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Abstract. We give conditions for an O(1/n) rate of convergence of Fisher information
and relative entropy in the Central Limit Theorem. We use the theory of projections in L2

spaces and Poincaré inequalities, to provide a better understanding of the decrease in Fisher
information implied by results of Barron and Brown. We show that if the standardized Fisher
information ever becomes finite then it converges to zero.

1. Introduction

Bounds on Shannon entropy and Fisher information have long been used in proofs
of central limit theorems, based on quantification of the change in information as
a result of convolution, as in the papers of Linnik (1959), Shimizu (1975), Brown
(1982), Barron (1986) and Johnson (2000). Each of these papers have a final step
involving completeness or uniform integrability in which a limit is taken without
explicitly bounding the information distance from the normal distribution.

The purpose of the present paper is to provide an explicit rate of convergence
of information distances, under certain natural conditions on the random variables.
Let X1, X2, . . . , Xn be independent identically distributed random variables with
mean 0, variance σ 2 and density function p(x), satisfying Poincaré conditions
(relating L2 norms of mean zero functions to L2 norms of the derivative), and let
φσ 2(x) be the corresponding N(0, σ 2) density. The relative entropy distance is

D(X) =
∫
p(x) log

(
p(x)

φσ 2(x)

)
dx.

In the case of random variables with differentiable densities, the Fisher information
distance is
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J (X) = σ 2
E

(
d

dx
logp(X)− d

dx
logφσ 2(X)

)2

which is related to the Fisher information I (X) = E[(d/dx logp(X))2] viaJ (X) =
σ 2I (X) − 1. This is an L2 norm between derivatives of log-densities, and gives
a natural measure of convergence, not implied by existing central limit theorems.
Note that the quantities D and J are scale-invariant, that is, D(aX) = D(X) and
J (aX) = J (X) for all non-zero a.

Let Un = (X1 + · · · + Xn)/
√
σ 2n be the standardized sum of the random

variables. Theorem 1.3 shows that D(Un) ≤ 2RD(U1)/nσ
2 for all random vari-

ables with Poincaré constant R, and that J (Un) ≤ 2RJ(U1)/nσ
2 for all random

variables with absolutely continuous density function and finite Poincaré constant.
In examination of the Fisher information a central role is played by the score

function ρ(y) = (d/dy) logp(y) = p′(y)/p(y). The score function of the sum
of independent random variables can be expressed in terms of the score function
of the individual random variables, via a conditional expectation, as has been used
in demonstration of convolution inequalities for Fisher information and Shannon
entropy (in the work of Stam (1959), Blachman (1965), and others).

In particular, if Y1 and Y2 are independent and identically distributed with score
function ρ then the score ρ(u) of the sum Y1 + Y2 is the projection of (ρ(Y1) +
ρ(Y2))/2 onto the linear space of functions of Y1 + Y2, so by the Pythagorean
identity and rescaling:

I (Y1)+ I (Y2)

2
− I

(
Y1 + Y2√

2

)
= 2E

(
ρ (Y1 + Y2)− ρ(Y1)+ ρ(Y2)

2

)2

(1)

(see Lemma 3.1 for details). Hence, since Equation (1) is positive, one deduces that
the Fisher information is decreasing on the powers of two subsequence U2k and
hence convergent (as is the whole sequence I (Un) by subadditivity of nI (Un)).
Thus the difference sequence I (U2k )− I (U2k+1) tends to zero and the right side of
Equation (1) is used to characterize this difference, which becomes the object of
interest in identifying the normal limit.

Work that follows this approach includes Shimizu (1975), Brown (1982) and
Barron (1986). However, in these papers the Fisher information is only examined
for random variables for which there is added a possibly small independent normal
perturbation. Previously, identification of the Fisher information limit for general
random variables with finite Fisher information was unresolved. Continuing with
the examination of Equation (1), we aim to establish the general Fisher information
limit, and, in certain settings, to have explicit bounds on the distance from the limit.

As we have noted, the difference sequence tends to zero. Thus interest is in
random variables Y1, Y2, with score functions for which the right side of Equa-
tion (1) is small. This expression measures the squared L2 difference between a
‘ridge function’ (a function of the sum Y1 + Y2) and an additive function (a func-
tion of the form g1(Y1) + g2(Y2)). From calculus, in general, the only functions
f (y1, y2) = g1(y1) + g2(y2) that are both ridge and additive are the linear func-
tions g1(y1) = ay1 + b1, g2(y2) = ay2 + b2, with a, b1, b2 constants, that is, the
functions for which the derivatives g′

i (y) are constant and equal.
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Previous work, as in Lemma 3.1 of Brown (1982), (see also Barron (1986))
established the following.

Lemma 1.1. For any L2 functions f and g there exist some a,b such that:

E(g(Y1)− aY1 − b)2 ≤ E (f (Y1 + Y2)− g(Y1)− g(Y2))
2 ,

when Y1, Y2 are independent identically distributed normals.

Brown takes g ∈ L2(φ) and considers the projection f (s) = E(g(Y1)+g(Y2)|Y1 +
Y2 = s). For Y1, Y2 normal, the eigenfunctions of this projection are the Hermite
polynomials, so he can use expansions in this orthogonal Hermite basis.

The main technique used in the present paper will generalize Lemma 1.1 to a
wider class of random variables Y1, Y2. We consider random variables Y1 and Y2
independent identically distributed (IID) with absolutely continuous densities and
finite Fisher information. The method used to prove Proposition 2.1 implies for
certain ridge functions f (y1 + y2), with closest additive function g(y1) + g(y2)

and a certain constant µ, that:

E(g′(Y1)− µ)2 ≤ I (Y2)E (f (Y1 + Y2)− g(Y1)− g(Y2))
2 . (2)

Our (basis-free) proof starts with f (Y1 + Y2), finds its additive part with g(y1) =
EY2f (y1 + Y2) and recognises that g′(y1) = −EY2f (y1 + Y2)ρ(Y2). A Cauchy-
Schwarz inequality completes the proof as detailed in Section 2.

Hence if Equation (1) is small then ρ is close to a function with derivative close
to constant in L2(Y1, Y2). However, we would like to find an inequality where
the left side depends on g itself, rather than g′. Poincaré inequalities provide a
relationship between L2 norms on functions and the L2 norms on derivatives.

Definition 1.2. Given a random variable Y , define the Poincaré constant RY :

RY = sup
g∈H1(Y )

Eg2(Y )

Eg′(Y )2
,

(whereH1(Y ) is the space of absolutely continuous functionsg such that Var g(Y ) >
0, Eg(Y ) = 0 and Eg2(Y ) < ∞), and the restricted Poincaré constant R∗

Y :

R∗
Y = sup

g∈H ∗
1 (Y )

Eg2(Y )

Eg′(Y )2
,

where H ∗
1 (Y ) = H1(Y ) ∩ {g : Eg′(Y ) = 0}.

For certain Y ,RY is infinite. However,RY is finite for the normal and other log-con-
cave distributions (see for example Klaasen (1985), Cacoullos (1982) and Borovkov
and Utev (1984)). Since we maximise over a smaller set of functions, R∗

Y ≤ RY .
Further, for Z ∼ N(0, σ 2), RZ = σ 2 and R∗

Z = σ 2/2, with g(x) = x and
g(x) = x2 −σ 2 respectively achieving these values (one can show this by expand-
ing g in the Hermite basis).

Using Poincaré inequalities, extensions of Brown’s inequality Lemma 1.1 hold
(with a constant depending on I (Y1) andRY1 ) for a wider class of random variables
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than just normals. Since linear score functions correspond to the family of normal
distributions, Equations (1) and (2) provide a means to prove the following Central
Limit Theorems.

Theorem 1.3. Given X1, X2, . . . IID and with finite variance σ 2, define the nor-
malized sum Un = (

∑n
i=1Xi)/

√
nσ 2.

IfXi have an absolutely continuous density with finite restricted Poincaré con-
stant R∗ then

J (Un) ≤ 2R∗

2R∗ + (n− 1)σ 2 J (X1) for all n. (3)

If Xi have a density with finite Poincaré constant R, then

D(Un) ≤ 2R

2R + (n− 1)σ 2D(X1) for all n. (4)

Proof. Note that if J (X1) is infinite then (3) is trivially true, and similarly for
D(X1) and (4). See Sections 2 and 3 for the proof of the Fisher information bound
(3). Notice that for X normal, 2R∗ = σ 2, so the ‘closer to normal X is’, the closer
the bound becomes to J (X)/n.

The relative entropy bound (4) is a corollary. Using an integral form of the de
Bruijn identity (Lemma 1 of Barron (1986)), the relative entropy satisfies

D(X) =
∫ 1

0

J (
√
tX + √

1 − tZ)

2t
dt, (5)

where Z is a normal independent of X, with the same mean and variance as X.
Now, if X has finite Poincaré constant R, then for each t , parts (v) and (vii) of
Theorem 2 of Borovkov and Utev (1984) show that the (

√
tX + √

1 − tZ) itself
has Poincaré constant ≤ tR+ (1 − t)σ 2 ≤ R (since part (vi) of the same Theorem
gives that σ 2 ≤ R). Moreover, for all 0 < t < 1 the resulting density is absolutely
continuous (even if the density of X is not), so using R∗ ≤ R, expressions (3) and
(5) imply the bound (4). 	

Note: Instead of requiring X1 to satisfy the stated conditions, it is enough for
such bounds that the conditions are satisfied after some number of convolutions.
Indeed, if Uk has finite J (Uk) and RUk for some k then for all n ≥ k, we have
J (Un) ≤ (2RUkJ (Uk)+ 1)/�n/k
.

TheO(1/n) rate of convergence of Theorem 1.3 is perhaps to be expected. For
example if Xi is exponentially distributed, and hence Un has a �(n) distribution,
then J (Un) = 2/(n−2), consistent with this. In fact, by extending the Cramér-Rao
inequality we deduce the following lower bound.

Lemma 1.4. LetX1, X2, . . . , Xn be IID with finite fourth moment and assume that
their standardized sum Un has an absolutely continuous density and finite Fisher
information. Writing mr(X) for the centered rth moment of X, then defining the
skewness s = m3(X)/m2(X)

3/2 and excess kurtosis k = m4(X)/m2(X)
2 − 3:

J (Un) ≥ s2

2n+ k
.
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Proof. The positivity of E(ρY (Y )+ f (Y ))2 implies that

I (Y ) = EρY (Y )
2 ≥ E(2f ′(Y )− f (Y )2), (6)

giving a whole family of bounds for random variables Y and functions f satisfying
the identity E[ρ(Y )f (Y )] = −E[f ′(Y )] which we use here for linear and qua-
dratic f . (This identity may be thought of as an integration by parts, valid under
integrability conditions in the case that p × f is absolutely continuous – see also
Lemma A.1 in the Appendix).

If in inequality (6) one takes a random variable Y with EY = 0 and sets f (y) =
y/σ 2 where σ 2 = m2(Y ) is the variance of Y , then one deduces I (Y ) ≥ 1/σ 2,
which we refer to as the Cramér-Rao bound.

A stronger lower bound is obtained in (6) by taking f (y) = y/σ 2 +a(y2 −σ 2).
Then choosing the optimal a, which is a = −m3(Y )/(m2(Y )(m4(Y )−m2(Y )

2)),
we deduce that for any Y

J (Y ) = m2(Y )I (Y )− 1 ≥ m3(Y )
2

m2(Y )(m4(Y )−m2(Y )2)
.

Now taking Y = Un, we relate its moments to the moments of X. Indeed,
m2(Un) = 1, m3(Un) = m3(X)/(m2(X)

3/2√n) = s/
√
n and m4(Un) = m4(X)/

(nm2(X)
2)+ 3(n− 1)/n = (k/n)+ 3. The result follows. 	


Further, thisO(1/n) convergence is consistent with estimates of Berry–Esseen type
which give aO(1/

√
n) rate of weak convergence. The following lemma shows the

relationship between convergence in Fisher information and several weaker forms
of convergence.

Lemma 1.5. IfX is a random variable with density f , and φ is a standard normal,
then:

sup
x

|f (x)− φ(x)| ≤
(

1 +
√

6

π

)√
J (X),

∫
|f (x)− φ(x)|dx ≤ 2dH (f, φ) ≤

√
2
√
J (X),

where dH (f, φ) is the Hellinger distance
(∫ |√f (x)− √

φ(x)|2dx)1/2.

Proof. The first bound comes from Shimizu (1975). The second inequality tightens
a bound of Shimizu. Since:

√
φ(x)

∂

∂x

√
f (x)

φ(x)
= 1

2

(
f ′(x)√
f (x)

+ x
√
f (x)

)
,

we deduce from the Poincaré inequality for φ that:

J (X) = 4
∫
φ(x)

(
∂

∂x

√
f (x)

φ(x)

)2

≥ 4
∫
φ(x)

(√
f (x)

φ(x)
− µ

)2

= 4(1 − µ2),

where µ = Eφ

√
f/φ, so 2d2

H (f, φ) = 2(2 − 2µ) ≤ 4(1 − µ2). 	
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Recent work by Ball et al. (2002) has also considered the rate of convergence
of information. Their paper obtains similar results, but by a very different method,
involving transportation costs and a variational characterisation of Fisher informa-
tion.

Unfortunately, Poincaré constants are not finite for all distributionsY . Indeed, as
Borovkov and Utev (1984) point out, ifRY < ∞, then by considering gn(x) = |x|n,
we inductively deduce that all the moments of Y are finite. From the Berry-Es-
seen Theorem (see for example Theorem 5.7 of Petrov (1995)) we know that only
(2 + δ)th moment conditions are enough to ensure an explicit O(1/nδ/2) rate of
weak convergence, for 0 < δ ≤ 1. In Section 4 we describe a proof of Fisher
information convergence under only second moment conditions, though without
an explicit rate.

Theorem 1.6. Given X1, X2, . . . IID with finite variance σ 2, define the normal-
ized sum Un = (

∑n
i=1Xi)/

√
nσ 2. If Um has an absolutely continuous density and

J (Um) is finite for some m then

lim
n→∞ J (Un) = 0.

Note: This extends Lemma 2 of Barron (1986), which only holds whenX is of the
form Y + Zτ .

Aside from the intrinsic interest that these theorems give by offering a strong
form of the Central Limit Theorem, they can be used in problems ranging from
quantum probability to statistics. Indeed, in estimation of the shift parameter of a
quantum state, Theorem 1.6 is precisely what is used to prove Theorem 3 of Holevo
(2003).

Another application is the demonstration of risk efficiency of certain parame-
ter estimators, in particular, the best unbiased estimators of natural parameters in
general exponential families. Indeed, suppose Xi are IID real-valued with density
function of the form p(x|η) = eηxh(x)/cη, with η in the interior of the interval
in which the normalizing constant cη is finite. Two score functions and associated
Fisher informations arise in estimation. On one hand (d/dη) logp(x|η) = x − µ

whereµ is the mean ofX, so the Fisher information Iη for η is equal to the variance
of X. On the other hand, the sum Sn = X1 + · · · + Xn has a density function
of a similar form pn(s|η) = eηshn(s)/c

n
η , for which η̂n = −(d/ds) loghn(s) is

the best unbiased estimator of η (indeed it is the only unbiased estimator that is
a function of the complete sufficient statistic Sn, see Casella and Berger (1990)
pages 88,243–244). Consequently ρn(s) = (d/ds) logpn(s|η) is the error η− η̂n,
and its expected square I (Sn) is equal to the mean squared error. In terms of the
standardized information one has I (Sn) = (1+J (Un))/(nIτ ). Thus, in this setting,
J (Un) characterizes the gap in the information inequality E(η̂n − η)2 ≥ 1/(nIτ )
and, if this mean squared error is finite for some n, the following risk efficiency
holds

E(η̂n − η)2 = 1

nIτ
(1 + o(1)).

Indeed, it is equivalent to our central limit theorem (Theorem 1.6).
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2. Projection of ridge functions in L2

Although the main application of the following Proposition will concern score func-
tions, we present it as an abstract result concerning projection of ridge functions
in L2(Y1, Y2) onto the space of additive functions. First note that for any f with
Ef 2(Y1 +Y2) finite and Ef (Y1 +Y2) = 0 with Y1 and Y2 independent, if we form
g1(u) = EY2f (u + Y2) and g2(v) = EY1f (Y1 + v), then g1(Y1) + g2(Y2) is the
projection onto the space of additive functions. Indeed, one has the Pythagorean
relation

E(f (Y1 + Y2)− h1(Y1)− h2(Y2))
2

= E(f (Y1 + Y2)− g1(Y1)− g2(Y2))
2

+ E(g1(Y1)− h1(Y1))
2 + E(g2(Y2)− h2(Y2))

2. (7)

Proposition 2.1. Consider independent random variables Y1, Y2 with absolutely
continuous densities and restricted Poincaré constants R∗

1 and R∗
2 . Consider a

function f such that Ef (Y1 + Y2)
2 is finite and Ef (Y1 + Y2) = 0. Let g1(u) =

EY2f (u+ Y2) and g2(v) = EY1f (Y1 + v). There exist constants µ, ν1 and ν2 such
that for any β ∈ [0, 1]:

E (f (Y1 + Y2)− g1(Y1)− g2(Y2))
2

≥ 1

I

(
β

R∗
1

E (g1(Y1)− µY1 − ν1)
2 + (1 − β)

R∗
2

E (g2(Y2)− µY2 − ν2)
2
)
,

where I = (1 − β)I (Y1)+ βI (Y2).

Proof. We may assume that I is finite, otherwise the desired inequality is trivial.
Having removed the additive part of f , we hope that what remains will be small in
magnitude and we control its inner product with certain functions of the variables.
Specifically we define

r1(u) = EY2 [(f (u+ Y2)− g1(u)− g2(Y2)) ρ2(Y2)] ,

r2(v) = EY1 [(f (Y1 + v)− g1(Y1)− g2(v)) ρ1(Y1)] ,

and show that we can control their norms. Indeed, by Cauchy-Schwarz, for any u:

r2
1 (u) ≤ EY2 (f (u+ Y2)− g1(u)− g2(Y2))

2
Eρ2

2 (Y2),

so taking expectations over Y1, we deduce that

Er2
1 (Y1) ≤ E (f (Y1 + Y2)− g1(Y1)− g2(Y2))

2 I (Y2). (8)

Also, we see that Er1(Y1) = 0, since when I (Y2) is finite we have that Eρ2(Y2) = 0
(one of the properties of score functions reviewed in Lemma A.1 of the appendix).
Similarly,

Er2
2 (Y2) ≤ E (f (Y1 + Y2)− g1(Y1)− g2(Y2))

2 I (Y1). (9)
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Now in examining the function r1(u) further, we would like to exchange limits to
see that g1(u) = E[f (u+Y2)] has derivative g′

1(u) = −Ef (u+Y2)ρ2(Y2), that is,∫
f (s)p(s−u)ds has derivative

∫
f (s)p′(s−u)ds, and we would like this g1 to be

absolutely continuous. One may achieve this exchange and the absolute continuity
in certain cases, such as bounded f (again see Lemma A.1 in the appendix). Hence
we first assume that f is bounded. We will relax that assumption at the end of the
proof.

Setting µ1 = −Eg2(Y2)ρ2(Y2) = −Ef (Y1 + Y2)ρ2(Y2), we recognize that
r1(u) defined above simplifies to

r1(u) = − (g′
1(u)− µ1

)
.

Now g1(y1)− µ1y1 − ν1 has mean zero (with ν1 = µ1EY1), is absolutely contin-
uous, and has derivative −r1(y1), enabling use of the Poincaré inequality.

Likewise, use r2(v) = −(g′
2(v) − µ2), with µ2 = −Eg1(Y1)ρ1(Y1) =

−Ef (Y1 + Y2)ρ1(Y1). In fact, µ1 and µ2 are equal (using Lemma 3.1 they both
equal −Ef (S)ρ(S) where S = Y1 + Y2), so we refer to them both as µ.

Adding β times Equation (8) to (1 − β) times Equation (9), and using the
Poincaré inequalities, we deduce the result for bounded functions f .

We can deal with the general case of f ∈ L2 with Ef (S) = 0, by con-
sidering the truncation f (s)I(|f (s)| ≤ c) and subtracting its mean ac to give
fc(s) = f (s)I(|f (s)| ≤ c)− ac. This gives absolutely continuous functions of the
form gc(u) = E[fc(u+Y )] with Y either Y1 or Y2, for which the lower bound holds
in terms of the L2 norms of such gc, using the constant µc = −Efc(S)ρ̄(S). Then,
by Cauchy-Schwarz, the L2 norms of f − fc and g − gc are all less than twice
the L2 norm of f (s)I(|f (s)| > c), which tends to zero as c → ∞, and likewise
µ − µc also tends to zero, as c → ∞. So the desired inequality holds for general
f ∈ L2 with Ef (S) = 0. 	

Note: this inequality holds in general, for any Y1, Y2 with finite Fisher information,
whereas previous such expressions have only held in the case of Yi ∼ Ui +Zτ , for
some Ui and for Zτ a N(0, τ ) independent of Ui .

Note: this inequality allows for independent random variables that are not identi-
cally distributed. Armed with it, one may provide Central Limit Theorems giving
information convergence to the normal for random variables satisfying a uniform
Lindeberg-type condition (see also Johnson (2000)). In certain cases we can provide
a rate of convergence.

Note: we can produce a similar expression using a similar method for finite-dimen-
sional random vectors Y1,Y2, where ρi = (∂/∂xi)(logp(x)) will be the ith com-
ponent of the score vector function ρ. Similar analysis in this case can give an
alternative proof of the Theorems in Johnson and Suhov (2001).

3. Rate of convergence

In this section, we prove Theorem 1.3. If Y1, Y2 have finite restricted Poincaré
constants R∗

1 , R
∗
2 then we can extend Lemma 1.1 from the case of normal Y1, Y2
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to more general distributions, providing an explicit rate of convergence of Fisher
information. We can apply Proposition 2.1 because the score functions of sums can
be expressed as L2 projections.

Lemma 3.1. Let S = Y1 + Y2 where Y1 and Y2 are independent and suppose Y2
has an absolutely continuous density with score function ρ2 with finite Fisher infor-
mation I (Y2) = Eρ2

2 (Y2). Then S has an absolutely continuous density with score
function

ρ(s) = E[ρ2(Y2)|S = s], and I (S) ≤ I (Y2).

Moreover for independent random variables Y1 and Y2 with absolutely continuous
densities and score functions ρ1 and ρ2, writing ρ for the score function of S:

I (Y1)+ I (Y2)

2
− I

(
Y1 + Y2√

2

)
= 2E

(
ρ (S)− ρ1(Y1)+ ρ2(Y2)

2

)2

.

Proof. First, by the device of Lemma A.1 in the appendix, to show that the pro-
posed ρ(s) is the score function (and that S has an absolutely continuous density)
we show for every bounded test function T (u+ S) that ET (u+ S) has derivative
−E[T (u+ S)ρ̄(S)]. For any such bounded T define T2(v) = ET (v + Y1) so that
T2(u + Y2) = E[T (u + S)|Y2]. Then, since the indicated property holds for Y2
we have that E[T (u+ S)ρ(S)] = E[T (u+ S)ρ2(Y2)] = E[T2(u+ Y2)ρ2(Y2)] =
−(d/du)ET2(u+ Y2) = −(d/du)ET (u+ S).

Secondly, if both random variables have the indicated properties, then ρ =
E[(ρ1(Y1) + ρ2(Y2))/2|S = s]. Thus by the Pythagorean identity, the result fol-
lows, on rescaling: ρaX(x) = ρX(x/a)/a and J (aX) = J (X)/a2. 	

Proposition 3.2. Consider Y1, Y2 IID with absolutely continuous densities, vari-
ance σ 2 and restricted Poincaré constant R∗. Then

J

(
Y1 + Y2√

2

)
≤ J (Y1)

(
2R∗

σ 2 + 2R∗

)
.

Proof. The claim is trivial if J is infinite, and is merely J ((Y1 +Y2)/
√

2) ≤ J (Y1)

if R∗ is infinite (which is covered by Lemma 3.1). So suppose now that J and R∗
are finite.

Without loss of generality, suppose Yi have mean 0 and variance 1, since we
can just rescale, using R∗

aX = a2R∗
X. Write J and I for the standardardized and

non-standardized Fisher information of Y , and J ′ and I ′ for the corresponding
quantities for (Y1 + Y2)/

√
2.

Let f (s) = 2ρ(s) = √
2ρ̃((Y1 + Y2)/

√
2), where ρ is the score of the sum

S = Y1 + Y2 and ρ̃ is the score of the standardized sum (Y1 + Y2)/
√

2, and let
g(u) = Ef (u+ Y2). By Lemma 3.1 and (7):

J (Y1)− J

(
Y1 + Y2√

2

)

= E

(
ρ̃

(
Y1 + Y2√

2

)
− g(Y1)+ g(Y2)√

2

)2

+ E(ρ1(Y1)− g(Y1))
2.
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−(Y1 + Y2)/
√

2

ρ̃
(
(Y1 + Y2)/

√
2
)

(g(Y1)+ g(Y2))/
√

2
(ρ(Y1)+ ρ(Y2))/

√
2

(h(Y1)+ h(Y2))/
√

2

Fig. 1. Role of projections

Now, consider the projection of ρ̃ into the space of additive functions, shown as
a plane in Figure 1, where (h(Y1) + h(Y2))/

√
2 is the closest point to ρ̃ on the

line between −(Y1 + Y2)/
√

2 and (ρ(Y1)+ ρ(Y2))/
√

2, so that E(g(Y1)+ Y1)
2 ≥

E(h(Y1)+ Y1)
2.

Further, we know that h corresponds to the value of λ which minimises:

E

(
ρ̃

(
Y1 + Y2√

2

)
−
(
λ

(
ρ(Y1)+ ρ(Y2)√

2

)
− (1 − λ)

(
Y1 + Y2√

2

)))2

.

Since in general E(U − λV )2 is minimised at λ = EUV/EV 2, in this case the
minimising λ = J ′/J , so h is J ′/J of the way along the line. This tells us that
E(h(Y )+ Y )2 = (J ′/J )2E(ρ(Y )+ Y )2 = J

′2/J .
Overall then, we deduce that E(g(Y1)+ Y1)

2 ≥ J
′2/J , and by Pythagoras,

E

(
ρ̃
(
(Y1 + Y2)/

√
2
)

− (g(Y1)+ g(Y2))/
√

2
)2 ≤ J ′ − J

′2/J.

Now applying Proposition 2.1 to the left side of the above equation, we can see
that the factor of I in the denominator of the inequality that follows will actually
cancel, simplifying the expression.

J ′ − J
′2/J ≥ E

(
ρ̃

(
Y1 + Y2√

2

)
− g(Y1)+ g(Y2)√

2

)2

≥ E(g1(Y1)− µY1)
2

2R∗I

= E(g1(Y1)+ Y1)
2 + (−µ− 1)2

2R∗I
≥
(
J

′2

J
+ J

′2
)

1

2R∗I
= J

′2

2R∗J

since µ = −I ′ and since EY1g1(Y1) = −1, so rearranging, we obtain the result.
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For the rest of this section supposeX1, . . . , Xn are IID with absolutely continuous
density with finite Fisher information I (X) and let Un be the standardized sum
of X1 + · · · + Xn. A more careful analysis generalises Proposition 3.2, to obtain
Theorem 1.3 by performing successive projections onto smaller additive spaces.
For a given mean zero function f ∈ L2, define a series of functions by fn = f ,
and for m < n:

fm

(
X1 + · · · +Xm√

n

)
= EXm+1fm+1

(
X1 + · · · +Xm +Xm+1√

n

)
.

Further, define g(u) = √
nEf

(
X1+···+Xn−1+u√

n

)
. Note that since the random vari-

ables are IID each g(Xi) is the result of integrating out all the other variables.
Likewise fi arises from integrating out n− i of the random variables.

At step i, we approximate the function f by fi((X1 + · · · + Xi)/
√
n) plus a

sum of g(Xj ) for j > i, which is the best approximation onto the linear space of
such partially additive functions.

Lemma 3.3. Defining the squared distance between successive projections to be

ti = E

(
fi

(
X1 + · · · +Xi√

n

)
− fi−1

(
X1 + · · · +Xi−1√

n

)
− 1√

n
g(Xi)

)2

,

then there exists a constantµ such that forXi IID and with finite restricted Poincaré
constant R∗:

ti ≥ (i − 1)

nI (X)R∗ E(g(X)− µX)2.

Proof. Work with the function

r(z) = E

(
fi

(
X1 + · · · +Xi−1 + z√

n

)
− fi−1

(
X1 + · · · +Xi−1√

n

)
− 1√

n
g(z)

)

× (ρ(X1)+ · · · + ρ(Xi−1))

in two different ways. Firstly, we apply Cauchy-Schwarz to r(z)2, and take expected
values, to deduce that Er(X)2 ≤ ti (i − 1)I (X).

Secondly, writing ρ for the score of X1 + · · ·Xn−1, the function g(z) has
derivative g′(z) = −Ef ((X1 + · · · + Xn−1 + z)/

√
n)ρ(X1 + · · · + Xn−1) =

−Ef ((X1 + · · · + Xn−1 + z)/
√
n)ρ(X1) (by Lemma 3.1). We consider this as

an iterated integral, first integrating out the variables Xi through Xn−1, so that the
result is −Efi(X1 + · · · +Xi−1 + z)/

√
n)ρ(X1), and hence

r(z) = −
(
i − 1

n

)
(g′(z)− µ).

Putting these together, the result follows, using the Poincaré inequalities. 	

Lemma 3.4. For Xi IID, the sum of these squared distances ti is sm = ∑m

i=1 ti ,
where

sm = E

(
fm

(
X1 + · · · +Xm√

n

)
−

m∑
i=1

g(Xi)√
n

)2

.
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Proof. Since sm = Ef 2
m− (m/n)Eg2, and since tm = Ef 2

m−Ef 2
m−1 − (1/n)Eg2,

we can rearrange to obtain:

sm = (tm + Ef 2
m−1 + (1/n)Eg2)− (m/n)Eg2 = tm + sm−1,

so summing the telescoping sum, the result follows. 	

Combining Lemma 3.3 and Lemma 3.4, we deduce that:

sn ≥
n∑
i=1

(i − 1)

nI (X)R∗ E(g(X)− µX)2 = (n− 1)

2I (X)R∗ E(g(X)− µX)2. (10)

Proof of Theorem 1.3. Assume that X has variance 1, and write J ′ for J (Un), J
for J (X) and take f = √

nρn (where ρn is the score of Un) with corresponding
g and µ as defined above. As before we know that E(g(X) + X)2 ≥ J

′2/J and
sn = E

(
ρn −∑

g(Xi)/
√
n
)2 ≤ J ′(1−J ′/J ). Hence by Equation (10), we deduce

that:

J ′(1 − J ′/J ) ≥ sn ≥ (n− 1)

2R∗I (X)
E(g(X)− µX)2

≥ (n− 1)

2R∗I (X)

(
J

′2

J
+ J

′2
)

= (n− 1)

2R∗
J

′2

J
.

Thus, in general, rescaling gives:

J (Un) ≤ 2R∗

2R∗ + (n− 1)σ 2 J (X),

and the result follows. 	


4. Convergence of Fisher information

The remainder of this paper will show how we can prove Theorem 1.6 which
implies convergence of Fisher information (though without such an attractive rate
of convergence), even if the Poincaré constants are not finite. We will need uniform
control over the tails of the Fisher information, and then will bound it on the rest of
the region using the projection arguments of Section 2. Recall that for I (X) finite,
the density of X is bounded (see Lemma A.1).

Definition 4.1. Given a function ψ , we define the following class:

Cψ ={X : EX = 0, σ 2 = EX2 < ∞, σ 2
Eρ(X)2I(|X| ≥ σT ) ≤ ψ(T ) for all T .}

In the remainder of the section, we will assume that the common variance of the
random variables is equal to 1.

Lemma 4.2. For X1, X2, . . . IID with finite variance and finite I (X), then Um ∈
Cψ for all m where ψ(T ) = Eρ(X)2I(|X| ≥ T )+ C/T 1/2.
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Proof. We use the notation that p and ρ stand for the density and score function
of a single X, and pr for the density of X1 + · · ·Xr . We know that Um has score
function ρm(u) = E

(∑
i ρ(Xi)

∣∣Um = u
)
/
√
m, so by the conditional version of

Jensen’s inequality

ρm(u)
2 ≤ E(ρ(X1)

2|Um = u)+ (m− 1)E(ρ(X1)ρ(X2)|Um = u). (11)

Consider the two terms of Equation (11) separately, firstly writingW forX2 +· · ·+
Xm:

EUmE[ρ(X1)
2|Um]I(|Um| ≥ T )

≤ Eρ(X1)
2 (I(|X1| ≥ T , |Um| ≥ T )+ I(|X1| < T, |Um| ≥ T ))

≤ Eρ(X1)
2 (

I(|X1| ≥ T )+ I(|W | ≥ T (
√
m− 1))

)

≤ Eρ(X)2I(|X| ≥ T )+ I (X)(m− 1)

T 2(
√
m− 1)2

Then for any u, writing qm for the density of Um

E(ρ(X1)ρ(X2)|Um = u)

=
∫∫ √

mp(v)p(w)pm−2(u
√
m− v − w)

qm(u)
ρ(v)ρ(w)dvdw

=
√
m

qm(u)

∫
pm−2(u

√
m− x)

∫
∂p

∂v
(v)
∂p

∂x
(x − v)dvdx.

So on integrating the second term of Equation (11) we obtain q ′
m(−T ) − q ′

m(T )

and we need a function ψ ′ such that for all T :

|q ′
m(T )| ≤ ψ ′(|T |) (12)

For all m, qm(x) ≤ √
I (Um) ≤ √

I , so that

q ′
2m(u) = 2

∫
q ′
m(v)qm(u

√
2 − v)dv

≤ 23/4
(∫

q ′
m(v)

2

qm(v)
dv

)1/2 (∫ √
2qm(v)q

2
m(u

√
2 − v)dv

)1/2

≤ 23/4
√
I

(√
I

∫ √
2qm(v)qm(u

√
2 − v)dv

)1/2

≤ (2I )3/4
√
q2m(u)

(a similar bound will hold for q2m+1) and

qm(u) ≤
∫ ∞

u

|q ′
m(v)|dv ≤

(∫ ∞

u

q ′
m(v)

2

qm(v)
dv

)1/2 (∫ ∞

u

qm(v)dv

)1/2

≤
√
I

u
,

we deduce that Equation (12) holds, with ψ ′(T ) = 23/4I/T 1/2. Note that under a
(2 + δ)th moment condition, we obtain ψ ′(T ) = C/T (2+δ)/4. 	
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By results of Brown (1982), we know that under a finite variance condition, there
exists θ(T ) such that EX2

I(|X| ≥ σT ) ≤ θ(T ). If in addition, E|X|2+δ is finite
for some δ, the Rosenthal inequality implies that E|Un|2+δ is uniformly bounded,
so we can take θ(T ) = 1/T δ .

The other ingredient we require is a bound on the Poincaré constant RTUn
(which is the Poincaré constant of a random variable Y with the distribution of
Un conditioned on the event |Un| ≤ T ). This will be used in the proof of Theorem
1.6, since E[g(Un)2I(|Un| ≤ T )]/E[g′(Un)2I(|Un| ≤ T )] = E[g(Un)2|(|Un| ≤
T )]/E[g′(Un)2|(|Un| ≤ T )] = Eg(Y )2/Eg′(Y )2 ≤ RTUn .

Lemma 4.3. If I (X) is finite then there exist R(T ) and N(T ) such that for all T ,
RTUn ≤ R(T ) for n ≥ N(T ) (that is, for all T the sequence (RTUn)n≥1 is bounded).

Proof. Write the total variation distance between fn (the density of Un) and the
standard normal density as dn = supA |fn(A)−φ(A)| (which tends to zero). Since
fn is bounded then:

|f2n(x)− φ(x)| ≤
√

2

∣∣∣∣
∫
fn(

√
2x − y)(fn(y)− φ(y))dy

∣∣∣∣
+

√
2

∣∣∣∣
∫
φ(

√
2x − y)(fn(y)− φ(y))dy

∣∣∣∣
≤ 2

√
2 (‖fn‖∞ + ‖φ‖∞)

∫
(fn(y)− φ(y))I (fn(y) ≥ φ(y))dy

≤ 2
(√

2I +
√

1/π
)
dn

Now, for given T , take

N(T ) = 2 min
{
m :

(√
2I +

√
1/π

)
dn ≤ φ(T )/2 for all n ≥ m

}
.

This implies that fn(x) ≥ φ(T )/2, for x ∈ [−T , T ] and n ≥ N(T ), so R(T ) =
2/φ(T ) means

−
∫ x

−T
yfn(y)dy ≤ R(T )fn(x), for 0 ≥ x ≥ −T (13)

∫ T

x

yfn(y)dy ≤ R(T )fn(x), for 0 ≤ x ≤ T , (14)

since the LHS of (13) and (14) is always less than 1. Now Equations (13) and (14)
are precisely the conditions under which Theorem 1 of Borovkov and Utev (1984)
proves that the random variable has Poincaré constant R(T ), so we are done. 	


Combining these two results gives the following.
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Proof of Theorem 1.6. Using the method of Proposition 2.1, with f = √
2ρ2n, a

function g and constants µ, ν are identified such that:

J (Un)− J (U2n)

= E(ρn(Un)− g(Un))
2 + E

(
ρ2n(U2n)− 1√

2
g(Un)− 1√

2
g(U ′

n)

)2

≥ E(ρn(Un)− g(Un))
2
I(|Un| ≤ T )

+ 1

2RTUnI (Un)
E(g(Un)− µUn − ν)2I(|Un| ≤ T )

≥ 1

1 + 2RTUnI (Un)
E(ρn(Un)− µUn − ν)2I(|Un| ≤ T ),

since ax2 +by2 ≥ ab(x−y)2/(a+b). Nowµ = −I (U2n), and ν = −E(g(Un)−
µUn)I(|Un| < T ). The standardized Fisher information involves the best linear
approximation to the score. That is J (Un) = infa,b E(ρn(Un) − aUn − b)2 ≤
E(ρn(Un)− µUn − ν)2, so that

J (Un) ≤ E(ρn(Un)− µUn − ν)2

= E(ρn(Un)− µUn − ν)2 (I(|Un| ≤ T )+ I(|Un| > T ))

≤ (1 + 2RTUnI (Un))(J (Un)− J (U2n))

+ E(ρn(Un)− µUn − ν)2I(|Un| > T ),

and hence by Lemmas 4.2 and 4.3, for some function ζ(T ) such that ζ(T ) → 0 as
T → ∞:

J (Un) ≤ (1 + 2RTUnI (Un))(J (Un)− J (U2n))+ ζ(T ).

For any ε we can find T0 such that ζ(T0) ≤ ε, for all n ≥ N(T0), then (1 +
2RTUnI (Un))(J (Un)− J (U2n) ≤ (1 + 2R(T0)I )(J (Un)− J (U2n) ≤ ε for n suffi-
ciently large. 	

The result that if J (Un) is finite for some n then it tends to zero mirrors the main
theorem of Barron (1986), that if D(Un) is finite for some n then it tends to zero.

A. Appendix: some score function properties

Lemma A.1. Suppose Y is a real-valued random variable with probability density
function p.

A. If the density function is absolutely continuous and has finite Fisher informa-
tion I (Y ) = Eρ2(Y ), where the score function ρ(y) is defined by p′(y)/p(y)
wherever p is positive and differentiable (and elsewhere, in a PY -null set, is
defined arbitrarily, say equal to 0), then
1. the density p is bounded,
2. it has bounded variation

∫ |p′(y)|dy = E|ρ(Y )| ≤ √
I (Y ),



406 O. Johnson, A. Barron

3. for every bounded function f , the function g(u) = Ef (u + Y ) is abso-
lutely continuous on the line and has derivative g′(u) = −Ef (u+Y )ρ(Y ),
Lebesgue almost everywhere,

4. more generally, for functions with Ef 2(u + Y ) bounded as a function of u
in an interval, g(u) = Ef (u + Y ) is absolutely continuous in the interval
with derivative g′(u) = −Ef (u+ Y )ρ(Y ), Lebesgue almost everywhere,

5. Eρ(Y ) = 0, if EY 2 is finite then EYρ(Y ) = −1, and if EY 4 is finite then
EY 2ρ(Y ) = −2EY .

B. In the converse direction, if for some function ρ(y) with finite expected square,
the random variable satisfies (A3) for all bounded functions f , then a version of
the density function p is absolutely continuous and satisfies p′(y) = ρ(y)p(y)

Lebesgue almost everywhere.

Note: Conclusions (A3) and (A4) may be regarded as exchanges of integral and
derivative in g(u) = ∫

f (s)p(s−u)du, using smoothness of p rather than smooth-
ness of f . It shows that the operation of differentiation of the expectation of f (u+
Y ), for classes of general f , consists of taking an inner product with the score
function. Conclusion (A5) may be regarded as applications of integrations by parts
or may be deduced from (A4) as shown here. These identities and properties of
score functions are key tools in our projection inequalities.

Proof of Lemma A.1. Part A. Let p be absolutely continuous and let p′ be a func-
tion defined to equal the derivative of p where it exists and set arbitrarily on the
Lebesgue null set where p is not differentiable. Now at points of differentiability
if p(y) is 0 then p′(y) must also be 0 since the density is non-negative. Conse-
quently, letting C = {y : p(y) > 0}, we have

∫ |p′(y)|dy = ∫
C

|p′(y)|dy equal-

ling
∫ |ρ(y)|p(y)dy = E|ρ(Y )| ≤

√
E|ρ(Y )|2 = √

I (Y ). Thus when I = I (Y )

is finite, the variation
∫ |p′(y)|dy is finite. Absolute continuity yields p(u) =∫ u

−∞ p′(y)dy, so that we have the bound p(u) ≤ ∫ |p′(y)|dy ≤ √
I . This verifies

conclusions (A1) and (A2).
Given a function f , let g(u) = Ef (u + Y ) and h(u) = −Ef (u + Y )ρ(Y ).

We are to show, under conditions on f , that g is absolutely continuous with deriv-
ative determined by h. Toward that end, consider intervals [v,w], and the integral∫ w
v
h(u)du, which entails the integration of f (u + y)p′(y) for u in the interval

and y on the line. Cauchy-Schwarz demonstrates the integrability
∫ w
v

[
∫ |f (u +

y)||p′(y)|dy]du ≤ ∫ w
v
(Ef 2(u + Y ))1/2Idu where the indicated conditions on f

provide the required local integrability. Now
∫ w
v
h(u)du = − ∫ w

v
[
∫
f (s)p′(s −

u)ds]du and by Fubini we may exchange the order of this integration to obtain
that this is − ∫ f (s)[∫ w

v
p′(s − u)du]ds which by the absolute continuity of p is

− ∫ f (s)(p(s − v)− p(s −w))ds = g(w)− g(v), so g(u) is absolutely continu-
ous with derivative a.e. provided by h(u) = −Ef (u+ Y )ρ(Y ). This demonstrates
conclusions (A3) and (A4).

Take f (u+ Y ) equal to 1, u+ Y , or (u+ Y )2 so the corresponding g(u) is 1,
u+EY , and u2 +2uEY +EY 2, respectively, with derivatives, 0, 1, and 2u+2EY .
Under the respective stated conditions Ef 2(u+Y ) is locally bounded (bounded in
finite intervals), and hence by conclusion (A4) these derivatives match −Eρ(Y ),
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−E[(u+ Y )ρ(Y )], and −E[(u+ Y )2ρ(Y )], respectively, for a.e. u. Expanding the
quadratic and using each conclusion in turn, we find Eρ(Y ) = 0, EYρ(Y ) = −1,
and EY 2ρ(Y ) = −2EY , proving (A5).

For Part B, suppose statement (A3) holds for some function ρ(Y ) with finite
expected square. Take f (s) = I(s ≤ 0). Then g(u) = Ef (u+Y ) = P(Y ≤ −u) is
the cumulative distribution function, so being absolutely continuous its derivative
provides the density function. Moreover statement (A3) expresses its derivative as
g′(u) = −Ef (u + Y )ρ(Y ) = − ∫ −u

−∞ ρ(y)p(y)dy for Lebesgue almost every u.
Thus setting p′(y) = ρ(y)p(y) we have that

∫ y
−∞ p′(u)du provides an absolutely

continuous version of the density and that ρ is indeed its score function. 	


Examples: The one-sided exponential density, due to its discontinuity at 0, is not
absolutely continuous. Its convolution with itself, �(2), is absolutely continuous,
with a jump in the derivative at 0, and its linear behavior at 0+ leads to an unbounded
score function with infinite Fisher information. Convolutions of three or more expo-
nentials yields the �(n) density (n ≥ 3) which is absolutely continuous and has
an unbounded score function, yet finite Fisher information, so the conclusions of
Lemma A.1 hold for these. The two-sided exponential (Laplace) density (though
it has a jump in the derivative, that jump occurs where the density is positive) is
absolutely continuous with finite Fisher information.

Note: The differentiability of g(u) = Ef (u+ Y ) for absolutely continuous densi-
tiesp and certain conditions on the functionsf is related to the notion of weak differ-
entiability of p studied in Fabian and Hannan (1977), Brown and Gajek (1990),
and Lehmann and Casella (1998). They require differentiability of g for the slightly
larger class of all f with Ef 2(u+Y ) finite for u in a given set. Potentially that con-
dition could have been used, however it is slightly more stringent than the absolute
continuity of p, and as the examples indicate, difficulties can occur with infinite
Ef 2(u+Y ) at the edge of the support of the density, for relevant score functions f .
Such behaviour can interfere with absolute continuity of the resulting g which we
want to appeal to at a step in our analysis. Indeed, what happens for densities that
approach zero in certain intervals is that even when Ef 2(Y1 +Y2) is finite, the local
Lebesgue integrability of

√
Ef 2(u+ Y ) (sought for showing that g is absolutely

continuous) can fail because that integrability does not have the advantage of the
factor p(u) to ameliorate the affect of unbounded

√
Ef 2(u+ Y ). So with either

condition on p (absolute continuity or weak differentiability) one would need to
use the denseness of certain subclasses of functions in L2 to obtain the inequali-
ties. Once recognized, it led us in the present manuscript to use the more general
condition (of absolute continuity of p) together with an argument which truncates
the magnitude of f for general f in L2. Nonetheless, for many unbounded score
functions playing the role of f , no such truncation is required.

It is pedagogically of note that the analysis underlying the inequalities of this
paper may also be carried out using classical sophomore level calculus, under the
simpler (though not as full in generality) assumption that the density is continuously
differentiable with finite Fisher information (as an extended Riemann integral), and
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can be presented at that level in few lectures if one is willing to not belabour the
exchanges of integrals and derivatives.
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Added in Proof: Here we comment further on central limit theorems for random vari-
ables without finite Poincaré constants. In the proof of Lemma 4.3 we appeal to convergence
of the densities in L1 together with finite J , to deduce L∞ convergence of the densities. This
L∞ convergence is used in a demonstration of a lower bound on the densities in bounded
intervals, which is an ingredient in our demonstration of Theorem 1.6. L1 and L∞ con-
vergence results are available in Prohorov (1952) and Gnedenko and Kolmogorov (1954),
respectively. Alternatively, one can prove what is needed by noting that finite J implies finite
relative entropy D, indeed D ≤ J/2, so that D(Un) tends to zero by Barron (1986), which
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gives L1 convergence as a corollary. Our point is that this method provides a proof of Theo-
rem 1.6, that J (Un) tends to zero if and only if it is ever finite, based solely on consideration
of entropy and information.

As for the inequality D(X) ≤ J (X)/2, it is a consequence of an inequality by Stam
(1959) who shows (based on convolution inequalities for entropy and the de Bruijn identity)
that (2πe)e−2H(X) ≤ I (X), which is equivalent to D(X) ≤ (1/2) log(1 + J (X)). In later
developments D(X) ≤ J (X)/2 is called a log-Sobolev inequality (Gross (1975)).


