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Abstract. Let 5, denote a kernel density estimator of a bounded continuous density s in
the real line. Let w() be a positive continuous function such that |w/#|<cc. Under natu-

ral smoothness conditions, necessary and sufficient conditions for the sequence ﬂ”hﬁ
og 1y

SUper ‘\pm( faO—Efy (:))| (properly centered and normalized) to converge in distribution to the
double exponential law are obtained. The proof is based on Gaussian approximation and a
(new) limit theorem for weighted sup-norms of a stationary Gaussian process. This extends
well known results of Bickel and Rosenblatt to the case of weighted sup-norms, with the
sup taken over the whole line. In addition, all other possible limit distributions of the above
sequence are identified (subject to some regularity assumptions).

1. Introduction

We consider the kernel density estimator f,, of an unknown density f in the real
line based on a sample (X1, ..., X,) of size n of i.i.d. observations with density
f, kernel K and bandwidth #,, such that #,, — 0 and nh,, — oo as n — o0:

1 < t—X;
fn(t)=M§K< i ) (1.1)

Our main goal is to study the convergence in distribution of the (properly cen-
tered and normalized) sequence
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nhy,
S |YOUs = ERIO] (1.2)

where W is a positive weight function that might depend on the density f (for
instance, it might be f~# with some 8 > 0). In particular, under some regularity
assumptions, we prove the following main result. Let

oo K@K (u + t)du

r(t) ==
1K1
Suppose it satisfies the condition
r(t) =1—=Clt|* + o(|t]*) (1.3)

forsome 0 < o <2, C > 0. Define

2
W, (1) ==,/ ;C”“Hauz/“_le_”zﬂ, u=>0

(H, is a known constant), and set

Aa) = / W (1/w(y)dy, (1.4)

—00

where w := Wf1/2 is normalized so that |w|s = 1. Let A, denote the solution
of the equation

Ao (Ap) = hy.
Then (subject to the regularity assumptions outlined in Section 1.1) the condition

Jim ¢ Pr{w(X) = (th| logh )%} =0
—00

is necessary and sufficient for the convergence

Pr{An <\/nhn ”\IJ(.)(fn”;(”Eﬁl)(.)Hoo — A,,) < x} — e asn—>
2

for all x € R. Under simple extra conditions on the bias of f;, results of this type
can be reformulated as statements about the weighted uniform deviation of the ker-
nel estimator from the density itself, which can then be used in hypotheses testing
and in constructing confidence bands for unknown densities.

This continues the line of research initiated by Smirnov in the 30s who proved
convergence in distribution of the uniform deviations (on a compact interval) of
the histogram from the underlying density to the double exponential law and, more
recently, by Bickel and Rosenblatt (1973) (see also the follow up papers of Kon-
akov and Piterbarg (1984) and Rio (1994), where the conditions were significantly
improved) who did the same for kernel density estimators.
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Our approach is based on approximation of the empirical processes related to
the kernel density estimator by Gaussian processes and on reducing the problem to
the study of the asymptotic behavior of weighted suprema

el )leo)

of a stationary Gaussian process & as T — oo. We show that the above suprema,
properly centered and normalized, converge in distribution to the double exponen-
tial law, which generalizes well known results about the limit behavior of suprema
of stationary Gaussian processes in the unweighted case, see, e.g., Leadbetter,
Lindgren and Rootzén (1986) or Piterbarg (1996). More precisely, if 7 () denotes
the covariance function of the process £ and it satisfies condition (1.3), then defining
Ar as the solution of the equation

Ag(A7) =T7!

(with A, defined by (1.4)), we show (subject to some further regularity conditions)
that

Pr{AT (sup w(i)‘é(t)‘ - AT> < x} S e ¢ asT — coVx € R.
teR r

This result might be of independent interest since it is related to the problem of

analyzing the asymptotics of the probabilities of crossing curves of a certain shape

by a stationary Gaussian process. It is given in Theorem 2 below.

Also, based upon recent results of Giné, Koltchinskii and Zinn (2001) (who
studied convergence rates in probability and a.s. of weighted sup-norms of the
deviations of kernel density estimators from their expectations), we determine all
other possible nondegenerate limit distributions of (1.2) (subject to some regularity
conditions).

We introduce some general assumptions used throughout the paper in Section
1.1. In section 2, we develop the Gaussian approximations needed to reduce the
problem to the Gaussian case. Section 3 studies the asymptotic behavior of weighted
sup-norms of stationary Gaussian processes. Section 4 contains the main results and
their proofs and also studies which other limit distributions are possible (in addi-
tion to the double exponential). Theorems 6, 7, 8 and 9, in Section 4, particularly
Theorem 6, contain the distributional limit for the deviation of the kernel density
estimator and are the main results of this article. In Section 5, we sketch an approach
to a version of the main results that might be used in statistical applications.

1.1. General assumptions

We apologize to the reader for the technical character of what follows, but it seems
reasonable, for easier readability of the paper, to state the conditions we will be
using throughout, thus getting them out of the way. Here and throughout, K is a
kernel, f is a density on R, W is a weight function and 4,, are the window sizes.
Here are the assumptions we will be using (different sets on different instances).
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(K1) K isanon-negative function of bounded variation with supportin[—1/2, 1/2].
We will also assume in Section 3 that
(K2) the function
2o KK (u + t)du
K113

satisfies that r(t) = 1 — C|t|* + o(]t|%) as t — O for some 0 < o < 2, and
SUpPjjse ()| < 1 forall e > 0.

r(t) =

We will require in Section 3 that the density f and the weight W satisfy

(F1) By = {f > 0} consists of a finite union of non-trivial disjoint intervals (half
lines not excluded), and f and W are both piecewise monotone on B y. More-
over, f is bounded and Holder continuous of some order > 0 on By, in
particular, lim,—, oo SUP|¢|>q f() =0;and

(F2) the function w = ¥ f 172 satisfies conditions (wl), (w2) and (w3) below, in
Section 3.

The set of assumptions (K1), (K2), (F1) and (F2) will be referred to as ‘the
additional hypotheses’, since we will also require a set (or subsets of) conditions
that we already encountered in Giné, Koltchinskii and Zinn (2001), some of which,
although looking somewhat unusual, seem necessary when dealing with weighted
sup norms over the whole of R. We refer to this article for comments on these
conditions and for a number of examples illustrating their necessity. These are

(UH) (D.a)-(D.c), (W.a)-(W.c), (WD.a)g for some 0 < 8 < 1, (Hy), (Hp) from
Giné, Koltchinskii and Zinn (2001).

We refer to the conditions (UH) as the ‘usual hypotheses’, and they are as
follows.

(D.a) f isabounded density on R continuous on its positivity set By := {t e R :
J () > 0}, which is assumed to be open, and limg—, o SUpy|~, f () = 0.
(This condition is in fact implied by (F1).)

(D.b) For all § > 0 there exist ¢ € (0, 00) and kg > 0 such that, for all |y| < kg
andallx € By, x +y € By,

I s fx+y) _s
;f (x) < W <cf°(x).
(D.c) Forallr > 0,
lim sup M —1{=0.
h=0 yreozr, | f(X)
x+yeBy,|yl<h

(W.a) ¥ : By — Ry is apositive continuous function on By.
(W.b) For all § > 0 there exist ¢ € (0, oo0) and kg > O such that, for all |y| < hg
andallx € By, x +y € By,

1

Ly < 212
C

$
T < cV¥°(x).
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(W.c) Forallr > 0,

. Yix+y)
lim sup —F—Q—— — 1| =0.
h—0 x,y:W(x)<h—T, \I,I(x)
x+yer.\y\5h

(WD.a)g ||fﬁ||\y,oo ‘= sup;cp, W () fP(t)] < oo, where B is a positive number.

(Hy) hy, t = 1, is monotonically decreasing to O and t#;, is a strictly increasing
function diverging to infinity as t — o0, and

(Hy) hy is regularly varying at infinity with exponent —» for some 1 € (0, 1); in
particular there exist 0 < 9 < 11 < 1 such that

limsupt™h, =0 and liminf " h, = co.
t—00 =00

2. The Gaussian approximation

Let D, = {|t| < a, f(t) = 1/a} € By. Note that for a large enough D, # @ con-
sists of a finite union of non trivial bounded intervals. Let£(¢), t € R, be astationary
centered Gaussian process with covariance function r (¢) = f _Jr;o KWK u—+t)du.
As we see below, this process has a sample continuous version, and we will always
take such a version.

In this section we show that, under appropriate conditions on A,, — oo, if either
of the two sequences

{An <\/nhn||‘l/(t)(fn(t) — Efa(M)lp, — An)}

and

{An(||w)\/f<r)s<t/hn)||Da - A)}

converges in distribution, so does the other. The method will consist in adapting the
Komlés-Major-Tusnddy approximation to general empirical processes, basically as
done in Koltchinskii (1994).

To this end, we begin with the KMT approximation (Komlds, Major and Tusnady
(1975)). KMT asserts that there exists a probability space with a sequence {£;} of
ii.d. uniform on [0, 1] rv’s and a sequence of Brownian motions B,, such that if
an(t) =n~ V23 (Io,n(&) —t) and Wy (1) = By (1) — tB,(1), then

x4+ Clogn
Jn
where C, A and 6 are universal positive constants. Extend the definition of «, and

W, to measurable sets and integrable functions as usual, and, for a class of functions
F,set ||H(@IlF := supger |H(g)]. Set

Pr{||an — Wplloo > } <Ae ™ 0<x<oo,neN, (2.1

Fp = {\Il(t)K(th_ ) te Da}. 2.2)

n
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Let F be the cdf of the density f and further define
Fn={goF':geF)

where, as usual, F~!(y) := inf{x : F(x) > y},0 < y < 1,and F~1(0) =
F! (0+). Let V denote the set of functions on [0, 1] that are O at 1 and have total
variation bounded by 1. Then V C co(Z), where

Z:={ljon:tel0,1]}
Therefore
lan = Wally = llan — Walloo.
Now, by (K1) and monotonicity of the maps x +— (t — x)/h, and F —1 we have
Fu C WD, 1KY,
where || K ||y denotes the total variation of K, and therefore, by (2.1), also that

¥ p,IKllv(x+ Clogn)
NG

forall0 < x < coandn € N. Since F~! (&) haslaw P (P denoting the distribution

of X) if £ is uniform on [0, 1], the above yields:

Wi, K]l + Clogm) | _ s
Jn

forall 0 < x < oo and n € N, where v, is the empirical process based on the
ii.d.(P) sequence X; = F~1(&),

Pr{nan — Wz, > } <A 23

Pr{ lve — Gulls, > 2.4)

1 n
p=—=Y (6x, — P),
\/ﬁ i=1

and G, (g) := W, (go F~1 is a version of the P-Brownian bridge G p, a centered
Gaussian process with the covariance of 6x, — P.

Our object, in different notation than above, is to show weak convergence of
the sequence

1
Ap (ﬁ”‘% 7, — An) (2.5)
where A, is an increasing sequence to be determined below, typically, of the order
of \/logn, and this section’s object is to show that the empirical process can be
replaced by the Gaussian process £(¢) in (2.5). We have from (2.4), that, for any
L>C,

Ay
Pr v — Gullr, >

LAn”\IJ”D,l”K”VIOgn} <A
N hn

Wiy = W=
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which implies that we can replace v, by Gp =4 G, in (2.5) as long as

A, = 0<n—h"). (2.6)
logn

This is already a Gaussian reduction. In fact, Gp(g) = Bp(g — Epg) = Bp(g) —
(Epg)Bp(1) where Bp is P-Brownian motion, that is, it is a Gaussian process on
Fyu such that E(Bp(g)Bp(h)) = Ep(gh) for all g, h € F,, for all n. Since for
g e fﬂ?

/gdP < hallK 11l flloo Wl D,

by change of variables, it follows that

A
E| =G =B, < AIK I Ioe 9,

which implies that we can replace v, by Bp in (2.5) as long as
Ay =o(hy ). 2.7

We can write Bp on F, as

Bp (\y(t)K( —w(r) / ,/f(s YdB(s),

where B is standard Brownian motion (which follows easily by checking covari-
ances). The Brownian motion integral here is sample bounded and sample contin-
uous by e.g. Dudley’s entropy condition (e.g., de la Pefia and Giné (1999), p. 219)
as follows. K being of bounded variation on a compact interval and W bounded, it
follows as in Giné, Koltchinskii and Zinn (2001), pages 15 and 16, that the class of
functions

K :={\p(z)1<( - ) h>OteR}

is a measurable VC (Vapnik-Cervonenkis) type class of functions, so that there exist
A and v (characteristics of the class) such that the covering numbers of the class
for the L, distance with respect to any probability measure Q satisfy the uniform
bound

N(K1. L2(Q). €) < (g)v, 0O<e<1.

Then, sample boundedness and continuity of {Bp(g) : g € K1} follows from Dud-
ley’s bound because E(Bp(g1) — Bp (gz))2 =|g1 — g2||%2(P). Thus, we can take
a separable version of the process above with bounded sample paths.

Finally, we show that we can replace Bp /+/h,, in (2.5) by the process Y, defined
as

2.8)

Yn(\v(t)K(’}; )= w)\/fT/



174 E. Giné et al.

Note that, changing variables,

)) \I’(t)vf(t/ ——u dB(u) V() [ hn),

2.9)

n(eox ('

where £(¢) is a stationary centered Gaussian process with covariance function
o0
r(t) = / Kw)K (u + t)du (2.10)
—00

as in Bickel and Rosenblatt (1973). This process has a separable version with
bounded sample paths by the same argument given for Bp: for instance, for ¢ €
[0, 1], &(t) = 2Bo(K (¢t — -)) where Q is the uniform distribution on [—1/2, 3/2],
so that we can proceed as above.

To prove the last reduction, first we see that, if

Dyn:={t€Dy: |t —s|>h, foralls € DS},

then, for any u, — oo,

Pr{ Y, (\If(r)K(t}; ))‘
S

If this holds, assuming A,, — oo, and taking u,, = A, + x/A, — oo, we have

o ros (o, )=
_pr{ ( BP<‘1"(t)K< i )|

and likewise for the process Y, so that we will be able to restrict attention to
suprema over D, , instead of D,. To prove (2.11) and (2.12), we notice first that,
for n large enough, D, \ D, , is a finite union of at most m < oo intervals of length
h,,. We only need to consider one such interval, say [b, b + h,] C D,. For (2.11),
we note that

£|n(vok ()

by (2.9) and stationarity and sample boundedness of the Gaussian process £(¢) on
[0, 1]. Then, by the Borell-Tsirel’son-Sudakov inequality, or its simpler Maurey-
Pisier form ((3.2) in Ledoux and Talagrand (1991), page 57),

. "= 2
Pr{ thn ) >”"} Sexp<_n2jgﬁwgﬁ)f||m)

> u} -0 @2.11)
Da\Da,n

and

> u} - 0. 2.12)
DH\DH.VI

n

_ An> < x} -0, (2.13)
Da

< WloollVfllooE sup [E@)]:=M < oo
[b,b+hy] 0<r<I1

Y, (\y(t)K(

[b,b+h,]
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for u, > M, where 02 = sup, EEX(t) = ||K||% < 00. This proves the limit (2.11).
For (2.12), K1 being VC type with characteristics A and v, and observing that we
can always enlarge XC; to contain zero, which makes the L, (P)-diameter of the
class a little larger, Dudley’s entropy bound gives

dn A
=< L/ vlog —de
[b,b+hy) 0 €

£ e (vox (7))

for a universal constant L, and where

—_ 2
))‘ <411l K 15 < oo,

t
=4 sup E‘—Bp \Il(t)K<
hy

[b,b+hy]

Thus, the expected values above are uniformly bounded and the Borel-Sudakov-
Tsirel’son inequality then yields the limit (2.12) just as it yielded (2.11).
Finally, we will consider

[,
Hff vk (o )( )/deB()

_ \/lh_n BP<‘I’(I)K<th_ns><1 - %))

To bound the expected value of this norm, we look at the class of functions

. r—- SO
Gy = {\IJ(t)K( " )(1— m) .reDa,n}

and observe that it is a uniformly bounded VC type class (polynomial or Euclidean
are different terms for the same; see e.g., Nolan and Pollard (1987), who were first
to observe that the family of translations and dilations of K is VC type if K is of
bounded variation). Uniform boundedness of the class follows because, since K is
supported by [—1/2, 1/2], the functions in this class are zero on D and are bounded
by T W || p, IK lloc 0n Do, with T = sup{|1 —/F@)/f(s)| : 5.1 € Dq, |s—1t] < &}
for an appropriate ¢ > 0, which is finite by condition (D.c). The class G, is measur-
able because the functions in the class are jointly measurable in the two variables,
and to see it is of VC type we just note that G, C {g1 + g2 : g1 € K1, g2 € K2}
where

Da,n

Dg.n

N
%K(thn ) ‘e DM}.

The class {W(1)v/ (K (5) : t € R, h > 0} is VC for the same reasons K| is,
and let us denote its VC characteristics by A and v; from this it follows trivially that,

Kon = {\Il(t)
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for all n, K5, is VC with characteristics /aA and v (independent of n) because
for any probability measure Q and s, ¢ € Dy p,

VOVTD ot —x\  YEOVTE) s —x\\
E < V) K( I )_ VI K< h, ))

saEQ<\IJ<t) f(t)K(t;—nx)—\IJ(s) f(s)K(s;x)>2.

n

Since the functions in G,, are each the sum of a function in K; and a function in
K20, a simple argument gives that G, is VC type with characteristics A and v inde-
pendent of n (see e.g. Lemma 5.3.4 in de la Pefia and Giné (1999)). Now, Dudley’s
entropy bound gives, as above,

dy
E|Bplig, < L / s Tog(AJe)de
0

forauniversal constant L, where d> := 4| Ep f?||g, < 16h, ||K||§||\D||%)awf/?(hn),
with the last inequality following by change of variables in two integrations. Here,

o /7(-) is the modulus of continuity for J/f. This gives

el (vor(52) (- 776))

1
D =Bl

Da,

1
< LK, [ flloo: I¥ID,) @ s7(hn) [log —\/h_wf(h )
n f\n

for all n large enough. If f is Holder «, then /f is Holder a/2, and it follows that
this expected value is of the order of

h*% Jlog hy "

We conclude from the last inequality and (2.13) that we can replace [|v, || £, /+/Fn
in (2.5) by ||/ f()&(t/ hn)llp,, where & is defined in (2.9) and (2.10), if

1
A, = 0<—>. (2.14)
TR TTog by
To summarize, with the assumption

1 nhy,

— =)

A AN —= |- (A1)
2

W foghyt  108n by

A, S oo, hn\OandAn=0<

we have proved:
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Theorem 1. Assuming (D.a), (D.c), (F1) except that f and V do not need to be
piecewise monotone, (Al) and ¥V continuous and bounded on By, if for some a > 0
either of the two sequences

{ An <¢nhn||\wr><fn<r> — Efu)lp, - A)} @.5)
and
{An(||\If<t>¢f(t)s(t/hn)||aa - A)} 2.15)

converges weakly, so does the other, where &(t) is a stationary centered Gaussian
process with covariance function r(t) = fj;o Kw)K (u + t)du.

Remark. Theorem 1 is designed to be used below on theorems for weighted suprema
of f, — Ef, over all of R. If we are only interested in sups over [—a, a], a < 0o,
with the natural weight 1/,/F, which is what Bickel and Rosenblatt (1973) con-
sider, the following reformulation, which has the same proof as Theorem 1, might
be useful: Suppose that f satisfies (D.a) and that it is bounded away from zero
and Holder continuous (of some order & > 0) on [—a, a], and assume K satisfies
condition (K.1) and A, and h,, n € N, satisfy (A.1). Then, if either of the two
sequences

{An <\/nhn||(fn(f) —Efn@)/V fOl-a.a1 = An>}

and

{An(nsa/hn)n[_a,a] - A)}

converges weakly, so does the other. Essentially, this is the content of Propositions
2.1 and 2.2 in Bickel and Rosenblatt (1973), but, except for the fact that we do not
consider kernels with unbounded support, they assume far more regularity for both,
K and f.

3. Asymptotic distribution of weighted sup-norms of stationary Gaussian
processes

Our object here is to find the limiting distribution of the sequence (2.15) for appro-
priate normalizing and centering constants A,. The process &£(¢) in (2.15) is sta-
tionary with covariance r(¢) = f_oooo K (u)K (u +t)du. For ease of notation and for
generality’s sake, we replace the factor \IJ(t)fl/z (t) in (2.15) by a factor w(t). We
will also assume in this section, for simplicity, that || K || = 1 (otherwise, K should
be renormalized). Note that if K is a twice continuously differentiable, symmetric,
bounded kernel with supportin[—1/2, 1/2] and normalized so that || K || = 1, then
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1
r(t) =1—Ct* +o0(t?) ast — 0, with C = = / K@)K"(u)du > 0,

and r(t) = 0 for |t| > 1;

in fact, many other kernels satisfy this (e.g., the Epanechnikov normalized so that
IK|l> = 1); conceivably, with weaker assumptions on K we may have, for some
O<a<2andC >0,

r@)=0for|t| > 1, r(t) =1—Clt|* +o(Jt|*), forsome 0 <a <2,C >0
3.1

and

sup |r(t)] < 1foralle > 0. (3.2)
|t|>e
So, we make this assumption on the process &£(¢). By e.g. Albin (1990 ), p. 117,
if £(¢) is a separable stationary process with covariance r as in (3.1) and (3.2),
there exists H, < 0o (Hy = /7 if o = 2) such that, whenever / satisfies that
sup, ;< () < 1forall0 < e < h, we have

2
lim u‘*z/“euz/ZPr{ sup |E(1)] > u} —n/ZcVeq,. (3.3)
T

u—00 Ofl‘fh
Let w(t) be a non-negative function such that

(wl) The support W of w consists of a finite number of disjoint closed intervals or
half-lines, w is positive and continuous on its support, piecewise monotone,
with ||w|lcc = 1 and such that w(¢) — 0 as || — oo.

Let
Wy () = \/gcl/“Hauz/“_le_uz/z, u>0, (3.4)
with W, (00) := 0, and set
Aoty = [ O; o (1/w())dy. (3:5)

We also assume
(w2)
Ay (ug) < oo for some ug < oo
(then Ay (1) < oo for all u > up). This holds under mild assumptions on w,
and if e.g. w has a unique mode where it is almost flat, then, typically, A, (u)
will be of the order of a constant times e~ /21wl — =4*/2 [ et At be the
solution of the equation

1
Ao(AT) = T (3.6)

which exists and is unique for all T large enough, and Ay — ocoas T — oo.
‘We make an additional assumption on w(t):
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(w3)
w( 4+ 1)

teW,t+teW w(t)
[l=l/T

— 1| =o0(A7Y) as T — cc.

(We remark here that, by Lemma 5 below, o(A;z) is equivalent to o(1/1og T').)
The object of this section is to prove:

Theorem 2. Let£(t), t € R, be a separable centered, stationary Gaussian process
with covariance satisfying (3.1) and (3.2). Let w(t) be a non-negative function
satisfying (wl)-(w3), and let At be as defined by (3.6). Then,

lim Pr{AT(sup w(t)T)E)| — AT) < x} =exp(—e™*)  (B7)
—00 '

forall x € R.

Proof. We will follow the scheme of proof of Theorem 12.3.5 in Leadbetter, Lind-
gren and Rootzén (1983) with changes due to the facts that we are multiplying
by w(t) and supping over the whole line, and that we are considering sup of the
absolute value of the process instead of sup of the process.

2
Step 1. For x fixed, letur = XZ?T . Then,
TAq(ur) = e *asT — oo. (3.8)

Proof. By the definitions of A7 ((3.6)) and ur, it clearly suffices to show that

At +x/1)
m ——=¢ .

Jim = (3.9)

Let us assume x > 0 as the argument for x < 0 is similar. Set 8 = 1 — 2/«a. We
obviously have

Aglt +x/1) [ w(y)Be=r" /20 g=x/w () g=x* /2w (¥) gy,
Ay (1) B fw(y)ﬁe*tz/zwz(y)dy

, (3.10)

so that, since x/w?(y) > x,

Ay (2 t
lim Sup M S e_x.
1—00 Ao(1)

For any 0 < ¢ < 1 and, given ¢ > 0, for all ¢ large enough, we have that the right
hand side of (3.10) is minorized by

_2n,2
fw(y)>c w(y)Pe 112w Mgy

2 2,2
[w(y)Be=r* /12w 0 dy X exp(—x/c” —ex”/c?).
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Hence, (3.9) will follow if we show that the ratio of integrals at the left of the last
expression tends to one for each 0 < ¢ < 1, or what is the same, if

—2 2wy
e
1—00 fw(y)ﬁe_tz/zwz(”dy ’

For any ¢’ > c and ¢ > u, this quotient is dominated by

fw(y)<c w(y)ﬂe—tz/zwz(y)dy fw(y)<c w(y)ﬂe_“%/zwz(}')dy o~ (—ug)/2¢?
= < = X ——
fw(y)>c/ w(y)ﬂe*tz/sz(y)dy - fw(y)>c’ w(y)ﬂe—u%/sz(y)dy e*(tzfu%)/Zc 2

as t — oo since the first quotient does not depend on ¢ and the second tends to
zero. This completes the proof of the limit (3.8).

Step 2. We can replace in (3.7), the functions w(¢/T) by

k k+1
wr(@t) =wk/T)fork <t <k+1, ke Z, [?%) cw @310

and w7 () = 0 otherwise.

Proof. Set w7.(t) = wr(t) on the support of wr and w’.(t) = w(t/T) fort €
TW \ supp wr. Then, it is obvious from (w3) that we can replace w(t/T) by
w’. (1) in (3.7). Now, we can further replace w’.(f) by wr(f) because, by (wl),
w’T () # wr(t) only on a finite number of intervals of length at most 1, and for
any such interval, say [aT, k(aT)), where k(aT) is the smallest integer larger than
or equal to aT, we have, by (3.3), that

’ ur
Pr{te[ail,lklzar))wT(mE(t)l g uT} = Pr{tes[l(l)ﬂ) 50 > w(k(aT)/T)}

= cWy (M—T) -0
wk@T)/T)
as T — oo since, in this case, ur — oo and w(k(aT)/T) — w(a) > 0. The
constant ¢ is 1 if & can be taken to be 1 in (3.3), and otherwise, it is the smallest
integer larger than the inverse of the largest /4 for which (3.3) holds.
Set T := e~*. The proof of the theorem will be completed if we show:

Step 3 (main step). With the previous notation and assuming (3.8),
lim Pr{supw(t/T)|§(t)| < ur} —e . (3.12)
T—o0 t

Proof. To complete this step we will follow closely the proof of Theorem 12.3.5
in Leadbetter et al. (1983), on the asymptotic distribution of supy.,.7 &(¢). We
require versions of several results in their Section 12.2 for sup |&§ (t)|_(aBsolute val-
ues are not considered there). For instance, we will use the limit (3.3) instead of
their Theorem 12.2.9 (note that the effect of taking absolute values of the process
instead of the process itself consists only in changing the limit by a factor of 2).
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Combining the first part of the proof of Theorem 9 in Albin (1990 ) with the proof
of Lemma 12.2.3 of Leadbetter et al. (1983) easily gives the following: with the
assumptions and notation of that lemma, if ¢ = a/u?/%,

dw)/u Pr{org?‘;‘n €G] > u} —2CY"H,(n, a)

where the factor of 2 in the limit as u — oo is the sole effect of considering abso-
lute values. Then, because of this and (3.3), in Lemma 12.2.11 in Leadbetter et al.
(1983) we can replace £ by |&], and obtain, in their notation,

0 <Pr{l§(@)l <u, jgel}—Pr{ sup £ ()] < u} < 2uhpg + o), (3.13)
te

where p, = 1 — Hy(a)/H, — 0 as a — 0. In our notation, 2 := 2u(u) :=
W, (1). [The main part of the proof of their Lemma 12.3.3 consists in obtaining the
limit of

Pr{ max u(§(jq) —u) —x > —x16(0) = u+x/u}.

<J

and the first part of the proof of Theorem 9 in Albin (1990 ) computes the limit of

Pr{ max u(l£(jg)l —w) —x > —x[I§©O) = u +x/ul;

<J
both limits coincide; then one uses this in the decomposition
Pr{ max |£(jg)l > u} = Pr{u(E0)] — u) > 0}
0<j<n
+Pr{u(E(0)] —u) <0, max u(|£(jg)| —u) > 0}
O<j<n

just as in the proof of Lemma 12.3.3 in Leadbetter et al. (1983) to obtain the above
limit for Pr{maxosifn E(jg)| > u}.]
Define

1
Ag.7(U) := 7Z\JJO,(M/w(kT—l)). (3.14)
k

Since both w and W, are piecewise monotone, by standard approximation of inte-
grals of monotone functions there exists C such that

C
|Aq(u) — Ag,r(w)| < 7 Sup W (u/w(y)),
y

and, since W, is eventually decreasing and 0 < w(y) < 1 on W , we get that for
all u large enough,

C
|Aa () — Ag,7 ()| < 7 Yo (),

which gives
lim TAqgr(Ur) =1 (3.8)
T—o00

by (3.8), since ur — oo and Wy (ur) — 0.
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We will use the following notation: for any measurable set A,

My, (A) :=supwr ()|§(1)], M(A) =supl|&()],
teA teA

and forallk € Zand ¢ € (0, 1),

I i= Ik 1—e)s I o= Tgep1—e k1), Je = L U I

Step 31. lim7_, |:Pr{Mw(UIk) < ur} — Pr[Mw(R) < ur}] < 2¢rt.
Proof. The above difference, which is nonnegative, is dominated by

S Pr{ My 1) > ur | = Y Pefsup 16 0] > ur/wr k),

k k [ElliF
which, by the limit theorem (3.3), is in turn dominated, for all 7' large enough
(depending on ¢), by
2e Z Wy (ur/w(k/T)) = 26T Ao, (uT).
k

But this last expression tends to 2¢t by (3.8”).
Step 3,. Letg = qr = a/uzT/a for some a > 0. Then,

TILmOO[Pr{wT(jQT)E(MTN <ur, jqr € Ulk} - Pr{Mw(UIk) < MT}] =< TPas

where p, — 0asa — 0.

Proof. We will write u for ur and g for g7 in proofs. The above difference is
non-negative and is dominated by

Z(Pr{w(k/msuqn <u, jq € Ik} —Pr{Map < u/w(k/T)}).

k

Now we can apply inequality (3.13) (the version for absolute values of Lemma
12.2.11 in Leadbetter et al. (1983)) to get the last expression dominated by

D W (u/wk/T))(1 = £)pa + 0(Ya ) < T Ao, )pa = Tpa:
k

where the inequality is valid for all T large enough.
Step 33.
Pr{|6(iar)| < ur/wr k), jar € I k € Z}

— [ TPrlleGan)| < ur/wr @), jar € k} -0
k

as T — oo. (Recall the convention ¢/oo = 0.)
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Proof. Using a slight modification of Lemma 11.1.2 in Leadbetter et al. (1983)
along the lines of Theorem 4.2.1 (a Slepian inequality for tail probabilities), we
obtain that the absolute value of the above difference of probabilities is dominated
by

Yy e exp[_ (wr (k) + w;zw))uz}

k2t igely jqels V=72l = j)g) 20 +1r(G@ = Db
where the terms in k = £ are zero because the two processes that we are compar-
ing have the same covariance structure within each block ;. Since r(¢) = 0 for
[t] > 1 (we are assuming K supported on [—1/2, 1/2]), for each k there are at
most two £ # k such that the covariance r(s — t), s € Iy, t € Iy, is not zero,
namely £ = k — 1 and £ = k + 1; so, for each k there will be only about 2/g
nonzero summands with index jg € I,. Also, when k differs from € by 1, by (w3),
wr(k)/wr®) = wk/T)/w/T) differs from 1 in 0(A;2). These observations
imply that the above sum is smaller than or equal to

_Z Z Ir(sq)l [ 1—0(A75)  u? i|
V11— rz(sq L+ [r(sq)| w>(k/T) |

k e<sq<l

as Iy and Iy are at ¢ units apart. Also, since sup,.. [r(t)| := 8(¢) := & < 1 the
above is dominated by a quantity that we can compare with 7 Ay 7 (u7), namely,

by
SENE P S
Vo &=\ T+ 9wy 1)

< LsTA T(u)iul_“/zexp l—; u?| = Lto(u) — 0
- e 2 146

for some Ls < oo.
Step 34.
lim supz_, ‘ [Tk Pr{wr Gan)lEGar)| < ur. jqr € I}

~ [T Pr{My () < ur )|
< t(pa + 2e).

Proof. Repeating Step 3, for blockwise independent processes gives

0 < []Pr{wrGi@EGp)l <u. jg € i} =] [Pr{Mu(h) < u} < 7pa,
k
and Step 3 likewise gives
0< HPr{Mw(Ik) <u}-— HPr{Mw(Jk) <u} <2t
k k

for all u large enough.
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The four sub-steps put together give that

T—o00

limsup | Pr{M,, (R) < u} — [ Pr{Mu(Jp) < u}‘ < 27(pg + 26),
k

and letting ¢ and a tend to zero, that this limit is zero. That is, taking Step 2 into
account,

lim [Pr{supw(t/T)|§(t)| < u nPr sup |E(1)] < u/w(k/T)}i|
T—o00 t

0<r<l1

(3.15)

By (3.3) and (w2) the series ) Pr{M[O, 1) > u/w(k/T)} converges for all
u > ug, and by (3.3) maxy Pr{M[O, 1) > u/w(k/T)} — 0 as u — oo (recall
lwlloo = 1). Therefore,

ZlogPr [M[0, 1) < u/w(k/T)} = ZPr {M[0, 1) > u/w(k/T)}.

k
Again by (3.3),
Pr{M[0,1) > u/w(k/T)} = Wo(u/wk/T)) + o(Ve (u/w(k/T)))

uniformly in &, and therefore (3.14) and (3.8’) give

[im HPr sup |E0)| < ujwk/T)} =e".

0<r<l1
By (3.15), this concludes the proof of the theorem. O

Remark. At in theorem 2 does not need to satisfy equation (3.6), but only the
following:
lim TA (A7) =1, (3.6))
T—o00

and this follows directly from the proof.

Remark. If we take w(t) = I|s|<4 in Theorem 2, we get
lim Pr{AT(sup |EGT)| — AT> } = exp(—e ™),
|t|<a

where A7 is any function of T such that
lim TV, (A1) = —. (3.7)
T—o0 2a

If we put together this result and the version of Theorem 1 in the remark following
it, we obtain a result which is equivalent to Bickel and Rosenblatt’s for kernels
with bounded support. It is easy to see directly that A7 =< 4/log T so that, taking

An = A1, condition (A.1) becomes i, N\, Oandnh,/((logn)?,/log h;l) — 00.
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The conditions on the kernel K under which both theorems hold are (K.1) and (K.2).
And the conditions on f are those in the remark following Theorem 1. Under these
assumptions, and with the above definition of A,, we conclude:

nh —E
lim Pr{An< M u —An> < x} = exp(—efx), x €R.
5 1K1~ V7 Maa

4. Kernel density estimators: Convergence in distribution of the uniform
deviations from their means

As we will see below, the results in Giné and Guillou (2002) and in Giné, Koltchin-
skii and Zinn (2001) allow us to deal with | f, — Efyllpc as @ — oo (we recall
D, = {|t| < a, f(t) = a}). So, in order to control the supremum over D, we must
show first that we can replace the supremum over R in Theorem 2 by the sup of the
same variables over D, without changing the centering or the normalization. We
set, fora > 0and u > 0,

Wo=1{t:|t] <a,w@) >a"'}, As,a><u>=/ W (u/w(y))dy, (4.1)

Wa

and, in general, for any measurable set D C R,

AP = f W, (u/w(y))dy. 4.2)
D

Lemma 3. Let w be a non-negative function continuous on {w > 0} C By, where
By is an open set, such that |w]e = 1, w(t) — O as [t| = oo and Ay(u) > 0
for some 0 < u < 0o. Then, there exists a < oo such that, for any measurable set
D satisfying W, C D C {w > 0} (in particular for Wy, for b > a),

No(u)

Proof. By monotonicity of AfxD) with respect to D, it suffices to show that the
limit (4.3) holds for D = W, for some a < oo. Since w(y) — 0 as |y| — oo,
lwlloo = 1, and w is continuous on the open set By, there exists an interval / in B ¢
such that M := inf;c; w(t) > 1/2and I C W, forsome a; < oo, and there exists
ay such that SUP|y[>q, w(y) < 1/(2\/5). Taking a = max{ay, az, 2}, we have

IS Woand M = infw() > 1/2 > V2 sup w(y). (4.4)
te

[y|>a

We also have SUp ey, w(y) = 1. We show that the limit (4.3) holds for D = W,.
Since
A () Jwe Va/w(y))dy

e ,
AY () Jw, o lu/w(y))dy

the lemma will follow if we show that both
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Siyima Wa /0 ())dy Jisi<a. wisy<at Walu/w()dy
— an
Jw, Yo u/w(y))dy Jw, Yo u/w(y)dy

as u — 00. Since ¥, is eventually decreasing, for all u large enough the second
quotient is dominated by

2aW, (u/w(y)) - 2q%/ =17 /2
Wy (u/M) ~ |I|MI-2/ae—u?/2M>"

which tends to zero as u — oo by (4.4). As for the first quotient, we have, also for
all u large enough,

Jitza Yalu/wmdy / Ylw/w)
Sy, Wa/wyNdy = | Jyjsa Va(u/M)

MZ/O[ l/ 1
T Jysa (w)Ye!

2
exp{ 5 (w™2() — M) |ay
M2/ u/N2 (u/N2)?
= /ym (w(y))2/eT exp| - 2ul(y) fa
M2/a71
= ICVeH, 2/

as u — oo by (4.4). O

Ag@/V2) = 0

This lemma allows us to apply Theorem 2 (and the remark following its proof)
to the restriction of w to D without changing the norming constants A7 obtained
from w via (3.6) or (3.6), with the added advantage that the full condition (w3) is
not required, but only its restriction to D. The effect of this is that the end result
will apply to the normal distribution and to many other distributions with thin tails.

Corollary 4. Let £(t) be the Gaussian process of Theorem 2. Let w(t) be a non-
negative function satisfying conditions (w.1) and (w.2) and such that {w > 0} is an
open set, and let a > 0 be as in Lemma 3. Let D be a set consisting of a finite union
of closed intervals or half lines such that W, € D C {w > 0}. Assume further that

w(t 4+ 1)
w(t)

sup — l‘ = o(A;z) as T — oo. (w3p)

teD,t+teD
|7|=1/T

and let At be as prescribed by (3.6) or (3.6°). Then,

lim PrHAT<sup w(t) T)EW)] — AT> < x} —e "

T—o00 teD

forall x € R.

Ar is not independent of f or W, but its order of magnitude is, and we will need
this to complete the proofs of our main results.
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Lemma 5. Under the hypotheses of Lemma 3, if At is defined by (3.6) or (3.6°),
then

At
0 < liminf ——— up ——— < 00. 4.5
700 «/— =S T (4

Proof. Let I and M be as in the proof of the previous lemma. Then, since, as shown
in the previous proof,

Jiyioa Wet/w(y))dy
Wi (u/ M)

it follows that for all n large enough,

%:AQ(AT) =/|y§a\11 (w(y))dy+/|y>a \Da(%)dy

f\y|>a Wy (A7 /w(y))dy Ar
Wy (Ar/M) a( M

since M < 1and W, is eventually decreasing. So, there is a constant C independent
of T such that, for all T large enough,

2
CAZ/Q ! xp(—ﬁ) > l
2/ 7T
which implies that lim supy[Ar/y/10g T] < oc. The left side of inequality (4.5)
follows trivially from the observation that

7 =Aatan = [wa(Z5)ay = v (5F).

This completes the proof of the lemma if we take (3.6) as the definition of A7, but
it is clear that the same proof with two obvious formal changes gives the lemma if
one only assumes that A satisfies (3.6”). m|

— 0 as u > o©

< 2aW, (A7) + ) 3aW, (A7),

We now prove the distributional limit result for the kernel density estimator.
Given f, WV, K and {h,} satisfying both the ‘usual hypotheses’ from Giné, Koltchin-
skii and Zinn (2001) and the ‘additional hypotheses’ from the Introduction, all the
conditions for the validity of Theorems 1 and 2, hence also of the lemmas from this
section and Corollary 4, are satisfied. Define w := WV f 1/ 2, with W normalized so
that ||w|c = 1 and, for this w, set

A, = Ah,jl’
that is
Ag(A
A(Ay) = hy, or just lim Aaldn) _ 1, (4.6)
n—oo

n

where A, is defined by equation (3.5) for this w. We also recall, from the just
mentioned reference, the notation

lgllw,00 := sup [W(1)g(®)].
IEB/
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‘We then have

Theorem 6. Assume f, ¥, K and {hy} satisfy both the ‘usual hypotheses’for some
0 < B < 1/2, the ‘additional hypotheses’, and moreover, that either By = R or
K (0) = ||K |loo. Assume V is normalized so that ||V f V2|l oo = 1. Let A, be defined
as in (4.6). Then the condition

lim tPr[\IJ(X) ~ J1h;|log h,|} —0, 4.7
—>00

is necessary and sufficient for

. A/n -
lim Pr{ ( TRV Efiloss = An) <xj=epl-e ). (49)
Proof. We refer to the proof of Theorem 2.1 in Giné, Koltchinskii and Zinn (2001),
where B is partitioned into four subsets, D, and A, B, and C, 4, and where it is
proved, under the ‘usual hypotheses’, that

lim
n—00 log

Sup W (@) (fu(t) — Efp (1)) =0 inpr.,

teA n

M up WO (1) = Efu ()] = k max ———e ) o1y
10gh tEI’Fn " " U izizn /nh,[loghy| P

and
. . nhy
lim limsup E sup W) fut) — Ef,(t))| =0,
A= p—soco 1Ogh t€Ch.q

A, = {z €By: V() > c,f(nhn|1ogh,,|)1/2},

where

|log hpl

1/2
B, = {ter: f(t)\p(t)gs;ﬂ< p ) , V() < P (nhy)loghy, |)‘/2}
nhy

Cra:={t€DSNBy: f(OVQ) > &) P (|loghy|/nhy)"?}

(see (2.8), (2.10) and (2.20) in the aforementioned reference). Condition (4.7) im-
plies that lim,,_, oo max<j<, W(X;)/+/nh,|logh,| = 0 in probability, so that the
above expression for the sup over B, also tends to zero in probability. By Lemma
5,forall x € R,

Ap+x/A,

—— < 00,
/log%

and therefore we can replace /log h,, ! by A, +x/A, for all x € Rin the previous
limits. This substitution gives:

lim sup



Kernel density estimators 189

lim Pr{An(V”h” sup |W (1) (f (1) — Ef,(1)] = A, ) zx} =0, (49
n—>00 1K l2 teA,
lim Pr{A (V iy sup W () (fo(t) — Ef,(1))| — n) x}zo (4.10)
n—00 1K |l2 teB,

and

lim limsupPr{A (V"h” sup [W()(fot) — Efo(0))] — ,,) Zx} =0

a—>0 p_s0 | K|l2 t€Cpq

4.11)
for all x € R. Now, set w := Wf1/2 Since | ¥f#| s < ¢ < 00, we have
Wo={t:]t]| <a,w(t) > 1/a} C Dy ={t:|t| <d, f(r) = 1/a’}

1
where @’ := (ac)727% v a. Hence, there exists ay < oo such that Corollary 4
applies to D = D, for all a > ag. This and Theorem 1 give that for all a > ag and
allx e R,

lim Pr{A ("h sup [W(D(fu(t) = Efy ()] = Ay) sx} —e

n—00 I1Kl2 tep,
(4.12)

Now sufficiency of (4.7) follows from (4.9)-(4.12).
Next we prove the necessity of (4.7). Since the limit distribution exp{—e™*} in
(4.8) is continuous, the convergence in (4.8) is uniform in x. Then for any ¢ > 1

. v/n
1 P E t
lrll’Iisolcl)p r{A ||K|| I /o — Efullw.co >
. Jnhy, Ap + A2
< Jim pef Y s = Efullues > 250
= lim Pr{A, —Efullv,co — An ) > Ay
n—00 IIKII ’

= lim (1 — exp{—e ") =0.
n— oo

By Montgomery-Smith (1993) maximal inequality (e.g., de la Pefia and Giné
(1999), p. 6), the previous limit implies that

. nhy, t
Jlim Pr {A TR K (OXG=)/ ha) = EK (X >/hn>||w,oo>30} 0

Then, following the proof of the necessity in Theorem 2.1 in Giné, Koltchinskii
and Zinn (2001), one has

. 1| K2
lim Pri——— max ¥(X;) > ——¢ =0,
n— 00 An/nh, 1<i<n 30
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which implies
lim nPr{¥(X) > t|K|24A,y/nh,/30} = 0,
n—oo

and (4.7) follows (in view of Lemma 5 and the regular variation of
An 1= (nhy|log h,|)'/?). O

Specially interesting is the case ¥ = | f ||go‘/ 2, which yields convergence in
distribution for the unweighted sup norm of || f, — Efy | 5, In this case it is more
efficient to invoke Theorem 3.3 (actually Proposition 3.2) and Remark 3.5 in Giné
and Guillou (2002), to obtain, under weaker hypotheses, that

lim lim sup Pr{An (,/nhn sup | fu(t) — Efu(1)] — An) > x} -0
4700 n—o00 1€DNBy

for all x € R. Combining the hypotheses under which this limit holds with the

hypotheses for Theorems 1 and 2, we obtain that the following theorem will hold

under the following conditions:

i). Conditions on {hy,}:

nh,,
h 0, nh , ;
0 N0 e 70 g halogn)?
log hy,
loglogn

ii). Conditions on f: f is bounded, Holder continuous and piecewise
monotone on By, which is an open set consisting
of the union of a finite number of intervals (or half-
lines), and, for every a > 0,

sup |1 — _f(t) =0( ! )
\si;\iDl?T f(S) 10gT .

iii). Conditions on K : the same as in Theorem 7 except that K (0) needs
not equal || K ||oc when By is not all of R.

Theorem 7. Under the conditions immediately above,

v nhy, -
{A(WM@ — Efulls, - An> < x} =exp{—e ™"}, (4.13)
2 [e'e)

where A, is defined by equation (4.6) with w = (/| f o) />

lim Pr
n—oo

The next two theorems follow directly from results in Giné, Koltchinskii and
Zinn (2001) (see Theorem 2.1, Corollary 2.4 and Theorem 3.1 there).

Let
A 1= A(t) := /thy|log hy|.

Fory > 0and L > 0, let Z, ; be a nonnegative random variable with distribution
function

Pr{Z, <t} =exp{—Lt~ '/}, t > 0.
If L =0, wesetZ, :=0.
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Theorem 8. Assume f, V¥, K and {h,} satisfy the ‘usual hypotheses’ for some 0 <
B < 1/2. and moreover, that either By = R or K(0) = || K ||co. Lety := (1—1n)/2
(where —n is the exponent of regular variation of h,, ). Then, the sequence of random
variables

nhy,
—_— —E , n €N, (4.14)
2|1og hy| Ju = Eln .00
converges in distribution if and only if the limit
lim tPr{\IJ(X) > )\,] —: L €0, +00) (4.15)
—00

exists. In this case, the limit of the sequence (4.14) is equal in distribution to
Koo Zy L> 1/2
——L=)\/(IK 2111l w,00)
( V2 VI )

Proof. According to Theorem 2.1 in Giné, Koltchinskii and Zinn (2001), the se-
quence (4.14) is stochastically bounded iff

lim suptPr{‘-If(X) > x,} < 400, 4.15)

11— o0
and in this case

nhy,

—" \f,—E
Miogh |~ E

maxi<j<; W(X;)
= Kllow——F=——
W, 0o \/E)Mn

\/(nannf”zuw,oo) +op(1). (4.16)

Of course, this is true under condition (4.15), which also implies that

L+o0(1)

as u — oQ.

Since A~! is a regularly varying function (with exponent 1/y), we obtain that for
allx >0

L+o(l)  Lx~ /7 +o(1)
A Txch,) n

Pr{iv(X) > xA,} = asn — oQ.

This, of course, implies by a standard computation (e.g., Theorem 1.5.1 in Lead-
better, Lindgren and Rootzén (1986)) that the sequence
max|<j<n Y(X;)
An

converges in distribution to Z, 1, and this together with (4.16) yields the limit of
(4.14) in distribution.
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On the other hand, if (4.14) does converge in distribution, then it is stochastically
bounded and (4.15”) holds. This implies the representation (4.16) (by Theorem 2.1
in Giné, Koltchinskii and Zinn (2001)), which in turn implies the convergence in
distribution of the sequence

maxj<j<p, Y(X;) \/ B
An ’

where
B := V2K 2 £ w00/ IIK lloo-

If G denotes the limit distribution of the last sequence, then we have, for all x > B,
X a continuity point of G,

Pr{ max ¥ (X;) < xkn} — G(x) asn — oo.
1<i<n

For all x > B (continuity points of G) such that G(x) > 0 this gives, again as in
Theorem 1.5.1 in Leadbetter, Lindgren and Rootzén (1986), that

n Pr{\II(X) > xkn] S —logG(x) = g(x).
Hence, we have (using simple properties of regularly varying functions) that

1/
Pr{‘I‘(X) > M} = g({) o) _ g(x)xi)’ o) as u — 0o.
Al /x) A1)

This implies that, for some constant L, g(x) = Lx~!/7 and we have

}:L+0(1)

Pr{\II(X) > t

so condition (4.15) holds. |

Theorem 9. Assume f, V, K and {h,} satisfy the ‘usual hypotheses’ for some
0 < B < 1 and, moreover, that either By = R or K(0) = ||K||lco. Let d; be a
strictly increasing regularly varying function with exponent y suchthatd; /A; — 00
and d; > ct? for some ¢ > 0. The sequence of random variables

nhy,
Jo — Efn , n €N, (4.14)
dﬂ ‘*I’,OO
converges in distribution if and only if the limit
lim tPr{\IJ(X) > d,} —: L € [0, +00) 4.17)
—00

exists. Moreover, the limit in (4.14°) is | K || Zy, L.

The proof is similar to the previous one and is based on Theorem 3.1 in Giné,
Koltchinskii and Zinn (2001).
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Remark. If d; is a strictly increasing regularly varying function such that either
di = Ay, ordy /Ay —> 00, dy > ct® for some ¢ > 0, and if condition (4.17) holds,
then it’s easy to see that, up to a linear rescaling, the cases described in Theorems
6, 8 and 9 are the only cases when the norm || f, — Efy || w,c0 (properly centered and
normalized) converges to a non-degenerate distribution. The proof follows from
a well known result of Khinchin (see Theorem 1.2.3 in Leadbetter, Lindgren and
Rootzén (1986)).

Remark. Theorem 9 covers the asymptotic behavior of the statistic

|(fn — Ef2)/~/fllco» and shows how this statistic behaves in a markedly dif-
ferent way from [|(f, — Efy)/v/fll[—a.a) (that is, from the case considered by
Bickel and Rosenblatt (1973), see also the last remark in Section 3 above). For
instance, if f(x) = 1/x2, [x| > 1, then Theorem 9 shows that n~'h,||(f, —
Efn)/NFlli=1.1c —a |IK|l2Z2.1 and that, in general, its behavior strongly depends
on f. On the contrary, in the Bickel and Rosenblatt situation, A, is independent of
f, and in the situation of Theorems 6 and 7, although A, depends on f, its order
of magnitude does not (Lemma 5).

5. Data-dependent normings

The normings A, in Theorem 6 depend on the unknown density f, which makes it
difficult to use this result directly to develop hypotheses tests or confidence bands
for unknown densities. In this section, we sketch an approach to a (statistically)
more practical version of this result which takes care of this difficulty as well as of
the bias of the kernel density estimator. It’s not our goal at this moment to develop
these more statistical aspects of the problem to their full extent, but only to indicate
possible ways to do it. (We pursue this subject in Giné, Koltchinskii and Sakhanenko
(2003), a subsequent paper that has however appeared before the present one.)
First, we define

wp38) = sup{1 £ () = [ 112 € (= 8.1+ )
and

’ teR

and note that, under the standard assumption fR K (x)dx = 1, we have the follow-
ing straightforward bound on the bias of f;, :

IEfu = fllw.co < @F (hn). (5.1
In what follows we denote
wi=W/f, b=, = V/f.
Given a > 0, denote

Woi={y:lyl <a, ©(y)>a'}.
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Given a sequence @, — 00, let A,, be defined as the solution of the equation

/Wa,, Yo <wj(y))dy =l

Theorem 10. Suppose that all the conditions of Theorem 6 hold (including condi-
tion (4.7)), that [ K (x)dx = 1 and that, in addition,

0¥ (hy) = 0((nh,,| 1ogh,,|)*1/2) asn — 00. (5.2)
If
a2 sup W(r) = 0<\/nhn|loghn|_3/2>, (5.3)
|tI<ay,

for some sequence a,, — oo, then

BUS

1Kl

lim Pr
n—0o0

1o = fllwoo = An) < x} =expl—e ) (54

forall x € R, where A, are as defined above.

Proof. We start with several simple observations. By bound (5.1) on the bias, con-
dition (5.2) and Theorem 6, we have

nlggol’r{ (TK” ||fn—f||w,oo—An)5x}=exp{—e—*}, (5:4)

where A, is any sequence such that

h—I/\p<A )dy—>1asn—>oo (5.5)
"R w(y)

In particular, by Lemma 3, A, can be chosen as a sequence such that
-1 An
h v, ( )dy — lasn — oo (5.6)
Wh,, ( )

for any b, — oo (since then (5.5) also holds). Note that if A, and A, are two
sequences satisfying (5.5) (and, hence, also (5.4)), then
Ay 5
——1’:0(An )asn — 00, (5.7)
Ap
On the other hand, if (5.7) holds, then A, in (5.4) can be replaced by A, (even
if A, is a sequence of r.v. and (5.7) holds in probability, which will be the case
later in the proof). All this follows easily from the fact that two sequences of r.v. ,,
and C,n, + D, converge in distribution to the same continuous r.v. (e.g., double
exponential) if and only if C, — 1 and D,, — O asn — oo.
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Next we show that under condition (5.3)

sup M—l‘=0p< ! ) (5.8)

veW, U, | WO |log /1y |

Indeed, we have

D) 1’ MaGENs©]
v | awn, VIO
£20) = )
sup
vV, T (VT 0) + VT
V|0 - 16)]
vewy  VZO)F()

ai s WO o= f|, =Ae 59)

[yI<an

yeWy,

IA

IA

Quite similarly, we get

v —1' <A, (5.10)
yEWan w(y)
Theorem 6 and Lemma 5 imply that
[log hy|
Aol
fn f H W, 00 P nhn

and this together with condition (5.3) implies that

1
A, = . 5.11
" ”’”<|loghn|> G-AD

Now (5.8) follows from (5.9)—(5.11). Note that (5.8) implies the existence of a

sequence &, — 0 such that
( ! ) (5.12)
& =0 .
! | log h|

Pr{ sup ‘M -1
yeWanUWan w(y)

and

zsn}—>0asn—>oo. (5.13)

To complete the proof, we observe that, on the event
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we have
(1—ew(y) <w(y) < A +e)w(y) forally € Wy, UW,,,
which, in turn, yields the inclusion
Wa,(1=e0) C Wa, C Way (46

Thus, we have (on the same event E)

~

/ \y( An )d</\IJ(A">d h
——————)dy =< ——)dy =
Woa e N0 = ew(y) R SO A

s
Yol ————)dy. (5.14
R e

Defining now A, and A} respectively as the solutions of the equations

s G =t

n(1—¢én)

A+
[ q”a( 2 )dy = hn,
Wan (1+n) w(y)

we conclude from (5.14) (using the monotonicity of the corresponding functions)
that on the event £

and

A (1 =) < Ay < AF(1+6y). (5.15)

According to the observations made at the beginning of the proof, (5.4) holds with
A, replaced by Af or by A, which implies that (by (5.7))

A—’; —1|=0(A,9)
and

A, _ -2
— —1|=0(A,")asn — oo.
Ay

Since, by Lemma 5, A, is of the order | log h,|'/2, it follows from (5.12), (5.13)
and (5.15) that

‘——1’ = 0,(A;%) asn — 0.
Ay

This implies that A, can be replaced by A, in (5.4), which completes the proof.
0O

Theorem 10 is not completely satisfactory in the sense that the weight W itself
might depend on f, so that, in the end, f has only been partially replaced by f;,.
However this theorem is part of the solution. To illustrate this point we will specify
a distribution free result for the simplest case, namely, the case ¥ =constant, which
corresponds to Theorem 7.
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Corollary 11. Suppose that the conditions of Theorem 7 hold, that By = R and
that fR K (x)dx = 1. Assume further that

w; () = o((uha|log ha)~?)

and let a,, — o0 be such that

= o<\/nh,,| 10gh,,|_3/2>.

Let

W=w, = AY fn/”fn”oo

and let A, be the sequence of random variables defined by the relation

/Wan Ve (w:‘(y)>dy i

where Wa,, ={y: Iyl <an, wy(y) > a;l}. Then we have both,

_ vnhy, -
lim Pr{An<”—1/2||fn Flloo = An) < x} = exp(—e ™)
e 1K I fule

and

) - nhy, = -
i Pr{ A, (=g~ Efall - A ) < x| = exploe)
e BTN

forall x € R.

Proof. The proof is just like that of Theorem 10 once we show that

w(y) 1
—1| = — ). 5.8
yew, o |00 ‘ 0P(|loghn|> o5
In this case we have
() ‘: NESAD) _1‘
yeWy, w(y) yeWq, |V I falloo f (¥)
[l N Iu(y) ' ‘\/”f”oo ‘
< sup -1+ | —-1].
Il folloo yeEWq, V) VI fulloo
1/2

Using (5.4) for ¥ = 1/|| flloo
that on W,

'«/fn(y 1‘: () — FDI =0P< 1 )
NSO VIO L) + V) |log hnl )

and proceeding as in the previous proof, we have
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Moreover, again by (5.4), we have both, that /|| f;[lco/+/|l f lcc — 1 and that

‘\/”f”oo B 1' M= falleo _ OP( |log Ay | )

NV fnlloo T A falleo nhy
Hence, .
Sup M — — OP <;)
yeW,, w(y) | log Ay |

Likewise, we get that

sup M — 1 = op <;)
yeWa, w(y) |log hyl
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