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Abstract. In the classical Wiener-Kolmogorov linear prediction problem, one fixes a linear
functional in the “future” of a stochastic process, and seeks its best predictor (in the L2-
sense). In this paper we treat a variant of the prediction problem, whereby we seek the “most
predictable” non-trivial functional of the future and its best predictor; we refer to such a
pair (if it exists) as an optimal transformation for prediction. In contrast to the Wiener-Kol-
mogorov problem, an optimal transformation for prediction may not exist, and if it exists, it
may not be unique. We prove the existence of optimal transformations for finite “past” and
“future” intervals, under appropriate conditions on the spectral density of a weakly stationary,
continuous-time stochastic process. For rational spectral densities, we provide an explicit
construction of the transformations via differential equations with boundary conditions and
an associated eigenvalue problem of a finite matrix.

1. Introduction

Let {Xt : t ∈ R} be a real-valued stationary process on a probability space
(�,F, P ). L2(�,F, P ) will denote the Hilbert space of square-integrable,
F-measurable functions of {Xt }, and ‖ · ‖P its norm. For I ⊆ R, FI will
denote the smallest σ -algebra generated by {Xt : t ∈ I }, and L2(�,FI , P ) the
space of square-integrable, FI -measurable functions. Throughout this paper, the
intervals I0 = [�,�+τ ],� > 0, 0 < τ ≤ +∞, and I1 = [−T , 0], 0 < T ≤ +∞,
will play the role of “future” and “past”, respectively.

Our work [8, 9] on a speech recognition problem lead to a variant (see (1.4)
below) of the problem of whether the infimum

inf{‖ξ0 − ξ1‖2
P : ξi ∈ L2(�,FIi , P ), Eξi = 0, i = 0, 1, ‖ξ0‖P = 1}

(1.1)

is attained. The linear version of this problem corresponds to restricting the ξi’s
to be linear functionals of {Xt }. More precisely, let {Xt : t ∈ R} be a weakly
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stationary, real-valued, mean zero, finite variance process, and let HI denote the
‖ · ‖P -closure of the span of {Xt : t ∈ I }. H will stand for HR. Then the linear
analogue of (1.1) is

σ 2 = inf{‖ξ0 − ξ1‖2
P : ξi ∈ HIi , i = 0, 1, ‖ξ0‖P = 1}. (1.2)

If {Xt } is Gaussian, the two problems are equivalent [3, p.66], (see [10] for alter-
native proof).

Problems (1.1) and (1.2) may be viewed as a variant of the classical Wiener-
Kolmogorov (WK) prediction problem. In the WK problem, one fixes a functional
ξ0 in the future, and seeks its best predictor. In problems (1.1) and (1.2) we seek
the most predictable, non-trivial functional of the future and its best predictor. In
contrast to the situation in the WK problem, problems (1.1) and (1.2) may not have
a solution or may have multiple solutions. In analogy with the optimal transfor-
mations for regression [1], we refer to solutions of (1.1) and (1.2), if they exist, as
(nonlinear/linear) optimal transformations for prediction.

The existence of optimal transformations for prediction is closely linked to
properties of the projection operators onto the subspaces L2(�,FIi , P ) for prob-
lem (1.1), and onto the subspaces HIi , i = 0, 1, for problem (1.2). More precisely,
for problem (1.2), let Qi be the orthogonal projection from H onto HIi (i = 0, 1),
and Q01 = Q1|HI0

, Q10 = Q0|HI1
, B = Q10Q01. It can be shown [10] that prob-

lem (1.2) has a solution if and only if ‖B‖ (operator norm) is an eigenvalue (not
necessarily isolated) of B; moreover, the dimension of the manifold of solutions is
equal to the multiplicity of ‖B‖. Similar results hold for (1.1).

Hence the problem of existence of optimal transformations is reduced to the
question: Under what conditions is ‖B‖ an eigenvalue of B? If B is compact then
necessarily ‖B‖ is an eigenvalue. A natural question then is: Under what condi-
tions is B compact? We have not been able to find a satisfactory solution to these
questions for the nonlinear problem (1.1). For problem (1.2) with T = τ = +∞
and {Xt } linearly regular [12, p.112], the operator B is related to Hankel operators
[16, 15], and one can provide [15, 10] necessary and sufficient conditions (in terms
of the spectral density f (ω) of {Xt }) for B to be compact.

But when 0 < T, τ < +∞, the case treated in this paper, problem (1.2) is much
subtler as we will explain below and in §2. Our main result (for 0 < T, τ < +∞)
is stated in Theorem 2.1 (§2). In brief, if {Xt } has a spectral density f (ω) satisfying

lim
|ω|→+∞

(1 + ω2)nf (ω) = +∞, (1.3)

with some integer n ≥ 1, log f (ω) is locally integrable, and the covariance function
of the process satisfies certain mild differentiability and local integrability condi-
tions, then B is compact. In the particular case when f (ω) is rational, we provide
(§3) an explicit construction of the solutions. The rational case with T = τ = +∞
was treated in [20]; the method of [20] could in principle be extended in the case
T , τ < +∞, but not in an effective way. Our construction is algorithmically very
efficient – it provides an explicit representation of the solutions via a differential
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equation, and ultimately via a finite matrix eigenvalue problem; the construc-
tion extends a procedure [18, pp.135-142] for studying the classical “forecasting”
problem.

Our study uses the well-known equivalence [3, p. 73] between the spaces HIi ,
and certain function spaces LIi (f ). When T = τ = +∞, the spaces LIi (f ) can
be represented [3, p. 96] in terms of the Hardy spaces on the half-plane, and the
operator B can be written in terms of Hankel operators. On the other hand, for
T , τ < +∞, the LIi (f )’s are [3, p. 108] spaces of entire functions of exponen-
tial type, and can be represented in terms of Krein spaces [3, pp. 220–322] whose
structure is more complicated than that of Hardy spaces; this makes the relevant
operator B more complex and its analysis more delicate. Under the above condi-
tions on f (ω), we will show that the spaces LIi (f ) are subspaces of certain Sobolev
spaces – a property heavily exploited in our analysis. We do not know of any other
work related to the existence of optimal transformations for problem (1.2) with
T , τ < +∞. The tools of Hardy spaces and Hankel operators are not the appro-
priate tools for the case T , τ < +∞, although a weak result can be obtained (see
Remark at the end of §2) using these tools. An interesting open problem both for
T = τ = +∞ and 0 < T, τ < +∞ is to provide conditions under which ‖B‖ is
an eigenvalue of B but B is not compact. In [7], we study the statistical estimation
of optimal transformations (if they exist), on the basis of a finite discrete sample,
and establish the consistency of the estimators as the sampling rate goes to zero and
the sample size goes to infinity. The existence and statistical estimation of optimal
transformations, have been useful [8, 9] in the modeling and optimal sampling of
the acoustic signal in speech recognition.

For discrete-time processes, the analogue of problem (1.2) with T = τ = +∞
was first posed by Helson and Szegö [11] in connection with a Functional Analysis
problem in trigonometric series; their work stimulated a great deal of mathematical
research in the theory of bounded analytic, BMO (Bounded Mean Oscillation) func-
tions, and other problems (see [14, pp. 249-287], [4, pp. 144, 254], and references
therein). The operator B was first introduced in [6], and has been used (see [12, pp.
191–223]) extensively for studying the regularity of stationary random processes.
All the above studies are fundamentally different from our study here.

We end this introduction with an open problem which is intermediate between
problems (1.1) and (1.2), and which was motivated by our studies [8, 9] of a speech
problem: The problem is specified by replacing the spacesL2(�,FIi , P ), i = 0, 1,
in problem (1.1), by spaces whose elements ξi are formally represented by

ξ =
∫
I

u(Xt , t) dt, I = I0, I1, (1.4)

with u(x, t) in a class of (non-linear) functions so thatE{ξ2
i } < +∞, andEξi = 0.

The linear problem (1.2) corresponds to u(x, t) = α(t) x; in this case the space
of “functions” α(t) for which E{ξ2} < +∞ can easily be characterized using the
spectral representation [18, 3] of {Xt }. We have not been able to find a convenient
characterization of the space of functions u(x, t) for which E{ξ2} < +∞. The
existence of optimal transformations in this case is an interesting open problem.
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The organization of this paper is as follows. Section 2 contains the existence of
solutions for (1.2), and Section 3 the construction of the solutions when the spectral
density is rational.

2. Existence of Optimal Linear Transformations

Let Ii , H, HIi (i = 0, 1), B, and σ 2 be as in §1. The main result of this section is:

Theorem 2.1. Let {Xt : t ∈ R} be a weakly stationary, mean-zero stochastic pro-
cess with spectral density f (ω) satisfying (1.3), and assume that log f (ω) is locally
integrable. Assume also that 0 < T, τ < +∞, and that the covariance function
R(t) of {Xt } has 2n derivatives in the interval [�, T +�+ τ ] satisfying

∫ 0

−T

∫ �+τ

�

∣∣∣∣∣
(

1 − d2

dt2

)n
R(t ′ − s)

∣∣∣∣∣
2

dt ′ds < +∞. (2.1)

Then B is compact. In particular σ 2 is attained.

The proof of Theorem 2.1 uses the well-known [12, pp.16–20],[3, p.108] equiv-
alence of HI , I ⊆ R, to the space LI (f ) defined as follows. Let L(f ) = L2(R, f )

and ‖ · ‖f its norm. The space LI (f ) is the ‖ · ‖f -closure of the linear span of
{eiωt : t ∈ I }, ω ∈ R. The one-to-one isometric correspondence between HI and
LI (F ) is given [12, pp.16-20] [18, pp.14-18] by the spectral representation of {Xt }.
If φi ∈ LIi (f ) (i = 0, 1) correspond to the ξi’s of (1.2), then the infimum in (1.2)
is given by σ 2 = inf{‖φ0 − φ1‖2

f : φi ∈ LIi (f ), i = 0, 1, ‖φ0‖f = 1}. Now
let Pi denotes the orthogonal projection of L(f ) onto LIi (f ), and P01 = P1|LI0 ,
P10 = P0|LI1 , A = P10P01; these correspond toQi ,Q01, Q10, and B, respectively.

Clearly B is compact if and only if A is compact, and σ 2 is attained if and only if
‖A‖ is an eigenvalue of A. It can be shown [10] that 1 − σ 2 = ‖B‖ = ‖A‖ = λ1
where

√
λ1 is the maximal linear correlation between the system of random vari-

ables {ξ0 ∈ HI0} and {ξ1 ∈ HI1} (equivalently, the cosine of the angle between the
Hilbert spaces LIi ).

Next, let I = [a,b] be any bounded interval. If LI (f ) 
= L(f ), then [3, p.108]
any φ ∈ L[a,b](f ) has an analytic continuation to an entire function φ(z), z ∈ C,
of exponential type with exponent less or equal to max(|a|, |b|). If f (ω) satisfies
(1.3) and log f (ω) is locally integrable, then we can say a bit more. First, we note
that the two conditions together imply∫

R

log f (ω)

1 + ω2 dω > −∞ (2.2)

In turn, this implies [3, p.112] that LI (f ) 
= L(f ) and that an element φ ∈ LI (f )
has an entire analytic continuation φ(z), z ∈ C, which satisfies for any ε > 0

|φ(z)| ≤ ‖φ‖f exp {Mε +max(|a|, |b|)|�z| + ε|z|}. (2.3)

with some constant Mε independent of φ. Now let fn(ω) = (1 + ω2)−n. If φ ∈
LI (f ), then condition (1.3) and the bound (2.3) yield ‖φ‖fn ≤ C‖φ‖f with a
constant C independent of φ. Hence, if {φN } is a sequence from the linear span
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of {eiωt : t ∈ I } that converges to φ ∈ LI (f ) (in the ‖ · ‖f norm), then it also
converges to φ in the ‖ · ‖fn norm, and so φ ∈ LI (fn). Thus we have proven

Lemma 2.1. Let I and fn(ω) be as above. If f satisfies (1.3) and log f (ω) is
locally integrable, then LI (f ) ⊂ LI (fn), and the injection of LI (f ) into LI (fn)
is continuous.

Next, it is well-known [12, pp.28–32] that the elements of LI (fn), I = [a,b],
have the following representation

φ(ω) = eiωa
n−1∑
k=0

αk(1 − iω)k + (1 − iω)n
∫ b

a

eiωt v(t) dt (2.4a)

= eiωb
n−1∑
k=0

βk(1 − iω)k + (1 − iω)n
∫ b

a

eiωt u(t) dt.

(2.4b)

withu, v ∈ L2[a, b], and {αk}, {βk} constants. Hence if the conditions of Lemma 2.1
hold, then the elements of LI (f ) are also represented by (2.4).

Remark. The spaces L(fn), LI (fn) are the well-known Sobolev spaces; their ele-
ments have a well-defined inverse Fourier transform in the sense of tempered dis-
tributions [17]. Moreover, the inverse Fourier transform of the elements of LI (fn),
and hence those of LI (f ), are tempered distributions with compact support in
[a, b]. Using this, a generalization of the classical Paley-Wiener theorem [17, p.
334], and the continuity of the injection in Lemma 2.2, one can improve (2.3) to
|φ(z)| ≤ ‖φ‖f Cn(1+|z|)n exp{max(|a|, |b|)|�z|}. This bound or bound (2.3) and
the representation (2.4) are key in proving the next lemma, which, in turn, is key in
proving Theorem 2.1.

Lemma 2.2. Let I = [a,b] be bounded and fn(ω) = (1 + ω2)−n. Assume that
f satisfies (1.3), and that logf (ω) is locally integrable. Then (a) The injection of
L[a,b](f ) into L[a,b](fn) is compact. (b) If {φN }N≥0 is a sequence in L[a,b](f )

converging weakly to some φ ∈ L[a,b](f ), and φN has the representation (2.4b)
with parameters {β(N)k }n−1

k=0 and uN(t) ∈ L2(a, b), and φ has the representation
(2.4b), then

β
(N)
k −→ βk, ||uN − u||L2(a,b) −→ 0 as N → +∞

Proof. (a) It suffices to show that the unit ball B in L[a,b](f ) is relatively compact
in L[a,b](fn). Let {φN } be a sequence in B; since B is weakly compact, we can
extract a subsequence also denoted by {φN } so that φN converges weakly to some
φ ∈ B. Now, φN(ω) has an entire continuation φN(z), z ∈ C, and by (2.3) φN(z)
is uniformly bounded on every compact subset of C; hence {φN(z)} form a normal
family [19, p. 282], and therefore one can extract a subsequence to be denoted
again by {φN(z)} that converges uniformly on every compact subset of C to some
ψ(z). In particular φN(ω) → ψ(ω), for all ω ∈ R, and hence φ(ω) = ψ(ω),

ω ∈ R.
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Now, for every R > 0

||φN − φ||2fn =
∫

|ω|≥R
|φN(ω)− φ(ω)|2

(1 + ω2)n
dω +

∫
|ω|<R

|φN(ω)− φ(ω)|2
(1 + ω2)n

dω

≤
||φN − φ||2f

inf |ω|≥R(1 + ω2)nf (ω)
+ C sup

|ω|<R
|φN(ω)− φ(ω)|2 (∗)

with some C > 0; using (1.3) and the uniform convergence of φN to φ on compact
subsets of R, we see that the right-hand-side of (∗) becomes arbitrarily small for
sufficiently large R and N , which proves (a). To prove (b) we write

eiωb
n−1∑
k=0

β
(N)
k (1 − iω)k = (1 − iω)n

∫ +∞

b

eiωtwN(t) dt

with wN(t) = e−t
∑n−1
k=0 λ

(N)
k tk , where the coefficients {λ(N)k }n−1

k=0 are linearly

related to {β(N)k }n−1
k=0. Similarly, we write

eiωb
n−1∑
k=0

βk(1 − iω)k = (1 − iω)n
∫ +∞

b

eiωtw(t) dt

with w(t) = e−t
∑n−1
k=0 λkt

k .
Since φN −→ φ weakly in L[a,b](f ), part (a) implies ||φN − φ||fn −→ 0.

But

||φN − φ||2fn = ||wN − w||2
L2(b,+∞)

+ ||uN − u||2
L2(a,b)

Hence ||uN − u||L2(a,b) −→ 0 and ||wN − w||L2(b,+∞) −→ 0 as N → +∞.

But it is easily seen that ||wN − w||L2(b,+∞) −→ 0 if and only if λ(N)k −→ λk .

Since {λ(N)k } and {λk} are linearly related to {β(N)k } and {βk}), respectively, we have

β
(N)
k −→ βk , k = 0, 1, . . . , n− 1. ��

Proof of Theorem 2.1. It suffices to prove that A is compact. Since A = P10P01
and P10 is bounded, it suffices to prove that P01 is compact. To this end, let {φN },
φN ∈ LI0(f ) be a sequence converging weakly to zero. Then {P01φN } also con-
verges weakly to zero. We need to show that ||P01φN ||f −→ 0 as N → +∞.
Since φN ∈ LI0(f ) and P01φN ∈ LI1(f ), they have a representation of the form
(2.4), say

φN(ω) = eiω(�+τ)
n−1∑
k=0

β
(N)
k (iω)k + (1 − iω)n

∫ �+τ

�

eiωtuN(t) dt

(P01φN)(ω) = e−iωT
n−1∑
k=0

α
(N)
k (iω)k + (1 − iω)n

∫ 0

−T
eiωtvN(t) dt
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A straightforward computation, whose justification is given in theAppendix, yields

||P01φN ||2f =
n−1∑
k,
=0

β
(N)
k α

(N)

 (−1)
R(k+
)(�+ τ + T )

+
n−1∑
k=0

β
(N)
k (−1)k

∫ 0

−T
vN(s)

(
1 − d

dt

)n
R(k)(�+ τ − s) ds

+
n−1∑
k=0

α
(N)
k (−1)k

∫ �+τ

�

uN(t)

(
1 − d

dt

)n
R(k)(T + t) dt

+
∫ 0

−T

∫ �+τ

�

[(
1 − d2

dt2

)n
R(t ′ − s)

]
uN(t

′)vN(s) dt ′ds (2.5)

This together with (2.1) and Lemma 2.2 (b) quickly yields ||P01φN ||f −→ 0 as
N → +∞. ��
Remark. As we mentioned in the Introduction, if (2.2) holds then there are nec-
essary and sufficient conditions for the operator A in the case T = τ = +∞
to be compact. This compactness can be used to induce a compactness result for
A in the case T , τ < +∞: let P(−∞,0] be the orthogonal projection from L(f )
onto L(−∞,0](f ), and P� = P(−∞,0]|L[�,+∞)(f ). Then it is easily seen that P01 =
P1P�|LI0 (f ) where P01 and P1 are the operators for the finite intervals Ii (i.e. for
T , τ < +∞). Hence if P� is compact, then so is P01 (and hence A). This result is
relatively weak, as the compactness of P� sees only the gap between the intervals
I0 = [−T , 0] and I1 = [�,�+ τ ], and not the intervals themselves.

3. Rational Spectral Density

In this section we consider the case when the spectral density f (ω) is rational, i.e.

f (ω) =
∣∣∣∣P(iω)Q(iω)

∣∣∣∣
2

, ω ∈ R, (3.1)

where P, Q are polynomials of iω of degree p and q, respectively, with the prop-
erties: (i) the coefficients of P, Q are real, (ii) q − p ≥ 1, and (iii) P(iω) and
Q(iω) have all its roots in the lower open half-plane {x + iy : y < 0}. Existence
of optimal transformations can easily be deduced from Theorem 2.1, as well as
from the remark at the end of §2 (P� is [3, pp.100–101] of finite rank, and hence
compact).

The main goal of this section is to give an explicit construction of the transforma-
tions in terms of λ1 = ‖A‖ and the coefficients of P andQ, and a characterization
of λ1 = ‖A‖ as the largest eigenvalue of an explicit finite matrix. Our construction
works verbatim for any positive eigenvalue λ > 0 of A (see remark at the end of
this section). As we mentioned in the Introduction, the case T = τ = +∞ was
treated in [20] by a different method.
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It can be shown [10] that a pair φi ∈ LIi (f ) (i = 0, 1), ‖φ0‖f = 1, attains
σ 2 = 1 − λ1, if and only if the pair satisfies

∫
R

e−iωt [λ1φ0(ω)− φ1(ω)]f (ω) dω = 0, for all t ∈ [�,�+ τ ]
(3.2a)∫

R

e−iωt [φ0(ω)− φ1(ω)]f (ω) dω = 0, for all t ∈ [−T , 0]
(3.2b)

subject to ‖φ0‖f = 1. Following [18] we define

x(t) =
∫

R

e−iωt
φ0(ω)

|Q(iω)|2 dω, y(t) =
∫

R

e−iωt
φ1(ω)

|Q(iω)|2 dω (3.3)

For any φi ∈ LIi (f ), x(t) and y(t) have [18, p.140] the following properties

Lemma 3.1. x(t) and y(t) have continuous derivatives up to order p+q−1, and
satisfy the “boundary conditions” (k = 0, 1, . . . , p − 1)

Q(
d

dt
)x(k)(t) = 0 for t ≤ �, Q(− d

dt
)x(k)(t) = 0 for t ≥ �+ τ

(3.4a)

Q(
d

dt
)y(k)(t) = 0 for t ≤ −T ,Q(− d

dt
)y(k)(t) = 0 for t ≥ 0 (3.4b)

For k = p, the above equations hold only in the corresponding open intervals.

Since 2q ≤ p + q − 1, Lemma 3.1 implies that equations (3.2) are equivalent
to

P(
d

dt
)P (− d

dt
)(λ1x(t)− y(t)) = 0 for � ≤ t ≤ �+ τ (3.5a)

P(
d

dt
)P (− d

dt
)(x(t)− y(t)) = 0 for −T ≤ t ≤ 0. (3.5b)

The solutions to these equations subject to the “boundary conditions” (3.4) are
given in the next lemma whose proof is evident by inspection. We treat only the
case p ≥ 1; the simpler case p = 0 can be treated the same way.

Lemma 3.2. If φi ∈ LIi (f ) (i = 0, 1) satisfy (3.2), then x(t) and y(t) are given
by

x(t) =
{
w+(t) for t < �, w−(t) for �+ τ < t
1
λ1
(v−(t)− u1(t)) for � ≤ t ≤ �+ τ

(3.6a)

y(t) =
{
v+(t) for t < −T , v−(t) for 0 < t

(w+(t)− u2(t)) for −T ≤ t ≤ 0
(3.6b)

where w± ∈Ker Q(± d
dt
), v± ∈Ker Q(± d

dt
), ui ∈Ker P( d

dt
)P (− d

dt
), (i = 1, 2),

satisfy the boundary conditions with 
 = 0, . . . , q − 1, k = 0, . . . , p − 1
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λ1w
(
)
+ (�)=v(
)− (�)− u

(
)
1 (�), λ1w

(
)
− (�+ τ)=v(
)− (�+ τ)− u

(
)
1 (�+ τ)

Q( d
dt
)[v(k)− − u

(k)
1 ](�)=0, Q(− d

dt
)u
(k)
1 (�+ τ)=0

}

(3.7a)

v
(
)
+ (−T ) = w

(
)
+ (−T )− u

(
)
2 (−T ), v

(
)
− (0) = w

(
)
+ (0)− u

(
)
2 (0)

Q( d
dt
)u
(k)
2 (−T ) = 0, Q(− d

dt
)[w(k)+ − u

(k)
2 ](0) = 0

}

(3.7b)

Next let s±(t) ∈ R
q , r(t) ∈ R

2p be bases for KerQ(± d
dt
) and KerP( d

dt
)

P (− d
dt
), respectively. Then we may write w±(t) = a�±s±(t), v±(t) = a�±s±(t),

ui(t) = c�i r(t) (i = 1, 2), with some a+, a−, b+, b− ∈ R
q , and c1, c2 ∈ R

2p

(here � denotes transposition). Then equations (3.7) can be written as

M(−T , 0,�,�+ τ)
(
a+ a− b+ b− c1 c2

)� = 0 (3.8)

where M(−T , 0,�,�+τ) is a matrix that can be written explicitly in terms of the
following matrices: let D = (1, d

dt
, . . . , d

q−1

dtq−1 )
�, and define the matrices S±(t) =

(Ds�±(t))�, R(t) = (Dr�(t))�, SQ± (t) = Q(∓ d
dt
)S±(t), RQ± (t) = Q(∓ d

dt
)R(t),

L(t, t ′) = (R
Q
− (t), R

Q
+ (t ′))�, O+(t) = (0p×q, SQ+ )�, O−(t) = (S

Q
− (t), 0p×q)�,

where 0p×q is the p × q null matrix.
The matrices S+(t) and S−(t) are non-singular for all t ∈ R, as is the matrix

R∓(t, t ′). This and a straightforward calculation show that (3.8) has a non-trivial
solution if and only if λ1 is an eigenvalue of the q × q matrix

(S+(�))−1{S−(�)− R(�)(L(�,�+ τ))−1O−(�)}(S−(0))−1

× {S+(0)− R(0)(L(−T , 0))−1O+(0)} (3.9)

with a+ the corresponding eigenvector. Moreover, the vectors a−, b+, b−, c1, c2
that solve (3.8) can be computed directly in terms of a+ and λ1; they are linear in
a+.

Let K = K(−T , 0,�,�+ τ) be the q × q matrix given by (3.9). The above
observations can be used to construct the functionsw±(t), v±(t), ui(t)(t), i = 1, 2
(and hence x(t) and y(t)) as follows: let ã+ be a normalized (|̃a+| = 1) eigenvec-
tor of K with eigenvalue λ1, and ã−, b̃±, c̃i the corresponding solutions of (3.8),
computed in terms of ã+ and λ1. From these, we compute functions w̃±(t), ṽ±(t),
ũi (t), which in turn determine x̃(t), ỹ(t) by (3.6). Now the a+ that corresponds to
the original solution x(t), y(t), may be written as a+ = |a+|̃a+ for some normal-
ized eigenvector ã+ ofK . The length µ = |a+| may be determined from x̃(t) (and
hence from ã+ and λ1) by noting that x(t) = µx̃(t) and that x(t) satisfies (by (3.3))

µQ(
d

dt
)P (− d

dt
)̃x(t) =

∫
R

e−iωt
P (iω)

Q(iω)
φ0(ω) dω

Since φ0 ∈ LI0(f ), we have Q( d
dt
)P (− d

dt
)x(t) ∈ L2(R). Then µ is determined

from x̃(t) by the requirement that ‖φ0‖f = 1. These arguments prove part of the
next theorem.
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Theorem 3.1. Let f (ω) be given by (3.1) with p ≥ 1. Assume that 0 < T, τ <

+∞. Then every pair φ0, φ1 of optimal transformations arises from a normalized
eigenvector ã+ of the matrix K (given by (3.9)) with eigenvalue λ1 = ‖A‖. Let
x(t), y(t) be the functions constructed by the above procedure. Then the corre-
sponding φ0, φ1 are given by

φ0(ω) = µ

2π
eiω�

q−p−1∑
j=0

(−iω)j
q∑

k=j+p+1

βkσk−j−1(�)

+ µ

2π
eiω(�+τ)

q−p−1∑
j=0

(−iω)j
q∑

k=j+p+1

βkσk−j−1(�+ τ)

+ µ

2π

∫ �+τ

�

eiωt
(
Q(− d

dt
)Q(

d

dt
)x(t)

)
dt (3.10a)

φ1(ω) = µ

2π
e−iωT

q−p−1∑
j=0

(−iω)j
q∑

k=j+p+1

βkξk−j−1(−T )

+ µ

2π

q−p−1∑
j=0

(−iω)j
q∑

k=j+p+1

βkξk−j−1(0)

+ µ

2π

∫ 0

−T
eiωt

(
Q(− d

dt
)Q(

d

dt
)y(t)

)
dt (3.10b)

where for p ≤ k ≤ q − 1

σk(�) = Q(
d

dt
)x(k)(�+ 0), ξk(0) = Q(

d

dt
)y(k)(0 − 0)

σk(�+ τ) = Q(
d

dt
)x(k)(�+ τ + 0)−Q(

d

dt
)x(k)(�+ τ − 0)

ξk(−T ) = Q(
d

dt
)y(k)(−T + 0)−Q(

d

dt
)y(k)(−T − 0)

with the notation g(t0 + 0) = limt↓t0 g(t), and g(t0 − 0) = limt↑t0 g(t), for a
function g(t) with left and right limits at t = t0.

Proof. Treating x(t) as a generalized function, we obtain from (3.3)

Q(− d

dt
)Q(

d

dt
)x(t) =

∫
R

e−iωtφ0(ω) dω, t ∈ R

i.e. φ0(ω) is the Fourier transform (in the sense of distributions) of Q(− d
dt
)Q( d

dt
)

x(t). To recover φ0, let z(t) = Q( d
dt
)x(t) and note that z(k)(t) = Q( d

dt
)w

(k)
+ (t) = 0

for t < �, k ≥ 0 (in particular for k = p, . . . , q − 1). Now, let ψ(t) be a test
function in C∞(R) with compact support. The above properties of z(k)(t), Lemma
3.2 and a straightforward calculation yield
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∫ (
Q(− d

dt
)z(t)

)
ψ(t) dt = −

q∑
k=1

βk

k−1∑
j=0

(−1)j

{σk−j−1(�)ψ
(j)(�)+σk−j−1(�+ τ)ψ(j)(�+ τ)}

+
q∑
k=0

βk(−1)k
∫ +∞

�

z(t)ψ(k)(t) dt

This together with the fact (see Lemma 3.1) that z(t) has p− 1 continuous deriva-
tives and Q(− d

dt
)z(t) = 0 for t outside the interval [�,�+ τ ], imply

∫
R

(
Q(− d

dt
)z(t)

)
ψ(t) dt =

∫
R

[
q−p−1∑
j=0

δ(j)(t −�)

q∑
k=j+p+1

βkσk−j−1(�)]ψ(t) dt

+
∫

R

[
q−p−1∑
j=0

δ(j)(t −�− τ)

q∑
k=j+p+1

βkσk−j−1(�+ τ)]

ψ(t) dt +
∫ �+τ

�

[Q(− d

dt
)Q(

d

dt
)x(t)]ψ(t) dt

This quickly yields (3.10a). The proof of (3.10b) is identical. ��

Remark. 1. It can be shown that if τ = +∞, T = +∞, then formulas (3.10) hold
without the second term in (3.10a), and without the first term in (3.10b).
2. If λ > 0 is an eigenvalue of A and φ(λ)0 is a corresponding normalized eigen-

vector, and we define φ(λ)1 = P1φ
(λ)
0 , then it is easily seen that the pair (φ(λ)0 , φ

(λ)
1 )

satisfies (3.4) with λ1 replaced by λ. The procedure for constructing the optimal
transformations can be used to construct φ(λ)0 and φ(λ)1 , and establish that λ is also
an eigenvalue of K (given by (3.9). Conversely, if λ is an eigenvalue of K , then
reversing the steps in our construction one obtains that λ is an eigenvalue of A. In
particular,K is a positive-definite matrix and its largest eigenvalue is exactly equal
to λ1 = ‖A‖.

Appendix

Poof of Equation (2.5): The representation of φN(ω) and P01φN given above (2.5),
yield

φN(ω)(P01φN)(ω) =
n−1∑
k,
=0

β
(N)
k α

(N)

 (−1)
(iω)k+
eiω(�+τ+T )

+
n−1∑
k=0

β
(N)
k

∫ 0

−T
vN(s)(1 + iω)n(iω)keiω(�+τ−s) ds
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+
n−1∑
k=0

α
(N)
k

∫ �+τ

�

uN(t)(1 − iω)n(−1)k(iω)keiω(T+t) dt

+
∫ 0

−T

∫ �+τ

�

(1 + ω2)neiω(t−s)uN(t)vN(s) dtds (A.1)

This will yield (2.5) via a standard regularization procedure [2, pp.132–134]. Let
λ(ω) be a real-valued,C∞ function with compact support, satisfying λ(0) = 1. We
multiply both sides of (A.1) by f(ω)λ(ω/ρ), ρ > 0, and integrate with respect to ω.
The left hand side (LHS) of the resulting equation converges, as ρ → +∞, to the
LHS of (2.5) by using λ(ω/ρ) → λ(0) = 1, the boundedness of λ(ω), and the
Lebesgue dominated convergence theorem. The convergence of the right hand side
of the integrated form of (A.1) to that of (2.5) is easily deduced from the following
Lemma.

Lemma. Let λ(ω) be as above, ρ > 0, and define R(k)ρ (t) = ∫
R
(iω)kf (ω)λ(ω/ρ)

eiωt dω. Under the assumptions on the covariance function in Theorem 2.1, we
have

lim
ρ↑+∞

R(k)ρ (t) = R(k)(t) (A.2)

where the convergence is pointwise in I = [�,�+τ +T ] for k < 2n, and dt-a.e.
in I for k = 2n. Moreover, (A.2) also holds in the L2[I, dt] sense for k ≤ 2n.

Proof. The proof follows closely that of Proposition 3.2.2 of [2]. Let �(t) be the
inverse Fourier transform of λ(ω). The assumptions on λ(ω) imply [5, p.155] that
�(t) is a slowly decreasing function. Thus for every pair of integersm > 0, k ≥ 0,
there exist a constant C = C

(k)
m such that |s|m|χ(k)(s)| ≤ C. To prove the first part

of the lemma, we note that the square integrability of R(k) (k ≤ 2n) in I, implies
that almost every point in I is a Lebesgue point of R(k) [19, p.138], i.e. for every
ε > 0, there exists δ = δ(t, ε) such that

∫ s

−s
|R(k)(t − s′)− R(k)(t)| ds′ ≤ ε δ for all 0 ≤ s ≤ δ. (A.3)

This together with the slowly decreasing property of�(t)will yield that (A.2) holds
for every Lebesgue point ofR(k), k ≤ 2n (hence everywhere for k < 2n). We write
(k ≤ 2n)

R(k)ρ (t)− R(k)(t) = (

∫ δ

−δ
+

∫
|s|>δ

)[ρk+1R(t − s)�(k)(ρs)

− ρR(k)(t)�(ρs)] ds (A.4)

Let I1 = I1(t; ρ, δ), I2 = I2(t; ρ, δ) be the first and second integral, respec-
tively. To bound I1 we integrate by parts to obtain |I1| ≤ | ∑k−1


=0
∑1
l=0(−1)l ρk−


R(
)(t − (−1)lδ)�(k−
−1)((−1)lρδ)| + | ∫ δ−δ[R(k)(t − s) − R(k)(t)]ρ�(ρs) ds|.
The last term, to be denoted by I1,2, is bounded as follows. For any Lebesgue point t,
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the function u(s) = ∫ s
0 |R(k)(t − s′) − R(k)(t)| ds′ satisfies |u(s)| ≤ ε δ, for all

|s| ≤ δ. If v(s) = (1 + s2)−1, then by the slowly decreasing property of �(t) we
have with some constant C

|I1,2| ≤ C

∫ δ

−δ
|R(k)(t − s)− R(k)(t)| ρv(ρs) ds

≤ C([u(δ)− u(−δ)] ρv(ρδ)+ ρ

∫ δ

−δ
u(s) d(−v(ρs))) ≤ ε C (1 + π)

(A.5)

Now we bound I2. Using the property |R(s)| ≤ R(0), and the slowly decreasing

property of �(t) we obtain (with some constant C) |I2| ≤
∣∣∣ ∫|s|>δ ρ

k+1

R(t − s)�(k)(ρs)ds
∣∣∣ + |R(k)(t)| ∫|s|>δ ρ|�(ρs)|ds≤CR(0)ρr ∫

|s|>ρδ |s|−(k+2)ds

+ |R(k)(t)| ∫|s|>ρδ |�(s)| ds, which quickly implies limρ↑+∞ I2 = 0.

Next we show that (A.2) holds in theL2(I, dt) sense. Let ||·||2 denote the norm of
L2(I, dt). Note that for any ε > 0 there exist a δ > 0 for which [2, p. 140] ||R(k)(·−
s)− R(k)(·)||2 ≤ ε, for all |s| ≤ δ. This L2 property replaces (A.3) in the present
case. With I1 and I2 defined below (A.4), it suffices to show that limρ↑+∞(||I1||2 +
||I2||2) = 0. Preceeding as in the proof of the first part of the lemma, we get
||I2||2 ≤ ||R(k)||2

∫
|s|>ρδ |�(s)| ds + 2 R(0) × K/(δk+1ρ) × √

τ + T , which

yields limρ↑+∞ ||I2||2 = 0. Similarly, the above L2 property yields ||I1||2 ≤∑k−1,1

=0, l=0 ρ

k−
||R(
)(· − (−1)lδ)||2 |�(k−
−1)((−1)lρδ)| + ε δ||�||1. Then the
slowly decreasing property of �(s) yield limρ↑+∞ ||I1||2 ≤ ε δ||�||1. This com-
pletes the proof of the Lemma. ��
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