained
as scaling limits of discrete Galton-Watson trees. We give a mathematically precise definition
of these random trees as random variables taking values in the set of equivalence classes of
compact rooted R-trees, which is equipped with the Gromov-Hausdorff distance. To con-
struct Lévy trees, we make use of the coding by the height process which was studied in
detail in previous work. We then investigate various probabilistic properties of Lévy trees. In
particular we establish a branching property analogous to the well-known property for Gal-
ton-Watson trees: Conditionally given the tree below level a, the subtrees originating from
that level are distributed as the atoms of a Poisson point measure whose intensity involves a
local time measure supported on the vertices at distance a from the root. We study regularity
properties of local times in the space variable, and prove that the support of local time is the
full level set, except for certain exceptional values of a corresponding to local extinctions.
We also compute several fractal dimensions of Lévy trees, including Hausdorff and pack-
ing dimensions, in terms of lower and upper indices for the branching mechanism function
ψ which characterizes the distribution of the tree. We finally discuss some applications to
super-Brownian motion with a general branching mechanism.

1. Introduction

This work is devoted to the study of various properties of the so-called Lévy trees,
which are continuous analogues of the discrete Galton-Watson trees. Our main
contributions to the probabilistic analysis of Lévy trees include the construction of
local time measures supported on level sets of the tree, the use of these local times
to formulate and establish a branching property analogous to a well-known result in
the discrete setting, and the proof of a “subtree” decomposition along the ancestral
line of a typical vertex in the tree. Additionally, we study the fractal properties of
Lévy trees and compute their Hausdorff and packing dimensions as well as that
of particular subsets such as level sets, under broad assumptions on the branching
mechanism characterizing the tree.

One major originality of the present article compared to our previous work
[9],[20],[21] is to view Lévy trees as random variables taking values in the space of
compact rooted R-trees. The precise definition of an R-tree is recalled in Section 2
below. Informally an R-tree is a metric space (T , d) such that for any two points
σ and σ ′ in T there is a unique arc with endpoints σ and σ ′ and furthermore this
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arc is isometric to a compact interval of the real line. A rooted R-tree is an R-tree
with a distinguished vertex called the root. We write h(T ) for the height of T , that
is the maximal distance from the root to a vertex in T . Say that two rooted R-trees
are equivalent if there is a root-preserving isometry that maps one onto the other.
It was noted in [13] that the set of equivalence classes of compact rooted R-trees,
equipped with the Gromov-Hausdorff distance [15] is a Polish space.

The study of R-trees has been motivated by algebraic and geometric purposes.
See in particular [26] and the survey [6]. One of our goals is to initiate a probabilis-
tic theory of R-trees, by starting with the fundamental case of Lévy trees. See [13]
for another probabilistic application of R-trees. We also mention the recent article
[3], which discusses a different class of continuum random trees obtained as weak
limits of birthday trees (instead of the Galton-Watson trees considered here), using
ideas related to the present work.

To motivate our definition of Lévy trees, let us describe a simple approxima-
tion result, which is a special case of Theorem 4.1 below. Let µ be a probability
measure on Z+, with µ(1) < 1. Assume that µ has mean one and is in the domain
of attraction of a stable distribution with index γ ∈ (1, 2]. When γ = 2, this holds
as soon as µ has finite variance, and when γ ∈ (1, 2), it is enough to assume that
µ(k) ∼ c k−1−γ as k → ∞. Denote by θ a Galton-Watson tree with offspring
distribution µ, which describes the genealogy of a (discrete-time) Galton-Watson
branching process with offspring distribution µ started initially with one ancestor.
We can view θ as a (random) finite graph and equip it with the natural graph dis-
tance. If r > 0, the scaled tree rθ is obviously defined by requiring the distance
between two neighboring vertices to be r instead of 1. Also let h(θ) stand for the
maximal generation in θ . Then there is a σ -finite measure �(dT ) on the space of
(equivalence classes of) rooted compact R-trees such that for every a > 0, the con-
ditional law of the scaled tree n−1θ knowing that h(θ) ≥ an converges as n → ∞
to the probability measure �(dT | h(T ) ≥ a), in the sense of weak convergence
for the Gromov-Hausdorff distance on pointed metric spaces.

In a sense, the preceding result is not really new: See [2],[8] and especially
Chapter 2 of [9] for related limit theorems with a different formalism. Still we
believe that the formalism of R-trees is useful both to formulate such results and
to analyse the limiting objects as we do in the present work.

Let us turn to a more precise description of the class of random trees that will
be considered here. A Lévy tree can be interpreted as the genealogical tree of a
continuous-state branching process, whose law is characterized by a real function
ψ defined on [0,∞), which is called the branching mechanism. Here we restrict
our attention to the critical or subcritical case where ψ is nonnegative and of the
form

ψ(λ) = αλ+ βλ2 +
∫
(0,∞)

π(dr)(e−λr − 1 + λr) , λ ≥ 0,

where α, β ≥ 0 and π is a σ -finite measure on (0,∞) such that
∫
(0,∞)

π(dr)(r ∧
r2) < ∞. We assume throughout this work the condition∫ ∞

1

du

ψ(u)
< ∞
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which is equivalent to the a.s. extinction of the continuous-state branching process,
and thus necessary for the compactness of the associated genealogical tree. Of par-
ticular importance are the quadratic branching caseψ(λ) = c λ2 and the stable case
ψ(λ) = c λγ , 1 < γ < 2, which both arise in the discrete approximation described
above.

The precise definition of the ψ-Lévy tree then depends on the height process
introduced by Le Gall and Le Jan [20] (see also Chapter 1 of [9]) in view of coding
the genealogy of general continuous-state branching processes. The height pro-
cess is obtained as a functional of the spectrally positive Lévy process X with
Laplace exponent ψ . An important role is played by the excursion measure N of
X above its minimum process. In the quadratic branching case ψ(u) = c u2, X is
a (scaled) Brownian motion, the height process H is a reflected Brownian motion
and the “law” of H under N is just the Itô measure of positive excursions of linear
Brownian motion: This is related to the fact that the contour process of Aldous’
Continuum Random Tree is given by a normalized Brownian excursion (see [1]
and [2]), or to the Brownian snake construction of superprocesses with quadratic
branching mechanism (see e.g. [19]). In our more general setting, the height process
can be defined informally as follows. For every t ≥ 0, Ht measures the size of the
set {s ≤ t : Xs = inf[s,t]Xr}. A precise definition of Ht is recalled in Section 3
below. Under our assumptions, the process H has a continuous modification.

The claim is now that the sample path ofH underN codes a random continuous
tree called the ψ-Lévy tree. The precise meaning of the coding is explained in Sec-
tion 2 in a deterministic setting, but let us immediately outline the construction of
the tree. We write ζ for the duration of the excursion under N and define a random
function dH on [0, ζ ]2 by setting

dH (s, t) = Hs +Ht − 2mH(s, t) ,

where we have setmH(s, t) = infs∧t≤r≤s∨t Hr . We introduce an associated equiv-
alence relation by setting s ∼H t if and only if dH (s, t) = 0. In particular, 0 ∼H ζ .
The function dH obviously extends to the quotient set TH := [0, ζ ]/ ∼H and
defines a distance on this set. It is not hard to verify that (TH , dH ) is a compact
R-tree, and its root is by definition the equivalence class of 0. Informally, each real
number s ∈ [0, ζ ] corresponds to a vertex at level Hs in the tree, and dH (s, t) is
the distance between vertices corresponding to s and t (in particular s and t corre-
spond to the same vertex if and only if dH (s, t) = 0). The quantity mH(s, t) can
be interpreted as the generation of the most recent common ancestor to s and t .

The law of the Lévy tree is by definition the distribution�(dT ) of the compact
rooted R-tree (TH , dH ) under the measureN . Notice thatN is an infinite measure,
and so is �. However, for every a > 0, v(a) := �(h(T ) > a) < ∞, and more
precisely v(a) is determined by the equation

∫ ∞

v(a)

du

ψ(u)
= a.

Section 4 contains the proof of several important properties of Lévy trees. In par-
ticular, for every a > 0, we construct the local time �a at level a, which is a finite
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measure supported on the level set

T (a) := {σ ∈ T : d(ρ(T ), σ ) = a}

where ρ(T ) denotes the root of T . We then prove the fundamental “branching
property”: If (T (i),◦, i ∈ I) denote the connected components of the open set
{σ ∈ T : d(ρ(T ), σ ) > a}, the closure T (i) of each T (i),◦ is a compact rooted
R-tree with root σi ∈ T (a) and, conditionally on �a , the point measure

∑
i∈I

δ(σi ,T (i))

is Poisson with intensity �a(dσ )�(dT ) (see Theorem 4.2 for a slightly more pre-
cise result stating that this point measure is also independent of the part of the tree
“below level a”). Up to some point, the branching property follows from a result of
[9] (Proposition 1.3.1 or Proposition 4.2.3) showing that excursions of the height
process above level a are distributed as the atoms of a Poisson point measure whose
intensity is (a random multiple of) the law of H under N . In this form, the branch-
ing property has been recently used by Miermont [25] to investigate self-similar
fragmentations of the stable tree.

Using the branching property, we investigate the regularity properties of local
times. We show that the mapping a −→ �a has a càdlàg modification and that,
except for a countable set of values of a (corresponding to local extinctions of the
tree) the support of �a is the full level set T (a). This is used in Section 6 to extend
to superprocesses with a general branching mechanism a continuity property of the
support process that had been derived by Perkins [28] in the quadratic case.

In the final part of Section 4 we prove a Palm-like decomposition of the tree
along the ancestor line of a typical vertex at level a (Theorem 4.5). This decom-
position plays an important role in Section 5. We use it in Section 4 to analyse the
multiplicity of vertices of the tree. By definition, the multiplicity n(σ) of σ ∈ T is
the number of connected components of T \{σ }. We prove that� a.e.n(σ) takes val-
ues in the set {1, 2, 3,∞}. We also characterize the branching mechanism functions
ψ for which there exist binary (n(σ) = 3) or infinite (n(σ) = ∞) branching points.
We then observe that infinite branching points are related to discontinuities of local
times: Precisely, for any level b such that the mapping a −→ �a is discontinuous
at b, there is a (unique) infinite branching point σb such that �b = �b− + λb δσb
for some λb > 0. As a last application of our Palm decomposition, we prove an
invariance property of the measure � under uniform re-rooting (Proposition 4.8).

Section 5 is mostly devoted to the computation of the Hausdorff and packing
dimensions of various subsets of T . For any subset A of T , we denote by dimh(A)

the Hausdorff dimension of A and by dimp(A) its packing dimension. Following
[14], Section 3.1, we also consider the lower and upper box counting dimensions
of A:

dim(A) = lim inf
δ→0

log (N (A, δ))

log(1/δ)
, dim(A) = lim sup

δ→0

log (N (A, δ))

log(1/δ)
,
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where N (A, δ) is the minimal number of open balls with radius δ that are necessary
to cover A. In order to state our main results, we need to introduce the lower and
upper indices of ψ at infinity:

γ = sup{a ≥ 0 : lim
λ→∞

λ−aψ(λ) = +∞} ,
η = inf{a ≥ 0 : lim

λ→∞
λ−aψ(λ) = 0}.

Note that 1 ≤ γ ≤ η and that η = γ if ψ is regularly varying at infinity. Let E
be a nonempty compact subset of the interval (0,∞) and assume that E is reg-
ular in the sense that its Hausdorff and upper box counting dimensions coincide:
dimh(E) = dim(E) = d(E) ∈ [0, 1] (here dimh and dim obviously refer to the
usual metric on the real line). Set a = supE and

T (E) =
⋃
l∈E

T (l).

Theorem 5.5 asserts that under the assumption γ > 1, we have�-a.e. on {h(T ) >
a},

dim(T (E)) = dimh(T (E)) = d(E)+ 1

η − 1
and

dim(T (E)) = dimp(T (E)) = d(E)+ 1

γ − 1
.

In particular, we have �-a.e.

dimh(T ) = η

η − 1
, dimp(T ) = γ

γ − 1

and, �-a.e. on {h(T ) > a},

dimh(T (a)) = 1

η − 1
, dimp(T (a)) = 1

γ − 1
.

Note that in the stable branching case ψ(u) = uγ , the Hausdorff dimension of T
has been computed by Haas and Miermont [16] independently of the present work.

The proofs rely on the classical results linking upper and lower densities of a
measure with the Hausdorff and packing dimensions of its support. Another useful
ingredient is the following estimate for covering numbers of T (Proposition 5.2).
We have �-a.e. for all sufficiently small δ,

v(2δ)

4δ
ζ ≤ N (T , δ) ≤ 12v(δ/6)

δ
ζ.

In Section 6, we give an application of Theorem 5.5 to the range of a superprocess
Z = (Zl, l ≥ 0) with branching mechanism ψ , whose spatial motion is standard
Brownian motion in R

k . To this end, we introduce the notion of a spatial tree,
which allows us to combine the genealogical structure of T with independent spa-
tial Brownian motions. Of course, this is more or less equivalent to the Lévy snake
approach of [21] and Chapter 4 of [9]. Still the formalism of R-trees makes this
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construction more tractable and more efficient for applications. Roughly speaking,
spatial trees allow us to express the superprocess Z in terms of the occupation
measure of a Gaussian process indexed by T . It is therefore possible to use soft
arguments to lift fractal properties of the index set T to the range of Z. We prove
the following result (Theorem 6.3). Let E ⊂ (0,∞) and a = supE be as above.
Denote by RE the range of Z over the time set E, defined by

RE =
⋃
l∈E

suppZl

where suppZl stands for the topological support of Zl . If γ > 1, then a.s. on
{〈Za, 1〉 �= 0},

dimh(RE) =
(

2d(E)+ 2

η − 1

)
∧ k. (1)

In the quadratic branching case, this result was obtained earlier by Tribe [30] (see
also Serlet [29]). For more general superprocesses, closely related results can be
found in Theorem 2.1 of Delmas [7], whose proof depends on a subordination
method which requires certain restrictions on the branching mechanism function
ψ . See Dawson [4] for more references and results in the stable branching case.

This paper is intended to be as self-contained as possible. However, it is clear
that many of our results depend on properties of the height process H that were
derived in the monograph [9]. For the reader’s convenience, we have recalled most
of the needed results in Section 3 below.

The paper is organized as follows. Section 2 explains the coding of trees by
continuous functions in a deterministic setting, and also includes a brief discussion
of the convergence of trees in the Gromov-Hausdorff metric. Section 3 recalls the
basic facts about the height process and establishes an important preliminary result
that is needed for the ancestral line decomposition of subsection 4.3. Section 4 is the
core of this paper. It first contains the precise definition of the Lévy tree as the tree
coded by the excursion ofH underN , in the framework of Section 2. This definition
is justified by limit theorems relating discrete and continuous trees. Section 4 then
presents the basic probabilitic properties of Lévy trees, in particular the branching
property, the existence and regularity of local times and the decomposition along
an ancestral line. Fractal properties of Lévy trees are studied in Section 5. Finally,
Section 6 discusses applications to superprocesses.

2. Deterministic trees

2.1. The R-tree coded by a continuous function

We start with a basic definition (see e.g. [6]).

Definition 2.1. A metric space (T , d) is an R-tree if the following two properties
hold for every σ1, σ2 ∈ T .

(i) There is a unique isometric map fσ1,σ2 from [0, d(σ1, σ2)] into T such that
fσ1,σ2(0) = σ1 and fσ1,σ2(d(σ1, σ2)) = σ2.
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(ii) If q is a continuous injective map from [0, 1] into T , such that q(0) = σ1 and
q(1) = σ2, we have

q([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]).

A rooted R-tree is an R-tree (T , d) with a distinguished vertex ρ = ρ(T ) called
the root.

In what follows, R-trees will always be rooted, even if this is not mentioned
explicitly.

Let us consider a rooted R-tree (T , d). The range of the mapping fσ1,σ2 in (i) is
denoted by [[σ1, σ2]] (this is the line segment between σ1 and σ2 in the tree). In par-
ticular, for every σ ∈ T , [[ρ, σ ]] is the path going from the root to σ , which we will
interpret as the ancestral line of vertex σ . More precisely we define a partial order
on the tree by setting σ � σ ′ (σ is an ancestor of σ ′) if and only if σ ∈ [[ρ, σ ′]].

If σ, σ ′ ∈ T , there is a unique η ∈ T such that [[ρ, σ ]] ∩ [[ρ, σ ′]] = [[ρ, η]].
We write η = σ ∧ σ ′ and call η the most recent common ancestor to σ and σ ′.

By definition, the multiplicity of a vertex σ ∈ T is the number of connected
components of T \{σ }. Vertices of T \{ρ} which have multiplicity 1 are called
leaves.

Our main goal in this section is to describe a method for constructing R-trees,
which is particularly well-suited to our forthcoming applications to random trees.
We consider a (deterministic) continuous function g : [0,∞) −→ [0,∞) with
compact support and such that g(0) = 0. To avoid trivialities, we will also assume
that g is not identically zero. For every s, t ≥ 0, we set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r),

and
dg(s, t) = g(s)+ g(t)− 2mg(s, t).

Clearly dg(s, t) = dg(t, s) and it is also easy to verify the triangle inequality

dg(s, u) ≤ dg(s, t)+ dg(t, u)

for every s, t, u ≥ 0. We then introduce the equivalence relation s ∼ t iff dg(s, t) =
0 (or equivalently iff g(s) = g(t) = mg(s, t)). Let Tg be the quotient space

Tg = [0,∞)/ ∼ .

Obviously the function dg induces a distance on Tg , and we keep the notation dg for
this distance. We denote by pg : [0,∞) −→ Tg the canonical projection. Clearly
pg is continuous (when [0,∞) is equipped with the Euclidean metric and Tg with
the metric dg).

Theorem 2.1. The metric space (Tg, dg) is an R-tree.

We will view (Tg, dg) as a rooted R-tree with root ρ = pg(0). If ζ > 0 is the
supremum of the support of g, we have pg(t) = ρ for every t ≥ ζ . In particular,
Tg = pg([0, ζ ]) is compact. We will call Tg the R-tree coded by g.

Before proceeding to the proof of the theorem, we state and prove the following
root change lemma.
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Lemma 2.2. Let s0 ∈ [0, ζ ). For any real r ≥ 0, denote by r the unique element
of [0, ζ ) such that r − r is an integer multiple of ζ . Set

g′(s) = g(s0)+ g(s0 + s)− 2mg(s0, s0 + s),

for every s ∈ [0, ζ ], and g′(s) = 0 for s > ζ . Then, the function g′ is continuous
with compact support and satisfies g′(0) = 0, so that we can define the metric
space (Tg′ , dg′). Furthermore, for every s, t ∈ [0, ζ ], we have

dg′(s, t) = dg(s0 + s, s0 + t) (2)

and there exists a unique isometryR from Tg′ onto Tg such that, for every s ∈ [0, ζ ],

R(pg′(s)) = pg(s0 + s). (3)

Proof. It is immediately checked that g′ satisfies the same assumptions as g, so that
we can make sense of the tree Tg′ . Then the key step is to verify the relation (2).
Consider first the case where s, t ∈ [0, ζ − s0). Then two possibilities may occur.

Ifmg(s0 + s, s0 + t) ≥ mg(s0, s0 + s), thenmg(s0, s0 + r) = mg(s0, s0 + s) =
mg(s0, s0 + t) for every r ∈ [s, t], and so

mg′(s, t) = g(s0)+mg(s0 + s, s0 + t)− 2mg(s0, s0 + s).

It follows that

dg′(s, t) = g′(s)+ g′(t)− 2mg′(s, t)

= g(s0 + s)− 2mg(s0, s0 + s)+ g(s0 + t)− 2mg(s0, s0 + t)

−2(mg(s0 + s, s0 + t)− 2mg(s0, s0 + s))

= g(s0 + s)+ g(s0 + t)− 2mg(s0 + s, s0 + t)

= dg(s0 + s, s0 + t).

If mg(s0 + s, s0 + t) < mg(s0, s0 + s), then the minimum in the definition
of mg′(s, t) is attained at r1 defined as the first r ∈ [s, t] such that g(s0 + r) =
mg(s0, s0 + s) (because for r ∈ [r1, t] we will have g(s0 + r)− 2mg(s0, s0 + r) ≥
−mg(s0, s0 + r) ≥ −mg(s0, s0 + r1)). Therefore,

mg′(s, t) = g(s0)−mg(s0, s0 + s),

and

dg′(s, t) = g(s0 + s)− 2mg(s0, s0 + s)+ g(s0 + t)

−2mg(s0, s0 + t)+ 2mg(s0, s0 + s)

= dg(s0 + s, s0 + t).

The other cases are treated in a similar way and are left to the reader.
By (2), if s, t ∈ [0, ζ ] are such thatdg′(s, t) = 0, we havedg(s0 + s, s0 + t) = 0

so that pg(s0 + s) = pg(s0 + t). Noting that Tg′ = pg′([0, ζ ]) (the supremum of
the support of g′ is less than or equal to ζ ), we can define R in a unique way by the
relation (3). From (2), R is an isometry, and it is also immediate that R takes Tg′
onto Tg . ��
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Proof of Theorem 2.1. Let us start with some preliminaries. For σ, σ ′ ∈ Tg , we
set σ � σ ′ if and only if dg(σ, σ ′) = dg(ρ, σ

′) − dg(ρ, σ ). If σ = pg(s) and
σ ′ = pg(t), it follows from our definitions that σ � σ ′ iff mg(s, t) = g(s). It is
immediate to verify that this defines a partial order on Tg .

For any σ0, σ ∈ Tg , we set

[[σ0, σ ]] = {σ ′ ∈ Tg : dg(σ0, σ ) = dg(σ0, σ
′)+ dg(σ

′, σ )}.
If σ = pg(s) and σ ′ = pg(t), then it is easy to verify that [[ρ, σ ]] ∩ [[ρ, σ ′]] =
[[ρ, γ ]], where γ = pg(r), if r is any time which achieves the minimum of g
between s and t . We then put γ = σ ∧ σ ′.

We set Tg[σ ] := {σ ′ ∈ Tg : σ � σ ′}. If Tg[σ ] �= {σ } and σ �= ρ, then Tg\Tg[σ ]
and Tg[σ ]\{σ } are two nonempty disjoint open sets. To see that Tg\Tg[σ ] is open,
let s be such that pg(s) = σ and note that Tg[σ ] is the image under pg of the
compact set {u ∈ [0, ζ ] : mg(s, u) = g(s)}. The set Tg[σ ]\{σ } is open because if
σ ′ ∈ Tg[σ ] and σ ′ �= σ , it easily follows from our definitions that the open ball
centered at σ ′ with radius dg(σ, σ ′) is contained in Tg[σ ]\{σ }.

We now prove property (i) of the definition of an R-tree. By using Lemma 2.2
with s0 such that pg(s0) = σ1, we may assume that σ1 = ρ = pg(0). If σ ∈ Tg
is fixed, we have to prove that there exists a unique isometry f from [0, dg(ρ, σ )]
into Tg such that f (0) = ρ and f (dg(ρ, σ )) = σ . Let s ∈ p−1

g ({σ }), so that
g(s) = dg(ρ, σ ). Then, for every a ∈ [0, dg(ρ, σ )], we set

w(a) = inf{r ∈ [0, s] : mg(r, s) = a}.
Note that g(w(a)) = a. We put f (a) = pg(w(a)). We have f (0) = ρ and
f (dg(ρ, σ )) = σ , the latter becausemg(w(g(s)), s) = g(s) impliespg(w(g(s))) =
pg(s) = σ . It is also easy to verify that f is an isometry: If a, b ∈ [0, dg(ρ, σ )]
with a ≤ b, it is immediate that mg(w(a),w(b)) = a, and so

dg(f (a), f (b)) = g(w(a))+ g(w(b))− 2a = b − a.

To get uniqueness, suppose that f̃ is an isometry satisfying the property in (i).
Then, if a ∈ [0, dg(ρ, σ )],

dg(f̃ (a), σ ) = dg(ρ, σ )− a = dg(ρ, σ )− dg(ρ, f̃ (a)).

Therefore, f̃ (a) � σ . Recall that σ = pg(s), and choose t such that pg(t) = f̃ (a).
Note that g(t) = dg(ρ, pg(t)) = a. Since f̃ (a) � σ we have g(t) = mg(t, s).
On the other hand, we also know that a = g(w(a)) = mg(w(a), s). It follows that
we have a = g(t) = g(w(a)) = mg(w(a), t) and thus dg(t, w(a)) = 0, so that
f̃ (a) = pg(t) = pg(w(a)) = f (a). This completes the proof of (i).

As a by-product of the preceding argument, we see that f ([0, dg(ρ, σ )]) =
[[ρ, σ ]]: Indeed, we have seen that for every a ∈ [0, dg(ρ, σ )], we have f (a) � σ

and, on the other hand, if η � σ , the end of the proof of (i) just shows that
η = f (dg(ρ, η)).

We turn to the proof of (ii). We let q be a continuous injective mapping from
[0, 1] into Tg , and we aim at proving thatq([0, 1]) = fq(0),q(1)([0, dg(q(0), q(1))]).
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From Lemma 2.2 again, we may assume that q(0) = ρ, and we set σ = q(1). Then
we have just noticed that f0,σ ([0, dg(ρ, σ )]) = [[ρ, σ ]].

We first argue by contradiction to prove that [[ρ, σ ]] ⊂ q([0, 1]). Suppose
that η ∈ [[ρ, σ ]]\q([0, 1]), and in particular, η �= ρ, σ . Then q([0, 1]) is con-
tained in the union of the two disjoint open sets Tg\Tg[η] and Tg[η]\{η}, with
q(0) = ρ ∈ Tg\Tg[η] and q(1) = σ ∈ Tg[η]\{η}. This contradicts the fact that
q([0, 1]) is connected.

Conversely, suppose that there exists a ∈ (0, 1) such that q(a) /∈ [[ρ, σ ]]. Set
η = q(a) and let γ = σ ∧ η. Note that γ ∈ [[ρ, η]] ∩ [[η, σ ]] (from the definition
of σ ∧ η, it is immediate to verify that dg(η, σ ) = dg(η, γ ) + dg(γ, σ )). From
the first part of the proof of (ii), γ ∈ q([0, a]) and, via a root change argument,
γ ∈ q([a, 1]). Since q is injective, this is only possible if γ = q(a) = η, which
contradicts the fact that η /∈ [[ρ, σ ]]. ��

Once we know that (Tg, dg) is an R-tree, it is straightforward to verify that the
notation σ � σ ′, [[σ, σ ′]], σ ∧ σ ′ introduced in the preceding proof is consistent
with the definitions stated for a general R-tree at the beginning of this section.

Let us briefly discuss multiplicities of vertices in the tree Tg . If σ ∈ Tg is not a
leaf then we must have �(σ ) < r(σ ), where

�(σ ) := sup p−1
g ({σ }) , r(σ ) := inf p−1

g ({σ })
are respectively the smallest and the largest element in the equivalence class of σ
in [0, ζ ]. Note that mg(�(σ ), r(σ )) = g(�(σ )) = g(r(σ )) = dg(ρ, σ ). Denote
by (ai, bi), i ∈ I the connected components of the open set (�(σ ), r(σ )) ∩ {t ∈
[0,∞) : g(t) > dg(ρ, σ )} (the index set I is empty if σ is a leaf). Then we claim
that the connected components of the open set Tg\{σ } are the sets pg((ai, bi)),
i ∈ I and Tg\Tg[σ ] (the latter only if σ is not the root). We have already noticed
that Tg\Tg[σ ] is open, and the argument used above for Tg[σ ]\{σ } also shows
that the sets pg((ai, bi)), i ∈ I are open. Finally the sets pg((ai, bi)) are con-
nected as continuous images of intervals, and Tg\Tg[σ ] is also connected because
if σ ′, σ ′′ ∈ Tg\Tg[σ ], [[ρ, σ ′]] ∪ [[ρ, σ ′′]] is a connected closed set contained in
Tg\Tg[σ ].

2.2. Convergence of trees

Two rooted R-trees T(1) and T(2) are called equivalent if there is a root-preserv-
ing isometry that maps T(1) onto T(2). We denote by T the set of all equivalence
classes of rooted compact R-trees. The set T can be equipped with the (pointed)
Gromov-Hausdorff distance, which is defined as follows.

If (E, δ) is a metric space, we use the notation δHaus(K,K ′) for the usual
Hausdorff metric between compact subsets of E. Then, if T and T ′ are two rooted
compact R-trees with respective roots ρ and ρ′, we define the distance dGH (T , T ′)
as

dGH (T , T ′) = inf
(
δHaus(ϕ(T ), ϕ′(T ′)) ∨ δ(ϕ(ρ), ϕ′(ρ′))

)
,

where the infimum is over all isometric embeddings ϕ : T −→ E and ϕ′ : T ′ −→
E of T and T ′ into a common metric space (E, δ). Obviously dGH (T , T ′) only
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depends on the equivalence classes of T and T ′. Furthermore dGH defines a metric
on T (cf [15] and [13]).

According to Theorem 2 of [13], the metric space (T, dGH ) is complete and
separable. Furthermore, the distance dGH can often be evaluated in the following
way. First recall that if (E1, d1) and (E2, d2) are two compact metric spaces, a
correspondence between E1 and E2 is a subset R of E1 × E2 such that for every
x1 ∈ E1 there exists at least one x2 ∈ E2 such that (x1, x2) ∈ R and conversely
for every y2 ∈ E2 there exists at least one y1 ∈ E1 such that (y1, y2) ∈ R. The
distorsion of the correspondence R is defined by

dis(R) = sup{|d1(x1, y1)− d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R}.

Then, if T and T ′ are two rooted R-trees with respective roots ρ and ρ′, we have

dGH (T , T ′) = 1

2
inf

R∈C(T ,T ′), (ρ,ρ′)∈R
dis(R), (4)

where C(T , T ′) denotes the set of all correspondences between T and T ′ (see
Lemma 2.3 in [13]).

Lemma 2.3. Let g and g′ be two continuous functions with compact support from
[0,∞) into [0,∞), such that g(0) = g′(0) = 0. Then,

dGH (Tg, Tg′) ≤ 2‖g − g′‖,

where ‖g − g′‖ stands for the uniform norm of g − g′.

Proof. We can construct a correspondence between Tg and Tg′ by setting

R = {(σ, σ ′) : σ = pg(t) and σ ′ = pg′(t) for some t ≥ 0}.

In order to bound the distortion of R, let (σ, σ ′) ∈ R and (η, η′) ∈ R. By our defi-
nition of R we can find s, t ≥ 0 such that pg(s) = σ , pg′(s) = σ ′ and pg(t) = η,
pg′(t) = η′. Now recall that

dg(σ, η) = g(s)+ g(t)− 2mg(s, t),

dg′(σ ′, η′) = g′(s)+ g′(t)− 2mg′(s, t),

so that

|dg(σ, η)− dg′(σ ′, η′)| ≤ 4‖g − g′‖.

Thus we have dis(R) ≤ 4‖g − g′‖ and the desired result follows from (4). ��
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3. The height process

3.1. The definition of the height process

We will now introduce the random process which codes, in the sense of subsection
2.1, the genealogical structure of a continuous-state branching process. Recall that
a continuous-state branching process is a Markov process (Yt , t ≥ 0) with values
in the positive half-line [0,∞), with a Feller semigroup (Qt , t ≥ 0) satisfying the
following additivity (or branching) property: For every t ≥ 0 and x, x′ ≥ 0,

Qt(x, ·) ∗Qt(x
′, ·) = Qt(x + x′, ·).

Informally, this is just saying that the union of two independent populations started
respectively at x and x′ will evolve like a single population started at x + x′.

We will consider only the critical or subcritical case, meaning that∫
[0,∞)

y Qt (x, dy) ≤ x for every t ≥ 0 and x ≥ 0. Then the Laplace functional of
the semigroup can be written in the following form:

∫
[0,∞)

e−λy Qt(x, dy) = exp(−x ut (λ)), (5)

where the function (ut (λ), t ≥ 0, λ ≥ 0) is determined by the differential equation

dut (λ)

dt
= −ψ(ut (λ)) , u0(λ) = λ , (6)

and ψ is a function of the type

ψ(λ) = αλ+ βλ2 +
∫
(0,∞)

(e−λr − 1 + λr) π(dr) ,

where α, β ≥ 0 and π is a σ -finite measure on (0,∞) such that
∫
(0,∞)

(r ∧
r2) π(dr) < ∞. Conversely, for any function ψ of this type, there exists a (unique
in law) continuous-state branching process Y whose transition kernel is determined
from ψ by the preceding formulas. The process Y is called the ψ-continuous-state
branching process (ψ-CSBP in short). It is well known that Y has only positive
jumps (indeed Y can be obtained as a time change of a spectrally positive Lévy
process, see Lamperti [17]).

In the present work, we will consider only the case where theψ-CSBP becomes
extinct almost surely, which is equivalent to the condition

∫ ∞

1

du

ψ(u)
< ∞. (7)

Note that this implies that at least one of the following two conditions holds:

β > 0 or
∫
(0,1)

r π(dr) = ∞. (8)
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(8) is necessary and sufficient for the paths of Y to be of infinite variation a.s. The
coding of the genealogy that is presented below remains valid under (8) even if (7)
fails to hold, but the resulting tree is no longer compact (see Theorem 4.7 in [20]).
On the other hand, if (8) is not satisfied (that is in the finite variation case), the
underlying branching structure is basically discrete: See Section 3 of [20] and also
[23] for a discussion with applications to queuing processes).

Special cases that satisfy our assumptions are the quadratic branching case
ψ(u) = c u2 and the stable branching case ψ(u) = c uγ , for some 1 < γ < 2.

It has been argued in [20] and [9] that the genealogy of theψ-CSBP is coded by
the so-called height process, which is itself a functional of the Lévy process with
Laplace exponent ψ . We denote by X a (spectrally positive) Lévy process with
Laplace exponent ψ , defined under the probability measure P:

E[exp(−λXt)] = exp(tψ(λ)) , t, λ ≥ 0 .

The subcriticality assumption on Y and condition (8) are equivalent to saying
respectively that X does no drift to +∞ and has paths of infinite variation.

The height process H = (Ht ; t ≥ 0) associated with X is defined in such a
way that, for every t ≥ 0, Ht measures the size of the set

{s ∈ [0, t] : Xs− ≤ inf
s≤r≤t Xr} . (9)

This is motivated by a discrete analogue for Galton-Watson trees (see Section 0.2
in [9]). To make the preceding definition precise, we use a time-reversal argument:
For any t > 0, we define the Lévy process reversed at time t by

X̂ts = Xt −X(t−s)− , 0 ≤ s < t and X̂tt = Xt .

Then X̂t is distributed as X up to time t . Let us set

Ss = sup
r≤s

Xr and Ŝts = sup
r≤s

X̂tr .

The set (9) is the image of

{s ∈ [0, t] : Ŝts = X̂ts} .
under the time reversal operation s → t − s. Recall that S −X is a strong Markov
process for which 0 is a regular point. So, we can consider its local time process at
0, which is denoted by �(X) = (�t (X), t ≥ 0). We define the height process by

Ht = �t(X̂
t ) , t ≥ 0. (10)

To complete the definition, we still need to specify the normalization of the
local time �(X). This can be done through the following approximation:

Ht = lim
ε↓0

1

ε

∫ t

0
ds 1{Xs≤I st +ε},

where I st = infs≤r≤t Xr and the convergence holds in probability (this approxima-
tion follows from Lemma 1.1.3 in [9]). Thanks to condition (7), we know that the
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process H has a modification with continuous sample paths (Theorem 4.7 in [9]).
From now on we consider only this modification. When β > 0, it is not hard to see
that, for any t ≥ 0,

Ht = 1

β
Leb

({Ŝts ; 0 ≤ s ≤ t}) ,
where Leb stands for the Lebesgue measure on the real line. In particular when
ψ(u) = βu2 (X is a scaled Brownian motion), we see that Ht = β−1(St − Xt) is
distributed as a (scaled) reflected Brownian motion.

For our purposes it will be crucial to define the height process also under the
so-called excursion measureN . Set It = infs≤t Xs and recall thatX− I is a strong
Markov process. Then for any t ≥ 0,Ht only depends on the values taken byX−I
on the excursion interval that straddles t (at least informally this is obvious if we
think of Ht as measuring the size of the set (9)). Under our assumptions, 0 is a
regular point for X − I , and the process −I can be chosen as the local time of
X− I at level 0. We denote by N the associated excursion measure, which plays a
fundamental role throughout this work (as was already the case in [9]). The dura-
tion of the excursion under N is denoted by ζ . Let (gi, di), i ∈ I be the excursion
intervals of X − I above 0. One easily verifies that P a.s.,⋃

i∈I
(gi, di) = {s ≥ 0 : Xs − Is > 0} = {s ≥ 0 : Hs > 0}.

Denote byHi(s) = Hgi+s , 0 ≤ s ≤ ζi = di − gi , i ∈ I the excursions ofH away
from 0. Then, eachHi can be written as a functional of the excursion ofX−I away
from 0 corresponding to the interval (gi, di). Consequently, if C+([0,∞)) denotes
the space of all nonnegative continuous functions on [0,∞), the point measure∑

i∈I
δ(−Igi ,Hi)(d�dω) (11)

is a Poisson point measure on R+ × C+([0,∞)) with intensity d��(dω), where
�(dω) is the σ -finite measure on C+([0,∞)) defined as the law of H under N .
Note that in the Brownian case,� is the classical Itô measure of positive excursions
of linear Brownian motion (up to a normalizing constant).

3.2. Local times of the height process

Let us start by the defining the local times under P. For every a ≥ 0, the local time
of the height process at level a is the continuous increasing process (Las , s ≥ 0)
which can be characterized via the approximation

lim
ε→0

E

[
sup

0≤s≤t

∣∣∣∣1ε
∫ s

0
dr1{a<Hr≤a+ε} − Las

∣∣∣∣
]

= 0

(see Section 1.3 of [9]). It is then easy to see that the support of the measure dLas
is contained in the closed set {s ≥ 0 : Hs = a}. When a > 0, we have also

lim
ε→0

E

[
sup

0≤s≤t

∣∣∣∣1ε
∫ s

0
dr1{a−ε<Hr≤a} − Las

∣∣∣∣
]

= 0 .
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Let us recall the “Ray-Knight theorem” forH ([9] Theorem 1.4.1, see also [20],
Theorem 4.2), which can be viewed as a generalization of famous results about lin-
ear Brownian motion. For any r ≥ 0, set: Tr = inf{s ≥ 0 : Xs = −r}. Then, the
process (LaTr ; a ≥ 0) is a ψ-CSBP started at r . In particular, this process has a
càdlàg modification.

The local time at level a can also be used to describe the distribution of excur-
sions of the height process above level a, and this will be very important for our
applications. Let us fix a > 0 and denote by (αj , βj ), j ∈ J the connected com-
ponents of the open set {s ≥ 0 : Hs > a}. For any j ∈ J , denote by Hj the
corresponding excursion of H defined by:

H
j
s = H(αj+s)∧βj − a , s ≥ 0.

Also set H̃ a
s = Hτ̃as , where for every s ≥ 0,

τ̃ as = inf{t ≥ 0 :
∫ t

0
dr 1{Hr≤a} > s}.

Informally, H̃ a corresponds to the evolution of H “below level a”.
The next result is a straightforward consequence of Proposition 1.3.1 in [9].

Proposition 3.1. Under the probability P, the point measure∑
j∈J

δ(Laαj ,H
j )(d� dω)

is independent of H̃ a and is a Poisson point measure on R+ × C+([0,∞)) with
intensity d��(dω).

It will be important to define local times under the excursion measure N . This
creates no additional difficulty thanks to the following simple remark. If r > 0,
then for any δ > 0, there is a positive probability under P that exactly one excursion
ofH away from zero hits level δ before time Tr . It easily follows that we can define
for every a > 0 a continuous increasing process (�as , s ≥ 0), such that, for every
δ ∈ (0, a) and t ≥ 0,

lim
ε→0

N

(
1{supH>δ} sup

0≤s≤t∧ζ

∣∣∣∣1ε
∫ s

0
dr1{a−ε<Hr≤a} −�as

∣∣∣∣
)

= 0. (12)

(see Section 1.3 in [9]). Again the support of the measure d�as is contained in
{s : Hs = a}, N a.e. From the above-mentioned Ray-Knight theorem and elemen-
tary excursion theory for X − I we get, for any a > 0 and any λ ≥ 0,

N
(

1 − exp(−λ�aζ )
)

= ua(λ), (13)

where ua(λ) is as in (5). We set v(a) = limλ→∞ ua(λ). By writing (6) in the form
of an integral equation and passing to the limit λ → ∞ using (7), we see that the
function v is finite on (0,∞) and determined by the equation

a =
∫ ∞

v(a)

du

ψ(u)
.
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Moreover, for every a > 0, we have

v(a) = N
(
�aζ > 0

)
= N

(
sup
s≤ζ

Hs > a

)
. (14)

The first equality follows from the definition of v. The second one can be deduced
from Proposition 3.1, which implies that inf{s ≥ 0 : Las > 0} = inf{s ≥ 0 : Hs >
a}, P a.s.

We will need an analogue of Proposition 3.1 under the excursion measure N .
To state it, fix a > 0 and denote by (αj , βj ), j ∈ J the excursion intervals of H
above level a (just as before, but we are now arguing underN ) and for every j ∈ J
letHj be the corresponding excursion. Let the process H̃ a be defined as previously
and let H̃a be the σ -field generated by H̃ a and the class ofN -negligible measurable
sets. From our approximation (12) it follows that�aζ is measurable with respect to

H̃a .

Corollary 3.2. Under the probability measureN(· | supH > a) and conditionally
on H̃a , the point measure ∑

j∈J
δ(�aαj ,H

j )(d� dω)

is distributed as a Poisson point measure on R+ × C+([0,∞)) with intensity
1[0,�aζ ](�)d��(dω).

This is really an immediate consequence of Proposition 3.1 if we notice that
the law under P of the first excursion of H that hits level a is N(· | supH > a).
Alternatively, the statement of Corollary 3.2 also appears as an intermediate result
in the proof of Proposition 4.2.3 in [9].

We will need one additional property related to Corollary 3.2. First denote by
(�̃as , s ≥ 0) the local time of H̃ a at level a, which may be defined either by an
approximation similar to (12) or directly by the formula �̃as = �a

τ̃as
. Then we have

N a.e. on {supH > a}

inf{s ≥ 0 : �̃as > �aαj } =
∫ αj

0
ds 1{Hs≤a} , for every j ∈ J . (15)

For a proof, see pages 108-109 of [9].
We conclude this section with an important regularity property of local times.

Recall that a càdlàg process Y is said to have no fixed discontinuities if for every
fixed t > 0, the sample path of Y is continuous at t outside a set of zero probability.

Lemma 3.3. Set �0
s = 0 for every s ≥ 0. Then the process (�aζ , a ≥ 0) has a

càdlàg modification under N , and this modification has no fixed discontinuities.

Proof. Let r > 0. Since the process (LaTr , a ≥ 0) is a ψ-CSBP and thus a Feller
process, it has a càdlàg modification with no fixed discontinuities under P. LetHi ,
i ∈ I be the excursions of H away from 0, as in (11), and for every i ∈ I let ζi
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be the duration ofHi . From our approximation of local times, it is easy to see that,
for every a > 0,

LaTr =
∑

i∈I,Igi >−r
�aζi (Hi) , N a.e. (16)

Using a previous remark about the existence of exactly one excursion of H hit-
ting level δ before time Tr , we easily deduce from the previous formula and the
càdlàg property of (LaTr , a ≥ 0) that the process (�aζ , a > 0) must have a càdlàg
modification with no fixed discontinuities under N . Furthermore, if we use this
modification in the right side of (16), for every a > 0, we will obviously obtain the
càdlàg modification of the process (LaTr , a > 0).

It remains to verify that �aζ converges to 0, N a.e. as a ↓ 0 (we now consider
the modification that has just been introduced). For this, we need a different argu-
ment. Let δ > 0 and let Hi0 be the first excursion of H that reaches level δ. From
properties of Poisson measures, the law under P of the point measure

∑
i∈I\{i0},Igi >−r

δ(−Igi ,Hi)(drdω)

is absolutely continuous with respect to that of
∑

i∈I,Igi >−r
δ(−Igi ,Hi)(drdω).

In particular, the function

a −→
∑

i∈I\{i0},Igi >−r
�aζi (Hi)

must converge P a.s. to r as a ↓ 0. Now note that, on the event {−Igi0 > −r} =
{sup[0,Tr ]H > δ}, we have for every a > 0

�aζi0
(Hi0) =

∑
i∈I,Igi >−r

�aζi (Hi)−
∑

i∈I\{i0},Igi >−r
�aζi (Hi)

and use the fact that the distribution of Hi0 under P(· | sup[0,Tr ]H > δ) coincides
with the law of H under N(· | supH > δ) to complete the proof. ��

From now on, we assume that have chosen a modification of the collection
(�a, a ≥ 0) in such a way that the process (�aζ , a ≥ 0) is càdlàg. This will be
important in the applications developed in Section 4 below.

Let us finally briefly comment on the use of the measures P and N for our
purposes. As will be made precise in the next section, the height process under N
codes a single (compact rooted) R-tree, whereas under P it codes a Poissonnian
collection of such trees, each excursion of H away from 0 corresponding to one
tree.
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3.3. A key lemma

In this subsection, we prove a basic preliminary lemma, which is a consequence
of the results in [9]. We need to introduce some notation. Denote by Mf the space
of all finite measures on [0,∞). If µ ∈ Mf , we denote by H(µ) ∈ [0,∞] the
supremum of the (topological) support of µ. We also introduce a “killing operator”
on measures defined as follows. For every x ≥ 0, kxµ is the element of Mf such
that kxµ([0, t]) = µ([0, t])∧ (µ([0,∞))− x)+ for every t ≥ 0. LetM∗

f stand for
the set of all measures µ ∈ Mf such that H(µ) < ∞ and the topological support
of µ is [0, H(µ)]. If µ ∈ M∗

f , we denote byQµ the law under P of the processHµ

defined by
H
µ
t = H(k−It µ)+Ht , if t ≤ T〈µ,1〉 ,

H
µ
t = 0 , if t > T〈µ,1〉 ,

where T〈µ,1〉 = inf{t ≥ 0 : Xt = −〈µ, 1〉}. Our assumption µ ∈ M∗
f guarantees

that Hµ has continuous sample paths, and we can therefore view Qµ as a prob-
ability measure on the space C+([0,∞)) of nonnegative continuous functions on
[0,∞).

Finally, let ψ∗(u) = ψ(u)− α u, and let (U1, U2) be a two-dimensional sub-
ordinator with Laplace functional

E[exp(−λU1
t − λ′U2

t )] = exp
(

− ψ∗(λ)− ψ∗(λ′)
λ− λ′

)
.

(alternatively, (U1, U2) can be characterized by its drift and Lévy measure, see
[9], p. 80). When λ = λ′, the ratio ψ∗(λ)−ψ∗(λ′)

λ−λ′ should obviously be interpreted as
ψ ′(λ) − α, so that we see that U1 + U2 is a subordinator with Laplace exponent
ψ ′ − α. For every a ≥ 0, we let Ma be the probability measure on (M∗

f )
2 which is

the distribution of (1[0,a](t) dU
1
t , 1[0,a](t) dU

2
t ).

Lemma 3.4. For any nonnegative measurable function F on C+([0,∞))2,

N
( ∫ ζ

0
ds F

(
(H(s−t)+ , t ≥ 0), (H(s+t)∧ζ , t ≥ 0)

))

=
∫ ∞

0
da e−αa

∫
Ma(dµdν)

∫
Qµ(dh)Qν(dh

′)F (h, h′).

Remark. In the Brownian case ψ(u) = u2, this lemma reduces to the well-known
Bismut decomposition of the Brownian excursion.

Proof. We start by recalling some results from [9] (see Chapter 1 and Section 3.1
in [9]). We can define both under P and underN a càdlàg process (ρt , ηt )t≥0 taking
values in (M∗

f )
2 such that the following properties hold:

(i) We have H(ρt ) = Ht = H(ηt ) for every t ≥ 0, N a.e. and P a.e.
(ii) The process (ρt , ηt ) is adapted with respect to the filtration (Ft )t≥0 generated

by the Lévy process X. Furthermore, if G is any nonnegative measurable
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functional on C+([0,∞)), we have for every s > 0, N a.e. on the event
{s < ζ },

N
(
G(H(ρ(s+t)∧ζ ), t ≥ 0)

∣∣∣ Fs
)

= Qρs (G). (17)

(iii) The process (η(ζ−s)− , ρ(ζ−s)−)0≤s<ζ has the same distribution as (ρs, ηs)0≤s<ζ
under N .

(iv) For any nonnegative measurable function � on (M∗
f )

2,

N
( ∫ ζ

0
ds �(ρs, ηs)

)
=
∫ ∞

0
da e−αa Ma(G). (18)

To make sense of the conditional expectation in (17), note that the event {s < ζ }
has finite N -measure. We refer to [9] for a proof of properties (i) – (iv) above:
See in particular Propositions 1.2.3 and 1.2.6 for (17), Corollary 3.1.6 for (iii) and
Proposition 3.1.3 for (iv).

We now proceed to the proof of the lemma. We may and will assume that F is
of the form F(h, h′) = F1(h)F2(h

′). Using (i) and then (ii), we have

N
( ∫ ζ

0
ds F1

(
H(s−t)+ , t ≥ 0

)
F2

(
H(s+t)∧ζ , t ≥ 0

))

= N
( ∫ ζ

0
ds F1

(
H(ρ(s−t)+), t ≥ 0

)
F2

(
H(ρ(s+t)∧ζ ), t ≥ 0

))

= N
( ∫ ζ

0
ds F1

(
H(ρ(s−t)+), t ≥ 0

)
Qρs (F2)

)
.

From the time-reversal property (iii) we see that the last quantity is equal to

N
( ∫ ζ

0
ds Qηs (F2) F1

(
H(ρ(s+t)∧ζ ), t ≥ 0

))

= N
( ∫ ζ

0
ds Qηs (F2)Qρs (F1)

)
,

using (17) once again. The formula of the lemma now follows from (18). ��
Corollary 3.5. Let a > 0. Then, for any nonnegative measurable function F on
C+([0,∞))2,

N
( ∫ ζ

0
d�as F

(
(H(s−t)+ , t ≥ 0), (H(s+t)∧ζ , t ≥ 0)

))

= e−αa
∫

Ma(dµdν)

∫
Qµ(dh)Qν(dh

′)F (h, h′).

Proof. This is a straightforward consequence of Lemma 3.4 and the approximation
of local time given in (12). ��
Remark. The case F = 1 of Corollary 3.5 gives N(�aζ ) = e−αa , for every a > 0.
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4. The Lévy tree

We have seen that N a.e. the function s → Hs satisfies the properties stated at
the beginning of subsection 2.1, namely it is continuous with compact support and
such that H0 = 0.

Definition 4.1. Theψ-Lévy tree is the tree (TH , dH ) coded by the function s → Hs
under the measure N .

We will say the Lévy tree rather than the ψ-Lévy tree if there is no risk of
confusion.

We denote by �(dT ) the σ -finite measure on T which is the law of the Lévy
tree, that is the law of the tree TH under N . Note that the measurability of the
random variable TH follows from Lemma 2.3.

4.1. From discrete to continuous trees

In this subsection, we will state a result which justifies the definition of theψ-Lévy
tree by showing that it arises as the limit in the Gromov-Hausdorff distance of
suitably rescaled discrete Galton-Watson trees.

We start by introducing some formalism for discrete trees. Let

U =
∞⋃
n=0

N
n

where N = {1, 2, . . . } and by convention N
0 = {∅}. If u = (u1, . . . um) and

v = (v1, . . . , vn) belong to U , we write uv = (u1, . . . , um, v1, . . . , vn) for the
concatenation of u and v. In particular u∅ = ∅u = u.

A (finite) rooted ordered tree θ is a finite subset of U such that:

(i) ∅ ∈ θ .
(ii) If v ∈ θ and v = uj for some u ∈ U and j ∈ N, then u ∈ θ .

(iii) For every u ∈ θ , there exists a number ku(θ) ≥ 0 such that uj ∈ θ if and only
if 1 ≤ j ≤ ku(θ).

We denote by T the set of all rooted ordered trees. In what follows, we see each
vertex of the tree θ as an individual of a population whose θ is the family tree.

If θ is a tree and u ∈ θ , we define the shift of θ at u by τuθ = {v ∈ U : uv ∈ θ}.
Note that τuθ ∈ T. We also denote by h(θ) the height of T , that is the maximal
generation of a vertex in θ .

For our purposes it will be convenient to view θ as an R-tree: To this end,
embed θ in the plane, in such a way that each edge corresponds to a line segment
of length one, in the way suggested by the left part of Fig. 1. Denote by T θ the
union of all these line segments and equip T θ with the obvious metric such that
the distance between σ and σ ′ is the length of the shortest path from σ to σ ′ in T θ .
This construction leads to a (compact rooted) R-tree whose equivalence class does
not depend on the particular embedding.
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To define now the contour function of T θ , consider a particle that starts from
the root and visits continuously all edges at speed one, going backwards as less as
possible and respecting the lexicographical order of vertices. Then letCθ(t) denote
the distance to the root of the position of the particle at time t (for t ≥ 2(|θ | − 1),
we take Cθ(t) = 0 by convention). Fig.1 explains the definition of the contour
function better than a formal definition. Note that in the notation of Section 2, we
have T θ = TCθ , meaning that T θ coincides with the tree coded by the function
Cθ .

Now let us turn to Galton-Watson trees. Let µ be a critical or subcritical off-
spring distribution. This means that µ is a probability measure on Z+ such that∑∞
k=0 kµ(k) ≤ 1. We exclude the trivial case where µ(1) = 1. Then, there is a

unique probability distribution �µ on T such that

(i) �µ(k∅ = j) = µ(j), j ∈ Z+.
(ii) For every j ≥ 1 with µ(j) > 0, the shifted trees τ1θ, . . . , τj θ are indepen-

dent under the conditional probability �µ(· | k∅ = j) and their conditional
distribution is �µ.

A random tree with distribution �µ is called a Galton-Watson tree with off-
spring distribution µ, or in short a µ-Galton-Watson tree. Obviously it describes
the genealogy of the Galton-Watson process with offspring distribution µ started
initially with one individual.

We can now state our result relating discrete and continuous trees. If T is a
(compact rooted) R-tree with metric d, and if r > 0, we slightly abuse notation
by writing rT for the “same” tree equipped with the distance r d. Recall that the
height of T is

h(T ) = sup{d(ρ(T ), σ ) : σ ∈ T },
where ρ(T ) denotes the root of T . For every real number x, [x] denotes the integer
part of x.
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Theorem 4.1. Let (µp)p≥1 be a sequence of critical or subcritical offspring dis-
tributions. For every p ≥ 1 denote by Yp a Galton-Watson branching process with
offspring distribution µp, started at Yp0 = p. Assume that there exists a nonde-
creasing sequence (mp)p≥1 of positive integers converging to +∞ such that

(
p−1Y

p
[mpt]

, t ≥ 0
)

(d)−→
p→∞ (Yt , t ≥ 0) (19)

where the limiting process Y is aψ-CSBP. Assume furthermore that for every δ > 0,

lim inf
p→∞ P [Yp[mpδ] = 0] > 0. (20)

Then, for every a > 0, the law of the R-tree m−1
p T θ under �µp(dθ | h(θ) ≥

[a mp]) converges as p → ∞ to the probability measure �(dT | h(T ) > a), in
the sense of weak convergence of measures in the space T.

Proof. We noted that the tree T θ is the tree coded by the functionCθ , in the sense of
Section 2. Lemma 2.3 then shows that the convergence of the theorem follows from
the weak convergence of the scaled contour function (m−1

p Cθ (pmpt), t ≥ 0) under
�µp(dθ | h(θ) ≥ [a mp]) towards the height process H under N(· | supH > a).
But this is precisely the contents of Proposition 2.5.2 in [9], which is itself a con-
sequence of Theorem 2.3.1 in the same work. ��

The technical assumption (20) guarantees that the Galton-Watson process Yp

dies out at a time of ordermp, as one expects from the convergence (19) (recall that
Y dies out in finite time). See Chapter 2 of [9] for a discussion of this assumption,
and note that it is always true in the case when µp = µ for every p (Theorem 2.3.2
in [9]). In particular, the approximation result stated in the introduction above is
easily seen to be a consequence of Theorem 4.1.

4.2. Local times and the branching property of Lévy trees

Let us start with a few simple observations. We recall that the generic element of
T is denoted by (T , d). Then, for every a > 0,

�(h(T ) > a) = N(supH > a) = v(a),

where the function v is determined by
∫∞
v(a)

ψ(u)−1du = a.
The truncation of the tree T at level a > 0 is the new tree

tra(T ) = {σ ∈ T : d(ρ(T ), σ ) ≤ a},
which is obviously equipped with the restriction of the distance d. It is easy to
verify that the mapping T → tra(T ) from T into itself is measurable.

Let T ∈ T and a > 0. Denote by T (i),◦, i ∈ I the connected components of
the open set

T ((a,∞)) = {σ ∈ T : d(ρ(T ), σ ) > a}.
Notice that the index set I may be empty (if h(T ) ≤ a), finite or countable. Let
i ∈ I. Then the ancestor of σ at level a must be the same for every σ ∈ T (i),◦.
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We denote by σi this common ancestor and set T (i) = T (i),◦ ∪ {σi}. Then T (i) is
a compact rooted R-tree with root σi . The trees T (i), i ∈ I are called the subtrees
of T originating from level a.

We set
N T
a :=

∑
i∈I

δ(σi ,T (i)),

which is a point measure on T (a)× T. Also, for every δ > 0, we let

Z(a, δ) := |{i ∈ I : h(T (i)) ≥ δ}|
be the number of subtrees of T originating from level a that hit level a + δ.

Theorem 4.2. For every a ≥ 0 and for� a.e. T ∈ T we can define a finite measure
�a on T , in such a way that the following properties hold:

(i) �0 = 0 and, for every a > 0, �a is supported on T (a), �(dT ) a.e.
(ii) For every a > 0, {�a �= 0} = {h(T ) > a}, �(dT ) a.e.

(iii) For every a > 0, we have�(dT ) a.e. for every bounded continuous function
ϕ on T ,

〈�a, ϕ〉 = lim
ε↓0

1

v(ε)

∫
N T
a (dσdT ′) ϕ(σ ) 1{h(T ′)≥ε}

= lim
ε↓0

1

v(ε)

∫
N T
a−ε(dσdT ′) ϕ(σ ) 1{h(T ′)≥ε} (21)

Furthermore, for every a > 0, the conditional distribution of the point measure
N T
a (dσdT ′), under the probability measure�(dT | h(T ) > a) and given tra(T ),

is that of a Poisson point measure on T (a)× T with intensity �a(dσ )�(dT ′).

The last property is the most important one. It will be called the branching prop-
erty of the Lévy tree as it is exactly analogous to the classical branching property
for Galton-Watson trees (cf Property (ii) in the definition of Galton-Watson trees
in subsection 4.1). The random measure �a will be called the local time of T at
level a.

Remark. The reader may be a little puzzled by the mathematical meaning of the
branching property as stated in the theorem, since our trees T are defined as equiv-
alent classes of isometric objects, and T (a) does not seem to be a well-defined
object. In the proof below, we will circumvent this difficulty by dealing with the
tree TH under N . A more intrinsinc way to state the branching property in a math-
ematically precise way is as follows. Consider first a fixed real tree T , and assume
that the local time measure �a of T can be defined via formula (21). Then let∑

j∈J
δ(ηj ,T (j))

be a Poisson point measure on T (a)× T with intensity �a(dη)�(dT ′). Construct
another real tree T as the disjoint union

T = tra(T )
⊔( ⊔

j∈J
(T (j)\{ρ(T (j))})

)
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equipped with the obvious appropriate distance so that the sets (T (j)\{ρ(T (j)}) �
{ηj } become the subtrees of T originating from level a. Note that the distribution
of T only depends on the equivalence class of T in T, and that this distribution is a
measurable function of T . The branching property can be restated by saying that if
T is chosen according to the distribution�(dT | h(T ) > a), then T has the same
distribution as T .

Proof. From the definition of the measure�, it is enough to construct the measures
�a and to verify the properties stated in the theorem, for the tree TH associated with
the height process H under the measure N . For every a > 0, we define the finite
measure �a on TH by setting

〈�a, ϕ〉 =
∫ ζ

0
d�as ϕ(pH (s)).

In other words, �a is the image of the measure d�as under the mapping pH . The
support property of local times guarantees that �a is N a.e. supported on pH ({s :
Hs = a}) = TH (a).

Similarly we have seen that {�aζ > 0} = {supH > a}, N a.e., which gives
property (ii). Before proving property (iii), we will discuss the branching property
of the Lévy tree, which is basically a consequence of Corollary 3.2.

Recall the notation H̃ a for the processH truncated at level a, and note the easy
identification

T
H̃ a = tra(TH ). (22)

Indeed, if Aas := ∫ s
0 dr 1{Hr≤a}, there is a (unique) isometry mapping tra(TH ) onto

T
H̃ a such that, for every s ≥ 0 with Hs ≤ a, pH (s) is mapped to p

H̃a (A
a
s ).

Recall the notation H̃a for the σ -field generated by H̃ a augmented with the
class of N -negligible sets.

Claim. The conditional distribution of the point measure N TH
a , under the proba-

bility measure N(· | supH > a) and given the σ -field H̃a , is that of a Poisson
point measure on TH (a)× T with intensity �a(dσ )�(dT ).

The claim is very close to the branching property (for the tree TH ) as stated in
the theorem, with the minor difference that we are conditioning with respect to the
σ -field H̃a rather than with respect to the truncated tree T

H̃ a (which contains less
information). We will see later that �a is N a.e. equal to a measurable function of
the tree T

H̃ a , and then the branching property will follow from the claim.
Let us first prove the claim. We recall the notation of Corollary 3.2: (αj , βj ),

j ∈ J are the connected components of the open set {s : Hs > a} and, for every
j ∈ J , Hj

s = H(αj+s)∧βj − a. We also set lj = �aαj . Corollary 3.2 asserts that,

conditionally on H̃a , the point measure

∑
j∈J

δ(lj ,Hj )(d� dω)
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is Poisson on R+ × C+([0,∞)) with intensity 1[0,�aζ )
(�) d��(dω). On the other

hand, it is immediate from the construction of the tree TH that

N TH
a =

∑
j∈J

δ(pH (αj ),THj ).

To complete the proof of the claim, we will argue that conditionally given H̃ a , each
pair (pH (αj ), THj ) is a function (not depending on j ) of the pair (lj , Hj ). This is
obvious for the second coordinate THj . Then, recalling the identification (22), we
have for every j ∈ J ,

pH (αj ) = p
H̃a (A

a
αj
).

From (15), we get for every j ∈ J ,

pH (αj ) = p
H̃a (inf{s : �̃as > lj }). (23)

This is the formula we were aiming at. In view of applying Corollary 3.2, we
still need to determine the image of the measure 1[0,�aζ )

(l)dl under the mapping

l → p
H̃a (inf{s : �̃as > l}). Write γ as = inf{r : �ar > s} and γ̃ as = inf{r :

�̃ar > s}, for every s ∈ [0,�aζ ). From the relation between �as and �̃as , we see
that γ̃ as = Aaγ as

for every s ∈ [0,�aζ ). Hence, via the identification (22), we have
also pH (γ as ) = p

H̃a (γ̃
a
s ) for every s ∈ [0,�aζ ). Therefore, for any nonnegative

measurable function ϕ on TH ,

〈�a, ϕ〉 =
∫
d�as ϕ(pH (s)) =

∫
[0,�aζ )

dr ϕ(pH (γ
a
r )) =

∫
[0,�aζ )

dr ϕ(p
H̃a (γ̃

a
s )).

Thus �a is the image of the measure 1[0,�aζ )
(l)dl under the mapping l → p

H̃a (inf{s :

�̃as > l}). Using (23) and recalling that� is the image of�(dh) under the mapping
h −→ Th, we see that the claim follows from Corollary 3.2.

We now turn to the proof of (iii). Consider first the case ϕ = 1, where we have
to prove

〈�a, 1〉 = lim
ε↓0

1

v(ε)
Z(a − ε, ε) = lim

ε↓0

1

v(ε)
Z(a, ε),

where Z refers to the tree TH . This easily follows from the preceding claim: To get
the first equality, note that conditionally on 〈�a−ε, 1〉, Z(a − ε, ε) is Poisson with
parameter v(ε)〈�a−ε, 1〉, and recall from subsection 3.2 that 〈�a−ε, 1〉 = �a−εζ con-
verges N a.e. to 〈�a, 1〉 = �aζ . Standard estimates for Poisson variables, together
with the (obvious) monotonicity of the mapping ε → Z(a − ε, ε) then give the
desired result. The case of the second equality is treated in a similar way.

Consider then a Lipschitz function ϕ on TH , with Lipschitz constant K . Let
δ > 0 be a rational number in (0, a). Write T (l), l ∈ L for the subtrees of TH
originating from level a − δ, and (αl, βl) for the excursion interval of H above
level a − δ that corresponds to T (l). Again thanks to the claim, we can apply the
case ϕ = 1 of (iii) to each tree T (l), and we get that for every l ∈ L,

1

v(ε)
N T (l)

δ−ε ({(σ ′, T ′) : h(T ′) > ε}) −→
ε→0

�aβl −�aαl .
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We have then

lim inf
ε→0

1

v(ε)

∫
N TH
a−ε(dσ

′dT ′) ϕ(ρ(T ′)) 1{h(T ′)≥ε}

= lim inf
ε→0

1

v(ε)

∑
l∈L

∫
N T (l)

δ−ε (dσ
′dT ′) ϕ(ρ(T ′)) 1{h(T ′)≥ε}

≥ lim inf
ε→0

∑
l∈L

( 1

v(ε)
N T (l)

δ−ε ({(σ ′, T ′) : h(T ′) ≥ ε}) inf
T (l)([0,δ])

ϕ
)

=
∑
l∈L

(
(�aβl −�aαl ) inf

s∈[αl,βl ],Hs≤a
ϕ(pH (s))

)

≥
∑
l∈L

∫ βl

αl

d�as

(
ϕ(pH (s))− 2Kδ

)

= 〈�a, ϕ〉 − 2Kδ〈�a, 1〉.

The fourth line in the previous calculation is an equality because the sum is in fact
finite. In the last inequality, we used the Lipschitz property of ϕ, together with the
fact that the distance between pH (s) and pH (s′) is bounded above by 2δ whenever
there exists l ∈ L such that s, s′ ∈ [αl, βl] and Hs ∨Hs′ ≤ a.

Since δ was arbitrary we get

lim inf
ε→0

1

v(ε)

∫
N TH
a−ε(dσ

′dT ′) ϕ(ρ(T ′)) 1{h(T ′)≥ε} ≥ 〈�a, ϕ〉.

The same method gives the analogous bound for the limsup behavior, and a similar
argument applies to the other part of (iii). This completes the proof of properties
(i)–(iii).

Finally, observing that for every ε > 0
∫

N TH
a−ε(dσ

′dT ′) ϕ(ρ(T ′)) 1{h(T ′)≥ε} =
∫

N T
H̃a

a−ε (dσ
′dT ′) ϕ(ρ(T ′)) 1{h(T ′)≥ε}

we deduce from (iii) that �a coincides N a.e. with a measurable function of the
truncated tree tra(TH ) = T

H̃ a . Consequently in the claim above we may condition
on tra(TH ) rather than on the σ -field H̃a . This gives the branching property for TH
and completes the proof of the theorem. ��

Remark. Although our contruction of the measure �a for the tree TH makes use
of the coding via the height process, part (iii) of the theorem shows that �a is a
function of the tree and does not depend on the particular coding that is used.

Theorem 4.3. We can choose a modification of the collection (�a, a ≥ 0) in such
a way that the mapping a −→ �a is �(dT ) a.e. càdlàg for the weak topology on
finite measures on T . We have then

inf{a > 0 : �a = 0} = sup{a ≥ 0 : �a �= 0} = h(T ) , � a.e.
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Proof. Again, it is enough to prove this for the tree TH underN . For every rational
q > 0, denote by T (i), i ∈ Iq the subtrees of TH originating from level q (the index
sets Iq are disjoint when q varies). Denote by (�a,(i), a ≥ 0) the local times of T (i),
which are well defined thanks to the branching property. Using the approximations
of local time given in Theorem 4.2(iii), it is immediately checked that, for every
b > q, we have

�b =
∑
i∈Iq

�b−q,(i) , N a.e. (24)

Note that (24) holds for every rationals b, q with 0 < q < b outside a single set of
zero N -measure. In addition, by Lemma 3.3, we can assume that outside the same
set of zero N -measure, the mapping

Q ∩ (0,∞) � b −→ 〈�b,(i), 1〉 = �b,(i)(T (i))

has a càdlàg extension to [0,∞), for every rational q > 0 and every i ∈ Iq .
We then show that the limit

�
a

:= lim
Q�b↓a

�b

exists for every a ∈ [0,∞). When a = 0, the result is immediate, with �
0 = 0,

since we already know that 〈�b, 1〉 −→ 0 as b ↓ 0, N a.e. (Lemma 3.3). Then, if
a > 0 and if ϕ : TH −→ R is Lipschitz with constantK , we get from (24) that for
every b, b′ ∈ (a,∞) ∩ Q and q ∈ (0, a) ∩ Q

〈�b, ϕ〉 ≥
∑
i∈Iq

〈�b−q,(i), 1〉 inf
T (i)(b−q)

ϕ , (25)

〈�b′
, ϕ〉 ≤

∑
i∈Iq

〈�b′−q,(i), 1〉 sup
T (i)(b′−q)

ϕ . (26)

Moreover, we have for every i ∈ Iq ,

sup
T (i)(b′−q)

ϕ ≤ inf
T (i)(b−q)

ϕ +K(b + b′ − 2q) , (27)

because any point of T (i)(u) is at distance u from the root of T (i).
From the remarks of the beginning of the proof, we know that for every i ∈ Iq ,

〈�b′−q,(i), 1〉 − 〈�b−q,(i), 1〉
tends to 0 as b, b′ ↓ a with b, b′ ∈ Q∩ [a,∞). Also note that in the sums appearing
in (25) and (26) only finitely many terms can give a nonzero contribution, namely
those for which h(T (i)) > a − q. Combining these facts with (25), (26) and (27)
leads to

lim sup
Q�b,b′↓a

(
〈�b′

, ϕ〉 − 〈�b, ϕ〉
)

≤ 2K(a − q) sup
x∈Q∩(0,∞)

〈�x, 1〉.
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Since q can be taken arbitrarily close to a, this is enough to get the convergence of
〈�b, ϕ〉 as b ↓ a, b ∈ Q, thus proving the existence of the right limit �

a
.

A similar argument gives the existence of left limits along rationals. The process
(�
a
, a ∈ [0,∞)) is thus càdlàg. In addition, it is easy to see that �

a = �a N a.e., for
every a ∈ [0,∞): If a > 0 is fixed, note that (26) will hold with b′ replaced by a
(outside a set of zero N -measure depending on a) and use the preceding argument
to verify that the measures �a and �

a
coincide N a.e.

It remains to prove that

inf{a > 0 : �
a = 0} = sup{a ≥ 0 : �

a �= 0} = h(TH ) , N a.e. (28)

We know that for every δ > 0 the (càdlàg) process (〈�δ+r , 1〉, r ≥ 0) is distributed
underN(· | supH > δ) as aψ-CSBP. The strong Markov property of theψ-CSBP

then shows that if T = inf{a ≥ δ : �
a = 0} we have �

b = 0 for every b ≥ a, N
a.e. This gives the first equality in (28). The second one is immediate from the fact
that {supH > q} = {�qζ �= 0}, N a.e., for every rational q. ��
Remark. We already noticed that the ψ-CSBP has only positive jumps, and the
same holds for the total local time process 〈�a, 1〉 under �. A careful inspection
of the previous proof then shows that � a.e. for every jump time b of the process
a −→ �a we must have �b ≥ �b−. As a consequence b is a jump time of the process
a −→ �a if and only is it is a jump time of the total mass process a −→ 〈�a, 1〉.
More information about these jumps will be given in Theorem 4.7.

From now on we consider only the càdlàg modification of the collection (�a, a ≥
0) obtained in Theorem 4.3. By combining the right-continuity of the mapping
a → �a with Theorem 4.2 (i), we get that � a.e. for every a > 0, �a is supported
on the level set T (a). A more precise result will be derived below (Theorem 4.4).

We put

m =
∫ ∞

0
da �a (29)

which defines a finite measure on the tree T . When T = TH is the tree coded by
the height process under N , the measure m coincides with the image of Lebesgue
measure on [0, ζ ] under the mapping s → pH (s) (see formula (32) in [9]). How-
ever, formula (29) makes it clear that the measure m only depends on the tree T and
not on a particular coding. We will write ζ for the total mass of m, in agreement
with the case of the tree TH . The next theorem will imply in particular that the
topological support of m is T , � a.e.

For every σ ∈ T and ε > 0, denote byB(σ, ε) the open ball of radius ε centered
at σ . We say that a vertex σ of T is an extinction point if there exists ε > 0 such
that

d(ρ(T ), σ ) = sup
τ∈B(σ,ε)

d(ρ(T ), τ ).

Note that pH (s) is an extinction point of TH iff s ∈ [0, ζ ] is a local maximum ofH .
As a consequence there are at most countably many extinction points. We denote
by E the set of all extinction levels, that is levels a such that a = d(ρ(T ), σ ) for
some extinction point σ .
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Theorem 4.4. The following holds �(dT ) a.e.:

(i) For every a ∈ (0, h(T )]\E , the topological support of �a is equal to the level
set T (a).

(ii) For every a ∈ E , the topological support of �a is T (a)\{σa}, where σa is the
(unique) extinction point at level a.

Proof. First observe that if σ is an extinction point at level b, the right-continuity
of the mapping a → �a , together with the fact that supp �a ⊂ T (a), for every
a ≥ 0 implies that �b(B(σ, ε)) = 0 for some ε > 0. Therefore σ /∈ supp �b.

The proof of the theorem will then be complete if we can prove that � a.e.:

(i) Extinction levels of two distinct extinction points are different.
(ii) For every a > 0 and σ ∈ T (a)which is not an extinction point, �a(B(σ, ε)) >

0 for every ε > 0.

Recall the notation before Theorem 4.2: For every rational q ≥ 0,

N T
q =

∑
i∈Iq

δ(σi ,T (i))

is the point measure associated with subtrees originating from level q (the index
sets Iq are disjoint). Set hi = h(T (i)) for every i ∈ Iq and every rational q ≥ 0.
Then it is easy to verify that

E = {q + hi : q ∈ Q+, i ∈ Iq}.
Suppose that σ and σ ′ are two distinct extinction points such that d(ρ(T ), σ ) =
d(ρ(T ), σ ′) = a. Then by choosing a rational q < a and sufficiently close to a, we
see that there exist two distinct indices i, i′ ∈ Iq such that h(T (i)) = h(T (i′)). This
is impossible by the branching property and the fact that the law of h(T ) under �
has no atoms. This proves (i).

Then, if (�b,(i), b ≥ 0) denote the local times associated with the tree T (i)

(again this makes sense by the branching property), we get from Theorem 4.3 that
�b,(i)(T (i)) > 0 for every b ∈ (0, hi). Note that these properties hold simulta-
neously for all rationals q ≥ 0 and i ∈ Iq outside a single set of zero �-measure.
Furthermore, from the approximation of local time given in Theorem 4.2 (iii), we
see that � a.e. for every a > 0 and every rational q ∈ (0, a) we have

�a =
∑
i∈Iq

�a−q,(i). (30)

Note that in the preceding sum only finitely many terms can be nonzero. To derive
this identity consider first the case when a is also rational and then use the right-
continuity of the mapping a −→ �a (Theorem 4.3).

Finally, let a > 0 and σ ∈ T (a). Assume that σ is not an extinction point.
Then for every rational q < a, the subtree T (i) originating from level q and con-
taining σ is such that h(T (i)) > a − q. Therefore �a−q,(i)(T (i)) > 0 and by (30),
�a(T (i) ∩ T (a)) = �a(T (i)) > 0. To complete the proof of (ii), simply note that
T (i) ∩ T (a) is contained in B(σ, ε) if 2(a − q) < ε. ��
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4.3. Decomposing the tree along an ancestral line

We shall need one more subtree decomposition under �, which is a consequence
of Corollary 3.5. Before stating it, we introduce the relevant notation. Let T ∈ T

and σ ∈ T . Denote by T (j),◦, j ∈ J the connected components of the open set
T \[[ρ(T ), σ ]], and note that for every j ∈ J , σj := σ ∧ τ does not depend on
the choice of τ ∈ T (j),◦. Furthermore, T (j) := T (j),◦ ∪ {σj } is a (compact rooted)
R-tree with root σj . The trees T (j), j ∈ J can be interpreted as the subtrees of T
originating from the segment [[ρ(T ), σ ]]. We put

Mσ =
∑
j∈J

δ(d(ρ(T ),σj ),T (j)),

thus defining a point measure on [0,∞)× T.

Theorem 4.5. For every a > 0 and every nonnegative measurable function � on
[0,∞)× T,

�
( ∫

�a(dσ ) exp −〈Mσ ,�〉
)

= exp
(

−
∫ a

0
dt ψ ′

(
�(1 − exp −�(t, ·))

))
.

Proof. As previously, we argue on the tree TH under N , and we abuse notation
by writing Mσ and �a for the corresponding objects attached to the tree TH . If
s ∈ [0, ζ ], we also set

Ĥ s
t = H(s+t)∧ζ , t ≥ 0 ,

Ȟ s
t = H(s−t)+ , t ≥ 0 .

Then we observe that if σ = pH (s), we have

Mσ = PĤ s + PȞ s

(31)

where for any continuous function h : [0,∞) −→ [0,∞) with compact support,
the point measure Ph is defined as follows.

Let h(t) = inf[0,t] h and let (αi, βi), i ∈ I be the excursion intervals of h− h

away from 0 (that is, the connected components of the set {h− h > 0}). For every
i ∈ I, we set

hi(t) = (h− h)((αi + t) ∧ βi) , t ≥ 0

and

Ph =
∑
i∈I

δ(h(αi ),Thi ).

The identity (31) is then a simple consequence of our definitions and the construc-
tion of the tree Tg in Section 2.
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Using (31) and Corollary 3.5, we get

�
( ∫

�a(dσ ) exp −〈Mσ ,�〉
)

= N
( ∫ ζ

0
d�as exp −〈PĤ s + PȞ s

, �〉
)

= e−αa
∫

Ma(dµdν)
( ∫

Qµ(dh) e
−〈Ph,�〉

)( ∫
Qν(dh) e

−〈Ph,�〉
)
.

From Lemma 4.2.4 in [9], we immediately get
∫
Qµ(dh) e

−〈Ph,�〉 = exp −
∫
µ(dt)N

(
1 − exp −�(t, TH )

)

= exp −
∫
µ(dt)�

(
1 − exp −�(t, ·)

)
.

Hence,

�
( ∫

�a(dσ ) exp −〈Mσ ,�〉
)

= e−αa
∫

Ma(dµdν) exp
(

−
∫
(µ+ ν)(dt)�

(
1 − exp −�(t, ·)

))
.

Recall from subsection 3.3 that the distribution of µ + ν under Ma(dµdν) is the
law of 1[0,a](t)dUt , where U is a subordinator with Laplace exponent ψ ′ − α.
Therefore,

�
( ∫

�a(dσ ) exp −〈Mσ ,�〉
)

= e−αa E
[

exp −
∫ a

0
dUt �(1 − exp −�(t, ·))

]

= exp
(

−
∫ a

0
dt ψ ′

(
�(1 − exp −�(t, ·))

))
.

��
Remark. Combining the genealogical structure of the tree T with an independent
spatial motion leads to a construction of superprocesses which will be explained in
Section 6 below. In this setting, Theorem 4.5 is closely related to the representation
for the historical Palm measure of superprocesses, which appears in Section 4.1 of
[5] in the stable branching case.

We will now give a first application of Theorem 4.5 to properties of the Lévy
tree. Recall from Section 2 that for every vertex σ of the tree T , n(σ) denotes the
multiplicity of σ , defined as the number of connected components of T \{σ }. We
write L = {σ ∈ T \{ρ(T )} : n(σ) = 1} for the set of leaves of T .

Theorem 4.6. We have:

(i) For every a > 0, �a(T \L) = 0, � a.e. Hence, m(T \L) = 0, � a.e.
(ii) n(σ) ∈ {1, 2, 3,∞} for all σ ∈ T , � a.e.
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(iii) The set {σ ∈ T : n(σ) = 3} of binary branching points is empty � a.e. if
β = 0. If β > 0, the set of binary branching points is a countable dense
subset of T , � a.e.

(iv) The set {σ ∈ T : n(σ) = ∞} of infinite branching points is nonempty with
positive �-measure iff π �= 0. If 〈π, 1〉 = ∞, it is � a.e. a countable dense
subset of T . If 〈π, 1〉 < ∞ it is � a.e. a finite (possibly empty) subset of T .

Proof. We can reinterpret the result of Theorem 4.5 in the following way. Let
U = (Ut , t ≥ 0) be a subordinator with Laplace exponent

ψ ′(λ) = α + 2βλ+
∫
π(dr) r(1 − e−λr ).

Note in particular that U is killed at a time ξ which is exponentially distributed
with parameter α. Write P for the probability measure under which U is defined.

Let a > 0, and note that the formula

�(A) = �
( ∫

�a(dσ ) 1A(Mσ )
)

defines a (finite) measure on the set of point measures on [0, a]×T. Then Theorem
4.5 says that � is the law under P(· ∩ {a < ξ}) of a point measure M∗(dtdT )
which conditionally given U is Poisson with intensity

1[0,a](t) dUt �(dT ).

Since the measure dUt a.s. gives no mass to the singleton {a}, M∗ can have no
atom of the form (a, T ′) for T ′ ∈ T. It follows that � a.e., �a(dσ ) a.e., the point
measure Mσ has no atom of this form. This means that �a-almost every σ is a leaf,
and (i) follows.

Recalling that� is an infinite measure and using standard properties of Poisson
measures, we see that only two possibilities may occur for instants t ∈ [0, a):

• Either t is a time of jump of U and then the point measure M∗ has infinitely
many atoms of the form (t, T ′), T ′ ∈ T.

• Or t is not a time of jump of U and then the point measure M∗ has at most one
atom of the form (t, T ′), T ′ ∈ T, and may have one only if β > 0.

Using this and the relation between M∗ and Mσ , we see that for �a-almost every
σ ∈ T , the set ]]ρ(T ), σ [[ only contains vertices τ such that n(τ) ∈ {2, 3,∞}, and
the value n(τ) = 3 is only possible if β > 0. This property holds simultaneously
for all rationals a, outside a single set of zero �-measure.

Now let σ be any vertex in the tree T . If n(σ) > 1, then the set of descendants
of σ is not empty and by Theorem 4.4 we can find a rational a > d(ρ(T ), σ ) such
that this set has positive �a-measure. From the preceding property we deduce that
n(σ) ∈ {2, 3,∞}. This proves property (ii).

If β = 0, then we already noticed that the value n(τ) = 3 is not achieved by
any ancestor τ of σ , for �a-almost every σ ∈ T . The same argument as in the proof
of (ii) now shows that there is no vertex τ such that n(τ) = 3,� a.e. This gives the
first part of (iii).
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On the contrary, if β > 0, we get from the relation between Mσ and M∗ that
the set of vertices τ with n(τ) = 3 is dense in ]]ρ(T ), σ [[, for �a-almost every
σ ∈ T . If we apply this to all rationals a, we get the second part of (iii).

It remains to prove (iv). To prove this property it is convenient to argue on the
tree TH under N . If π = 0, then H is distributed under N as a (scaled) reflected
Brownian motion with drift, and the fact that there are only binary branching points
is clear since local minima of this process are distinct (alternatively, one can also use
Theorem 4.5 in the same way as above). Suppose then that π �= 0. We can then note
that for every s such thatXs−Xs− > 0, pH (s) is an infinite branching point of TH .
Indeed, ifT is a stopping time such thatXT−XT− > 0, andX(T ) denotes the shifted
processX(T )s = XT+s−XT , with associated minimum process I (T )s , any excursion
interval ofX(T )−I (T ) away from 0 before time inf{s ≥ 0 : X(T )s = −(XT −XT−)}
will correspond to an excursion ofH above levelHT , and will be associated under
pH with a connected component of TH \{pH (T )} (recall the discussion at the end
of subsection 2.1). Since there are infinitely many such excursions, we see that
pH (T ) is an infinite branching point. When 〈π, 1〉 = ∞, the set of all jump times
ofX is dense in [0, ζ ],N a.e., and it follows that the set of infinite branching points
is dense in TH . On the other hand, when 〈π, 1〉 < ∞, X has discrete jumps and
between jumps behaves like a (scaled) Brownian motion with drift. By analysing the
behavior of the processH in that case, one easily obtains that the infinite branching
points of TH exactly correspond to jump times of X, so that the number of infinite
branching points is finite N a.e. ��

Remark. By using Theorem 4.5 as in the preceding proof, one easily gets the
following additional property. If

∫
r π(dr) = ∞, then � a.e. for any vertex σ of

T \{ρ(T )}, the “ancestral line” [[ρ(T ), σ ]] contains infinitely many infinite branch-
ing points. On the other hand, if

∫
r π(dr) < ∞, then for every a > 0, the ancestral

line of �a-almost every vertex contains finitely many infinite branching points.

We state another theorem relating discontinuities of local time to branching
points of infinite multiplicity.

Theorem 4.7. Let I(T ) = {σ ∈ T : n(σ) = ∞}. Then, � a.e. {d(ρ(T ), σ ) :
σ ∈ I(T )} coincides with the set of discontinuity times of the mapping a −→ �a .
Moreover, � a.e., for every discontinuity time b of the mapping a −→ �a , there
exists a unique σb ∈ I(T ) ∩ T (b), and we have

�b = �b− + λb δσb

where λb > 0 can be obtained via the approximation

λb = lim
ε→0

1

v(ε)
n(σb, ε),

if n(σb, ε) denotes the number of subtrees originating from σb with height greater
than ε.
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The number λb may be called the local time of the infinite branching point σb.
As the proof will show, if the tree T is constructed as T = TH under the excursion
measureN , then I(T ) exactly consists of the vertices pH (s), where s varies in the
set of discontinuity times ofX. For any such s, the local time of the branching point
pH (s) is just the jump �Xs of X at s.

Proof. We only sketch arguments. We assume that T = TH is the tree constructed
from the height process H under N . First suppose that σ ∈ I(T ) and let b =
d(ρ(T ), σ ). Recall the discussion at the end of subsection 2.1. From the connec-
tion betwen the height process and the so-called exploration process (cf Chapter 1
of [9]) one easily sees that there must exist r > 0 with pH (r) = σ and �Xr > 0.
In a way similar to the end of the preceding proof, we may consider the path of
X between r and inf{t ≥ r : Xt = Xr−}, and obtain that �b ≥ �b− + (�Xr) δσ
(recall that we already know that �b ≥ �b−).

Conversely, suppose that b is a discontinuity time of the mapping a −→ �a .
Let r < b be a rational and write (T (i), i ∈ I) for the subtrees originating from
level r . For every i ∈ I, denote by (�a,(i), a ≥ 0) the local times of T (i). From
the branching property and the fact that the ψ-CSBP has no fixed discontinuities,
we get that at most one (in fact exactly one) of the processes a −→ �a,(i) can be
discontinuous at b− r . It easily follows that there exists σb with �b = �b− +λb δσb ,
for some λb > 0. Using the branching property at level rn, for a sequence of ratio-
nals (rn) decreasing to b, we get that b must be a point of infinite multiplicity, and
that the approximation formula of the theorem holds for λb. We leave details to the
reader. ��

As a last application of Theorem 4.5, we give a remarkable invariance property
of the measure �(dT ) under uniform re-rooting. If T ∈ T and σ ∈ T , we write
T [σ ] for the “same” tree T with root σ .

Proposition 4.8. The law of the tree T [σ ] under the measure �(dT ) m(dσ )
m(T ) coin-

cides with �(dT ).

Proof. It is enough to verify that, for any nonnegative measurable functional F on
T,

�
( ∫

m(dσ ) F (T [σ ])
)

= �
(

m(T ) F (T )
)
. (32)

Recall the notation Mσ before Theorem 4.5. We can easily find an explicit “recon-
struction” functional � such that T = �(d(ρ(T ), σ ),Mσ ) for every T ∈ T and
σ ∈ T . For this functional �, we have also

T [σ ] = �(d(ρ(T ), σ ),M̃σ ),

provided we set

M̃σ =
∑
j∈J

δ(d(ρ(T ),σ )−d(ρ(T ),σj ),T (j)),
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with the notation preceding Theorem 4.5. Now Theorem 4.5 implies that for any
a > 0 and any nonnegative measurable functional G,

�
( ∫

�a(dσ )G(Mσ )
)

= �
( ∫

�a(dσ )G(M̃σ )
)
.

Apply this toG(Mσ ) = F(�(a,Mσ )) and then integrate with respect to da to get
(32). ��

5. Fractal properties of T

5.1. Covering numbers and box counting dimensions

Recall that for any subset A of T and any δ > 0, we have set

N (A, δ) = inf
{
n ≥ 1 : ∃σ1, . . . , σn ∈ T s.t. A ⊂

n⋃
i=1

B(σi, δ)
}
.

The following propositions give precise rates of growth forN (T , δ) andN (T (a), δ).

Proposition 5.1. For any a > 0, �-a.e. on {h(T ) > a},

lim
δ→0

N (T (a), δ)
v(δ)

= �a(T ).

Proposition 5.2. We have �-a.e. for all δ > 0 sufficiently small

v(2δ)

4δ
ζ ≤ N (T , δ) ≤ 12 v(δ/6)

δ
ζ.

We immediately deduce the following corollary.

Corollary 5.3. For any a > 0, �-a.e. on {h(T ) > a},

dim(T ) = 1 + dim(T (a)) = 1 + lim inf
δ→0

log v(δ)

log(1/δ)

and

dim(T ) = 1 + dim(T (a)) = 1 + lim sup
δ→0

log v(δ)

log(1/δ)
.

Proof of Proposition 5.1. Let a > 0 and r ∈ (0, a). Following Section 4, we denote
by T (i), i ∈ I the subtrees of T originating from level a − r , and we set

I(r) := {i ∈ I : h(T (i)) ≥ r}
so that |I(r)| = Z(a − r, r), with the notation introduced before Theorem 4.2. We
then observe that, for every r ′ > r ,

T (a) ⊂
⋃
i∈I(r)

(
T (i) ∩ T (a)

)
⊂

⋃
i∈I(r)

B̄(ρ(T (i)), r) ⊂
⋃
i∈I(r)

B(ρ(T (i)), r ′),
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so that

N (T (a), r ′) ≤ Z(a − r, r). (33)

On the other hand, if σ and σ ′ are two vertices in T (a) that belong respectively
to T (i) and T (i′) for distinct indices i and i′, we have d(σ, σ ′) ≥ 2r . Therefore,
σ and σ ′ must belong to distinct balls of any covering of T (a) by open balls with
radius r . From this observation, we get

N (T (a), r) ≥ Z(a − r, r). (34)

By combining (33) and (34), we see that Proposition 5.1 follows from the case
ϕ = 1 in Theorem 4.2(iii). ��
Proof of Proposition 5.2. We start by proving the following lemma.

Lemma 5.4. �-a.e. we can find a sequence (Dn; n ≥ 1) of finite subsets of T such
that

(i) Dn ⊂ Dn+1 , n ≥ 1.
(ii) For every n ≥ 1 and σ ∈ T , there exists σ ′ ∈ Dn such that d(σ, σ ′) < 3.2−n.

(iii) For every n ≥ 1 and every distinct σ, σ ′ ∈ Dn we have d(σ, σ ′) ≥ 2−n.

(iv) lim
n→∞ 2−n |Dn|

v(2−n)
= ζ .

Proof of the lemma. For any n ≥ 1 set Kn = [2nh(T )] − 1. Let n ≥ 1 and
k ∈ {0, 1, . . . , Kn}. Denote by

T n,k,(i) , 1 ≤ i ≤ Z(k2−n, 2−n)

the subtrees of T originating from level k2−n that hit level (k + 1)2−n. We can
now use induction on n to select for every n ≥ 1, k ∈ {0, 1, . . . , Kn} and i ∈
{1, . . . , Z(k2−n, 2−n)}, a vertex σnk,i ∈ T n,k,(i)(2−n) ⊂ T ((k + 1)2−n), in such a
way that the following holds:

(P) Let k ∈ {0, 1, . . . , Kn} and i ∈ {1, . . . , Z(k2−n, 2−n)}. If j ≤ Z((2k +
1)2−n−1, 2−n−1) is the unique index such that σnk,i ∈ T n+1,2k+1,(j), then

σn+1
2k+1,j = σnk,i .

We then set

Dn := {σnk,i : 0 ≤ k ≤ Kn, 1 ≤ i ≤ Z(k2−n, 2−n)} ∪ {ρ(T )}.
Property (i) is clear from (P). To prove (ii), let σ ∈ T . If d(ρ(T ), σ ) ≤ 2−n the
desired result is obvious since ρ(T ) ∈ Dn. So suppose that d(ρ(T ), σ ) > 2−n
and let k ∈ {0, 1, . . . , Kn} be such that (k + 1)2−n ≤ d(ρ(T ), σ ) < (k + 2)2−n.
Clearly the ancestor of σ at generation k2−n must be the root of T n,k,(i) for some
i. Then simply write

d(σ, σnk,i) ≤ d(ρ(T n,k,(i)), σ )+ d(ρ(T n,k,(i)), σ nk,i) < 2.2−n + 2−n = 3.2−n.

The proof of (iii) is even simpler and is left to the reader.
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It remains to prove (iv). For any x > 0, set

An(x) = 2−n
[x2n]∑
k=1

(Z(k2−n, 2−n)
v(2−n)

− �k2−n
(T )

)
.

Let k ≥ 1. We know from Theorem 4.2 that conditionally on the truncated tree
trk2−n(T ), Z(k2−n, 2−n) is Poisson with mean v(2−n)�k2−n

(T ). In particular,

�

(
Z(k2−n, 2−n)
v(2−n)

− �k2−n
(T )

∣∣∣ trk2−n(T )
)

= 0 (35)

and

�

(∣∣∣∣Z(k2−n, 2−n)
v(2−n)

− �k2−n
(T )

∣∣∣∣
2 ∣∣∣ trk2−n(T )

)
= �k2−n

(T )
v(2−n)

. (36)

(In both cases the conditional expectation should be understood with respect to
the probability measure �(· | h(T ) > k2−n).) It is also immediate to see that
Z(k2−n, 2−n) is a measurable function of tr(k+1)2−n(T ). It easily follows that for
any k′ > k,

�

((
Z(k2−n, 2−n)
v(2−n)

− �k2−n
(T )

)(
Z(k′2−n, 2−n)

v(2−n)
− �k

′2−n
(T )

))
= 0. (37)

The combination of (37) and (36) gives

�
(
An(x)

2
)

= 2−2n

v(2−n)

[x2n]∑
k=1

�
(
�k2−n

(T )
)

≤ x2−n

v(2−n)
,

since �(�a(T )) = N(�aζ ) = e−αa ≤ 1, for every a > 0 (cf the end of Section 3).

Clearly the preceding estimate implies that
∑
n≥0�(An(x)

2) < ∞ and thus, for
any x > 0,

�− a.e. lim
n→∞An(x) = 0. (38)

Since the mapping b → �b(T ) is càdlàg, we have �-a.e.

lim
n→∞ 2−n

[x2n]∑
k=1

�k2−n
(T ) =

∫ x

0
db �b(T ).

Together with (38), this implies that for any x > 0, �-a.e.

lim
n→∞

2−n

v(2−n)

[x2n]∑
k=1

Z(k2−n, 2−n) =
∫ x

0
db �b(T ).

Since the height h(T ) is finite, we can take x = ∞ in the preceding limit, which
gives (iv) since

∫∞
0 db �b(T ) = ζ . ��
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Proposition 5.2 is a simple consequence of Lemma 5.4. Let δ ∈ (0, 1/2) and
n ≥ 1 such that 2−n−1 ≤ δ < 2−n. From property (iii) in Lemma 5.4, we get that
if δ is sufficiently small,

N (T , δ) ≥ N (T , 2−n−1) ≥ |Dn| ≥ ζ

2

v(2−n)
2−n ≥ ζ

2

v(2δ)

2δ
.

Similarly, if 3.2−n ≤ δ < 3.2−n+1, we get from property (ii) in Lemma 5.4 that
for δ sufficiently small,

N (T , δ) ≤ |Dn| ≤ 2ζ
v(2−n)

2−n ≤ 2ζ
v(δ/6)

δ/6
.

This completes the proof of Proposition 5.2. ��

5.2. Hausdorff and packing dimensions of subsets of T

We first recall the well-known inequalities

dimh(B) ≤ dim(B) and dimh(B) ≤ dimp(B) ≤ dim(B), (39)

for any subset B of T (see e.g. Chapter 3 of [14]).
Let E be a compact subset of (0,∞), and set A = supE. We assume that

the Hausdorff dimension and upper box counting dimension of E are equal and let
d(E) ∈ [0, 1] be their common value. Recall also the notation T (E) = ⋃

b∈E T (b).
The lower and upper indices γ and η were defined in the introduction above. The
aim of this subsection is to prove the following theorem.

Theorem 5.5. Assume that γ > 1. Then, � a.e. on {h(T ) > A},
dim(T (E)) = dimh(T (E)) = d(E)+ 1

η − 1
,

and

dim(T (E)) = dimp(T (E)) = d(E)+ 1

γ − 1
.

Proof. We first get upper bounds for the box counting dimensions of T (E). Let
δ > 0. Analogously to the above, we use the notation N (E, δ) for the minimal
number of open intervals of length 2δ that are needed to cover E. We can find real
numbers ai , 1 ≤ i ≤ N (E, δ) such that

E ⊂
N (E,δ)⋃
i=1

(ai − δ, ai + δ).

Observe that

T (E ∩ [0, 3δ)) ⊂ T ([0, 3δ)) ⊂ B(ρ(T ), 3δ). (40)

On the other hand, E ∩ [3δ,∞) is contained in the union of those intervals (ai −
δ, ai + δ) for which ai > 2δ.
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Now let b > 2δ. Denote by T(j), 1 ≤ j ≤ Z(b − 2δ, δ) the subtrees of T
originating from level b− 2δ that reach level b− δ and for every j , let σ(j) be the
root of T(j). Clearly any vertex in T ((b − δ, b + δ)) belongs to T(j) for some index
j and thus lies within distance 3δ from σ(j). Consequently,

N (T ((b − δ, b + δ)), 3δ) ≤ Z(b − 2δ, δ).

Now recall that �(Z(b − 2δ, δ)) = v(δ)�(�b−2δ(T )) ≤ v(δ). Hence,

�(N (T ((b − δ, b + δ)), 3δ)) ≤ v(δ).

We apply this to b = ai for all indices i such that ai > 2δ. By summing over i, we
get

�(N (T (E ∩ [3δ,∞)), 3δ)) ≤ v(δ)N (E, δ). (41)

At this point, we need the following lemma.

Lemma 5.6. Assume that γ > 1. Then,

(i) lim sup
δ→0

log v(δ)

log(1/δ)
≤ 1

γ − 1
;

(ii) lim inf
δ→0

log v(δ)

log(1/δ)
≤ 1

η − 1
.

Proof of the lemma. Assertion (i) is easy from the definition of v and γ . Let us
prove (ii). If η = γ , (ii) is a trivial consequence of (i). So, we assume that γ < η.
Let η′ ∈ (γ, η) and γ ′ ∈ (1, γ ). There exists a sequence un ↑ ∞ such that

ψ(un) ≥ u
η′
n , n ≥ 1. Moreover, for all sufficiently large u, we have ψ(u) ≥ uγ

′
.

Since ψ is convex, we get for n large enough and for any u ≥ un,

ψ(u) ≥ max

(
u

un
uη

′
n , u

γ ′
)
.

Set F(a) = ∫∞
a
du/ψ(u). The previous inequality gives, for n large,

F(un) ≤
∫ ∞

un

(
max(uuη

′−1
n , uγ

′
)
)−1

du

=
∫ u

η′−1
γ ′−1
n

un

du

uu
η′−1
n

+
∫ ∞

u

η′−1
γ ′−1
n

du

uγ
′

≤ C
(
u1−η′
n log un + u1−η′

n

)

for some positive constant C. Hence,

(
lim inf
δ→0

log v(δ)

log 1/δ

)−1

= lim sup
a→∞

log 1/F (a)

log a
≥ η′ − 1

and (ii) follows by letting η′ go to η. ��
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We deduce from the previous lemma that for any ε > 0,

lim inf
δ→0

δ
ε+ 1

η−1 v(δ) = lim sup
δ→0

δ
ε+ 1

γ−1 v(δ) = 0. (42)

Since d(E) = dim(E), we also know that δd(E)+εN (E, δ) tends to 0 as δ → 0.
Thus, if (δn) is any sequence of positive reals decreasing to 0, it follows from (41),
(42) and Fatou’s lemma that

�

(
lim inf
n→∞ δ

2ε+d(E)+ 1
η−1

n N (T (E ∩ [3δn,∞)), 3δn)

)
= 0.

Hence,

lim inf
n→∞ δ

2ε+d(E)+ 1
η−1

n N (T (E ∩ [3δn,∞)), 3δn) = 0 , � a.e.

From (40) we have N (T (E), 3δn) ≤ 1 + N (T (E ∩ [3δn,∞)), 3δn) and so we
get dim(T (E)) ≤ d(E)+ 1/(η− 1)+ 2ε. Since ε was arbitrary we conclude that
dim(T (E)) ≤ d(E)+ 1/(η − 1), � a.e.

To obtain an analogous upper bound for dim(T (E)), we set δn = 2−n and
deduce from (41) and (42) that

�
(∑
n≥1

δ
3ε+d(E)+ 1

γ−1
n N (T (E ∩ [3δn,∞)), 3δn)

)
< ∞.

Hence,

lim
n→∞ δ

3ε+d(E)+ 1
γ−1

n N (T (E ∩ [3δn,∞)), 3δn) = 0 , � a.e.

and the bound N (T (E), 3δn) ≤ 1+N (T (E ∩ [3δn,∞)), 3δn) allows us to replace
T (E ∩ [3δn,∞)) with T (E). Then, a simple monotonicity argument implies that

lim
δ→0

δ
3ε+d(E)+ 1

γ−1 N (T (E), δ) = 0 , � a.e.

It follows that dim(T (E)) ≤ d(E)+ 1/(γ − 1), � a.e.
The proof of the theorem will be complete if we verify that for any ε > 0 we

have � a.e. on {h(T ) > A},
dimh(T (E)) ≥ d(E)+ 1

η − 1 + ε
− 2ε

and
dimp(T (E)) ≥ d(E)+ 1

γ − 1 + ε
− 2ε (43)

We may assume that ε is small enough so that 1/(γ −1+ε) ≥ 1/(η−1+ε) > 2ε.
Let us prove (43). Since dimh(E) > d(E) − ε, Frostman’s lemma (see Corollary
4.12 in [14]) gives the existence of a non-trivial finite measure ν supported on E,
such that

∀x ∈ E, ∀δ ∈ [0, 1] : ν([x − δ, x + δ]) ≤ Cδd(E)−ε (44)
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where C is a positive constant independent of x and δ. Define the measure κ on T
by

κ(dσ) =
∫
ν(da)�a(dσ ).

Then κ is supported on T (E). Moreover κ is finite and non-trivial � a.e. on
{supH > A}. We will prove that �-a.e. on {h(T ) > A}, we have

lim sup
δ→0

δ
−d(E)+2ε− 1

η−1+ε κ (B(σ, δ)) < ∞ , κ(dσ ) a.e. (45)

and

lim inf
δ→0

δ
−d(E)+2ε− 1

γ−1+ε κ (B(σ, δ)) < ∞ , κ(dσ ) a.e. (46)

Then the lower bounds (43) will follow from classical density results for packing
and Hausdorff dimensions: See e.g. Theorems 6.9 and 6.11 in Mattila [24] ([24]
deals with subsets of Euclidean space, but the arguments are easily adapted to our
setting).

The proof of (45) and (46) will depend on a lower bound for the quantities

Eδ,λ,b := �

(∫
�b(dσ )e−λκ(B(σ,δ))

)
, λ, b > 0, δ ∈ (0, 1].

We will apply Theorem 4.5 in order to get this bound. To this end, let us first fix
b > 0 and σ ∈ T (b), and use the notation introduced before Theorem 4.5: T (j),
j ∈ J are the subtrees originating from the ancestral line [[ρ(T ), σ ]], and for every
j ∈ J , σj ∈ [[ρ(T ), σ ]] is the root of T (j). Also set dj = d(ρ(T ), σj ) to simplify
notation.

If τ ∈ T (j) for some j ∈ J , we have d(σ, τ ) = b − dj + d(σj , τ ). It follows
that

B(σ, δ)\[[ρ(T ), σ ]] =
⋃

j∈J ,dj>b−δ
T (j)((0, δ + dj − b)).

Notice that the union in the right side is disjoint. Also observe that, for every fixed
a > 0,� a.e. the measure �a has no atoms. Indeed, if τ ∈ T (a)were an atom of �a ,
the branching property of the Lévy tree would imply that τ is not a leaf, contradict-
ing the fact that �a almost every vertex is a leaf (Theorem 4.6(i)). From this we get
that� a.e., ν(da) a.e. �a has no atoms and since the set [[ρ(T ), σ ]] has at most one
point of intersection with each level set T (a) it follows that κ([[ρ(T ), σ ]]) = 0.
Thus,

κ(B(σ, δ)) = κ(B(σ, δ)\[[ρ(T ), σ ]]) =
∑

j∈J ,dj>b−δ
κ(T (j)((0, δ + dj − b))).

Now, ifa ≤ b−δ ora ≥ b+δ, the support property of �a implies that �a(T (j)((0, δ+
dj − b))) = 0 for every j ∈ J such that dj > b − δ. On the other hand, if
b − δ < a < b + δ, the approximations of local time easily give

�a(T (j)((0, δ + dj − b))) = 1{0<a−dj<δ+dj−b} 〈�(j),a−dj , 1〉,
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where �(j),a , a > 0 obviously denote the local time measures associated with the
tree T (j). We conclude that

κ(B(σ, δ)) =
∑
j∈J

1{dj>b−δ}
∫
ν(da) 1{dj<a<2dj+δ−b} 〈�(j),a−dj , 1〉.

In this form, we can apply the formula of Theorem 4.5 to get

Eδ,λ,b = exp
(

−
∫ b

0
ψ ′(�δ,λ,b(t)) dt

)
,

where

�δ,λ,b(t) = �
(

1 − exp −λ
∫
ν(da) 1{t<a<2t+δ−b} 〈�a−t , 1〉

)
.

Now set ψ̃(λ) = ψ(λ)
λ

and note that for every λ > 0,

ψ ′(λ) ≤ ψ(2λ)− ψ(λ)

λ
≤ 2ψ̃(2λ). (47)

If t ∈ [0, b − δ] we have �δ,λ,b(t) = 0. On the other hand, if t ∈ (b − δ, b] then
(t, δ + 2t − b) ⊂ [b − δ, b + δ] and

�δ,λ,b(t) ≤ λ

∫
[(b−δ)∨t,b+δ]

ν(da)�(�a−t (T )) ≤ λ ν([b − δ, b + δ]).

Using this bound together with (47) we have

∫ b

0
ψ ′(�δ,λ,b(t)) dt ≤ 2δ ψ̃(2λν([b − δ, b + δ])).

and it follows that

Eδ,λ,b ≥ 1 − 2δ ψ̃(2λν([b − δ, b + δ])). (48)

This is the lower bound we were aiming at.
If r > 0, (48) gives, for every δ ∈ (0, 1],

�

(∫
κ(dσ)1{κ(B(σ,δ))>r}

)
≤ e

e − 1
�

(∫
κ(dσ)(1 − e−

1
r
κ(B(σ,δ)))

)

= e

e − 1

∫
ν(db)(e−αb − Eδ,1/r,b)

≤ 2e

e − 1
δ

∫
ν(db)ψ̃ (2ν([b − δ, b + δ])/r)

and by (44),

�

(∫
κ(dσ)1{κ(B(σ,δ))>r}

)
≤ C′δψ̃(2Cδd(E)−ε/r) (49)
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where C′ is a positive constant depending on ν. By the definition of η, for all suffi-
ciently large λ > 0, ψ̃(λ) ≤ λη−1+ε. Then, take r=r(δ)=2Cδd(E)−2ε+(1/(η−1+ε))
in (49) to get, for all sufficiently small δ > 0

�

(∫
κ(dσ)1{κ(B(σ,δ))>r(δ)}

)
≤ C′′δε(η−1+ε).

Set δn = 2−n. Since η > 1 we deduce from the previous inequality that

�
( ∫

κ(dσ)
∑
n≥1

1{κ(B(σ,δn))>r(δn)}
)
< ∞

and this yields the estimate (45) for the upper density of κ .
It remains to prove (46). By the definition of γ , there exists an increasing

sequence un ↑ ∞ such that ψ̃(un) ≤ u
γ−1+ε
n . Define δn by un = δ

ε−(1/(γ−1+ε))
n

and take r(δn) = 2Cδd(E)−2ε+1/(γ−1+ε)
n in (49) to get

�

(∫
κ(dσ)1{κ(B(σ,δn))>r(δn)}

)
≤ C′′′δε(γ−1+ε)

n .

Applying Fatou’s lemma, we get that �-a.e. for κ-a.a. σ ,

lim inf
n→∞ 1{κ(B(σ,δn))>r(δn)} = 0

which implies the estimate (46) and completes the proof of the theorem. ��

5.3. Further results and open problems

In this section, we briefly discuss some extensions of the preceding results. For
simplicity we restrict our attention to Hausdorff dimensions and measures. We start
by weakening the condition γ > 1 in Theorem 5.5. As in Theorem 5.5 we let E
be a (nonempty) compact subset of (0,∞) such that dimh(E) = dim(E) = d(E),
and we put A = supE. We use the standard convention 1

0 = ∞.

Proposition 5.7. Suppose that for every integer k ≥ 1,∫ ∞

a

du

ψ(u)
= o((log a)−k) as a → ∞. (50)

Then, � a.e. on {h(T ) > A},

dimh(T (E)) = d(E)+ 1

η − 1
.

Indeed, the proof of the estimate (45) does not depend on the assumption γ > 1,
and this immediately gives the lower bound dimh(T (E)) ≥ d(E) + 1

η−1 . When
η = 1, there is nothing more to prove. When η > 1, a slight modification of the
proof of Lemma 5.6 shows that part (ii) of this lemma still holds under the condition
(50). The first part of the proof of Theorem 5.5 then goes through without change.

Let us consider now the general case. From the preceding remarks, one easily
gets the following statement.
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Proposition 5.8. We have � a.e. on {h(T ) > A},

d(E)+ 1

η − 1
≤ dimh(T (E)) ≤ d(E)+ lim inf

δ→0

log v(δ)

log(1/δ)
.

In particular, if η = γ = 1, we have dimh(T (E)) = ∞, � a.e. on {h(T ) > A}.
This leaves open the following question. Suppose that 1 = γ < η (and that

(50) does not hold). Can one compute dimh(T (E)), or simply dimh(T ) ?
Finally, let us discuss the stable case where more precise results are available.

For any suitable function g, we write Hg for the associated Hausdorff measure.
The following theorem is proved in [10].

Theorem 5.9. (i) Suppose that ψ(u) = u2. Set

g1(r) = r log log(1/r) , g2(r) = r2 log log(1/r).

There exist positive constants C1 and C2 such that � a.e.

C1 ζ ≤ Hg2(T ) ≤ C2 ζ

and for every a > 0, � a.e. on {h(T ) > a},
C1 〈�a, 1〉 ≤ Hg1(T (a)) ≤ C2 〈�a, 1〉.

(ii) Suppose that ψ(u) = uγ for some γ ∈ (1, 2). For every s > 0 set

hs(r) = r
γ
γ−1 (log(1/r))

1
γ−1 (log log(1/r))s .

Then, there exists a real number ξ such that, � a.e.,

Hhs (T ) = ∞ if s > 1
γ−1 ,

Hhs (T ) = 0 if s < ξ.

The construction of superprocesses that will be developed in the next section
shows that Theorem 5.9(i) is related to the very precise estimates which have been
obtained for the Hausdorff measure of super-Brownian motion (see [27], [5], [22]
and the references therein).

Theorem 5.9(ii) leaves open the question of determining the correct Hausdorff
measure function for T in the stable case.

6. Some applications to super-Brownian motion

Denote by Mf (R
k) the set of all finite measures on R

k and by Cb+(Rk) the space
of all nonnegative bounded continuous functions on R

k . We also write (Pt )t≥0 for
the semigroup of standard Brownian motion in R

k . Note that for every t ≥ 0, Pt
maps Cb+(Rk) into itself.

The super-Brownian motion with branching mechanism ψ (in short the ψ-
super-Brownian motion) is the (time-homogeneous) Markov process (Zt , t ≥ 0)
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with values in Mf (R
k) whose transition kernels can be characterized as follows.

For every µ ∈ Mf (R
k) and ϕ ∈ Cb+(Rk),

E[exp(−〈Zt , ϕ〉) | Z0 = µ] = exp(−〈µ, ut 〉),
where the function (ut (x); t ≥ 0, x ∈ R

k) is bounded and continuous and is the
unique nonnegative solution of the integral equation

ut (x)+
∫ t

0
Pt−s(ψ(us))(x) dx = Ptϕ(x).

We will now explain how the genealogical structure given by the tree T under
� can be combined with a spatial motion to give a construction of the ψ-super-
Brownian motion. To present this construction in a way suitable for applications,
it is convenient to introduce the notion of a spatial tree.

Informally, a (k-dimensional) spatial tree is a pair (T ,W)where T ∈ T andW
is a continuous mapping from T into R

k . Since we defined T as a space of equiva-
lence classes of trees, we should be a little more precise at this point. If T and T ′ are
two (rooted compact) R-trees and W and W ′ are R

k-valued continuous mappings
defined respectively on T and T ′, we say that the pairs (T ,W) and (T ,W ′) are
equivalent if there exists a root-preserving isometry � from T onto T ′ such that
W ′
�(σ) = Wσ for every σ ∈ T . A spatial tree is then defined as an equivalent class

for the preceding equivalence relation, and we denote by Tsp the space of all spatial
trees. Needless to say we will often abuse notation and identify a spatial tree with
an element of the corresponding equivalent class.

We denote by Tsp the set of all spatial trees. Recall the notation of subsection
2.2. We define a distance on Tsp by setting

dsp((T ,W), (T ′,W ′)) = 1

2
inf

R∈C(T ,T ′),(ρ,ρ′)∈R

(
dis(R)+ sup

(σ,σ ′)∈R
|Wσ −W ′

σ ′ |
)
,

where ρ and ρ′ obviously denote the respective roots of T and T ′. It is easy to
verify that (Tsp, dsp) is a Polish space.

Let us fix x ∈ R
k . Also let T ∈ T be a compact rooted R-tree with root ∅ and

metric d . We may consider the R
k-valued Gaussian process (Yσ , σ ∈ T ) whose

distribution is characterized by

E[Yσ ] = x ,

cov(Yσ , Yσ ′) = d(∅, σ ∧ σ ′) Id ,

where Id denotes the k-dimensional identity matrix. Note that

cov(Yσ − Yσ ′ , Yσ − Yσ ′) = d(σ, σ ′) Id.

From Theorem 11.17 in [18], we know that under the condition
∫ 1

0
(log N (T , ε2))1/2 dε < ∞, (51)
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the process (Yσ , σ ∈ T ) has a continuous modification. We keep the notation Y
for this modification. Assuming that (51) holds, we denote by Qx

T the law on Tsp

of (T , (Yσ , σ ∈ T )).
As a consequence of Proposition 5.2, condition (51) holds �(dT ) a.e. if we

assume that
∫ 1

0
(log v(ε2))1/2 dε < ∞. (52)

From now on, we assume that (52) holds (this is automatic if γ > 1, by Lemma
5.6 (i)). The definition of Qx

T then makes sense �(dT ) a.e., and we may set

Nx =
∫
�(dT )Qx

T ,

which defines a σ -finite measure on Tsp. We leave it to the reader to verify the
needed measurability properties of the mapping T → Qx

T .

Remark. As a consequence of Theorem 4.5.2 in [9], a necessary and sufficient con-
dition for the existence of a continuous modification of the process (Yσ , σ ∈ T ),
for � a.e. T , should be

∫ ∞

1

( ∫ t

0
ψ(u) du

)−1/2
dt < ∞.

Note that this condition is stronger than (7). The proof of Theorem 4.5.2 in [9]
strongly depends on connections between super-Brownian motion and partial differ-
ential equations. Condition (52) will be sufficient for our purposes in the present
work.

We can now turn to connections with superprocesses. Under the measure Nx ,
we may for every a > 0 define a measure Za = Za(T ,W) on R

k by setting

〈Za, ϕ〉 =
∫ ζ

0
�a(dσ ) ϕ(Wσ ).

The next proposition reformulates a special case of Theorem 4.2.1 in [9].

Proposition 6.1. Let µ ∈ Mf (R
k) and let
∑
i∈I

δ(T i ,W i)

be a Poisson point measure on Tsp with intensity
∫
µ(dx)Nx . Then the process

(Za, a ≥ 0) defined by

Z0 = µ ,

Za =
∑
i∈I

Za(T i ,W i) , a > 0 ,

is a ψ-super-Brownian motion started at µ.
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In the formula forZa , only finitely many terms can be nonzero, simply because
finitely many trees in the collection (T i , i ∈ I) are such that h(T i ) > a. From
Theorem 4.3, we see that the version of Z defined in the proposition is càdlàg on
(0,∞) for the weak topology on finite measures on R

k . By the known regularity
properties of superprocesses (see e.g. the more general Theorem 2.1.3 in [5]), it
must indeed be càdlàg on [0,∞). The fact that we obtain the “good” version of the
superprocess is a nice feature of our construction in contrast with the Lévy snake
approach of [21] or [9], where regularity properties of the resulting measure-valued
process were not immediately apparent.

In view of Proposition 6.1, the measures Nx (or rather the distribution under
Nx of the measure-valued process (Za, a ≥ 0)) are called the excursion measures
of the ψ-super-Brownian motion. In the quadratic branching case, these measures
play an important role in the study of connections between superprocesses and par-
tial differential equations: See in particular [19]. In the case of a general branching
branching mechanism, excursion measures are constructed via the Lévy snake in
Chapter 4 of [9], and a different approach has been proposed recently by Dynkin
and Kuznetsov [11].

As a simple application of the representation of Proposition 6.1, we use Theo-
rem 4.4 to extend a result due to Perkins [28] in the case of the quadratic branching
mechanism.

Proposition 6.2. Let Z = (Za, a ≥ 0) be a ψ-super-Brownian motion in R
k , and

for every a ≥ 0 let Sa denote the topological support of the random measure Za .
Then the mapping a −→ Sa is càdlàg from (0,∞) into the set of all compact
subsets of R

k equipped with the Hausdorff metric. Moreover, if a is a discontinuity
time of this mapping there is a point za ∈ R

k such that Sa− = Sa ∪ {za}.
Remark. If we assume that the support of Z0 is compact, it is also easy to prove
that the mapping a −→ Sa is right-continuous at a = 0 for the Hausdorff metric.

Proof. We may assume thatZ is given by the formula of Proposition 6.1. For every
i ∈ I, let Ei stand for the set of extinction times of T i . Then each set Ei is count-
able, and by arguments similar to the proof of Theorem 4.4 it is easy to prove that
the sets Ei are pairwise disjoint. If a ∈ Ei , write σ ia for the extinction point of T i

corresponding to the extinction time a. It now follows from Theorem 4.4 that a.s.
for every a > 0:

• Sa =
⋃
i∈I

{Wi
σ : σ ∈ T i (a)} if a /∈

⋃
i∈I

Ei ;

• Sa={Wj
σ : σ ∈ T j (a)\{σ ja }} ∪

⋃
i∈I\{j}

{Wi
σ :σ ∈ T i (a)} if a ∈ Ej for some

j ∈ I.

As a straightforward consequence of these formulas, one can now verify that the
mapping a −→ Sa is càdlàg on (0,∞), with

Sa− =
⋃
i∈I

{Wi
σ : σ ∈ T i (a)} for every a > 0.
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Furthermore the set of discontinuity times is contained in the union of the sets Ei
over i ∈ I, and if a ∈ Ej we have

Sa− = Sa ∪ {Wj

σ
j
a

}.

We leave details to the reader. ��
We can also apply Theorem 4.7 in connection with our construction of super-

processes. We recover the fact that for every discontinuity time s of Z there is a
positive real number λs and a pointωs ∈ R

k such thatZs = Zs−+λs δωs . Precisely,
there is an index i ∈ I and an infinite branching point σs of T i at height s, such that
ωs = Wi(σs) and λs is the local time of the infinite branching point σs . We omit
details since the preceding fact is known to hold in great generality: See Théorème
7 in [12].

We now proceed to investigate the Hausdorff dimension of the support of Za .
From Proposition 6.1, it is enough to consider the random measures Za under Nx .
For every a ≥ 0, we set

Ra = supp(Za)
and, if E is a subset of R+,

RE =
⋃
a∈E

supp(Za).

Theorem 6.3. Assume that γ > 1. Let E be a compact subset of (0,∞) whose
Hausdorff dimension and upper box dimension are equal to d(E) ∈ [0, 1], and set
A = supE. Then, we have

dimhRE = dimRE =
(

2d(E)+ 2

η − 1

)
∧ k ,

N0 a.e. on {ZA �= 0}.
We first state a simple continuity lemma.

Lemma 6.4. Let T ∈ T be such that

lim sup
ε→0

log N (T , ε)
log 1/ε

< ∞.

Then Qx
T a.s., the mapping σ → Wσ is Hölder continuous with exponent 1

2 − δ

for any δ ∈ (0, 1
2 ).

Proof. Standard chaining arguments show that, for every integer m ≥ 1 and every
u > 0,

Qx
T

(
sup

d(σ,σ ′)<u
|Wσ −Wσ ′ |

)
≤ k

(
u1/2

√
log(1 + N (T , 2−2m)2)

+16
∞∑

p=m+1

2−p
√

log(1 + N (T , 2−2p))
)
.
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See e.g. formula (11.6) in [18] and note that a correct choice of the distance on T in
order to apply this formula is d ′(σ, σ ′) = 2

√
d(σ, σ ′) (see the comments on page

320 of [18]).
From the assumption of the lemma we now get the existence of a constantC(T )

such that, for every m ≥ 1 and u ∈ (0, 1),

Qx
T

(
sup

d(σ,σ ′)<u
|Wσ −Wσ ′ |

)
≤ k C(T ) (u1/2m1/2 +m2−m).

Choosing m so that u−2r < m ≤ 2u−2r we get, for every r ∈ (0, 1/2),

Qx
T

(
sup

d(σ,σ ′)<u
|Wσ −Wσ ′ |

)
≤ C′(r, k, T ) u

1
2 −r .

An application of the Borel-Cantelli lemma now completes the proof. ��
Proof of Theorem 6.3. From the support properties of the measures �a , we have Nx

a.e. for every a > 0,
supp Za ⊂ {Wσ : σ ∈ T (a)}.

Therefore,
RE ⊂ {Wσ : σ ∈ T (E)}

(note that {Wσ : σ ∈ T (E)} is closed as the image of the compact set T (E) under
the continuous mapping σ → Wσ ). The upper bound

dimRE ≤ 2d(E)+ 2

η − 1

is then an immediate consequence of Theorem 5.5 and Lemma 6.4. Note that the
assumption of Lemma 6.4 holds �(dT ) a.e. by Proposition 5.2 and Lemma 5.6.

Since the bound dimhRE ≤ dimRE is always true, the proof of Theorem 6.3
will be complete if we can verify that

dimhRE ≥
(

2d(E)+ 2

η − 1

)
∧ k, (53)

Nx a.e. on {ZA �= 0}. To this end, let ε > 0 and

b(ε) = d(E)− 2ε + 1

η − 1 + ε
.

As in the proof of Theorem 5.5 we can consider a finite measure ν supported on E
such that, if κ denotes the measure

κ(dσ) =
∫
ν(da) �a(dσ ),

we have
lim sup
δ→0

κ (B(σ, δ)) δ−b(ε) < ∞ , κ(dσ ) a.e.
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Furthermore κ is nonzero � a.e. on {h(T ) > A} = {ZA �= 0}. Notice that the
measureM defined as the image of κ under the mapping σ → Wσ is supported on
RE , simply because

M =
∫
ν(da)Za

and ν is supported on E.
Now, for any positive integer q, set

Fq = {σ ∈ T (E) : ∀δ ∈ (0, 1/q] , κ(B(σ, δ)) ≤ qδb(ε)}
On the event {h(T ) > A}, we can find q0 such that κ(Fq0) > 0. We denote by κ̃
the restriction of κ to Fq0 . It is then immediate to verify that, for any b < b(ε),

∫
κ̃(dσ )

∫
κ̃(dσ ′)d(σ, σ ′)−b < ∞. (54)

Finally, if M̃ denotes the image of κ̃ underσ → Wσ , we have for any b < k/2∧b(ε)

Qx
T

(∫
M̃(dz)

∫
M̃(dy)|z− y|−2b

)
= Qx

T

(∫
κ̃(dσ )

∫
κ̃(dσ ′)|Wσ −Wσ ′ |−2b

)

=
∫
κ̃(dσ )

∫
κ̃(dσ ′)Qx

T
(|Wσ −Wσ ′ |−2b

)

= C

∫
κ̃(dσ )

∫
κ̃(dσ ′)d(σ, σ ′)−b,

where C is a finite constant. The latter integral is finite by (54). Therefore,�(dT )
a.e. on {h(T ) > A} we have Qx

T a.s.
∫
M̃(dz)

∫
M̃(dy)|z− y|−2b < ∞.

Furthermore M̃ is supported onRE because M̃ ≤ M . Frostman’s lemma now yields
the desired result (53). ��
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