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Abstract. This paper is devoted to the problem of estimating functionals of type µ(f ) =∫
f dµ from observations drawn from a positive recurrent atomic Markov chainX = (Xn)n∈N

with stationary distribution µ. The properties of different estimators are studied. Beyond an
accurate estimation of their bias, the estimation of their asymptotic variance is considered.
We also show that the results of Malinovskii (1987) on the validity of the formal Edge-
worth expansion for sample mean statistics of type Tn = n−1

∑n

i=1 f (Xi) extend to their
studentized versions, normalized by the asymptotic variance estimates we consider.
Résumé. Cet article est consacré au problème de l’estimation d’une fonctionnelle linéaire
µ(f ) = ∫

f dµ à partir de l’observation d’une chaı̂ne de Markov récurrente positive
X = (Xn)n∈N possédant un atome accessible et de distribution stationnaire µ. Les pro-
priétés de plusieurs estimateurs sont étudiées. Au delà d’une estimation précise de leurs biais
respectifs, nous nous intéressons également à l’estimation de la variance asymptotique de
ces estimateurs. Nous montrons aussi que les résultats de Malinovskii (1987) concernant le
développement d’Edgeworth de l’estimateur Tn = n−1

∑n

i=1 f (Xi) s’étendent à la version
studentisée, lorsqu’il est normalisé par l’estimateur de la variance asymptotique que nous
proposons.

1. Introduction

In Malinovskii (1987) the validity of the Edgeworth expansion has been established
for a sample mean statistic Tn = n−1∑n

i=1 f (Xi) of a Harris recurrent Markov
chain X under very general conditions. The main limitation for exploiting these
asymptotic results is of practical nature. As a matter of fact, a practical use of these
results, for constructing asymptotic confidence intervals for instance, requires the
knowledge of the asymptotic variance, which is used to standardize the sample
mean. Therefore, the asymptotic variance is generally unknown in practice and
must be estimated. In the setting of Markov chains with a known accessible atom
(which includes the whole case of Markov chains with a countable state space, as
well as numerous specific chains widely used in queuing/storage models) we study
in the present paper a specific estimator of the asymptotic variance and show the
validity of the Edgeworth expansion for studentized sample mean statistics, when
normalized by this estimator. The construction of the estimator relies on a practical
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use of the so-called regenerative method, which consists, in the case when the chain
possesses an accessible atom, in dividing the trajectory of the chain into i.i.d. blocks
of observations (namely, regeneration cycles) corresponding to the successive vis-
its to the atom. As in Malinovskii (1987), the proof of the asymptotic results is
also based on the regenerative technique. Beyond the legitimate investigation of
the normal approximation for studentized statistics, it is noteworthy that the argu-
ments put forward in this paper are crucial to show the gain in accuracy provided by
specific regeneration-based block bootstrap methods for Markov chains (see Datta
and McCormick (1993a) and (2003a, 2003b)).

This paper is organized as follows. In section 2, notations, as well as the assump-
tions needed in the next sections, are set up. In section 3, we first consider the prob-
lem of estimating functionals of typeµ(f ) = ∫

f dµ from a realizationX1, ..., Xn
of an atomic Markov chainX with stationary probability measure µ. In the nonsta-
tionary case, we give an accurate estimation for the bias of estimators constructed
by suitable truncations of the sample mean statistic µ̂n(f ) = n−1∑n

i=1 f (Xi).

In the case when the chain possesses a known Harris recurrent atom, an estimate
of the asymptotic variance of the sample mean statistic is exhibited in section 4,
and an asymptotic bound of its bias is also given. In section 5 a specific way of
studentization of the sample mean statistic based on this estimate (which we call
regeneration-based studentization) is considered. The validity of the Edgeworth
expansion is shown for this studentized version of the sample mean. Proofs are
given in section 6.

2. Assumptions and notation

Throughout this paper, we consider a time-homogeneous Harris recurrent Markov
chainX = (Xn)n∈N valued in a countably generated measurable space (E, E)with
transition probability �(x, dy) and stationary distribution µ(dy) (refer to Revuz
(1984) or Chung (1967) for the basic concepts of the Markov chain theory). For
any probability distribution ν on (E, E) (respectively, for any x ∈ E) we denote
by Pν (resp., Px) the probability on the underlying space such that X0 ∼ ν, (resp.,
X0 = x) and by Eν(.) (resp., Ex(.)) the Pν-expectation (resp., the Px-expecta-
tion).

For any subset C ∈ E , we denote the successive return times to C by

τC = τC(1) = inf{n � 1, Xn ∈ C},
τC(j + 1) = inf{n � 1 + τC(j), Xn ∈ C}, for j � 0.

The initial distribution of the chain will be denoted by ν and 1A will denote the
indicator function of the event A.

In the present paper we assume that the chain X possesses a known accessible
atom A, that is to say a subset A ∈ E such that for all x, y in A, �(x, .) = �(y, .)

andµ (A) > 0. We denote byPA (respectively,EA(.)) the probability on the under-
lying space conditionally toX0 ∈ A (resp., the PA-expectation). In this setting, the
stationary distribution µ may be represented as an occupation measure. By virtue
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of Kac’s theorem (see Theorem 10.2.2 in Meyn and Tweedie (1996)), we have

µ(B) = EA(τA)
−1EA(

τA∑

i=1

1{Xi∈B}), for any B ∈ E .

The main step in the application of the regenerative method for investigating the
asymptotic properties of such an atomic chain consists in dividing the sample paths
of the chain into “blocks” corresponding to consecutive visits to the atom:

B1 = (X1+τA(1), ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ... .

The strong Markov property implies that the blocks Bj are i.i.d. random variables
valued in the torus T = ∪∞

n=1E
n.

Beyond the case of a Markov chain with a countable state space, for which any
recurrent state is an atom, it is noteworthy that many specific atomic Markov chains
are widely used in the applications, especially in the area of operations research for
modeling storage and queuing systems (refer to Asmussen (1987) for an exhaustive
overview). We give below an example of such a Markov chain, which is a refinement
of the classical GI/G/1 queuing model (see Browne and Sigman (1992)).

Example 2.1. (Work-modulated single server queue) Consider a general single
server queuing model, evolving through the random arrival customers and the ser-
vice times they bring: there is one server and customers are served in order of
arrival. Denote by (Tn)n∈N the sequence of arrival times of customers into the
service operation (by convention the first customer arrives at time T0 = 0) and
by (τn)n∈N the sequence of end of service times. Hence the nth customer arrives
at time Tn and leaves at time τn. If Wn denotes the time he has to wait before he
begins being served, we have W0 = 0 and

Wn+1 = (Wn +�τn −�Tn+1)+,

for all n ∈ N, with (x)+ = max(x, 0), �τn = τn − τn−1 and �Tn = Tn − Tn−1.
LetK(w, dx) be a transition probability kernel on R+. Assume that, conditionally
toW1, ..., Wn, the service times�τ1, ..., �τn are independent from each other and
independent from the interarrival times �T1, ..., �Tn and the distribution of �τi
is given by K(Wi, .) for 1 � i � n. Then, assuming further that (�Tn)n∈N is an
i.i.d. sequence with common distribution G, independent from W = (Wn)n∈N, the
waiting time process W is a Markov chain with transition probability � given by

�(Wn, {0}) = �(Wn, [Wn,∞[),

�(Wn, ]w, ∞[) = �(Wn, ] − ∞, Wn − w[),

for any w > 0, where � = G ∗ K̆ is the convolution product between G and
the transition kernel K̆ image of K by the mapping x �−→ −x. The study of the
stochastic stability is made easy when the atom {0} is accessible. One shows that
W is δ0-irreducible as soon as K(w, .) has infinite tail for all w � 0. In this case,
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the chain is positive recurrent if and only if there exist a test function V : R+ → [0,
∞] such that V (0) < ∞ and b > 0 such that

∫
�(x, dw)V (w)− V (x) � −1 + b1{x=0},

for any x � 0 (refer to Meyn & Tweedie (1992) for further detail).

3. On estimating the mean

Let X(n) = (X1, ..., Xn) be a realization of length n of the chain X. We consider
the problem of estimating a functional of type µ(f ) = ∫

f (x)µ(dx), where f
is a µ-integrable real valued function defined on the state space (E, E) (note that
µ(f ) = µ(A)EA(

∑τA
i=1 f (Xi)), cf section 2). We set f̃ = f −µ(f ). A simple and

natural estimator of µ(f ) is the empirical estimator µ̂n(f ) = n−1∑n
i=1 f (Xi).

By virtue of the LLN for additive functionals of a positive recurrent Markov chain
(refer to Theorem 17.1.7 in Meyn and Tweedie (1996) for instance), this estima-
tor is strongly consistent as soon as the initial distribution ν fulfills the regularity
condition

Pν(τA < ∞) = 1.

Remark 3.1. By the representation of the stationary distribution µ using the atom,
one may show that in the stationary case, this condition is always fulfilled since
Pµ(τA = k) = µ(A)PA(τA � k).

Whereas the estimator µ̂n(f ) is zero-bias when the chain is stationary, its bias
is significant in all other cases. In Malinovskii (1985) (see also Theorem 3 in
Malinovskii (1987)) an accurate evaluation of the first order term in the bias of the
sample mean µ̂n(f ) is given, when the starting distribution is not the stationary
one.

Proposition 3.1. Let f : (E, E) → R be a measurable function and ν be a prob-
ability distribution on (E, E). Let us suppose that the following “block” moment
conditions are satisfied

EA((

τA∑

i=1

|f (Xi)|)4) < ∞, EA(τ
4
A) < ∞,

Eν((

τA∑

i=1

|f (Xi)|2)) < ∞, Eν(τ
2
A) < ∞,

as well as the Cramer condition lim
t→∞|EA(exp(it

∑τA
i=1 f (Xi)))| < 1. Define

α = EA(τA), β = EA(τA

τA∑

i=1

f̃ (Xi)),

ϕν = Eν(

τA∑

i=1

f̃ (Xi)), γ = α−1EA(

τA∑

i=1

(τA − i)f̃ (Xi)).
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Then, we have as n → ∞
Eν(µ̂n(f )) = µ(f )+ (ϕν + γ − β/α)n−1 +O(n−3/2). (1)

Define also the sample mean based on the observations (eventually) collected after
the first regeneration time only by µ̃n(f ) = (n − τA)

−1∑n
i=1+τA f (Xi) with

the convention µ̃n(f ) = 0, when τA > n, as well as the sample mean based on
the observations collected between the first and last regeneration times before n
by µn(f ) = (τA(ln) − τA)

−1∑τA(ln)
i=1+τA f (Xi) with ln = ∑n

i=1 1A(Xi) and the
convention µn(f ) = 0, when ln � 1.We have, as n → ∞

Eν(µ̃n(f )) = µ(f )+ (γ − β/α)n−1 +O(n−3/2), (2)

Eν(µn(f )) = µ(f )− (β/α)n−1 +O(n−3/2). (3)

Remark 3.2. We recall that “block” moment conditions may be classically replaced
by drift criteria of Lyapounov’s type, which often appear as more tractable in
practice. One may refer to chapter 11 in Meyn & Tweedie (1996) for further details
about such conditions as well as many examples.

This result points out that, by using the data collected from to the first visit to the
atomA only, one eliminates the only quantity depending on the initial distribution ν
in the first order term of the bias (more precisely, the term ϕν is induced by the com-
ponent

∑τA
i=1 f (Xi) of the sum, while γ is induced by

∑n
i=1+τA(ln) f (Xi)). This

observation is crucial, when the matter is to approximate the sampling distribution
of such statistics by using Bootstrap procedures in a nonstationary setting. Given the
impossibility to approximate the distribution of the “first block sum”

∑τA
i=1 f (Xi)

from one single realization of the chain starting from ν, it is thus better to use the
estimators µ̃n(f ) or µn(f ) than µ̂n(f ) in practice: for these estimators, it is actu-
ally possible to implement specific Bootstrap methodologies, in order to construct
second order correct confidence intervals for instance (see Bertail & Clémençon
(2003a, 2003b)). We also emphasize that other consistent estimates may be consid-
ered, such as µ∗

n(f ) = n−1∑n
i=1+τA f (Xi), with the usual convention regarding

empty summation. But unfortunately, as an elementary calculation shows, the lat-
ter estimator does not keep the property regarding to the first order term in the
bias mentioned above in the nonstationary case. The proof of (2) and (3) goes
exactly along the same lines as the proof of (1) in Malinovskii (1985) and is thus
omitted.

4. Estimation of the asymptotic variance of the sample mean statistic

Beyond strong consistency, sample mean statistics may be shown to be asymptot-
ically normal in some cases, since it is proved that the CLT holds, under specific
moment conditions, for additive functionals of type

∑
f (Xi).

Condition 4.1. (CLT moment condition for f and ν) The Markov chain X is such
that

EA(τ
2
A) < ∞, Eν(τA) < ∞
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and

EA((

τA∑

i=1

|f (Xi)|)2) < ∞, Eν((

τA∑

i=1

|f (Xi)|)) < ∞.

Remark 4.1. Note that these conditions do not depend on the accessible atom cho-
sen.

If the Markov chainX fulfills the CLT moment condition for f and ν , then we
have the convergence in distribution under Pν (see Theorem 17.2.2 in Meyn and
Tweedie (1996) for instance)

n1/2σ−1(f )(µn(f )− µ(f )) d−→ N (0, 1) , as n → ∞,

with a normalizing constant

σ 2(f ) = µ (A)EA((

τA∑

i=1

f (Xi)− µ(f )τA)
2), (4)

for µn(f ) being any of the three estimates µ̂n(f ), µ̃n(f ) or µn(f ).

Remark 4.2. It is noteworthy that the asymptotic variance σ 2(f ) differs from the
variance of f (Xi) under the stationary distribution (except in the i.i.d. case, which
corresponds to the case when the whole state space is an atom), that is equal to
varµ(f ) = µ (A)EA(

∑τA
i=1{f (Xi)− µ(f )}2).

We now address the problem of estimating the asymptotic variance from the
observationsX1, ..., Xn.Let us consider the number of visits to the atomA between
time 0 and time n, ln = ∑n

i=0 1A(Xi), and form the ln − 1 blocks

B1 = (XτA(1)+1, ..., XτA(2)), ..., Bln−1 = (XτA(ln−1)+1, ..., XτA(ln)),

when ln > 1. We set for 1 � j � ln − 1, f (Bj ) = ∑τA(j+1)
i=1+τA(j) f (Xi). From

the expression (4) of the asymptotic variance, we propose the following estimator,
adopting the usual convention regarding to empty summation,

σ 2
n (f ) = n−1

ln−1∑

j=1

(f (Bj )− µn(f )sj )
2, (5)

where s1 = τA(2)− τA(1), ..., sln−1 = τA(ln)− τA(ln − 1) denote the lengths of
the blocks dividing the trajectory. Observe that this estimator is independent from
the observations collected before the first visit to A and after the last one before
time n. Whereas it is all the same from the estimation point of view, whether µn
is replaced by µ̂n or µ̃n in (5) and the blocks sums f (B0) = ∑τA

i=1 f (Xi) and
f (Bn,ln) = ∑n

i=1+τA(ln) f (Xi) are used in the computation of the estimate or not,
it will make much easier the calculation in the forthcoming Edgeworth expansion.
Recall that ln → ∞ a.s. and ln/n → µ(A) a.s. as n → ∞. Hence, when the
CLT moment condition is fulfilled, a straightforward application of the LLN shows
that this estimator is strongly consistent under Pν . The result below also gives an
order of magnitude of its bias. The Cramer conditions appearing (which will not
be assumed later) are maybe not necessary but make the proof easier.
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Proposition 4.2. (Strong consistency and bias) If X fulfills the CLT moment con-
dition for f and ν, then we have σ 2

n (f ) → σ 2(f ), Pν a.s., as n → ∞.

In addition, assume that the chain X fulfills the “block” moment conditions

EA((

τA∑

i=1

|f (Xi)|)6+ε) < ∞ and EA(τ
6+ε
A ) < ∞,

for some ε > 0, as well as the Cramer conditions

lim
t→∞

∣
∣
∣
∣
∣
EA(exp(it (

τA∑

i=1

f̃ (Xi)
2))

∣
∣
∣
∣
∣
< 1 and lim

t→∞

∣
∣
∣
∣
∣
EA(exp(itτA

τA∑

i=1

f̃ (Xi)))

∣
∣
∣
∣
∣
< 1.

(6)

Then, we have

Eν(σ
2
n (f )) = σ 2(f )+O(n−1), as n → ∞.

Remark 4.3. In the case of a general irreducible chain X with a transition kernel
�(x, dy) satisfying a minorization condition

∀x ∈ S, �(x, dy) � δψ(dy),

for an accessible measurable set S, a probability measure ψ and δ ∈ ]0, 1[ (note
that such a minorization condition always holds for� or an iterate when the chain is
irreducible), an atomic extension (X, Y ) of the chain may be explicitly constructed
by the Nummelin splitting technique (see Nummelin (1984)) from the parameters
(S, δ, ψ) and the transition probability�. In Bertail and Clémençon (2003b), a full
methodology based on the simulation of a sequence (X1, Y

∗
1 ), ..., (Xn, Y

∗
n ) with a

distribution approximating in some sense the one of the regenerative extension (X,
Y ) from the parameters (S, δ, �), the original observation segmentX1, ..., Xn and
an estimate of the transition kernel � based on the latter, has been developed. It
is likely that such a methodology could be applied successfully to the problem of
asymptotic variance estimation, so as to extend the statistical procedure described
above to the much more general case of positive recurrent Markov chains. This goes
beyond the scope of the present paper, but will be the subject of further research.

Remark 4.4. We mention that a precise study of n(Eν(σ 2
n (f ))− σ 2(f )), as n →

∞, could be carried out, if one first establishes a non uniform limit theorem for
U -statistics of m-lattice i.i.d. random vectors, similar to the result established in
Dubinskaite (1982) for sample mean statistics of m-lattice i.i.d. random vectors
(extensively used in Malinovskii (1985) and in our proof to derive the expansion
(1)).

We also emphasize that in a non i.i.d. setting, it is generally difficult to construct
an accurate (positive) estimator of the asymptotic variance. When no structural
assumption, except stationarity and square integrability, is made on the underlying
processX, a possible method, currently used in practice, is based on so-called block-
ing techniques. Indeed most of the estimators of σ 2(f ) that have been proposed in
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the literature (such as the Bartlett spectral density estimator, the moving-block jack-
knife/subsampling variance estimator, the overlapping or non-overlapping batch
means estimator) may be seen as variants of the basic moving-block bootstrap
estimator (see Künsch (1989)). As mentioned by several authors (see Bertail and
Politis (2001) for references,) the bias of such estimators may be very large unless
some extrapolation or non-positive kernels are used to get rid of the bias (but then,
the resulting estimate may be negative). As a matter of fact, the bias of the var-
iance may completely cancel the accuracy provided by higher order Edgeworth
expansions (but also the one of its Bootstrap approximation) in the studentized
case, given its explicit role in such expansions (see Götze and Künsch (1996)). In
our specific Markovian framework, the estimate σ 2

n (f ) is much more natural and
allows to avoid these problems. The purpose of the next section is to show that for
the particular class of positive recurrent Markov chains with an atom, we can get
an Edgeworth expansion with a rate O(n−1), which is the optimal rate in the i.i.d.
case, under rather weak assumptions (including nonstationary situations).

5. Edgeworth expansion for the studentized
sample mean statistic

According to Proposition 4.2, under the assumption that the CLT moment con-
dition is fulfilled, the sample mean statistic µ̂n(f ) (respectively µ̃n(f ), µn(f )),
when renormalized by the sequence σ 2

n (f ), is thus asymptotically pivotal. Now
we show that it admits an Edgeworth expansion. The main difficulty in establish-
ing such an expansion arises from the random character of the number of blocks,
namely, ln − 1 (note that conditioning on ln is useless, since, conditionally to ln,
the f (Bj )’s, 1 � j � ln − 1, are obviously not i.i.d.). Thus, we can not directly
apply the results on studentized Edgeworth expansions (see Hall (1987)). To derive
an Edgeworth expansion for the studentized sample mean, we will assume that spe-
cific “block” moments and Cramer conditions are fulfilled by the chain X. These
hypotheses are stated below in the same spirit as in Malinovskii (1987).

(i) (Cramer condition)

lim
t→∞

∣
∣
∣
∣
∣
EA(exp(it

τA∑

i=1

f̃ (Xi)))

∣
∣
∣
∣
∣
< 1.

(ii) (Non degenerate asymptotic variance)

σ 2(f ) > 0.

(iii) (“Block” moment conditions) For some integer s ≥ 2,

EA(τ
s
A) < ∞ and EA(

τA∑

i=1

|f (Xi)|)s < ∞.
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(iv) (“Block” moment conditions for the initial law ν)

Eν(τ
2
A) < ∞ and Eν(

τA∑

i=1

|f (Xi)|)2 < ∞.

Note that, in the case when f is bounded, the “block” moment conditions
(iii)-(iv) may be obviously replaced by some regularity conditions involving
τA only (see Clémençon (2001)). Besides, links between conditions of type
(iii) above and conditions on the rate of decay of strong mixing coefficients
of a non-cyclic chain have been studied in Bolthausen (1982).

(v) (Boundedness of the density of theN -fold convolution of the decentered block
sum square) There exists N in N

∗, such that h∗N
0 is bounded, denoting by h0

the density of the (
∑τA(j+1)
i=1+τA(j) f̃ (Xi) − α−1β)2’s.

(vi) (Boundedness of the density of theN -fold convolution of the block sum square)
There exists N in N

∗, such that h∗N
1 is bounded, denoting by h1 the density

of the (
∑τA(j+1)
i=1+τA(j) f̃ (Xi)

2)’s.
(vii) (Boundedness of the N -fold convolution of the joint density) There exists

N in N
∗, such that H ∗N is bounded, denoting by H the density of the

(
∑τA(j+1)
i=1+τA(j) f̃ (Xi)

2, s(j)
∑τA(j+1)
i=1+τA(j) f̃ (Xi))’s.

Remark 5.1. Technical conditions (v)-(vii) are satisfied in most practical situations.
Nevertheless pathological cases of density h, such that h∗N is not bounded for all
N � 1, are exhibited in Feller (1968) (see section 5, chap. XV). Such conditions, but
in a much stronger form (stipulatingN = 1) are assumed in Malinovskii (1987) (see
his Theorem 3), for studying conditional Edgeworth expansions. These conditions
derive from results of (1982, 1984a, 1984b) for studying m-lattice r.v.’s expansions,
which naturally appear in Edgeworth expansions of Markov chains. For establish-
ing conditional density expansion, (vi) is a necessary condition; it is also sufficient
under the additional assumption that the (

∑τA(j+1)
i=1+τA(j) f̃ (Xi)−α−1β)2’s satisfy the

Cramer condition (see Theorem 4 in Dubinskaite (1984a)) and cannot be avoided
with our technique of proof. Results on the validity of Edgeworth expansion form-
lattice r.v.’s up to any order may also be found in Jensen (1989) under conditions on
the joint characteristic function, that are more difficult to check in our framework.

Remark 5.2. As may be shown by a straightforward calculation, if the density of
the

∑τA(j+1)
i=1+τA(j) f̃ (Xi)’s is bounded then (v) holds for N = 2.

In what follows,µn(f ) denotes indifferently any of the estimates µ̂n(f ), µ̃n(f )
or µn(f ). We define the standardized sample mean

tn = n1/2σ−1(f )(µn(f )− µ(f )),

the studentized sample mean

t̃n = n1/2σ−1
n (f )(µn(f )− µ(f )),

and the renormalized asymptotic bias

b = lim
n→∞ n σ

−1(f )Eν(µn(f ))− µ(f ))
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which is given in Proposition 3.1, depending on whether µn(f ) is equal to µ̂n(f ),
µ̃n(f ) or µn(f ). The expansions for these estimators only differ from one another
in the bias term. We are now ready to state our main result.

Theorem 5.1. Under assumptions (i)-(v) with s = 4, the following Edgeworth
expansion is valid uniformly over R,

�n = sup
x∈R

|Pν (tn ≤ x)− E(2)n (x)| = O(n−1) as n → ∞

with

E(2)n (x) = �(x)− n−1/2 k3(f )

6
(x2 − 1)φ(x)− n−1/2bφ(x), (7)

k3(f ) = α−1(M3,A − 3β

σ(f )
), M3,A = EA((

τA∑

i=1

f̃ (Xi))
3)/σ (f )3,

where �(x) denotes the distribution function of the standard normal distribution
and φ(x) = d�(x)/dx. A similar result holds for the studentized statistic under
(i)-(v) with s = 8 + ε, for some ε > 0, we have as n → ∞,

�Sn = sup
x∈R

|Pν(n1/2σ−1
n (f )(µn(f )− µ(f )) ≤ x)− F (2)n (x)| = O(n−1 log(n)),

(8)

with F (2)n (x) = �(x)+ n−1/2 1
6k3(f )(2x2 + 1)φ(x)− n−1/2bφ(x).

Moreover under assumptions (i)-(iv) and (vii), we have

�Sn = O(n−1), as n → ∞. (9)

Besides in the particular case of µn(f ), under assumptions (i)-(iv) and (vii),
we have as n → ∞

sup
x∈R

|Pν(n1/2σ−1
n (f )(µn(f )− µ(f )) ≤ x)− F (2)n (x)| = O(n−1). (10)

Remark 5.3. Note that in the i.i.d. case we may choose A = E (so that τA =
1, α = 1) and we have then b = 0. Hence, the Edgeworth expansion of the
studentized sample mean reduces in that case to the well known form �(x) +
n−1/2 1

6k3(2x2 + 1)φ(x) with k3 = Eµ(f̃ (Xi)
3)/σ (f )3, given in Hall (1987).

Besides, under the hypothesis that the following series converge, we have (see
Theorem 6 in Malinovskii (1987))

σ(f )−3k3(f ) = Eµ(f̃
3(Xi))+ 3

∞∑

i=1
{Eµ

(
f̃ 2(X1)f̃ (Xi+1)

)

+Eµ
(
f̃ (X1)f̃

2(Xi+1)
)}

+6
∞∑

i=1,j=1
Eµ

(
f̃ (X1)f̃ (Xi+1)f̃ (Xi+j+1)

)
.
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Remark 5.4. When formulated in terms of decay of strong mixing coefficients,
our conditions are weaker than the usual ones, which assume an exponential rate
for the decay (see for instance Nagaev (1961), Götze and Hipp (1983), Datta and
McCormick (1993b)): condition (iv) with s = 8 + ε is typically fulfilled in the
bounded case as soon as the strong mixing coefficients sequence decreases at a
polynomial rate n−ρ for some ρ > 7 + ε. However, the condition s = 8 + ε is
clearly not optimal (see Hall (1987) for optimal results in the i.i.d. case) and is
technically required because we proceed in the proof by conditioning firstly on the
variance estimate: it seems reasonable to expect that the result actually holds when
condition (iv) is satisfied for some s > 4, as in the i.i.d. case if we also assume
EA(τ

s
A(
∑τA
i=1 f (Xi))

s) < ∞. Finally, note that, for the Cramer condition (i) to
hold, it is sufficient to prove that at least one term in the sum has an absolutely
continuous part. Of course condition (i) is more general and may hold even in the
discrete case.

Remark 5.5. In (8) the log factor in the rate is mainly due to the linearization
of the variance estimate and a ”large deviation” control of the remainder (see
§ 6.2.2). Now by replacing assumption (v) by (vii), (9) shows that the optimal
rate O(n−1) is attained. This is proved by applying the same argument as for
(8), that is to say by successively linearizing the statistic, conditioning and par-
titioning according to the values taken by the regeneration times, except that the
studentized mean is now considered as a smooth functional of vector means of
(
∑τA(j+1)
i=1+τA(j) f̃ (Xi),

∑τA(j+1)
i=1+τA(j) f̃ (Xi)

2, sj
∑τA(j+1)
i=1+τA(j) f̃ (Xi)) and the condi-

tioning is on the second and third components. In the case of µn(f ), a similar
argument allows to obtain the optimal rate O(n−1) under the only condition (vii)
in a simpler fashion.

The writing of the terms involved in the Edgeworth expansions using the atom
A allows to deduce easily empirical counterparts, which is not the case when they
are expressed by using infinite sums. We set

M̂3,n = n−1
ln−1∑

j=1

{f (Bj )− µn(f )sj }3/σn(f )
3,

β̂n = n−1
ln−1∑

j=1

sj {f (Bj )− µn(f )sj }/σn(f ),

and consider the empirical estimator of the skewness defined by

k̂3,n = M̂3,n − 3β̂n.

A straightforward application of the SLLN (see Theorem 17.1.7 in Meyn and
Tweedie (1996)) shows, that, under the assumptions that the initial distribution
fulfills the regularity condition Pν(τA < ∞) = 1 and that condition (iii) is satisfied
with s = 3, we have as n → ∞

k̂3,n −→ k3(f ), Pν a.s. .
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An application of the CLT also yields k̂3,n = k3(f ) + OP (n
−1/2), as n →

∞, under condition (iii) with s > 6. Following the work of Abramovitz and
Singh (1985 ), it may be easily shown that, under further moment assumptions,
the Edgeworth expansion may be inverted to yield better confidence intervals for
the sample mean statistic. These results also pave the way for studying the second
order validity of the regeneration-based Bootstrap procedure proposed in Datta and
McCormick (1993a) (see Bertail and Clémençon (2003a)) for atomic chains, as
well as variants for general Harris recurrent Markov chains (refer to Bertail and
Clémençon (2003b)).

6. Proofs

6.1. Proof of Proposition 4.2

Set f̃ = f − µ(f ) and consider the variances σ 2
τ = EA((τA − α)2), �2(f ) =

EA(((
∑τA
i=1 f̃ (Xi))

2−ασ 2(f ))2) and�2(f ) = EA((τA
∑τA
i=1 f̃ (Xi)−β)2) (recall

the notations α = EA(τA) and β = EA(τA
∑τA
i=1 f̃ (Xi)) introduced in Proposition

3.1). Decompose n(σ 2
n (f )− σ 2(f )) into six terms as follows

n(σ 2
n (f )− σ 2(f )) =

6∑

i=1

Di,

with

D1 =
ln−1∑

j=1

{(f̃ (Bj ))2 − ασ 2(f )}, D2 = ασ 2(f )(−1 +
n∑

i=1

{1A(Xi)− µ(A)}),

D3 = (µ(f )− µn(f ))
2
ln−1∑

j=1

s2
j , D4 = 2(µ(f )− µn(f ))

ln−1∑

j=1

{sj f̃ (Bj )− β},

D5 = 2β(µ(f )− µn(f ))(ln − α−1n), D6 = 2β(µ(f )− µn(f ))(α
−1n− 1).

• The proof thatEν(D1) = O(1) as n → ∞ straightforwardly results from the
argument given in the proof of Theorem 1 in Malinovskii (1985), based on a non
uniform limit theorem established in (1982, 1984a, 1984b) (see Lemma 6.5 below),
which must be applied in our case to the i.i.d. sequence of 1-lattice two dimensional
random vectors (�(f )−1((f̃ (Bj ))2 −ασ 2(f )), σ−1

τ (sj −α))j�1.Details are thus
omitted.

• The application of bound (1) in Proposition 3.1 to the indicator function
1A (respectively to f ) particularly entails that Eν(D1) = O(1) (respectively,
Eν(D6) = O(1)) as n → ∞.

• By using Cauchy-Schwarz’s inequality, we have

Eν(D3)
2 � Eν((µ(f )− −

µn(f ))
4)Eν(

ln−1∑

j=1

s2
j )

2).
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Therefore, under our “block” moment conditions, we have according to Theorem

4 in Malinovskii (1987), Eν((µ(f ) − −
µn(f ))

4) = O(n−2). Besides, by simply
using the fact that ln is bounded by n and that (s2

j )j�1 is an i.i.d. sequence by virtue
of the strong Markov property, we derive that

Eν(

ln−1∑

j=1

s2
j )

2) � EA((τ
2
A − EA(τA))

2)n+ (EA(τ
2
A))

2n2.

Combining these two bounds, we obtain that Eν(D3) = O(1) as n → ∞.

• Apply Cauchy-Schwarz’s inequality to get

Eν(D4)
2 � Eν((µ(f )− µn(f ))

2)Eν((

ln−1∑

j=1

{sj f̃ (Bj )− β})2).

From Theorem 2 in Malinovskii (1985) (see also Theorem 3 in Malinovskii (1987)),
we have Eν((µ(f ) − µn(f ))

2) = O(n−1) as n → ∞. Moreover, the argument
proving this result may also be used to show that Eν((

∑ln−1
j=1 {sj f̃ (Bj )− β})2) =

O(n), as n → ∞, by considering the i.i.d. sequence of 1-lattice two dimen-
sional random vectors (�(f )−1(sj f̃ (Bj )− β), σ−1

τ (sj − α))j�1. Hence, we have
Eν(D4) = O(1) as n → ∞.

• Finally, the bound Eν(D4) = O(1) as n → ∞ may be deduced exactly the
same way, using first Cauchy-Schwarz’s inequality and then applying twice Theo-
rem 2 in Malinovskii (1985), to the function f on the one hand and to the indicator
function 1A on the other hand.

6.2. Proof of the main theorem

In the following we only consider the case µn(f ) = µ̂n(f ). The cases µn(f ) =
µ̃n(f ) and µn(f ) = µn(f ) differ in the treatment of the bias only and may be
derived in a similar fashion. The first Edgeworth expansion and control of �n
follows immediately from Malinovskii (1987)’s Theorem 1 and its simplified form
given in Theorem 5 except that one should read −Eν(�f,n)/(Eπ(�2

f,n))
1/2 instead

ofEν(�f,n)/(Eπ(�2
f,n))

1/2 of course in his result (note that this term corresponds
to the bias and vanishes in the stationary case). To make the reading of the proof
much more easy and emphasize the dependence of the statistics considered on
the i.i.d. regeneration blocks we introduce the following notations. We denote by
l(Bj ) = sj = τA(j + 1) − τA(j) the length of block Bj , j � 1, of which the
mean is EA(τA) = α and the variance is EA((τA − α)2) = σ 2

τ .We also denote by

l(B0) = τA and l(B(n)n ) = n− τA(ln) the lengths of the first and last (non-regener-
ative) blocks. Consider the following decomposition

n(µn(f )− µ(f ))− ϕν − γ = F(B0)+
ln−1∑

j=1

F(Bj )+ F(B(n)ln )
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with for j � 1,

F (Bj ) =
τA(j+1)∑

i=τA(j)+1

{f (Xi)− µ(f )} = f (Bj )− l(Bj ) µ(f )

and

F(B0) = f (B0)− l(B0)µ(f )− ϕν,

F (B(n)ln ) = f (B(n)ln )− l(B(n)ln )µ(f )− γ.

By the strong Markov property, the F(Bj )’s, j � 1, are i.i.d. r.v.’s with mean zero
and variance σ 2

F = α σ 2(f ).Notice also that by construction (see Proposition 3.1),

we have Eν(F (B0)) = 0 and Eν(F (B(n)ln )) = O(n−1/2) as n → ∞.We also recall
that with these notations, for j � 1,

β = cov(l(Bj ), F (Bj )).
The matter is here to extend Malinovskii (1987)’s results to derive an Edgeworth
expansion for t̃n. We now derive such an expansion up toO(n−1 log(n)) orO(n−1),

depending on the conditions assumed (cf section 5).

6.2.1. Preliminary lemmas

We shall extensively use the classical lemma below (see Chibisov (1972)) .

Lemma 6.1. Assume thatWn admits an Edgeworth expansion on the normal distri-
bution up toO(n−1l(n)), for some function l(n) such that l(n)/n → 0 as n → ∞.

Assume that Rn is such that P(n|Rn| > ηl(n)) is O(n−1l(n)) as n → ∞ for
some constant η > 0, thenWn +Rn andWn/(1 +Rn)

1/2 (when defined) have the
same Edgeworth expansion as Wn up to O(n−1l(n)).

In the sequel, we typically choose l(n) = nε, 1 > ε ≥ 0 or l(n) = log(n) or
log(n)1/2. We shall also use the following inequalities and estimates.

Lemma 6.2. Suppose that the following “block” moment condition is fulfilled

EA(|
τA∑

i=1

f̃ (Xi) |2) < ∞,

then there exists some constants c0 and c1 such that we have for all n,

Pν(n
−1 |

ln−1∑

j=1

F(Bj ) |� x) � c0{exp(− nx2

c1 + yx
)

+nPA( |
τA∑

i=1

f̃ (Xi) |� y)+ Pν(τA > n/2)+ PA(τA > n/2)}.
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In particular under the conditions (iii) and (iv) with s = 8 + ε, ε > 0, there exists
some constant η > 0 such that, as n → ∞,

Pν(n
−1/2 |

ln−1∑

j=1

F(Bj ) |� η log(n)1/2) = O(n−1)

and

Pν(n
1/2 | 1

n

ln−1∑

j=1

F(Bj )l(Bj )− α−1β) |� η log(n)1/2) = O(n−1).

Proof. The first inequality may be derived from the argument of Theorem 15 in
Clémençon (2001) based on the Fuk & Nagaev’s inequality for sums of unbounded
r.v.’s (see also Theorem 6.1 in Rio (2000) for an argument based on block mixing
techniques). In particular, for x = η log(n)1/2n−1/2 , y = log(n)−1/2n1/2, if we
choose η > 0 such that η2 ≥ c1 + η, applying Chebyshev’s inequality to the last
three terms in the right hand side of the inequality yields

Pν(n
−1/2 |

ln−1∑

j=1

f̃ (Bj ) |� η log(n)1/2)

� c0{exp(−η
2 log(n)

c1 + η
)+ (log n)2+s/2

n1+s/2 EA(|
τA∑

i=1

f̃ (Xi)|4+ε/2)

+ 2n−1Eν(τA)+ 2n−1EA(τA)} ≤ C1n
−1.

The second bound may be proved similarly, using Cauchy-Schwarz inequality. ��
The lemma below shows how the estimated variance may be linearized with a

controlled remainder.

Lemma 6.3. Under the hypotheses of Theorem 5.1 we have

σ 2
n (f ) = n−1

ln−1∑

j=1

g(Bj )+ rn (11)

with g(Bj ) = F(Bj )2 − 2α−1βF(Bj ) for j � 1, and for some η1 > 0,

P(nrn > η1 log(n)) = O(n−1), as n → ∞.

Proof. We have

σ 2
n (f ) = n−1

ln−1∑

j=1

F(Bj )2 − 2(µn(f )− µ(f ))n−1
ln−1∑

j=1

F(Bj )l(Bj ) (12)

+ (µn(f )− µ(f ))2n−1
ln−1∑

j=1

l(Bj )2

= n−1
ln−1∑

j=1

g(Bj )+ rn,



Edgeworth expansions of suitably normalized sample mean statistics 403

with rn = r1,n + r2,n + r3,n and

r1,n = −2((µn(f )− µ(f ))(n−1
ln−1∑

j=1

F(Bj )l(Bj )− α−1β)

r2,n = (µn(f )− µ(f ))2n−1
ln−1∑

j=1

l(Bj )2

r3,n = 2(1 − (1 − l(B0)/n− l(B(n)ln )/n)−1)n−1
ln−1∑

j=1

F(Bj )α−1β.

The control of the remainders r1,n and r2,n straightforwardly follows from Lemma
6.2. Finally, since Eν(l(B0)

2) = Eν(τ
2
A) < ∞ and E(l(B(n)ln )2) � EA(τ

2
A) <∞, we have by virtue of Markov inequality that

Pv(l(B0) > n1/2) = O(n−1),

Pν(l(B(n)ln ) > n1/2) = O(n−1),

as n → ∞. Besides on the event {l(B0) ≤ n1/2} ∩ l(B(n)ln ) ≤ n1/2}, we have

for n ≥ 4, |1 − (1 − l(B0)/n − l(B(n)ln )/n)−1)| ≤ 4n−1/2. Hence, the result is
proved by applying Lemma 6.1 and Lemma 6.2. ��

The following lemma implies that we may restrict the study of the standardized
sums to values of ln in the interval In(ε) = [nα−1−n1/2+δ, nα−1+n1/2+δ]∩[1, n].
It derives from the same argument as Lemma 6.2, applied to the indicator function
1A of A.

Lemma 6.4. Let X = (Xn)n∈N be a Markov chain with an accessible atom A.

Suppose that X is positive recurrent with stationary distribution µ. Let ln =∑n
i=1 1{Xi∈A} be the number of visits ofX to A between time 1 and time n. Assume

further that there exists p � 2 such that EA
(
τ
p
A

)
< ∞, and that there exists q � 1

such that the initial distribution ν satisfies Eν
(
τ
q
A

)
< ∞. Then as n → ∞, we

have

Pν

(
n1/2 |ln/n− µ (A)| � nδ

)
= O

(
n−1

)
,

for all δ such that δ > (2/p − 1/2)+ and δ � (1/q − 1/2)+.

The following lemma (which is a non-uniform version of Malinovskii (1987),
see Lemma 1 p. 283) is a consequence of Dubinskaite (1984a)’s Theorem 2 and its
corollaries 8 and 9. To state the result, we use the usual notations for characteristic
functions and Edgeworth expansion in the multidimensional case (see section 7 of
Battacharya & Rao (1975)). Let φ0,W be the density of the normal density with
mean 0 and variance W . Its Fourier transform is given by

φ̂0,W (t) = exp

(

−1

2
(t ′Wt)

)
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For some square integrable r.v. ξ taking its values in R
p with covariance matrix

W , the polynomial associated with the cumulants {χθ } of order θ = (θi)1�i�p ∈
N
p such that |θ | = ∑p

i=1 |θi | is less than 3 is denoted by

P̃1(it, {χθ }|θ |≤3) = i3

6
E
(
(t ′ξ)3

)

and let

P1(−φ0,W , {χθ }|θ |≤3)(t) = −
∑

|θ |�3

χθ

θ1!...θp!
φ
(θ)
0,W (t)

be the corresponding transformation, the explicit form of which is given p. 55 of
Battacharya & Rao (1975).

Lemma 6.5. Edgeworth expansion for 1-lattice distribution [Dubinskaite (1982,
Dubinskaite (1984a, Dubinskaite (1984b)] Let ξ = (ξ1, ξ2, ξ3) be a centered ran-
dom vector such that ξ3 is lattice with minimal span H > 0 and is valued in
{kH + α}k∈Z . Suppose that ξ1 satisfies the Cramer condition and that there ex-
ists N ∈ N

∗ such that h∗N is bounded, h denoting the density of ξ2. Assume
further that the covariance matrix W = var(ξ1, ξ2, ξ3) is non singular and that
E|ξi |4 < ∞, 1 � i � 3. Then, for an i.i.d. sequence (ξ1,i , ξ2,i , ξ3,i )i�1 drawn
from ξ , we have up to a constant C > 0, there exists m0(N) ∈ N

∗, such that for
any m > m0(N),

|
√
m

H

∫ ∞

−∞
P(

∑m
i=1 ξ1,i√
m

≤ x,

m∑

i=1

ξ3,i = kH + αm |
∑m
i=1 ξ2,i√
m

= z)pfm(z)dz

−
∫ ∞

−∞
E
(2)
W,m(x, z,

kH + αm√
m

)dz| ≤ C.m−1
(

1 + |kH + αm√
m

|3
)−1

,

where

E
(2)
W,m(x, z,

kH + αm√
m

) =
∫ x

−∞
DE

(2)
W,m(y, z,

kH + αm√
m

)dy,

DE
(2)
W,m(y, z,

kH + αm√
m

) = φ0,W (y, z,
kH + αm√

m
)

+ 1√
m
P1(−φ0,W , {χv})(y, z, kH + αm√

m
),

and pfm denotes the density of fm = m−1/2∑m
i=1 ξ2,i .

Proof. Given that s = 4 is even, it is legitimate to choose s∗ = s and r = 0 in
Dubinskaite (1984a)’s Theorem 2. Condition Pl−m of her theorem may be replaced
by the boundedness condition for a power of the density of ξ2 for the convolution
product, as can be checked on p. 330 (lines 14 to 21) of Dubinskaite (1984b) (note
that the modulus of her expression of (g̃(t))N is bounded by h∗N in our case).
Since W is assumed to be nonsingular, the smallest eigenvalue of W is strictly
positive. The function Ls,n may be thus bounded by C

∑
E(ξ4

1,i ), so that all the
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terms of the bound may be swallowed into the generic constantC (depending on the
underlying probability). Integrating the density respectively over the second and
first arguments, it follows from Theorem 2 of Dubinskaite (1982) (with f = 1)
that

|
√
m

H

∫ ∞

−∞
pfm(z)P (

∑m
i=1 ξ1,i√
m

≤ x,

m∑

i=1

ξ3,i = kH + αm |
∑m
i=1 ξ2,i√
m

= z)dz−
∫ x

−∞

∫ ∞

−∞
DE

(2)
W,n(y, z,

kH + αm√
m

)dz| ≤ C

m3/2

∫ x

−∞
(1 + |kH + αm√

m
| + |u|)−4du

≤ Cm−3/2(1 + |kH + αm√
m

|3)−1.

The last inequality straightforwardly results from the bound

∫ x

−∞
1/(1 + |λ| + |u|)4du ≤ C

1

(1 + |λ|)3 .

Note that Lemma 1 in Malinovskii (1987) is a variant of this lemma, under stronger
assumptions, with the choice s1 = 3 and δ = 1. ��

The next lemma is also useful for controlling the terms in the sums appearing in
the Edgeworth expansion.

Lemma 6.6. Let an,m = (n − αm)/(στ
√
m) and DEm(y, λ) = φV (y, λ) +

m−1/2P(y, λ)φV (x, λ), where P(y, λ) is a polynomial in y ∈ R
p and λ ∈ R, and

V a nonsingular covariance matrix, then there exists some nonnegative constant
K and a polynomial Q independent from n with a fixed degree such that

n∑

m=1

α

στ
√
m
DEm(y, an,m)−

∫ ∞

−∞
φV (y, λ)dλ−

√
α√
n

∫ ∞

−∞
P(y, λ)φV (y, λ)dλ

+1

2

στ

α1/2
√
n

∫ ∞

−∞
λφV (y, λ)dλ) ≤ Q(y) exp(−K||y||2) n−1.

Moreover, for some nonnegative constant K and a polynomial R, we have

|
n∑

m=1

1

m3/2P(y, an,m)φV (y, an,m)| ≤ R(y) exp(−K||y||2) n−1. (13)

Proof. The proof follows from the argument given in Malinovskii (1985) (see his
equations (10) to (15))). By Taylor expansion, for any function F with continuous

derivatives ∂(i)F (y,λ)

∂λ(i)
with respect to λ, we have that
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∣
∣
∣
∣
∣

∫ an,1

an,n

F (y, λ)dλ−
n∑

m=1

(an,m − an,m+1)F (y, an,m)− (14)

n−1∑

m=1

1

(2)!

∂(1)F (y, λ)

∂λ

∣
∣
∣
∣
∣
λ=an,m

(an,m − an,m+1)
2

∣
∣
∣
∣
∣
∣

≤
n−1∑

m=1

1

3!
|an,m − an,m+1|2 sup

λ∈[an,m,an,m+1]

∂(2)F (y, λ)

∂λ(2)
.

Noticing that

an,m − an,m+1 = α

στ
√
m

+ an,m+1((1 +m−1)1/2 − 1), (15)

use first the Taylor expansion (14) with F(y, λ) = φV (y, λ). For these functions,
we obviously have for some non negative constants K , k and some polynomial
P i(y, λ) of degree less than i

sup
λ∈[an,m,an,m+1]

∂(i)F (y, λ)

∂λ(i)
≤ C P i(y, an,m) exp(−K||y||2) exp(−ka2

n,m) (16)

In the following Pi, i = 1, 2, ... is a sequence of polynomials in y of finite degree
(typically lower than 8) and Ki, i = 1, 2, ... some non negative constants. Pro-
ceeding as Malinovskii (1985), Malinovskii (1987) (see (13)), it is then easy to see
that
n∑

m=1

|an,m − an,m+1|2 sup
λ∈[an,m,an,m+1]

∂(2)F (y, an,m)

∂λ(2)
≤ n−1P1(y) exp(−K1||y||2).

Using successively (14) with F(y, λ) = φV (y, λ) and ∂φV (y,λ)
∂λ

, we get

|
∫ an,1

an,n

φV (y, λ)dλ−
n∑

m=1

α

στ
√
m
φV (y, an,m)

−1

2

α3/2

στ

1√
n

∫ an,1

an,n

∂φV (y, λ)

∂λ
dλ− 1

2

στ

α1/2

1√
n

∫ an,1

an,n

λφV (y, λ)dλ|

≤ n−1P2(y) exp(−K2||y||2).
Following Malinovskii (1985) (equations (12) and (13) using (15)), we have

|
n∑

m=1

α

mστ
P (y, an,m)φV (y, an,m)

−
∑ 1√

m
(an,m − an,m+1)P (y, an,m)φV (y, an,m)|

≤ C1n
−1P4(y) exp(−K4||y||2),

as well as using (14) with F(y, λ) = P(y, λ)φV (y, λ)
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|
n∑

m=1

1√
m
(an,m − an,m+1)P (y, an,m)φV (y, an,m)

−
∫ an,1

an,n

α1/2

√
n
P (y, λ)φV (y, λ)dλ|

≤ C2n
−1/2

n∑

m=1

|( n
αm

)1/2 − 1|am,nP (y, an,m) exp(−K5an,m) exp(−K5||y||2)

≤ n−1P6(y) exp(−K6||y||2).
The proof follows by combining these three inequalities and by observing that for
α > 1 the remainder in the integrals

∫ an,n
−∞ and

∫∞
an,1

may be bounded by Cn−1 for
some constant C > 0. The proof of (13) is similar. ��

6.2.2. Edgeworth expansions of the standardized sum

The main problem for obtaining the Edgeworth expansion is to control the first and
last blocks (except for µn(f ), in which they do not appear), which are not regen-
erative blocks, on the one hand and the randomness of the number of blocks on
the other hand. We use the same techniques as the ones required to establish simi-
lar results in Bolthausen (1980) and in Malinovskii (1987). Once some necessary
basic tools developed, we only give here the main ideas of the proof. We proceed in
five steps, as follows: reduce the original problem to a simplified version (step 1),
partition the probability space according to the number of regenerative blocks and
the length of the first and last blocks (step 2), derive an Edgeworth expansion for
each element induced by the partition (step 3), then sum up all the expansions and
approximates the sums involved by Riemann integrals (step 4) and finally compute
explicitly the main term of the expansion (step 5).

Step 1: reduction to a simplified statistic. Lemma 6.1 and Lemma 6.3 imply that
establishing the Edgeworth expansion of the original standardized statistic reduces,
up to O(n−1 log(n)), to obtain the Edgeworth expansion of

Pν






∑ln
j=0 F(Bj )

(∑ln−1
j=1 g(Bj )

)1/2 ≤ x − φν

σ(f )
n−1/2 − γ

σ(f )
n−1/2






We thus focus on the Edgeworth expansion of

Ln =
∑ln
j=0 F(Bj )

(∑ln−1
j=1 g(Bj )

)1/2

Combining Lemmas 6.1 and 6.4 with p = 4 and δ = ε yields that

Pν(Ln ≤ x) = Pν(Ln ≤ x, ln ∈ In(ε))+O(n−1), as n → ∞,
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where In(ε) = [nα−1 − n1/2+δ, nα−1 + n1/2+δ] ∩ [1, n].We point out that, given
the dependency structure of B1, ..., Bln conditionally to ln, the proof cannot rely on
a conditioning argument for dealing with the random number of blocks, and now
turn to step 2.

Step 2: partitioning. Consider the partition of the underlying probability space
into the following disjoint measurable subsets

Ur = {τA(1) = r, τA(2)− τA(1) > n− r},
Ur,l,m = {τA(1) = r, τA(m) = n− l , τA(m+ 1) > n}

= {τA(1) = r,

m∑

j=2

τA(j)− τA(j − 1) = n− r − l, τA(m+ 1) > n}.

Now define σ 2
G = E((g(Bj )− E(g(Bj ))2) for j � 1, and write

Tm(u, v) = u+ v +m−1/2
m∑

j=1

F(Bj )/σF ,

S2
m = σ 2

F

(
1 + σG/σ

2
FGm

)1/2
,

with Gm = m−1/2∑m
j=1(g(Bj )− σ 2

F )/σG.We have as n → ∞

Pν(Ln ≤ x, ln ∈ In(ε)) = I + II +O(n−1),

with

I =
∑

r

Pν({Ln ≤ x} ∩ Ur) ≤ Pν(τA(2) > n, Ln ≤ x) = O(n−1),

I I =
√
n∑

l=1

√
n∑

r=1

∑

m+1∈In(ε)

∫ ∫
P



Tm(u, v)

Sm
≤ x ,

m∑

j=1

l(Bj ) = n− r − l





Pν(L
r ∈ du, τA(1) = r)PA(L

l ∈ dv, τA(m+ 1) > l),

whereLr (resp. Ll) is the distribution underPν ofm−1/2F(B0)/σF when τA(1) =
r and Ll the distribution of m−1/2F(Bm+1)/σF when the length of Bm+1 is l. To
simplify the notations we set Pr(du) = Pν(L

r ∈ du, τA(1) = r) and Pm,l(dv) =
PA(L

l ∈ dv, τA(m+ 1) > l). Note that by lemmas 6.4 and 6.1 we may indiffer-
ently put

∑
m+1∈In(ε) or

∑n−1
m=0 in II up to O(n−1).

Step 3: Edgeworth expansion for 1-lattice distribution. Thus we essentially
have to show that III = P(

Tm(u,v)
Sm

≤ x,
∑m−1
j=1 l(Bj ) = n − r − l) admits an

Edgeworth expansion with a remainder such that the sums and integrals in II are
of order O(n−1). The second component may be written as a lattice sum

Lm = m−1/2
m∑

j=1

(l(Bj )− α)/στ = an,l,m,r
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where an,l,m,r = (n − r − l − αm)/(στ
√
m). Conditioning on Gm we get,

with x(z, u, v,m) = x(1 + m−1/2σG/σ
2
F z)

1/2 − u − v and denoting by pGm(z)
the density of Gm,

III = Pm(x, an,l,m,r ) =
∫
pGm(z)×

P(
m−1/2∑m

j=1 F(Bj )
σF

≤ x(z, u, v,m), Lm = an,l,m,r | Gm = z)dz.

Observe that one cannot condition first on the quadratic term and then directly apply
Theorem 2 in Malinovskii (1987) because of the form of the variance (which is a
sum of functions of the blocks and not a linear function of the original data) and
the non uniformity of the bound in y (see his last expression on p. 273). The Edge-
worth expansion of the expression under the integral in III may be deduced using
Lemma 6.5. For this, consider (ξ1,j , ξ2,j , ξ3,j )j�1 with ξ1,j = F(Bj )/σF , ξ2,j =
(l(Bj ) − α)/στ (which is lattice with span H = σ−1

τ ) and ξ3,j = (g(Bj ) −
σ 2
F )/σG, that is by construction of the blocks an i.i.d. sequence. Note that the con-

ditionE|ξ3,j |4 < ∞, 1 � i � 3 reduces to condition (iii) with s = 8. The bound-
edness condition on the N -fold convolution of ξ3,j reduces to (v). Notice also that
for n large enough the constantm0(N) appearing in Lemma 6.5 (whereN is fixed,
given by condition (v)) is lower than any value in In(ε) so that the expansion holds
for these values. From lemma (6.5) we get that, for any m ∈ In(ε),

sup
x

|Pm(x, an,l,m,r )− σ−1
τ√
m

∫ ∞

−∞
E
(2)
W,m(x(z, u, v,m), z, an,l,m,r )dz| (17)

≤ Cm−3/2
(

1 + |an,l,m,r |3
)−1

,

where the covariance W = (Wi,j )1≤i,j≤3 is a symmetric (3,3) matrix with

W11 = W22 = W33 = 1,

W1,2 = σ−1
G σ−1

F cov(F (Bj ), g(Bj )) = σ 2
FM3,A/σG − 2α−1βσFσ

−1
G ,

W1,3 = σ−1
F σ−1

τ cov(F (Bj ), l(Bj )) = σ−1
F σ−1

τ β,

W2,3 = σ−1
G σ−1

τ cov(g(Bj ), l(Bj )).

Step 4: control of the sums of the expansions and their remainders. To prove
that the remainder in the expansion of II is of order O(n−1), we use the same
arguments as the ones used to prove 3.5 in Bolthausen (1980). As a matter of result,
we have in our case

m−3/2
(

1 + |an,l,m,r |3
)−1 ≤ C






m−3/2

(n− αm)−3

(n− 2
√
n− αm)−2

if
|n− αm| ≤ 2

√
n

αm > n+ 2
√
n

αm < n+ 2
√
n

so that by straightforward decomposition using the fact that
∑√

n

l=1

∑√
n

r=1

∫ ∫
Pr(du)

Pm,l(dv) ≤ C we have
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∫ ∫ √
n∑

l=1

√
n∑

r=1

∑

m+1∈In(ε)
m−3/2

(
1 + |an,l,m,r |3

)−1
Pr(du)Pm,l(dv) = O(n−1),

as n → ∞. The matter is now to show that the main part has the form indicated in
(8), that is

IV =
√
n∑

l=1

√
n∑

r=1

∑

m+1∈In(ε)

1

στ
√
m

∫ ∫ ∫ ∞

−∞
E
(2)
W,m(x(z, u, v,m), z, an,l,m,r ) Pr(du)

×Pm,l(dv)dz = F (2)n (x)+O(n−1), as n → ∞.

We may rewrite this expression the following way

∫ ∞

−∞

√
n∑

l=1

√
n∑

r=1

∑

m+1∈In(ε)

1

στ
√
m

∫∫
E
(2)
W,m(x(z, u, v,m), z, an,l,m,r )Pr(du)Pm,l(dv)dz.

A Taylor expansion of E(2)W,m(x(z, u, v,m), z, an,l,m,r ) at

x(z,m) = x(1 + zm−1/2σG/σ
2
F )

1/2 yields for some x∗ ∈ [x(z, u, v,m), x(z,m)]

E
(2)
W,m(x(z, u, v,m), z, an,l,m,r )

= E
(2)
W,m(x(z,m), z, an,l,m,r )+ (u+ v)DE

(2)
W,m(x(z,m), z, an,l,m,r )

+ 2−1(u+ v)2∂DE
(2)
W,m(x

∗, z, an,l,m,r )/∂x.

Using the same arguments as in Malinovskii (1985), Malinovskii (1987) (see (4)
and proof of Theorem 2 with s = 4 ), it is cumbersome but rather straightforward
(using as in Bolthausen (1980) the fact that for some non negative constants k1,

k2 and k3 , φ0,W (x, z, λ) ≤ exp(−k1x
2) exp(−k2z

2) exp(−k3λ
2) and bounds of

type (16) combined with lemma 6.6 (see (13)) to show that, for either

v(z, u, v,m) = (u+ v)2
∂DE

(2)
W,m

∂x
(x∗, z, an,l,m,r )

or else

v(z, u, v,m) = m−1/2P1(−φ0,W , {χθ }|θ |�3)(x(z,m), z, an,l,m,r )(u+ v),

we have
√
n∑

l=1

√
n∑

r=1

∑

m+1∈In(ε)
m−1/2

∫ ∞

−∞

∫ ∫
v(z, u, v,m)Pr(du)Pm,l(dv)dz = O(n−1),

as n → ∞. This is easier in our situation, since we have already recentered the
original statistic, so that

√
n∑

l=1

√
n∑

r=1

(∫ ∫
(u+ v)Pr(du)Pm,l(dv)

)

= O(n−1) (18)
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and
n∑

l=1

n∑

r=1

(∫ ∫
(u2 + v2)Pr(du)Pm,l(dv)dz

)

≤ Cm−1, (19)

given the assumed moment conditions for τA and f (B0) under Pν. We get

IV =
√
n∑

l=1

√
n∑

r=1

∑

m+1∈In(ε)

1

στ
√
m

∫ ∞

−∞
E
(2)
W,m(x(z,m), z, an,l,m,r )dz

∫∫
Pr(du)Pm,l(dv)

+
√
n∑

l=1

√
n∑

r=1

∑

m+1∈In(ε)

1

στ
√
m

∫ ∞

−∞
φ0,W (x(z,m), z, an,l,m,r )

×
(∫ ∫ ∞

−∞
(u+ v)Pr(du)Pm,l(dv)

)

dz+O(n−1).

Now use exactly the same arguments as in Malinovskii (1987) p. 279-280 (or
Malinovskii (1985), p. 331), that is to say, develop

F
(2)
W,m(x, an,l,m,r ) =

∫ ∞

−∞
E
(2)
W,m(x(z,m), z, an,l,m,r )dz

at the point an,m = (n− αm)/(στ
√
m) to get that

IV = V + V I +OP (n
−1),

with

V =
n∑

m=1

1

στ
√
m
F
(2)
W,m(x, an,m)

√
n∑

l=1

√
n∑

r=1

Pν(τA(1) = r)PA(τA(m+ 1) > l)

+ OP (n
−1) =

n∑

m=1

α

στ
√
m
F
(2)
W,m(x, an,m)+OP (n

−1),

V I =
√
n∑

l=1

√
n∑

r=1

n∑

m=1

∫ ∞

−∞
1

στ
√
m

∫ x

−∞
φ0,W (y(z,m), z, an,l,m,r )×

∫ (∫ ∫
(u+ v)Pr(du)Pm,l(dv)

)

dydz+O(n−1).

But we have
√
n∑

l=1

√
n∑

r=1

∫ ∫
Pr(du)Pm,l(dv) =

√
n∑

r=1

Pµ(τA = r)

√
n∑

l=1

PA(τA > l)

= α +OP (n
−1).

Now the main difference with the calculations in Malinovskii (1987) lies in the last
term VI, which is is simply the second term in his expression A1,0 (see also the
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term A1 p. 329 in Malinovskii (1985). Once again we use the fact that the original
statistic is correctly recentered (see (18, 19)) and Lemma 6.6 to get

V I = O(n−1), as n → ∞.

It should be noticed that in opposition to Malinovskii (1987)’s term A1,0, which
is the equivalent of VII in our expansion, VII does not contribute to the expansion
because of the recentering and the fact that we standardized by

√
m instead of√

n/α after having conditioned on the variance.

Step 5: explicit computation of the main part. The proof of (8) is finished by
observing that a straightforward Taylor expansion at x and a repeated use of Lemma
6.6 yield

V =
∫ ∞

−∞

∫ x

−∞

∫ ∞

−∞
{φW(y, z, λ)

+n−1/2α1/2P1(−φ0,W , {χv}|v|≤3)(y, z, λ))
}
dλdydz

+n−1/2 1

2

∫ ∞

−∞

∫ ∞

−∞
α1/2σG/σ

2
F xzφW (x, z, λ)dzdλ

−σ(f )−1(φν + γ )n−1/2φ(x)

−1

2
n−1/2στα

−1/2
∫ x

−∞

∫ ∞

−∞

∫ −∞

∞
λφW(y, z, λ)dzdλdy +O(n−1).

The control of the remainder is uniform over x because of the exponential
bounds given in Lemma 6.6. Furthermore, some easy gaussian algebra yields

∫ x

−∞

∫ ∞

−∞

∫ ∞

−∞
xzφW (x, z, λ)dzdλdy = x2φ(x)W1,2,

∫ x

−∞

∫ ∞

−∞

∫ ∞

−∞
λφW(x, z, λ)dzdλ = −W1,3φ(x).

Combining all the terms, the final expansion becomes

�(x)+ n−1/2 1

6
α1/22(M3,A − 3α−1β/σF )(x

2 − 1)φ(x)+
1

2
n−1/2(M3,A − 3α−1/2β/σF )φ(x)− α1/2(φν + γ )φ(x)n−1/2

+n−1/2α−1/2βσ−1
F φ(x)

and (8) follows by recalling that σ 2
F = ασ(f )2 and using Proposition 3.1 for the

form of the bias. Now observe that in the case of µn(f ) we may write

n−1/2µn(f )− µ(f )

σn(f )
=

(ln − 1)−1/2∑ln−1
j=1 F(Bj )

(
∑ln−1
j=1 F(Bj )2
ln−1 −

(∑ln−1
j=1 F(Bj )
ln−1

)2
)1/2

= vn(f )

(

1 − 1

ln − 1
vn(f )

2
)−1/2
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with vn(f ) = ∑ln−1
j=1 F(Bj )/

(∑ln−1
j=1 F(Bj )2

)1/2
. But for ln > 1, the function

x(1 − 1
ln−1x

2)−1/2 is strictly increasing with inverse x(1 + 1
ln−1x

2)1/2. It thus
follows that

Pν

(

n−1/2 (µn(f )− µ(f ))

σn(f )
≤ x

)

= Pν

(

vn(f ) ≤ x(1 − 1

ln − 1
x2)−1/2

)

.

The problem reduces then to obtain the Edgeworth expansion of vn(f ) up to
O(n−1). Hence, (10) can be proved by following line by line the previous argu-
ment, roughly speaking by partitioning and now conditioning on

∑l
j=1 F(Bj )2

(instead of
∑l
j=1 g(Bj ), see ), observing that the boundedness condition of lemma

corresponds in this case to condition (vi) on the density of the F(Bj )2’s. The case
of µn(f ) and µ̃n(f ) may be dealt with in a similar fashion, under the stronger
condition (vii) on the joint density of the (F (Bj )2, sjF (Bj ))’s: the difficulties
put by the first or/and last non-regenerative blocks to establish (9) may be over-
come by an obvious additional linearization (cf remark 5.5) and by conditioning
on (

∑l
j=1 F(Bj )2,

∑l
j=1 sjF (Bj )) this time.
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Bertail, P., Clémençon, S.: Approximate regenerative block-bootstrap for Harris recurrent

Markov chains. Submitted for publication. 2003b
Bertail, P., Politis, D.: Extrapolation of subsampling distribution estimators in the i.i.d. and

strong-mixing cases. Canad. Journ. Statist. 29 (4), 667–680 (2001)
Bolthausen, E.: The Berry Essen Theorem for functionals of discrete Markov chains.

Z. Wahrsch. Verw. Gebiete, 54, 59–73 (1980)
Bolthausen, E.: The Berry-Esseen Theorem for strongly mixing Harris recurrent Markov

Chains. Z. Wahrsch. Verw. Geb. 60, 283–289 (1982)
Browne, S., Sigman, K.: Work-modulated queues with application to storage processes.

J. Appl. Probab. 29, 699–712 (1992)
Chibisov, D. M.: An asymptotic expansion for the distribution of a statistic admitting an

asymptotic expansion. Theory Probab. Appl. 17, 620–630 (1972)
Chung, , K.L.: Markov chains with stationary transition probabilities. Springer-Verlag,

Berlin, 2nd edition (1967)
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