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Abstract. This paper deals with a generalization of a result due to Brascamp and Lieb which
states that in the space of probabilities with log-concave density with respect to a Gaussian
measure on R

n, this Gaussian measure is the one which has strongest moments. We show that
this theorem remains true if we replace xα by a general convex function. Then, we deduce a
correlation inequality for convex functions quite better than the one already known. Finally,
we prove results concerning stochastic analysis on abstract Wiener spaces through the notion
of approximate limit.
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1. Introduction

Recall that a function f : R
n → R

+ is called log-concave if for x, y ∈ R
n and

0 < λ < 1:

f (λx + (1 − λ)y) ≥ f (x)λf (y)1−λ.

One of the main results of this paper is the following:

Theorem 1.1. Let g be a convex function on R
n and f a log-concave function on

R
n. Let γ be a Gaussian measure on R

n(not necessarily centered or with density
with respect to Lebesgue measure). We suppose that all of the following integrals
are well defined, then:
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∫
g (x + l −m)

f (x) dγ (x)∫
f dγ

≤
∫
g dγ

where

l =
∫
x dγ , m =

∫
x
f (x) dγ (x)∫

f dγ
.

This theorem generalizes theorem 5.1 of Brascamp and Lieb [6], theorem 7 of
Hargé [15] and corollary 6 of Caffarelli [7].

As in corollary 6 of [7], the proof is based on a result of [7] concerning optimal
transport of measure. To obtain the general case, we use here the Ornstein-Uhlen-
beck semigroup to construct and to study an appropriate function which gives the
result. We deduce from theorem 1.1:

Theorem 1.2. Let f and g be two convex functions on R
n. Let µ be the standard

Gaussian measure on R
n(centered and normalized). We suppose that all of the

following integrals are well defined, then:∫
fg dµ ≥ (1 + 〈m(g) ,m (f )〉)

∫
f dµ

∫
g dµ

where

m(f ) =
∫
x
f (x) dµ(x)∫

f dµ
, m (g) =

∫
x
g(x) dµ(x)∫

g dµ

(〈 , 〉 is the usual scalar product on R
n).

This result generalizes theorem 6.1 of Hu [17] which proves, under the addi-
tional hypothesis m(g) = 0 or m(f ) = 0, that:∫

fg dµ ≥
∫
f dµ

∫
g dµ .

Nevertheless, we have to notice it is possible to prove theorem 1.2 by rewriting
Hu’s proof.

The inequality obtained in this theorem can be compared to the Poincaré
inequality which states that:

∫
f 2 dµ−

(∫
f dµ

)2

≤
∫

‖∇f ‖2 dµ .

Let choose f = g in theorem 1.2 and note that we have in most cases:
∫
xf dµ =∫ ∇f dµ. Then, we obtain for a convex function f :

∥∥∥∥
∫

∇f dµ
∥∥∥∥

2

≤
∫
f 2 dµ−

(∫
f dµ

)2

.

Other correlation inequalities concerning log-concave functions or ”decreasing”
functions could be found in the papers of Pitt [27], Bakry and Michel [1], Schecht-
man , Schlumprecht and Zinn [30], Hargé [15], Szarek and Werner [35], Cordero-
Erausquin [11] (see those papers for further references).
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The first part of this paper is devoted to the proof of theorems 1.1 and 1.2. The
second part deals with regularity results for variables on abstract Wiener spaces
which are consequences of theorem 1.1. More precisely, letW be an abstract Wiener
space and denote by P the Gaussian measure onW . LetH be the Cameron-Martin
space of W .

We denote by Ñ the extension on W of a measurable seminorm N on H (as
defined by Gross [13, 14] ; remark that being measurable for a seminorm does not
only mean Ñ is measurable with respect to the σ -algebra ofW , see further for the
right definition). Then, we obtain in the second part of this paper regularity results
as in the following theorem.

Theorem 1.3. For all measurable seminorm N1 and measurable norm N2 on H,

lim
η→0

E

(
exp
(
Ñ2

1

) 1Ñ2≤η
P
(
Ñ2 ≤ η

)
)

= 1.

This theorem generalizes results of Mayer-Wolf and Zeitouni ([22], lemma 2.5)
and of Hargé [16].

2. Proof of theorems 1.1 and 1.2

We will use the Brenier map [5] which gives the optimal mass transport on R
n. Let

us recall some terminology. If ν1 and ν2 are two Borel probability measures on R
n

, a Borel map T : R
n → R

n is said to transport ν1 on ν2 if ν2 is the image of ν1 by
T . It means that for every non-negative Borel function h:

∫
h ◦ T dν1 =

∫
h dν2.

The result of Brenier, as improved by McCann [23] is the following:

Theorem 2.1. Let ν1 and ν2 be two Borel probability measures on R
n and suppose

ν1 vanishes on subsets of R
n having Hausdorff dimension n − 1. Then, a convex

function ϕ on R
n whose gradient ∇ϕ transports ν1 on ν2 exists. The map ∇ϕ is

uniquely determined ν1 almost everywhere.

Caffarelli [7] proves the following result:

Theorem 2.2. If ν1 is a gaussian measure and if dν2 = f dν1 where f is a log-
concave function (such that

∫
f dν1 = 1) then ∇ϕ is a contraction with respect to

the euclidian norm.

We can now prove theorem 1.1.
It is possible to find an integer k ≤ n such that for each integrable function h:

∫
Rn
h dγ =

∫
Rk
h (Lx + l) dµ
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where L : R
k → R

n is a linear map andµ is the standard Gaussian measure on R
k.

So, it is sufficient to show the result when γ = µ (the standard Gaussian measure
on R

n) and l = 0. With:

f (x) = f (x +m) exp

(
−1

2
‖m‖2 − 〈x,m〉

)
,

we can assume that m = 0.
Then, it is possible to assume:

f (x) = exp(−F)1B(0,R)
whereF is arbitrarily often differentiable and convex. Then, using a result of Caffar-
elli [8, 9], if we denote by ∇ϕ the Brenier map which transports µ on f dµ∫

f dµ
, we

obtain ϕ ∈ C2,α for an α ∈ ]0, 1[ . The result of Caffarelli [7] is:

ϕ = ‖x‖2

2
− ψ and 0 ≤ Hessψ ≤ I.

It is possible to assume that g is smooth and ∇g is bounded. This last point is
obtained with the following approximation of g:

gn(x) = sup
y∈B(0,n)

〈y, x〉 − g∗(y) ,

where g∗ is the Fenchel-Legendre transform of g.
With the optimal transportation, we can write:∫

g (x)
f (x)dµ(x)∫
f (x)dµ(x)

=
∫
g (x − ∇ψ(x)) dµ (x) .

Now, let Pth be the Ornstein-Uhlenbeck semigroup given by:

Pth(x) =
∫
h
(
e−

t
2 x +

√
1 − e−t y

)
dµ(y).

Pth is the solution of: {
d
dt
(Pt (h)) = L(Pt (h))

P0(h) = h

where L is given by:

L(h) = 1

2
(	h− 〈x,∇h〉).

Moreover, we have the following integration by parts formula:∫
h1L(h2) dµ = −1

2

∫
〈∇h1,∇h2〉dµ.

Let θ be the function:

θ (t) =
∫
g (x − Pt (∇ψ) (x)) dµ (x)
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where

Pt (∇ψ) =
(
Pt

(
∂ψ

∂x1

)
, . . . , Pt

(
∂ψ

∂xn

))
.

With the following inequality (see for example the proof of proposition 3.1.25 of
[29]):

∥∥∥∥Pt (∇ψ) (x)−
∫

∇ψdµ
∥∥∥∥ ≤ Ke−t/2

∫
‖x − y‖ dµ (y)

and using the fact that ∇g is bounded, we obtain:
∣∣∣∣g (x − Pt (∇ψ) (x))− g

(
x −
∫

∇ψdµ
)∣∣∣∣ ≤ K̃e−t/2

∫
‖x − y‖ dµ (y) .

Furthermore:∫
∇ψdµ = −

∫
(x − ∇ψ (x)) dµ (x) = −

∫
x
f (x)dµ(x)∫
f (x)dµ(x)

= 0.

So, θ (t) is well defined for each t . Moreover:

lim
t→+∞ θ (t) =

∫
g (x) dµ (x) and θ (0) =

∫
g (x − ∇ψ(x)) dµ (x) .

Then, it is sufficient to show that θ is an increasing function. Working onLPt (∇ψ)
with the same understanding as the one used for Pt (∇ψ), we obtain with an inte-
gration by parts:

θ ′(t) = −
∫

〈∇g (x − Pt (∇ψ) (x)) , LPt (∇ψ)〉 dµ

= 1

2

∫
tr
[
Hessg (x − Pt (∇ψ) (x))

(
I −M∗)M] dµ,

where Mi,j = ∂
∂xi
Pt

(
∂ψ
∂xj

)
. It is easy to see that:

M = e−
t
2Pt (Hessψ) .

So:

M = M∗ and 0 ≤ M ≤ I.

Therefore, (I −M∗)M is a symmetric, positive matrix and consequently θ ′(t) ≥
0. �
Remark 1. We could rewrite the result of theorem 1.1 in the following way. Con-
sider a centered Gaussian measure γ, denote by N a general norm on R

n, by f a
log-concave function such that

∫
xf dγ = 0 and by ∇ϕ the Brenier map which

transports γ on f dγ∫
f dγ

; then we have:
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∫
N (∇ϕ) dγ ≤

∫
N dγ . (2.1)

The result of Caffarelli says that ∇ϕ is a contraction with respect to the euclidian
norm. Inequality (2.1) says that ∇ϕ is globally (on average) a contraction with
respect to every norm N .

Now, we will deduce from theorem 1.1 the correlation inequality for convex
functions given in theorem 1.2.

Proof of theorem 1.2. Recall that µ denotes the standard Gaussian measure on R
n.

We define a function ξ (t) for t ≥ 0 by:

ξ (t) =
∫
g (x −mt) exp (−tf ) dµ−

∫
g dµ

∫
exp (−tf ) dµ

where mt =
∫
x exp (−tf ) dµ∫
exp (−tf ) dµ .

We know from theorem 1.1 that ξ (t) ≤ 0, furthermore ξ (0) = 0 . So, we have
ξ ′ (0) ≤ 0. We obtain:

ξ ′ (0) = −〈
∫

∇g dµ,m′
0〉 −

∫
fg dµ+

∫
f dµ

∫
gdµ ,

m′
0 = −m(f )

∫
f dµ and

∫
∇g dµ = m(g)

∫
g dµ .

We deduce from this the desired inequality. �
Remark 2. It is possible to obtain a more general inequality if we consider a general
Gaussian measure γ . With the same method, we can write in most cases :

∫
fg dγ ≥

(
1 +
〈
K

∫ ∇f dγ∫
f dγ

,

∫ ∇g dγ∫
g dγ

〉) ∫
f dγ

∫
g dγ

where K is the covariance matrix of γ .

3. Approximate limits on abstract Wiener spaces

3.1. Preliminaries

We consider here an abstract Wiener space (W,H, P ) as in the introduction. We
denote 〈 , 〉 and ‖ ‖ the scalar product and the norm on H and F the Borel σ
-algebra on W . Let us recall some definitions concerning measurable seminorms
in the sense of Gross (see Gross [13], [14] and also Kuo [21]) .

LetQ : H → H be an orthogonal projection such that dimQH < ∞.We have:

Qh =
n∑
i=1

〈hi, h〉hi

where (h1, . . . , hn) is an orthonormal basis of QH .
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Recall that a canonical isometry exists betweenH and a subspace ofL2(W) (which
is the first Wiener Chaos). If h ∈ H, we denote by h̃ its image in L2(W). Then we
define:

Qw =
n∑
i=1

h̃i hi for w ∈ W .

A sequence of orthogonal projections Qn is called an approximating sequence of
projections if:

dimQnH < ∞ , QnH increases with n and

Qn(h) goes to h in H for each h in H.

In view of corollaries 4.5 and 5.2 of [13], an equivalent definition to that of
Gross for measurable seminorm is the following:

Definition 3.1. A seminormN onH is said to be measurable if a random variable
Ñ(w) exists such that for each η > 0, P(Ñ < η) > 0 and for all approximating
sequence of projections Qn, the sequence N (Qn (w)) converges in probability to
Ñ . If, in addition, N is a norm on H , N is called a measurable norm.

For example, on the standardWiener spaceW0 ={f ∈ C([0, 1],Rd), f (0)=0
}
,

the supremum norm on W0 defined by:

| f |∞= sup
s∈[0,1]

(
d∑
i=1

fi (s)
2

) 1
2

comes from a measurable norm. This is also the case for Hölder norms with index
smaller than 1

2 ([13], paragraph 5).
For a measurable normN onH , it is possible to consider the completion (E,N)

of (H,N) and to construct a Gaussian measure γ on (E,N), but this is not our
point here. We are only interested in the ”extension ” Ñ of N on W and we would
like to compare the behaviour of extensions on W of two measurable seminorms
on H . Nevertheless, it is important to notice that the image of γ by N is equal to
the image of P by Ñ .

Let N be a measurable seminorm on H . According to Cameron-Martin’s for-
mula, P(Ñ(w − h) < η) > 0 if h ∈ H ; so it is possible to define:

Definition 3.2. Let N be a measurable seminorm on H . For F ∈ L1(W),A ∈
F ,h ∈ H and η > 0 let:

ENη,h(F ) = E

(
F

1Ñ(w−h)<η
P (Ñ(w − h) < η)

)
and PNη,h(A) = P

(
A, Ñ(w − h) < η

)
P
(
Ñ(w − h) < η

) .

If h = 0, we will omit the subscript h.
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Definition 3.3. Let F ∈ L1(W), N be a measurable seminorm on H , h ∈ H and
p ∈ [1,+∞[. We say that F possesses an L0

N , respectively LpN , approximate limit
at h if there exists a real l such that:

∀ε > 0 , lim
η→0

PNη,h(| F − l |> ε) = 0

respectively:

lim
η→0

ENη,h(| F − l |p) = 0

l is denoted by F(h).

It is easy to see that if F possesses an LpN approximate limit then F possesses
LrN approximate limit for r < p.

The existence of approximate limit may be used to prove existence of Onsager-
Machlup functionnals for tubes around every element in H (see for example [19]
in the case of the standard Wiener space) or to obtain support theorems for the law
of some random variables.
Perhaps the first work on this subject is the one of Stroock and Varadhan [32].
Later, several authors have worked on this notion for particular seminorms ([2],
[3], [10], [12], [24], [31], [34], [22]). In the case of the supremum norm on the
standard Wiener space, we could in general prove the existence of a limit at h from
the existence of a limit at 0 by use of a result of Millet and Nualart ([24]) which
is based on a paper of Shepp and Zeitouni [31]. Sugita ([34]) also gave a similar
method for general measurable norms. We will use those ideas here.
Furthermore, the notion of approximate limit with respect to N is very sensitive
to the choice of N . For example, if F possesses an approximate limit with respect
to N , we can say nothing about the existence for F of an approximate limit with
respect to another norm equivalent to N . Moreover, Sugita showed in [34] that, if
F is the Lévy stochastic area defined on the standard Wiener space, there exists
a dense subset A of R such that for all a in A, we could find a measurable norm
Na such that FNa (0) = a (where FNa (0) is the approximate limit of F at 0 with
respect to Na) .
A great number of results concerning approximate limit use correlation inequalities
like F.K.G. inequalities or the ”strip” version of the Gaussian correlation conjec-
ture. Here, we will use theorem 1.1 instead of those inequalities and we will see that
theorem 1.1 is sufficient to prove existence of approximate limits even though it is
a weaker result than the Gaussian correlation inequality (which is still a conjecture
in the general case). In this part, we will prove that for every measurable seminorm
N1 and measurable norm N2 and for some functions g, F = g

(
Ñ1
)

possesses
an approximate limit with respect to N2 which does not depend on the choice of
N2. This result is not in contradiction with the result of Sugita because the Lévy
stochastic area can not be related to a measurable seminorm.
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3.2. General results

Theorem 1.1 allows us to obtain:

Theorem 3.4. Let N1 and N2 be two measurable seminorms on H . Let h belong
to H . If g : R+ → R is an increasing and convex function such that:

E
(∣∣g (Ñ1 +N1(h)

)∣∣) < +∞
then:

∀η > 0, E
(
g
(
Ñ1 (· + h)

)
1Ñ2≤η

)
≤ E
(
g
(
Ñ1 (· + h)

))
P
(
Ñ2 ≤ η

)
.

Proof. It is possible to assume g(0) = 0.
Denote byB = (en) a complete orthonormal system onH such that e1 = h/ ‖h‖

(if h �= 0). Let Qn be the sequence of projections defined by:

Qn(l) =
n∑
i=1

< l, ei > ei where l ∈ H.

We have Qn(h) = h.

Using subsequences, we obtain (because if N2 �= 0, P
(
Ñ2 = η

) = 0 for each
real η, see [16], corollary 4):

lim
k→+∞

N1
(
Qnk(w)

)=Ñ1 a.s. and lim
k→+∞

1N2
(
Qnk (w)

)≤η=1Ñ2≤η a.s..

We deduce from the Cameron-Martin’s formula:

lim
k→+∞

g
(
N1
(
Qnk(w + h)

)) = g
(
Ñ1 (· + h)

)
a.s. .

With theorem 5 of [13], we see that:

∀ε > 0, P
(
N1
(
Qnk(w)

)
> ε
) ≤ P

(
Ñ1 > ε

)
.

We deduce:

∀x > 0, P
(
g
[
N1
(
Qnk(w + h)

)]
> x
) ≤ P

(
g
[
N1
(
Qnk(w)

)+N1(h)
]
> x
)

≤ P
(
g
[
Ñ1 +N1(h)

]
> x
)
.

⇒ E
(
g
[
N1
(
Qnk(w + h)

)]
1g
[
N1
(
Qnk (w+h))]>a

)

=
∫ +∞

0
P
(
g
[
N1
(
Qnk(w + h)

)]
> max (a, t)

)
dt

≤
∫ +∞

0
P
(
g
[
Ñ1 +N1(h)

]
> max (a, t)

)
dt

≤ E
(
g
[
Ñ1 +N1(h)

]
1g
[
Ñ1+N1(h)

]
>a

)
.
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Consequently:

g
[
N1
(
Qnk(w + h)

)] →
k→+∞

g
(
Ñ1 (· + h)

)
in L1.

So, we obtain:

E
(
g
(
Ñ1 (· + h)

)
1Ñ2≤η

) ≤ lim inf
k→+∞

E
(
g
[
N1

(
Qnk (w)+ h

)]
1N2(Qnk (w))≤η

)

lim
k→+∞

E
(
g
[
N1

(
Qnk (w)+ h

)]) = E
(
g
(
Ñ1 (· + h)

))

lim
k→+∞

P
(
N2

(
Qnk (w)

) ≤ η
) = P

(
Ñ2 ≤ η

)
.

Finally, it is sufficient to prove:

E
(
g [N1 (Qn (w)+ h)] 1N2(Qn(w))≤η

)
≤ E (g [N1 (Qn (w)+ h)]) P (N2 (Qn (w)) ≤ η) .

The map: x ∈ R
n �→ N2

(
n∑
j=1

xj ej

)
is even and convex and the map

x ∈ R
n �→ g

[
N1

(
n∑
j=1

xj ej + h

)]
is convex. Furthermore (ẽ1, . . . , ẽn) is a

Gaussian vector. We use theorem 1.1 to conclude. �
Remark 3. This theorem remains true if we assume E

(∣∣g ((1 + ε) Ñ1
)∣∣) < +∞

for some ε > 0 instead of E
(∣∣g (Ñ1 +N1(h)

)∣∣) < +∞. It is sufficient to notice
that:

Ñ1 +N1(h) = 1

1 + ε
(1 + ε) Ñ1 +

(
1 − 1

1 + ε

)
1 + ε

ε
N1(h)

and to use the convexity of g.

Remark 4. In this theorem, we can write 1Ñ2<η
instead of 1Ñ2≤η becauseP

(
Ñ2 =η)

= 0 if η > 0.

Example 3.5. Let N1 be a measurable seminorm on H . We know from Fernique’s

theorem that there exists α such that E
(

exp
(
αÑ1

2
))

< +∞. So, we can apply

theorem 3.4 to g(x) = exp
(
αx2
)

if h = 0 (g(x) = exp
(
(α − ε) x2

)
if h �= 0).

Example 3.6. IfN1 is a measurable seminorm onH, using Fernique’s theorem, we
see that Ñ1 ∈ Lp for every p ≥ 1. So, we can apply theorem 3.4 to g(x) = xp.

This result is essential to study the existence of approximate limits because it
gives an uniform bound with respect to η of quantities which will occur:

sup
η>0

EN2
η

[
g
(
Ñ1(· + h)

)] ≤ E
[
g
(
Ñ1(· + h)

)]
.

First, let us give a generalization of lemma 1 of [16]. This lemma allows us
to construct an approximating sequence of projections well-adapted to a given
seminorm.
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Lemma 3.7. Let N be a measurable seminorm on H . There exists a complete
orthonormal system (ξi) in H such that, for each n in N\{0}:

∃cn > 0, N(Qn(w)) ≤ cnÑ a.s.

where Qn(h) =∑n
i=1 < ξi, h > ξi .

Proof. Let F = {x,N(x) = 0}⊥ (with respect to the scalar product in (H, ‖ ‖)),
{x,N(x) = 0} is a closed subspace of H because c exists such that N(x) ≤ c ‖x‖
for each x in H (see for example [21] lemma 4.2) .

Let� be the orthogonal projection on F . We have: ∀x ∈ H, N (x) = N (�x).
Denote N1 (x) = N (x) for x ∈ F and (E,N1) the completion of (F,N1). E′

is dense in (F, ‖ ‖)′ = (F, ‖ ‖) . We choose (ξi), a complete orthonormal system
in F such that ξi belongs to E′.
Denote

(
ξ ′
i

)
a complete orthonormal system in F⊥. Define:

Qn(g) =
n∑
i=1

(
< g, ξi > ξi+ < g, ξ ′

i > ξ ′
i

)
for g ∈ H

Q̃n(x) =
n∑
i=1

(x, ξi)E,E′ ξi for x ∈ E

(Qn is an approximating sequence of projections for H ) .
There exists cn > 0 such that:

∀x ∈ E , N(Q̃n(x)) ≤ cnN1(x).

Consequently, for g ∈ H :

N (Qn(g)) = N (�Qn(g)) = N(Q̃n(�g)) ≤ cnN (�g) = cnN (g) .

⇒ ∀q > n , N(Qn(w)) ≤ cnN(Qq(w)) a.s.

⇒ N(Qn(w)) ≤ cnÑ(w) a.s..

�
Remark 5. The idea of the proof of this lemma appeared in a paper of Sugita ([34],
lemma 2).

Now, we study the existence of a limit at 0 for variables defined with a convex
function.

Theorem 3.8. Let N1 be a measurable seminorm on H and N2 be a measurable
norm on H . If g : R+ → R is an increasing and convex function such that:

∃ε > 0, E
(∣∣g ((1 + ε) Ñ1

)∣∣) < +∞
then

lim
η→0

EN2
η

(
g
(
Ñ1
)) = g(0) .
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Proof. First, it is possible to assume that g(0) = 0. Let Qn be the approximating
sequence of projections given in lemma 3.7 for N2.We have:

Ñ1 ≤ 1

1 + ε
(1 + ε)

∣∣Ñ1 −N1 (Qn (w))
∣∣+
(

1 − 1

1 + ε

)
1 + ε

ε
N1 (Qn (w))

⇒ EN2
η

(
g
(
Ñ1
))

≤ 1

1 + ε
EN2
η

(
g
[
(1 + ε)

∣∣Ñ1 −N1 (Qn (w))
∣∣])

+
(

1 − 1

1 + ε

)
EN2
η

(
g

[
1 + ε

ε
N1 (Qn (w))

])
.

For the second term, we have to study the behaviour ofN1(Qn(w))whenN2(Qn(w))

≤ cnη. Because of the comparison of norms on spaces of finite dimension and be-
cause N2 is a norm, we have:

N1(Qn(w)) ≤ knη when N2(Qn(w)) ≤ cnη.

Consequently, we obtain:

EN2
η

(
g

[
1 + ε

ε
N1(Qn(w))

])
≤ g

(
1 + ε

ε
knη

)
.

For the first term, using a subsequence, we obtain:

EN2
η

(
g
[
(1 + ε)

∣∣Ñ1 −N1 (Qn (w))
∣∣])

≤ lim inf
k→+∞

EN2
η

(
g
[
(1 + ε)

∣∣N1
(
Qnk (w)

)−N1 (Qn (w))
∣∣])

≤ lim inf
k→+∞

EN2
η

(
g
[
(1 + ε)

∣∣N1
(
Qnk (w)−Qn (w)

)∣∣]) (3.1)

Moreover ([13], corollary 5.2 and theorem 5):

N1 (Qm (w)−Qn (w)) →
n,m→∞ 0 in probability,

∀x > 0, P (N1 (Qm (w)−Qn (w)) > x) ≤ P
(
Ñ1 > x

)
.

So, we obtain:

∀x > 0, P (g [(1 + ε)N1 (Qm (w)−Qn (w))] > x) ≤ P
(
g
[
(1 + ε) Ñ1

]
> x
)

⇒ sup
m,n

E
(
g [(1 + ε)N1 (Qm (w)−Qn (w))] 1g[(1+ε)N1(Qm(w)−Qn(w))]>a

)

≤ E
(
g
[
(1 + ε) Ñ1

]
1g[(1+ε)Ñ1]>a

)
.

Consequently (because E
(
g
[
(1 + ε) Ñ1

])
< +∞):

g [(1 + ε)N1 (Qm (w)−Qn (w))] →
m,n→+∞ 0 in L1.

Using theorem 3.4 and the fact thatE (g [(1 + ε)N1 (Qm (w)−Qn (w))]) < +∞,
we write:
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EN2
η (g [(1 + ε)N1 (Qm (w)−Qn (w))])

≤ E (g [(1 + ε)N1 (Qm (w)−Qn (w))]) . (3.2)

⇒ lim inf
n,k→∞

sup
η>0

EN2
η

(
g
[
(1 + ε)N1

(
Qnk (w)−Qn (w)

)]) = 0 .

�
Remark 6. It is an open question whether it is essential for N1 to be a measurable
seminorm or not.

Example 3.9. Let f ∈ H and define N1 (h) = |〈f, h〉|, N1 is a measurable semi-
norm and Ñ1 = ∣∣f̃ ∣∣. Furthermore, since f̃ is a Gaussian variable:

∀ε > 0, E
(
exp
(
(1 + ε) Ñ1

))
< +∞.

So, we obtain:

lim
η→0

EN2
η

(
exp
(∣∣f̃ ∣∣)) = 1.

This result implies a result of Borell [4] which is:

lim
η→0

EN2
η

(
exp
(
f̃
)) = 1.

For similar results and improvements on norms N2 which are not necessarily mea-
surable norms but which verify other hypothesis, see [3], [31].

Corollary 3.10. For each and every measurable seminormN1 and normN2 onH,

∀p ≥ 1, lim
η→0

EN2
η

(
Ñ1

p
)

= 0

and consequently:

∀ε > 0, lim
η→0

PN2
η

(
Ñ1 > ε

) = 0.

Proof. Using Fernique’s theorem, we see that E
(
Ñ1

p
)
< +∞. �

Remark 7. We cannot use theorem 3.8 to obtain limη→0 E
N2
η

(
exp
(
Ñ1

2
))

= 1

because E
(

exp
(
Ñ1

2
))

may be infinite. We shall address this problem later.

Now, we are able to give two corollaries of corollary 3.10 which allow us to
prove the existence of approximate limits for some variables.

Corollary 3.11. LetN1, . . . , Nr be measurable seminorms andN be a measurable
norm. Leth ∈ H andf : R

r → R be a continuous function at (N1 (h), . . ., Nr (h)) .

Thenf
(
Ñ1,. . .,Ñr

)
possesses anL0

N approximate limit athwhich isf (N1 (h) ,. . .,

Nr (h)).
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Proof. Using Cameron-Martin’s theorem, we write:

PN
η,h

(| f (Ñ1, . . . , Ñr
)− f (N1 (h) , . . . , Nr (h)) |> ε

)

=
EN
η

(
exp
(−h̃) 1|f (Ñ1,... ,Ñr )(·+h)−f (N1(h),... ,Nr (h))|>ε

)

E
N2
η

(
exp
(−h̃))

≤ EN
η

(
exp
(−2h̃

))1/2
EN
η

(
exp
(−h̃))

√
PN
η

(|f (Ñ1, . . . , Ñr
)
(· + h)−f (N1 (h) , . . . , Nr (h)) |> ε

)
.

Furthermore, there exists α such that:

r∑
i=1

| Ñi (· + h)−Ni (h) |

≤ α ⇒| f (Ñ1, . . . , Ñr
)
(· + h)− f (N1 (h) , . . . , Nr (h)) |≤ ε.

Moreover, with an approximating sequence of projectionsQn such thatQn(h) = h,
we obtain:

∣∣Ñi (w + h)−Ni(h)
∣∣ = lim

k→∞
∣∣Ni (Qnk(w + h)

)−Ni(h)
∣∣ a.s.

= lim
k→∞

∣∣Ni (Qnk(w)+ h
)−Ni(h)

∣∣
≤ lim
k→∞

Ni
(
Qnk(w)

)

≤ Ñi(w) a.s. .

Consequently,

PNη,h
(| f (Ñ1, . . . , Ñr

)
(· + h)− f (N1 (h) , . . . , Nr (h)) |> ε

)

≤ ENη
(
exp
(−2h̃

))1/2
ENη
(
exp
(−h̃))

√√√√ r∑
i=1

PNη

(
Ñi >

α

r

)
.

Using a result of Borell [4] (see example 3.9),we have:

lim
η→0

EN2
η

(
exp
(−h̃)) = 1 and lim

η→0
EN2
η

(
exp
(−2h̃

)) = 1.

We conclude with corollary 3.10. �
The following result shows the usefulness of theorem 3.4 to obtain existence of

approximate limits.

Corollary 3.12. LetN1, . . . , Nr be measurable seminorms andN be a measurable
norm. Leth ∈ H andf : R

r → R be a continuous function at (N1 (h) ,. . ., Nr (h)) .

If there exists p > 1 such that:

sup
η∈]0,1]

ENη

(∣∣f (Ñ1 (· + h) , . . . , Ñr (· + h)
)∣∣p) < +∞
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then, for every q ∈ [1, p[, f
(
Ñ1, . . . , Ñr

)
possesses an LqN approximate limit at

h which is f (N1 (h) , . . . , Nr (h)) .

In particular:

lim
η→0

ENη,h
(
f
(
Ñ1, . . . , Ñr

)) = f (N1 (h) , . . . , Nr (h)) .

Proof. For ε > 0, there exists α such that
∑r
i=1 |xi −Ni(h)| ≤ α ⇒

|f (x)− f (N1 (h) , . . . , Nr (h))| ≤ ε. For q ∈ [1, p[ :

ENη,h
(| f (Ñ1, . . . , Ñr

)− f (N1 (h) , . . . , Nr (h)) |q)1/q

= ENη
(
exp
(−h̃) | f (Ñ1, . . . , Ñr

)
(· + h)− f (N1 (h) , . . . , Nr (h)) |q)1/q

ENη
(
exp
(−h̃))1/q

≤ ε +

ENη
(
exp
(−h̃) |f (Ñ1, . . . , Ñr

)
(· + h)−f (N1 (h) , . . . , Nr (h)) |q

1∑r
i=1|Ñi (·+h)−Ni(h)|>α

)1/q

ENη
(
exp
(−h̃))1/q .

The second term is smaller than:

ENη

(
exp
(
− 2p
p−q h̃

)) p−q
2pq

ENη
(| f (Ñ1, . . . , Ñr

)
(· + h)

−f (N1 (h) , . . . , Nr (h)) |p)1/p
ENη
(
exp
(−h̃))1/q

×
(

r∑
i=1

PNη

(
| Ñi (· + h)−Ni (h) |> α

r

)) p−q
2pq

and

PNη

(
| Ñi (· + h)−Ni (h) |> α

r

)
≤ PNη

(
Ñi >

α

r

)
.

We conclude as in the previous corollary. �

Remark 8. We could deduce from this corollary a theorem like theorem 3.8 where
the hypothesis

∃ε > 0, E
(∣∣g ((1 + ε) Ñ1

)∣∣) < +∞

is replaced by

∃p > 1, E
(∣∣g (Ñ1

)∣∣p) < +∞ .

To do this, combine corollary 3.12 (at h = 0 and r = 1) with theorem 3.4 (at
h = 0).
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Corollary 3.13. LetN1 be a measurable seminorm andN2 be a measurable norm
on H . Then:

∀p ≥ 1 , ∀h ∈ H , Ñ1 possesses an LpN2
− approximate limit at h and

Ñ1(h) = N1(h).

Proof. We know from theorem 3.4 that, for every p ≥ 1:

sup
η>0

EN2
η

(∣∣Ñ1 (· + h)
∣∣p) ≤ E

(∣∣Ñ1 (· + h)
∣∣p) ≤ E

((
Ñ1 +N1(h)

)p)
< +∞.

�

3.3. Approximate limits for some particular functions

The following theorems are essentially useful for functions which can be com-
pared with the function x �→ exp x2. More precisely, we will consider a function
g : R+ → R such that

for every measurable seminorm N , ∃α > 0, E
(∣∣g (αÑ)∣∣) < +∞. (H)

Theorem 3.14. Let g : R+ → R be an increasing and convex function such that
(H) is verified. For every measurable seminormN1 and normN2 onH, there exist
two positive constants c1 and c2 such that:

∀η > 0, EN2
η

(
g
(
Ñ1
)) ≤ c1 + 1

2
g (c2η) .

Remark 9. Thus, althoughE
(
eÑ1

2)
may be infinite, we obtainEN2

η

(
eÑ1

2)
< +∞

(using Fernique’s theorem).

Proof. Let (ξi) be the complete orthonormal system given in lemma 3.7 for N2.

Here, denoteRn(h) =∑n
i=1 < ξi, h > ξi . In the proof of lemma 1 in [14], it is

possible to choose for Pn a subsequence of Rn (in fact, to use this lemma, we have
to assume that N1 is a norm ; actually, this hypothesis is unnecessary, see lemma
4.4 of [21]). With this lemma, we see that the following quantity is a measurable
seminorm on H :

N(h) =
∞∑
n=1

2nN1(Qnh) where Qn = Pn+1 − Pn and Q1 = P1.

Moreover: Ñ(w) =∑∞
n=1 2nN1(Qnw).

For Ñ, there exists α > 0 such that E
(∣∣g (αÑ)∣∣) < ∞. Choose n such that

2−n ≤ α/2.
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If m > n:

N1(Pmw) ≤
m−1∑
i=n

N1(Qiw)+N1(Pnw)

≤ 1

2n

m−1∑
i=n

2iN1(Qiw)+N1(Pnw)

≤ 1

2n
Ñ +N1(Pnw)

≤ α

2
Ñ +N1(Pnw).

If Ñ2 < η then N2(Pnw) ≤ cnÑ2 ≤ cnη. So, because of the comparison of
norms on spaces of finite dimension, we have: N1(Pnw) ≤ knη. Consequently:
Ñ1 ≤ α

2 Ñ + knη.We deduce :

EN2
η

(
g
(
Ñ1
)) ≤ 1

2
EN2
η

(
g
(
αÑ
))+ 1

2
g (2knη) .

Then, we apply theorem 3.4 to g (αx). �
Theorem 3.15. Let p > 1. Let g : R+ → R be a continuous function and assume
that there exists an increasing and convex function f : R+ → R+ such that f
verifies (H) and |g (x)|p ≤ f (x) for all x. Then, for every measurable seminorm
N1 and norm N2 on H :

∀h ∈ H, ∀q ∈ [1, p[ , g
(
Ñ1
)

possesses an LqN2
approximate limit at h

which is g(N1(h)).
In particular,

lim
η→0

E
N2
η,h

(
g
(
Ñ1
)) = g (N1 (h)) .

Proof. f (2x) is an increasing and convex function such that (H) is verified. So,
we obtain with theorem 3.14:

sup
η∈]0,1]

EN2
η

(
f (2Ñ1)

)
< +∞.

Moreover:

f
(
Ñ1 (· + h)

) ≤ f
(
Ñ1 +N1 (h)

) ≤ 1

2

(
f (2Ñ1)+ f (2N1 (h))

)
.

⇒ sup
η∈]0,1]

EN2
η

(
f (Ñ1 (· + h))

)
< +∞.

We conclude with corollary 3.12 applied to g. �
Example 3.16. We can apply the previous result to g(x) = exp(axβ)with a ∈ R

and β ∈ [0, 2] because:
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|g (x)|p ≤ exp
(
p |a| xβ) ≤ exp (p |a|)+ exp

(
p |a| x2

)
.

So, ∀p ≥ 1, exp
(
aÑβ
)

possesses an L
p
N2

−approximate limit at h and

exp
(
aÑβ
)
(h) = exp

(
aN (h)β

)
.

In particular, we obtain theorem 1.3.

3.4. Consequences for Wiener chaos

In this section, we assume thatH = L2 (T ,A,m)where (T ,A,m) is an atomeless
separable σ -finite measurable space. It is well-known that the nth Wiener chaos
is isomorphic to H�n, the Hilbert space of symmetric n-tensors over H (see for
example [25]).

For f ∈ H�n, denote by δn(f ) the n-tuple Wiener integral of f (for h ∈ H , we
have δ (h) = h̃). We will use the notion of k-th limiting trace of f , denote by

−→
T rkf(∈ H�n−2k

)
, introduced by Johnson and Kallianpur [20]. There are many defini-

tions of traces (see for example [20]). Here, we choose this particular definition
because of the equivalence between the existence of

−→
T rkf for 0 ≤ k ≤ [n/2] and

the existence of a limit in L2 for
〈
f,
(
Qpw

)⊗n〉 where
(
Qp

)
is any approximating

sequence of projections (theorem 10.2 of [20]). More precisely, let us recall the
definition of Johnson and Kallianpur of a L2 lifting associated to an f in H�n.

Definition 3.17. Let f belong to H�n. The associated n-form � (f ) given by
� (f ) (h) = 〈f, h⊗n〉, for h inH , possesses a L2 lifting if for every approximating
sequence of projections

(
Qp

)
, � (f )

(
Qpw

)
is a Cauchy sequence in L2. In that

case, there exists a random variable X in L2 such that, for every approximating
sequence of projections

(
Qp

)
,� (f )

(
Qpw

)
converges toX in L2.X is called the

L2 lifting of � (f ) .

The main theorem of this section is the following.

Theorem 3.18. Let f ∈ H�2n such that � (f ) possesses a L2 lifting and such
that

∀ (h1, . . . , hn) ∈ Hn,
〈
f, h⊗2

1 ⊗ · · · ⊗ h⊗2
n

〉
≥ 0. (3.3)

Then there exist measurable seminorms N1, . . . , Nr on H and there exist real
numbers α1, . . . , αr+1 and even natural numbers k1, . . . , kr such that:

δ2n(f ) =
r∑
i=1

αiÑi
ki + αr+1

(max ki = 2n and |{i, ki = 2n}| = 1 = |{i, ki = 2n− 2}|).
Furthermore, under condition (3.3), the existence of a L2 lifting for � (f ) is

equivalent to:

sup
(ei ) CONS of H

∞∑
i1,... ,in=1

∣∣∣
〈
f, e⊗2

i1
⊗ · · · ⊗ e⊗2

in

〉∣∣∣ < ∞. (3.4)
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Remark 10. Johnson and Kallianpur use the notion of L2 lifting to prove the Hu-
Meyer formula ([18]) in the context of abstract Wiener spaces. The lifting of� (f )
corresponds to the Stratonovitch integral of f even if, on abstract Wiener space, it is
not really an integral. As we will see later in the proof, the formula in theorem 3.18
is simply the statement that the inverse Hu-Meyer formula is valid (in the standard
Wiener space, this is the formula which gives an expression of δ2n(f ) in terms of
the Stratonovitch integrals of the iterated traces of f ).

We begin with a lemma. Let � denote the set of orthogonal projections of H
of finite dimension.

Lemma 3.19. Let f ∈ H�2n such that (3.4) is verified and such that:

∀h ∈ H,
〈
f, h⊗2n

〉
≥ 0

then

∀ε > 0, ∃Q0 ∈ �,∀Q ∈ �, Q ⊥ Q0 ⇒ P
(〈
f, (Qw)⊗2n

〉
> ε
)
< ε.

Proof. Define

l = sup
(ei ) CONS of H

∞∑
i1,... ,in=1

∣∣∣
〈
f, e⊗2

i1
⊗ · · · ⊗ e⊗2

in

〉∣∣∣ .

For ε > 0, there exist a CONS (ei) of H and a natural number R such that

l −
R∑

i1,... ,in=1

∣∣∣
〈
f, e⊗2

i1
⊗ · · · ⊗ e⊗2

in

〉∣∣∣ < ε2.

Denote byQ0 the orthogonal projection on span (e1, . . . , eR). LetQ ∈ � such that
Q ⊥ Q0: it is possible to find a CONS (ui) of H such that u1 = e1, . . . , uR = eR
and (uR+1, . . . , uR′) is an orthonormal basis of QH . Define:

Q⊗2nf =
R′∑

i1,... ,i2n=R+1

〈
f, ui1 ⊗ · · · ⊗ ui2n

〉
ui1 ⊗ · · · ⊗ ui2n .

−→
T rk
(
Q⊗2nf

)
exists for every k (proposition 3.2 of [20]) and we can apply lemma

4.3 of [20] to obtain:

〈
f, (Qw)⊗2n

〉
=

n∑
k=0

(2n)!

2k (2n− 2k)!k!
δ2n−2k

(−→
T rk
(
Q⊗2nf

))
.

We deduce:

E
(〈
f, (Qw)⊗2n

〉)
= (2n)!

2nn!
−→
T rn
(
Q⊗2nf

)
.

⇒ P
(〈
f, (Qw)⊗2n

〉
> ε
)

≤ 1

ε

(2n)!

2nn!
−→
T rn
(
Q⊗2nf

)
.
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Furthermore (propositions 3.1 and 3.2 of [20]):

−→
T rn
(
Q⊗2nf

)
=

R′∑
i1,... ,in=R+1

〈
f, u⊗2

i1
⊗ · · · ⊗ u⊗2

in

〉

≤
R′∑

i1,... ,in=R+1

∣∣∣
〈
f, u⊗2

i1
⊗ · · · ⊗ u⊗2

in

〉∣∣∣

≤ l −
R∑

i1,... ,in=1

∣∣∣
〈
f, e⊗2

i1
⊗ · · · ⊗ e⊗2

in

〉∣∣∣
≤ ε2.

�
Corollary 3.20. Let f ∈ H�2nsuch that (3.4) is verified and such that:

∀ (h1, h2) ∈ H 2,
〈
f, h⊗2

1 ⊗ h⊗2n−2
2

〉
≥ 0. (3.5)

Then Nf (h) = 〈f, h⊗2n
〉1/2n

is a measurable seminorm on H .

Proof. We know from lemma 3.3 of [13] that (3.5) is equivalent to the fact that
Nf is a seminorm. Then, with the original definition of Gross for measurable se-
minorm ([13] ), we see, by using the previous lemma, that Nf is a measurable
seminorm. �
Remark 11. For f ∈ H�2n, define an operator K(f ) from H�n into H�n by:

∀ (u, v) ∈ H�n ×H�n, 〈K(f )u, v〉 = 〈f, u⊗ v〉.

If we assume that K(f ) is of trace class, we obtain:

sup
(φi ) CONS of H�n

∞∑
i=1

∣∣∣
〈
f, φ⊗2

i

〉∣∣∣ < ∞

⇒ sup
(ei ) CONS of H

∞∑
i1,... ,in=1

∣∣∣
〈
f, e⊗2

i1
⊗ · · · ⊗ e⊗2

in

〉∣∣∣ < ∞.

Consequently, we see that corollary 3.20 generalizes theorem 3 of [13] where the
result is proved when K(f ) is of trace class.

Remark 12. Iff ∈ H�2n+1, it is possible to show thath �→ 〈
f, h⊗2n+1

〉
is the (2n+

1)th power of a seminorm if and only if, for all h1, h2 inH ,
〈
f, h⊗2

1 ⊗ h⊗2n−1
2

〉
≥ 0.

But in that case, it implies ∀h ∈ H, 〈f, h⊗2n+1
〉 = 0. So, we obtain, for any approx-

imating sequence of projections (Qk) : Ñf
2n+1

:= limk→∞
〈
f, (Qkw)

⊗2n+1〉 = 0.
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Corollary 3.21. Let f ∈ H�2n such that (3.4) and (3.5) are verified then
−→
T rk (f )

exists for every k (� (f ) possesses a L2 lifting) and

Ñf
2n =

n∑
k=0

(2n)!

2k (2n− 2k)!k!
δ2n−2k

(−→
T rk (f )

)
.

Proof. For every approximating sequence of projections
(
Qp

)
, Nf

(
Qpw

)
con-

verges in probability to Ñf (corollary 3.20). Therefore, Nf
(
Qpw

)2n converges in

probability to Ñf
2n

. Furthermore, we know from theorem 5 of [13] that:

∀ε > 0, P
(
Nf
(
Qpw

)
> ε
) ≤ P

(
Ñf > ε

)

and from Fernique’s theorem thatE
(
Ñf

4n
)
< ∞. So, we obtain thatNf

(
Qpw

)2n
converges to Ñf

2n
in L2. That means that� (f ) = N2n

f possesses a L2 lifting and

this lifting is Ñf
2n

. Now, the corollary is nothing else but theorem 10.2 of [20]. �
Proof of theorem 3.18. Firstly, for f ∈ H�2n, we will prove that, under condition
(3.3), we have:

(3.4) ⇔ � (f ) possesses a L2 lifting.

For ⇒, this is given by corollary 3.21.
For ⇐, if we assume that� (f ) possesses a L2 lifting, then, for every k,

−→
T rk (f )

exists (theorem 10.2 in [20]). In that case,
−→
T rn (f ) is given by the following formula

(formula 3.20 in [20]), for every CONS (ei) of H :

−→
T rn (f ) =

∞∑
i1,... ,in=1

〈
f, e⊗2

i1
⊗ · · · ⊗ e⊗2

in

〉
.

Using condition (3.3), we see that:

sup
(ei ) CONS of H

∞∑
i1,... ,in=1

∣∣∣
〈
f, e⊗2

i1
⊗ · · · ⊗ e⊗2

in

〉∣∣∣ < ∞.

Now, let us prove theorem 3.18. For n = 1, if f ∈ H�2 verifies (3.3) and (3.4),
we know from corollary 3.21 that:

Ñf
2 = δ2(f )+ −→

T rf (
−→
T rf ∈ R).

Now, assume that the theorem is true for 1 ≤ k ≤ n − 1. With corollary 3.21, we
write, for f ∈ H�2n such that (3.3) and (3.4) are verified:

δ2n (f ) = Ñf
2n −

n∑
k=1

(2n)!

2k (2n− 2k)!k!
δ2n−2k

(−→
T rk (f )

)
.
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To obtain the result, it is sufficient to prove that
−→
T rk (f )

(∈ H�2n−2k
)

verifies (3.3)

and (3.4). For this, we use the expression of
−→
T rk (f ) given by formula (3.20) in

[20]. For every CONS (ei) of H ,

−→
T rk (f ) =

∞∑
i1,... ,i2n−2k=1


 ∞∑
j1,... ,jk=1

〈
f, e⊗2

j1
⊗ · · · ⊗ e⊗2

jk
⊗ ei1 ⊗ · · · ⊗ ei2n−2k

〉
× ei1 ⊗ · · · ⊗ ei2n−2k .

With this formula, (3.4) is obvious for
−→
T rk (f ) . Let h1, . . . , hn−k belong to h. We

choose a CONS (ei) of H such that span (h1, . . . , hn−k) ⊂ span (e1, . . . , en−k),
then: 〈−→

T rk (f ) , h⊗2
1 ⊗ · · · ⊗ h⊗2

n−k
〉

=
∞∑

j1,... ,jk=1

〈
f, e⊗2

j1
⊗ · · · ⊗ e⊗2

jk
⊗ h⊗2

1 ⊗ · · · ⊗ h⊗2
n−k
〉
≥ 0.

So, (3.3) is verified for
−→
T rk (f ) . �

Remark 13. For a given f , it is possible to compute α1, . . . , αr+1, k1, . . . , kr by
using corollary 3.21 but values of those numbers are not easy to write because in

general
−→
T rk
(−→
T rq (f )

)
�= −→
T rk+q (f ) (see [20]). However, it is an open question

whether the assumptions imposed onf in theorem 3.18 imply that
−→
T rk
(−→
T rq (f )

)
=

−→
T rk+q (f ) or not.

Remark 14. Let f ∈ H�2(n = 1) and define K(f ) as in remark 11, then:

(3.4) ⇔ K(f ) is of trace class.

In that case, we know there exists a CONS (ei) of H such that

f =
∞∑
i=1

λiei ⊗ ei with
∞∑
i=1

|λi | < ∞.

Define f1 = ∑∞
i=1,λi>0 λiei ⊗ ei and f2 = −∑∞

i=1,λi<0 λiei ⊗ ei . For every i,
fi ∈ H�2 and K(fi) is of trace class. Furthermore:

∀h ∈ H,
〈
fi, h

⊗2
〉
≥ 0.

So, if f verifies (3.4) then fi verifies (3.3) and (3.4). Consequently, since δ2 (f ) =
δ2 (f1) − δ2 (f2), we see, when n = 1, that condition (3.4) is sufficient to obtain
the conclusion in theorem 3.18. The question is open for n ≥ 2.

Now, we can apply results of sections 3.2 and 3.3 to Wiener chaos. For example,
theorem 3.18 with corollary 3.12 allows us to obtain:
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Corollary 3.22. Let f ∈ H�2nsuch that (3.3) and (3.4) are verified, then, for every
measurable norm N , ∀p ≥ 1 , ∀h ∈ H , δ2n (f ) possesses an LpN−approximate
limit at h which is, with the notations of theorem 3.18,

∑r
i=1 αiNi (h)

ki + αr+1
(this limit is independent of the choice of N ).

Concerning the existence of a limit with the exponential function, we can use
theorem 3.15 (example 3.16) and corollary 3.20 to obtain:

Corollary 3.23. Let f ∈ H�2nsuch that (3.4) and (3.5) are verified, then, for

every measurable norm N , ∀h ∈ H,∀p ≥ 1,∀a ∈ R,∀β ∈ [0, 2] , exp
(
aÑf

β
)

possesses an LpN approximate limit at h which is exp
(
aNf (h)

β
)
. In particular, we

have:

lim
η→0

ENη,h

(
exp
(
aÑf

β
))

= exp
(
aNf (h)

β
)
. (3.6)

Example 3.24. Let g ∈ H and define f = g ⊗ g . (3.4) and (3.5) are verified.
Moreover, Ñf

2 = δ(g)2. In that case, we obtain (β = 1, a = 1 and h = 0 in (3.6)):

lim
η→0

ENη (exp (|δ(g)|)) = 1,

which is once again example 3.9.
It is not possible to generalize this method for g ∈ H�n (with n ≥ 2) without

an additional hypothesis because in general, f = g
∧⊗ g does not verify (3.4) and

(3.5) (where g
∧⊗ g is the projection on H�2n of g ⊗ g).

Now, we will obtain a similar result for δ2n (f ) under conditions (3.3) and (3.4).

Theorem 3.25. Let f ∈ H�2n and assume that f verifies (3.3) and (3.4). With
notations of theorem 3.18, for every measurable normN , ∀h ∈ H,∀p≥1,∀ (a, b)
∈ R

2,∀β ∈ [0, 2] , exp
(
a
∣∣δ2n (f )+ b

∣∣β/2n) possesses an LpN approximate limit

at h which is exp
(
a
∣∣∑r

i=1 αiNi (h)
ki + αr+1 + b

∣∣β/2n). In particular, we have:

lim
η→0

EN
η,h

(
exp
(
a
∣∣δ2n (f )+ b

∣∣β/2n)) = exp


a
∣∣∣∣∣
r∑
i=1

αiNi (h)
ki + αr+1 + b

∣∣∣∣∣
β/2n

 . (3.7)

Proof of the theorem. We will use corollary 3.12. It is sufficient to prove:

sup
η∈]0,1]

ENη


exp


pa

∣∣∣∣∣
r∑
i=1

αiÑi (· + h)ki + αr+1 + b

∣∣∣∣∣
β/2n



 < +∞.

Because ki
β
2n ∈ [0, 2], we have:

ENη


exp


pa

∣∣∣∣∣
r∑
i=1

αiÑi (· + h)ki + αr+1 + b

∣∣∣∣∣
β/2n





≤ ENη

(
exp

(
r∑
i=1

p |a|αβ/2ni Ñi (· + h)kiβ/2n + p |a| (αr+1 + b)β/2n

))
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and

Ñi (· + h)kiβ/2n ≤ (Ñi +Ni (h)
)kiβ/2n ≤ 1 + 2

(
Ñi

2 +Ni (h)
2
)
.

Consequently,

ENη


exp


pa

∣∣∣∣∣
r∑
i=1

αiÑi (· + h)ki + αr+1 + b

∣∣∣∣∣
β/2n





≤ cENη

(
exp

(
r∑
i=1

aiÑi
2

))

≤ c

r∏
i=1

ENη

(
exp
(
raiÑi

2
)) 1

r

⇒ sup
η∈]0,1]

ENη


exp


pa

∣∣∣∣∣
r∑
i=1

αiÑi (· + h)ki + αr+1 + b

∣∣∣∣∣
β/2n





< +∞ (theorem 3.14).

�
Remark 15. If n = 1, theorem 3.25 remains true under the only condition (3.4),
see remark 14.

Example 3.26. Let f ∈ H�2 such that (3.4) is verified, we have: δ2 (f ) = Ñf
2 −−→

T rf . If we choose in (3.7) β = 2, a = 1, b = −→
T rf, h = 0 and for N a quadratic

norm (that is a norm defined by N(h) = (〈ζ, h⊗2
〉)1/2

, where ζ ∈ H�2, K(ζ ) is
of trace class, injective and positive), we obtain:

lim
η→0

ENη

(
exp
(∣∣∣δ2 (f )+ −→

T rf

∣∣∣
))

= 1.

So, we recover a result of Mayer-Wolf and Zeitouni ([22], lemma 2.5) which is:

lim
η→0

ENη

(
exp
(
δ2 (f )+ −→

T rf
))

= 1.

If we choose β = 2, a = 1, b = −→
T rf, h = 0 and for N a general measurable

norm, we recover a result of [16] (theorem 8).
In those papers, the result is obtained, for the first one, with a F.K.G. inequality

and for the second one, with a particular case of the Gaussian correlation conjecture.
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