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Abstract. Let fn denote a kernel density estimator of a bounded continuous density f in
the real line. Let �(t) be a positive continuous function such that ‖�f β‖∞<∞. Under natu-
ral smoothness conditions, necessary and sufficient conditions for the sequence

√
nhn

2 log h
−1
n

supt∈R

∣∣�(t)(fn(t)−Efn(t))

∣∣ (properly centered and normalized) to converge in distribution to the
double exponential law are obtained. The proof is based on Gaussian approximation and a
(new) limit theorem for weighted sup-norms of a stationary Gaussian process. This extends
well known results of Bickel and Rosenblatt to the case of weighted sup-norms, with the
sup taken over the whole line. In addition, all other possible limit distributions of the above
sequence are identified (subject to some regularity assumptions).

1. Introduction

We consider the kernel density estimator fn of an unknown density f in the real
line based on a sample (X1, . . . , Xn) of size n of i.i.d. observations with density
f , kernel K and bandwidth hn such that hn → 0 and nhn → ∞ as n → ∞:

fn(t) = 1

nhn

n∑
i=1

K

(
t − Xi

hn

)
. (1.1)

Our main goal is to study the convergence in distribution of the (properly cen-
tered and normalized) sequence
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√
nhn

2 log h−1
n

∥∥∥�(·)(fn − Efn)(·)
∥∥∥∞

(1.2)

where � is a positive weight function that might depend on the density f (for
instance, it might be f −β with some β > 0). In particular, under some regularity
assumptions, we prove the following main result. Let

r(t) :=
∫ ∞
−∞ K(u)K(u + t)du

‖K‖2
.

Suppose it satisfies the condition

r(t) = 1 − C|t |α + o(|t |α) (1.3)

for some 0 < α ≤ 2, C > 0. Define

�α(u) :=
√

2

π
C1/αHαu2/α−1e−u2/2, u ≥ 0

(Hα is a known constant), and set

�α(u) :=
∫ ∞

−∞
�α

(
u/w(y)

)
dy, (1.4)

where w := �f 1/2 is normalized so that ‖w‖∞ = 1. Let An denote the solution
of the equation

�α(An) = hn.

Then (subject to the regularity assumptions outlined in Section 1.1) the condition

lim
t→∞ t Pr{�(X) ≥ (tht | log ht |)1/2} = 0

is necessary and sufficient for the convergence

Pr

{
An

(√
nhn

∥∥�(·)(fn − Efn)(·)
∥∥∞

‖K‖2
− An

)
≤ x

}
→ e−e−x

as n → ∞

for all x ∈ R. Under simple extra conditions on the bias of fn, results of this type
can be reformulated as statements about the weighted uniform deviation of the ker-
nel estimator from the density itself, which can then be used in hypotheses testing
and in constructing confidence bands for unknown densities.

This continues the line of research initiated by Smirnov in the 30s who proved
convergence in distribution of the uniform deviations (on a compact interval) of
the histogram from the underlying density to the double exponential law and, more
recently, by Bickel and Rosenblatt (1973) (see also the follow up papers of Kon-
akov and Piterbarg (1984) and Rio (1994), where the conditions were significantly
improved) who did the same for kernel density estimators.
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Our approach is based on approximation of the empirical processes related to
the kernel density estimator by Gaussian processes and on reducing the problem to
the study of the asymptotic behavior of weighted suprema

sup
t∈R

w
( t

T

)∣∣ξ(t)
∣∣

of a stationary Gaussian process ξ as T → ∞. We show that the above suprema,
properly centered and normalized, converge in distribution to the double exponen-
tial law, which generalizes well known results about the limit behavior of suprema
of stationary Gaussian processes in the unweighted case, see, e.g., Leadbetter,
Lindgren and Rootzén (1986) or Piterbarg (1996). More precisely, if r(t) denotes
the covariance function of the process ξ and it satisfies condition (1.3), then defining
AT as the solution of the equation

�α(AT ) = T −1

(with �α defined by (1.4)), we show (subject to some further regularity conditions)
that

Pr

{
AT

(
sup
t∈R

w
( t

T

)∣∣∣ξ(t)

∣∣∣ − AT

)
≤ x

}
→ e−e−x

as T → ∞ ∀x ∈ R.

This result might be of independent interest since it is related to the problem of
analyzing the asymptotics of the probabilities of crossing curves of a certain shape
by a stationary Gaussian process. It is given in Theorem 2 below.

Also, based upon recent results of Giné, Koltchinskii and Zinn (2001) (who
studied convergence rates in probability and a.s. of weighted sup-norms of the
deviations of kernel density estimators from their expectations), we determine all
other possible nondegenerate limit distributions of (1.2) (subject to some regularity
conditions).

We introduce some general assumptions used throughout the paper in Section
1.1. In section 2, we develop the Gaussian approximations needed to reduce the
problem to the Gaussian case. Section 3 studies the asymptotic behavior of weighted
sup-norms of stationary Gaussian processes. Section 4 contains the main results and
their proofs and also studies which other limit distributions are possible (in addi-
tion to the double exponential). Theorems 6, 7, 8 and 9, in Section 4, particularly
Theorem 6, contain the distributional limit for the deviation of the kernel density
estimator and are the main results of this article. In Section 5, we sketch an approach
to a version of the main results that might be used in statistical applications.

1.1. General assumptions

We apologize to the reader for the technical character of what follows, but it seems
reasonable, for easier readability of the paper, to state the conditions we will be
using throughout, thus getting them out of the way. Here and throughout, K is a
kernel, f is a density on R, � is a weight function and hn are the window sizes.
Here are the assumptions we will be using (different sets on different instances).
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(K1) K is a non-negative function of bounded variation with support in [−1/2, 1/2].
We will also assume in Section 3 that

(K2) the function

r(t) =
∫ ∞
−∞ K(u)K(u + t)du

‖K‖2
2

satisfies that r(t) = 1 − C|t |α + o(|t |α) as t → 0 for some 0 < α ≤ 2, and
sup|t |>ε |r(t)| < 1 for all ε > 0.

We will require in Section 3 that the density f and the weight � satisfy

(F1) Bf = {f > 0} consists of a finite union of non-trivial disjoint intervals (half
lines not excluded), and f and � are both piecewise monotone on Bf . More-
over, f is bounded and Hölder continuous of some order α > 0 on Bf , in
particular, lima→∞ sup|t |>a f (t) = 0; and

(F2) the function w = �f 1/2 satisfies conditions (w1), (w2) and (w3) below, in
Section 3.

The set of assumptions (K1), (K2), (F1) and (F2) will be referred to as ‘the
additional hypotheses’, since we will also require a set (or subsets of) conditions
that we already encountered in Giné, Koltchinskii and Zinn (2001), some of which,
although looking somewhat unusual, seem necessary when dealing with weighted
sup norms over the whole of R. We refer to this article for comments on these
conditions and for a number of examples illustrating their necessity. These are

(UH) (D.a)-(D.c), (W.a)-(W.c), (WD.a)β for some 0 < β ≤ 1, (H1), (H2) from
Giné, Koltchinskii and Zinn (2001).

We refer to the conditions (UH) as the ‘usual hypotheses’, and they are as
follows.

(D.a) f is a bounded density on R continuous on its positivity set Bf := {t ∈ R :
f (t) > 0}, which is assumed to be open, and lima→∞ sup|t |>a f (t) = 0.
(This condition is in fact implied by (F1).)

(D.b) For all δ > 0 there exist c ∈ (0, ∞) and h0 > 0 such that, for all |y| ≤ h0
and all x ∈ Bf , x + y ∈ Bf ,

1

c
f δ(x) ≤ f (x + y)

f (x)
≤ cf −δ(x).

(D.c) For all r > 0,

lim
h→0

sup
x,y:f (x)≥hr ,

x+y∈Bf ,|y|≤h

∣∣∣f (x + y)

f (x)
− 1

∣∣∣ = 0.

(W.a) � : Bf �→ R+ is a positive continuous function on Bf .
(W.b) For all δ > 0 there exist c ∈ (0, ∞) and h0 > 0 such that, for all |y| ≤ h0

and all x ∈ Bf , x + y ∈ Bf ,

1

c
�−δ(x) ≤ �(x + y)

�(x)
≤ c�δ(x).
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(W.c) For all r > 0,

lim
h→0

sup
x,y:�(x)≤h−r ,
x+y∈Bf ,|y|≤h

∣∣∣�(x + y)

�(x)
− 1

∣∣∣ = 0.

(WD.a)β ‖f β‖�,∞ := supt∈Bf
|�(t)f β(t)| < ∞, where β is a positive number.

(H1) ht , t ≥ 1, is monotonically decreasing to 0 and tht is a strictly increasing
function diverging to infinity as t → ∞, and

(H2) ht is regularly varying at infinity with exponent −η for some η ∈ (0, 1); in
particular there exist 0 < η0 ≤ η1 < 1 such that

lim sup
t→∞

tη0ht = 0 and lim inf
t→∞ tη1ht = ∞.

2. The Gaussian approximation

Let Da = {|t | ≤ a, f (t) ≥ 1/a} ⊆ Bf . Note that for a large enough Da 
= ∅ con-
sists of a finite union of non trivial bounded intervals. Let ξ(t), t ∈ R, be a stationary
centered Gaussian process with covariance function r(t) = ∫ +∞

−∞ K(u)K(u+t)du.
As we see below, this process has a sample continuous version, and we will always
take such a version.

In this section we show that, under appropriate conditions on An → ∞, if either
of the two sequences{

An

(√
nhn‖�(t)(fn(t) − Efn(t))‖Da − An

)}

and {
An

(
‖�(t)

√
f (t)ξ(t/hn)‖Da − An

)}

converges in distribution, so does the other. The method will consist in adapting the
Komlós-Major-Tusnády approximation to general empirical processes, basically as
done in Koltchinskii (1994).

To this end, we begin with the KMT approximation (Komlós, Major andTusnády
(1975)). KMT asserts that there exists a probability space with a sequence {ξi} of
i.i.d. uniform on [0, 1] rv’s and a sequence of Brownian motions Bn, such that if
αn(t) = n−1/2 ∑n

i=1

(
I[0,t](ξi) − t

)
and Wn(t) = Bn(t) − tBn(1), then

Pr

{
‖αn − Wn‖∞ >

x + C log n√
n

}
≤ �e−θx, 0 ≤ x < ∞, n ∈ N, (2.1)

where C, � and θ are universal positive constants. Extend the definition of αn and
Wn to measurable sets and integrable functions as usual, and, for a class of functions
F , set ‖H(g)‖F := supg∈F |H(g)|. Set

Fn :=
{
�(t)K

(
t − ·
hn

)
: t ∈ Da

}
. (2.2)
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Let F be the cdf of the density f and further define

F̃n := {g ◦ F−1 : g ∈ Fn},
where, as usual, F−1(y) := inf{x : F(x) ≥ y}, 0 < y ≤ 1, and F−1(0) =
F−1(0+). Let V denote the set of functions on [0, 1] that are 0 at 1 and have total
variation bounded by 1. Then V ⊂ co(I), where

I := {I[0,t] : t ∈ [0, 1]}
Therefore

‖αn − Wn‖V = ‖αn − Wn‖∞.

Now, by (K1) and monotonicity of the maps x �→ (t − x)/hn and F−1, we have

F̃n ⊂ ‖�‖Da‖K‖V V,

where ‖K‖V denotes the total variation of K , and therefore, by (2.1), also that

Pr

{
‖αn − Wn‖F̃n

>
‖�‖Da‖K‖V (x + C log n)√

n

}
≤ �e−θx (2.3)

for all 0 ≤ x < ∞ and n ∈ N. Since F−1(ξ) has law P (P denoting the distribution
of X) if ξ is uniform on [0, 1], the above yields:

Pr

{
‖νn − Gn‖Fn

>
‖�‖Da‖K‖V (x + C log n)√

n

}
≤ �e−θx (2.4)

for all 0 ≤ x < ∞ and n ∈ N, where νn is the empirical process based on the
i.i.d.(P ) sequence Xi = F−1(ξi),

νn = 1√
n

n∑
i=1

(δXi
− P),

and Gn(g) := Wn(g ◦ F−1) is a version of the P -Brownian bridge GP , a centered
Gaussian process with the covariance of δX1 − P .

Our object, in different notation than above, is to show weak convergence of
the sequence

An

(
1√
hn

‖νn‖Fn
− An

)
(2.5)

where An is an increasing sequence to be determined below, typically, of the order
of

√
log n, and this section’s object is to show that the empirical process can be

replaced by the Gaussian process ξ(t) in (2.5). We have from (2.4), that, for any
L > C,

Pr

{
An√
hn

‖νn − Gn‖Fn
>

LAn‖�‖Da‖K‖V log n√
nhn

}
≤ �

nθ(L−C)
,
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which implies that we can replace νn by GP =d Gn in (2.5) as long as

An = o

(√
nhn

log n

)
. (2.6)

This is already a Gaussian reduction. In fact, GP (g) = BP (g − EP g) = BP (g) −
(EP g)BP (1) where BP is P -Brownian motion, that is, it is a Gaussian process on
Fn such that E(BP (g)BP (h)) = EP (gh) for all g, h ∈ Fn, for all n. Since for
g ∈ Fn, ∫

gdP ≤ hn‖K‖1‖f ‖∞‖�‖Da

by change of variables, it follows that

E

∥∥∥ An√
hn

(Gn − Bn)

∥∥∥Fn

≤ An‖K‖1‖f ‖∞‖�‖Da

√
hn,

which implies that we can replace νn by BP in (2.5) as long as

An = o
(
h

−1/2
n

)
. (2.7)

We can write BP on Fn as

BP

(
�(t)K

( t − ·
hn

))
= �(t)

∫ ∞

−∞
K

( t − s

hn

)√
f (s)dB(s),

where B is standard Brownian motion (which follows easily by checking covari-
ances). The Brownian motion integral here is sample bounded and sample contin-
uous by e.g. Dudley’s entropy condition (e.g., de la Peña and Giné (1999), p. 219)
as follows. K being of bounded variation on a compact interval and � bounded, it
follows as in Giné, Koltchinskii and Zinn (2001), pages 15 and 16, that the class of
functions

K1 :=
{
�(t)K

( t − ·
h

)
: h > 0, t ∈ R

}

is a measurableVC (Vapnik-Červonenkis) type class of functions, so that there exist
A and v (characteristics of the class) such that the covering numbers of the class
for the L2 distance with respect to any probability measure Q satisfy the uniform
bound

N
(K1, L2(Q), ε

) ≤
(A

ε

)v

, 0 < ε < 1.

Then, sample boundedness and continuity of {BP (g) : g ∈ K1} follows from Dud-
ley’s bound because E(BP (g1) − BP (g2))

2 = ‖g1 − g2‖2
L2(P ). Thus, we can take

a separable version of the process above with bounded sample paths.
Finally, we show that we can replace BP /

√
hn in (2.5) by the process Yn defined

as

Yn

(
�(t)K

( t − ·
hn

))
= 1√

hn

�(t)
√

f (t)

∫ ∞

−∞
K

( t − s

hn

)
dB(s). (2.8)
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Note that, changing variables,

Yn

(
�(t)K

( t − ·
hn

))
= �(t)

√
f (t)

∫ ∞

−∞
K

( t

hn

− u
)
dB(u) = �(t)

√
f (t)ξ(t/hn),

(2.9)

where ξ(t) is a stationary centered Gaussian process with covariance function

r(t) =
∫ ∞

−∞
K(u)K(u + t)du (2.10)

as in Bickel and Rosenblatt (1973). This process has a separable version with
bounded sample paths by the same argument given for BP : for instance, for t ∈
[0, 1], ξ(t) = 2BQ(K(t − ·)) where Q is the uniform distribution on [−1/2, 3/2],
so that we can proceed as above.

To prove the last reduction, first we see that, if

Da,n := {t ∈ Da : |t − s| ≥ h−1
n for all s ∈ Dc

a},
then, for any un → ∞,

Pr

{∥∥∥Yn

(
�(t)K

( t − ·
hn

))∥∥∥
Da\Da,n

> un

}
→ 0 (2.11)

and

Pr

{∥∥∥ 1√
hn

BP

(
�(t)K

( t − ·
hn

))∥∥∥
Da\Da,n

> un

}
→ 0. (2.12)

If this holds, assuming An → ∞, and taking un = An + x/An → ∞, we have

Pr

{
An

(∥∥∥ 1√
hn

BP

(
�(t)K

( t − ·
hn

))∥∥∥
Da,n

− An

)
≤ x

}

− Pr

{
An

(∥∥∥ 1√
hn

BP

(
�(t)K

( t − ·
hn

))∥∥∥
Da

− An

)
≤ x

}
→ 0, (2.13)

and likewise for the process Yn, so that we will be able to restrict attention to
suprema over Da,n instead of Da . To prove (2.11) and (2.12), we notice first that,
for n large enough, Da \Da,n is a finite union of at most m < ∞ intervals of length
hn. We only need to consider one such interval, say [b, b + hn] ⊂ Da . For (2.11),
we note that

E

∥∥∥∥Yn

(
�(t)K

( t − ·
hn

))∥∥∥∥
[b,b+hn]

≤ ‖�‖∞‖
√

f ‖∞E sup
0≤t≤1

|ξ(t)| := M < ∞

by (2.9) and stationarity and sample boundedness of the Gaussian process ξ(t) on
[0, 1]. Then, by the Borell-Tsirel’son-Sudakov inequality, or its simpler Maurey-
Pisier form ((3.2) in Ledoux and Talagrand (1991), page 57),

Pr

{∥∥∥∥Yn

(
�(t)K

( t − ·
hn

))∥∥∥∥
[b,b+hn]

> un

}
≤ exp

(
− 2(un − M)2

π2σ 2‖�‖2∞‖f ‖∞

)
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for un > M , where σ 2 = supt Eξ2(t) = ‖K‖2
2 < ∞. This proves the limit (2.11).

For (2.12), K1 being VC type with characteristics A and v, and observing that we
can always enlarge K1 to contain zero, which makes the L2(P )-diameter of the
class a little larger, Dudley’s entropy bound gives

E

∥∥∥ 1√
n
BP

(
�(t)K

( t − ·
hn

))∥∥∥∥
[b,b+hn]

≤ L

∫ dn

0

√
v log

A

ε
dε

for a universal constant L, and where

d2
n = 4 sup

[b,b+hn]
E

∣∣∣∣ 1√
n
BP

(
�(t)K

( t − ·
hn

))∣∣∣∣
2

≤ 4‖�‖2
∞‖f ‖∞‖K‖2

2 < ∞.

Thus, the expected values above are uniformly bounded and the Borel-Sudakov-
Tsirel’son inequality then yields the limit (2.12) just as it yielded (2.11).

Finally, we will consider

∥∥∥∥
( BP√

hn

− Yn

)(
�(t)K

( t − ·
hn

))∥∥∥∥
Da,n

=
∥∥∥∥ 1√

hn

∫ ∞

−∞
�(t)K

( t − s

hn

)(
1 −

√
f (t)√
f (s)

)√
f (s)dB(s)

∥∥∥∥
Da,n

= 1√
hn

∥∥∥∥BP

(
�(t)K

( t − s

hn

)(
1 −

√
f (t)√
f (s)

))∥∥∥∥
Da,n

.

To bound the expected value of this norm, we look at the class of functions

Gn :=
{
�(t)K

( t − ·
hn

)(
1 −

√
f (t)√
f (·)

)
: t ∈ Da,n

}

and observe that it is a uniformly bounded VC type class (polynomial or Euclidean
are different terms for the same; see e.g., Nolan and Pollard (1987), who were first
to observe that the family of translations and dilations of K is VC type if K is of
bounded variation). Uniform boundedness of the class follows because, since K is
supported by [−1/2, 1/2], the functions in this class are zero on Dc

a and are bounded
by τ‖�‖Da‖K‖∞ on Da , with τ = sup

{|1−√
f (t)/f (s)| : s, t ∈ Da, |s−t | < ε

}
for an appropriate ε > 0, which is finite by condition (D.c). The class Gn is measur-
able because the functions in the class are jointly measurable in the two variables,
and to see it is of VC type we just note that Gn ⊂ {g1 + g2 : g1 ∈ K1, g2 ∈ K2,n}
where

K2,n :=
{
�(t)

√
f (t)√
f (·)K

( t − ·
hn

)
: t ∈ Da,n

}
.

The class
{
�(t)

√
f (t)K

(
t−·
h

)
: t ∈ R, h > 0

}
is VC for the same reasons K1 is,

and let us denote its VC characteristics by A and v; from this it follows trivially that,
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for all n, K2,n is VC with characteristics
√

aA and v (independent of n) because
for any probability measure Q and s, t ∈ Da,n,

EQ

(
�(t)

√
f (t)√

f (x)
K

( t − x

hn

)
− �(s)

√
f (s)√

f (x)
K

( s − x

hn

))2

≤ aEQ

(
�(t)

√
f (t)K

( t − x

hn

)
− �(s)

√
f (s)K

( s − x

hn

))2

.

Since the functions in Gn are each the sum of a function in K1 and a function in
K2,n, a simple argument gives that Gn is VC type with characteristics A and v inde-
pendent of n (see e.g. Lemma 5.3.4 in de la Peña and Giné (1999)). Now, Dudley’s
entropy bound gives, as above,

E‖BP ‖Gn
≤ L

∫ dn

0

√
v log(A/ε)dε

for a universal constantL, whered2
n := 4‖EP f 2‖Gn

≤ 16hn‖K‖2
2‖�‖2

Da
ω2√

f
(hn),

with the last inequality following by change of variables in two integrations. Here,
ω√

f (·) is the modulus of continuity for
√

f . This gives

1√
hn

E

∥∥∥∥BP

(
�(t)K

( t − s

hn

)(
1 −

√
f (t)√
f (s)

))∥∥∥∥
Da,n

= E
∥∥BP /

√
hn − Yn

∥∥Gn

≤ L(K, ‖f ‖∞, ‖�‖Da ) ω√
f (hn)

√
log

1√
hn ω√

f (hn)

for all n large enough. If f is Hölder α, then
√

f is Hölder α/2, and it follows that
this expected value is of the order of

h
α/2
n

√
log h−1

n .

We conclude from the last inequality and (2.13) that we can replace ‖νn‖Fn
/
√

hn

in (2.5) by ‖√f (t)ξ(t/hn)‖Da , where ξ is defined in (2.9) and (2.10), if

An = o

(
1

h
α/2
n

√| log hn|

)
. (2.14)

To summarize, with the assumption

An ↗ ∞, hn ↘ 0 and An = o

(
1

h
α/2
n

√
log h−1

n

∧
√

nhn

log n
∧ 1

h
1/2
n

)
. (A1)

we have proved:
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Theorem 1. Assuming (D.a), (D.c), (F1) except that f and � do not need to be
piecewise monotone, (A1) and � continuous and bounded on Bf , if for some a > 0
either of the two sequences

{
An

(√
nhn‖�(t)(fn(t) − Efn(t))‖Da − An

)}
(2.5)

and
{
An

(
‖�(t)

√
f (t)ξ(t/hn)‖Da − An

)}
(2.15)

converges weakly, so does the other, where ξ(t) is a stationary centered Gaussian
process with covariance function r(t) = ∫ +∞

−∞ K(u)K(u + t)du.

Remark. Theorem 1 is designed to be used below on theorems for weighted suprema
of fn − Efn over all of R. If we are only interested in sups over [−a, a], a < ∞,
with the natural weight 1/

√
f , which is what Bickel and Rosenblatt (1973) con-

sider, the following reformulation, which has the same proof as Theorem 1, might
be useful: Suppose that f satisfies (D.a) and that it is bounded away from zero
and Hölder continuous (of some order α > 0) on [−a, a], and assume K satisfies
condition (K.1) and An and hn, n ∈ N, satisfy (A.1). Then, if either of the two
sequences

{
An

(√
nhn‖(fn(t) − Efn(t))/

√
f (t)‖[−a,a] − An

)}

and
{
An

(
‖ξ(t/hn)‖[−a,a] − An

)}

converges weakly, so does the other. Essentially, this is the content of Propositions
2.1 and 2.2 in Bickel and Rosenblatt (1973), but, except for the fact that we do not
consider kernels with unbounded support, they assume far more regularity for both,
K and f .

3. Asymptotic distribution of weighted sup-norms of stationary Gaussian
processes

Our object here is to find the limiting distribution of the sequence (2.15) for appro-
priate normalizing and centering constants An. The process ξ(t) in (2.15) is sta-
tionary with covariance r(t) = ∫ ∞

−∞ K(u)K(u+ t)du. For ease of notation and for
generality’s sake, we replace the factor �(t)f 1/2(t) in (2.15) by a factor w(t). We
will also assume in this section, for simplicity, that ‖K‖2 = 1 (otherwise, K should
be renormalized). Note that if K is a twice continuously differentiable, symmetric,
bounded kernel with support in [−1/2, 1/2] and normalized so that ‖K‖2 = 1, then
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r(t) = 1 − Ct2 + o(t2) as t → 0, with C = −1

2

∫
K(u)K ′′(u)du > 0,

and r(t) = 0 for |t | > 1;
in fact, many other kernels satisfy this (e.g., the Epanechnikov normalized so that
‖K‖2 = 1); conceivably, with weaker assumptions on K we may have, for some
0 < α ≤ 2 and C > 0,

r(t) = 0 for |t | > 1, r(t) = 1 − C|t |α + o(|t |α), for some 0 < α ≤ 2, C > 0
(3.1)

and

sup
|t |>ε

|r(t)| < 1 for all ε > 0. (3.2)

So, we make this assumption on the process ξ(t). By e.g. Albin (1990 ), p. 117,
if ξ(t) is a separable stationary process with covariance r as in (3.1) and (3.2),
there exists Hα < ∞ (Hα = √

π if α = 2) such that, whenever h satisfies that
supε<t≤h r(t) < 1 for all 0 < ε < h, we have

lim
u→∞ u1−2/αeu2/2 Pr

{
sup

0≤t≤h

|ξ(t)| > u
}

= h

√
2

π
C1/αHα. (3.3)

Let w(t) be a non-negative function such that

(w1) The support W of w consists of a finite number of disjoint closed intervals or
half-lines, w is positive and continuous on its support, piecewise monotone,
with ‖w‖∞ = 1 and such that w(t) → 0 as |t | → ∞.
Let

�α(u) :=
√

2

π
C1/αHαu2/α−1e−u2/2, u ≥ 0, (3.4)

with �α(∞) := 0, and set

�α(u) :=
∫ ∞

−∞
�α

(
u/w(y)

)
dy. (3.5)

We also assume
(w2)

�α(u0) < ∞ for some u0 < ∞
(then �α(u) < ∞ for all u ≥ u0). This holds under mild assumptions on w,
and if e.g. w has a unique mode where it is almost flat, then, typically, �2(u)

will be of the order of a constant times e−u2/2‖w‖∞ = e−u2/2. Let AT be the
solution of the equation

�α(AT ) = 1

T
, (3.6)

which exists and is unique for all T large enough, and AT → ∞ as T → ∞.
We make an additional assumption on w(t):
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(w3)

sup
t∈W,t+τ∈W

|τ |≤1/T

∣∣∣w(t + τ)

w(t)
− 1

∣∣∣ = o(A−2
T ) as T → ∞.

(We remark here that, by Lemma 5 below, o(A−2
T ) is equivalent to o(1/ log T ).)

The object of this section is to prove:

Theorem 2. Let ξ(t), t ∈ R, be a separable centered, stationary Gaussian process
with covariance satisfying (3.1) and (3.2). Let w(t) be a non-negative function
satisfying (w1)-(w3), and let AT be as defined by (3.6). Then,

lim
T →∞

Pr

{
AT

(
sup

t
w(t/T )|ξ(t)| − AT

)
≤ x

}
= exp

(−e−x
)

(3.7)

for all x ∈ R.

Proof. We will follow the scheme of proof of Theorem 12.3.5 in Leadbetter, Lind-
gren and Rootzén (1983) with changes due to the facts that we are multiplying
by w(t) and supping over the whole line, and that we are considering sup of the
absolute value of the process instead of sup of the process.

Step 1. For x fixed, let uT = x+A2
T

AT
. Then,

T �α(uT ) → e−x as T → ∞. (3.8)

Proof. By the definitions of AT ((3.6)) and uT , it clearly suffices to show that

lim
t→∞

�α(t + x/t)

�α(t)
= e−x. (3.9)

Let us assume x > 0 as the argument for x < 0 is similar. Set β = 1 − 2/α. We
obviously have

�α(t + x/t)

�α(t)
�

∫
w(y)βe−t2/2w2(y)e−x/w2(y)e−x2/2t2w2(y)dy∫

w(y)βe−t2/2w2(y)dy
, (3.10)

so that, since x/w2(y) ≥ x,

lim sup
t→∞

�α(t + x/t)

�α(t)
≤ e−x.

For any 0 < c < 1 and, given ε > 0, for all t large enough, we have that the right
hand side of (3.10) is minorized by

∫
w(y)>c

w(y)βe−t2/2w2(y)dy∫
w(y)βe−t2/2w2(y)dy

× exp(−x/c2 − εx2/c2).
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Hence, (3.9) will follow if we show that the ratio of integrals at the left of the last
expression tends to one for each 0 < c < 1, or what is the same, if

lim
t→∞

∫
w(y)≤c

w(y)βe−t2/2w2(y)dy∫
w(y)βe−t2/2w2(y)dy

= 0.

For any c′ > c and t > u0, this quotient is dominated by
∫
w(y)≤c

w(y)βe−t2/2w2(y)dy∫
w(y)>c′ w(y)βe−t2/2w2(y)dy

≤
∫
w(y)≤c

w(y)βe−u2
0/2w2(y)dy∫

w(y)>c′ w(y)βe−u2
0/2w2(y)dy

× e−(t2−u2
0)/2c2

e−(t2−u2
0)/2c

′2 →0

as t → ∞ since the first quotient does not depend on t and the second tends to
zero. This completes the proof of the limit (3.8).

Step 2. We can replace in (3.7), the functions w(t/T ) by

wT (t) := w(k/T ) for k ≤ t < k + 1, k ∈ Z,
[ k

T
,
k + 1

T

)
⊂ W (3.11)

and wT (t) = 0 otherwise.

Proof. Set w′
T (t) = wT (t) on the support of wT and w′

T (t) = w(t/T ) for t ∈
T W \ supp wT . Then, it is obvious from (w3) that we can replace w(t/T ) by
w′

T (t) in (3.7). Now, we can further replace w′
T (t) by wT (t) because, by (w1),

w′
T (t) 
= wT (t) only on a finite number of intervals of length at most 1, and for

any such interval, say [aT , k(aT )), where k(aT ) is the smallest integer larger than
or equal to aT , we have, by (3.3), that

Pr
{

sup
t∈[aT ,k(aT ))

w′
T (t)|ξ(t)| > uT

}
≤ Pr

{
sup

t∈[0,1)

|ξ(t)| >
uT

w(k(aT )/T )

}

� c�α

( uT

w(k(aT )/T )

) → 0

as T → ∞ since, in this case, uT → ∞ and w(k(aT )/T ) → w(a) > 0. The
constant c is 1 if h can be taken to be 1 in (3.3), and otherwise, it is the smallest
integer larger than the inverse of the largest h for which (3.3) holds.

Set τ := e−x . The proof of the theorem will be completed if we show:

Step 3 (main step). With the previous notation and assuming (3.8),

lim
T →∞

Pr
{

sup
t

w(t/T )|ξ(t)| ≤ uT

}
= e−τ . (3.12)

Proof. To complete this step we will follow closely the proof of Theorem 12.3.5
in Leadbetter et al. (1983), on the asymptotic distribution of sup0≤t≤T ξ(t). We
require versions of several results in their Section 12.2 for sup |ξ(t)| (absolute val-
ues are not considered there). For instance, we will use the limit (3.3) instead of
their Theorem 12.2.9 (note that the effect of taking absolute values of the process
instead of the process itself consists only in changing the limit by a factor of 2).
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Combining the first part of the proof of Theorem 9 in Albin (1990 ) with the proof
of Lemma 12.2.3 of Leadbetter et al. (1983) easily gives the following: with the
assumptions and notation of that lemma, if q = a/u2/α ,

1

φ(u)/u
Pr

{
max

0≤j≤n
|ξ(jq)| > u

} → 2C1/αHα(n, a)

where the factor of 2 in the limit as u → ∞ is the sole effect of considering abso-
lute values. Then, because of this and (3.3), in Lemma 12.2.11 in Leadbetter et al.
(1983) we can replace ξ by |ξ |, and obtain, in their notation,

0 ≤ Pr
{|ξ(jq)| ≤ u, jq ∈ I

} − Pr
{

sup
t∈I

|ξ(t)| ≤ u
} ≤ 2µhρa + o(µ), (3.13)

where ρa = 1 − Hα(a)/Hα → 0 as a → 0. In our notation, 2µ := 2µ(u) :=
�α(u). [The main part of the proof of their Lemma 12.3.3 consists in obtaining the
limit of

Pr
{

max
0<j<n

u(ξ(jq) − u) − x > −x|ξ(0) = u + x/u
}
,

and the first part of the proof of Theorem 9 in Albin (1990 ) computes the limit of

Pr
{

max
0<j<n

u(|ξ(jq)| − u) − x > −x||ξ(0)| = u + x/u
}
;

both limits coincide; then one uses this in the decomposition

Pr
{

max
0≤j<n

|ξ(jq)| > u
} = Pr

{
u(|ξ(0)| − u) > 0

}

+ Pr
{
u(|ξ(0)| − u) ≤ 0, max

0<j<n
u(|ξ(jq)| − u) > 0

}

just as in the proof of Lemma 12.3.3 in Leadbetter et al. (1983) to obtain the above
limit for Pr

{
max0≤j≤n |ξ(jq)| > u

}
.]

Define

�α,T (u) := 1

T

∑
k

�α

(
u/w(kT −1)

)
. (3.14)

Since both w and �α are piecewise monotone, by standard approximation of inte-
grals of monotone functions there exists C such that

∣∣�α(u) − �α,T (u)
∣∣ ≤ C

T
sup
y

�α

(
u/w(y)

)
,

and, since �α is eventually decreasing and 0 < w(y) ≤ 1 on W , we get that for
all u large enough, ∣∣�α(u) − �α,T (u)

∣∣ ≤ C

T
�α(u),

which gives
lim

T →∞
T �α,T (uT ) = τ (3.8′)

by (3.8), since uT → ∞ and �α(uT ) → 0.
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We will use the following notation: for any measurable set A,

Mw(A) := sup
t∈A

wT (t)|ξ(t)|, M(A) = sup
t∈A

|ξ(t)|,

and for all k ∈ Z and ε ∈ (0, 1),

Ik := I[k,k+1−ε), I ∗
k := I(k+1−ε,k+1), Jk = Ik ∪ I ∗

k .

Step 31. limT →∞
[

Pr
{
Mw(∪Ik) ≤ uT

}
− Pr

{
Mw(R) ≤ uT

}]
≤ 2ετ.

Proof. The above difference, which is nonnegative, is dominated by

∑
k

Pr
{
Mw(I ∗

k ) > uT

}
=

∑
k

Pr
{

sup
t∈I∗

k

|ξ(t)| > uT /wT (k)
}
,

which, by the limit theorem (3.3), is in turn dominated, for all T large enough
(depending on ε), by

2ε
∑

k

�α

(
uT /w(k/T )

) = 2εT �α,T (uT ).

But this last expression tends to 2ετ by (3.8’).
Step 32. Let q = qT = a/u

2/α
T for some a > 0. Then,

lim
T →∞

[
Pr

{
wT (jqT )|ξ(jqT )| ≤ uT , jqT ∈ ∪Ik

}
− Pr

{
Mw(∪Ik) ≤ uT

}]
≤ τρa,

where ρa → 0 as a → 0.

Proof. We will write u for uT and q for qT in proofs. The above difference is
non-negative and is dominated by

∑
k

(
Pr

{
w(k/T )|ξ(jq)| ≤ u, jq ∈ Ik

}
− Pr

{
M(Ik) ≤ u/w(k/T )

})
.

Now we can apply inequality (3.13) (the version for absolute values of Lemma
12.2.11 in Leadbetter et al. (1983)) to get the last expression dominated by

∑
k

�α

(
u/w(k/T )

)
(1 − ε)ρa + o

(
�α(u)

) ≤ T �α,T (u)ρa → τρa,

where the inequality is valid for all T large enough.
Step 33.

Pr
{∣∣ξ(jqT )

∣∣ ≤ uT /wT (k), jqT ∈ Ik, k ∈ Z
}

−
∏
k

Pr
{∣∣ξ(jqT )

∣∣ ≤ uT /wT (k), jqT ∈ Ik

} → 0

as T → ∞. (Recall the convention c/∞ = 0.)
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Proof. Using a slight modification of Lemma 11.1.2 in Leadbetter et al. (1983)
along the lines of Theorem 4.2.1 (a Slepian inequality for tail probabilities), we
obtain that the absolute value of the above difference of probabilities is dominated
by

∑
k 
=�

∑
iq∈Ik

∑
jq∈I�

|r((i − j)q)|√
(1 − r2((i − j)q)

exp

[
−

(
w−2

T (k) + w−2
T (�)

)
u2

2(1 + |r((i − j)q)|)
]
,

where the terms in k = � are zero because the two processes that we are compar-
ing have the same covariance structure within each block Ik . Since r(t) = 0 for
|t | > 1 (we are assuming K supported on [−1/2, 1/2]), for each k there are at
most two � 
= k such that the covariance r(s − t), s ∈ Ik, t ∈ I�, is not zero,
namely � = k − 1 and � = k + 1; so, for each k there will be only about 2/q

nonzero summands with index jq ∈ I�. Also, when k differs from � by 1, by (w3),
wT (k)/wT (�) = w(k/T )/w(�/T ) differs from 1 in o(A−2

T ). These observations
imply that the above sum is smaller than or equal to

3

q

∑
k

∑
ε≤sq≤1

|r(sq)|√
1 − r2(sq)

exp

[
−1 − o(A−2

T )

1 + |r(sq)|
u2

w2(k/T )

]
,

as Ik and I� are at ε units apart. Also, since supt≥ε |r(t)| := δ(ε) := δ < 1 the
above is dominated by a quantity that we can compare with T �α,T (uT ), namely,
by

3δ√
1 − δ2

1

q2

∑
k

exp

(
− u2

(1 + δ)w2(k/T )

)

≤ LδT �α,T (u)
1

q2 u1−α/2 exp

[(
1

2
− 1

1 + δ

)
u2

]
� Lτo(u) → 0

for some Lδ < ∞.

Step 34.

lim supT →∞
∣∣∣ ∏k Pr

{
wT (jqT )|ξ(jqT )| ≤ uT , jqT ∈ Ik

}
− ∏

k Pr
{
Mw(Jk) ≤ uT

}∣∣∣
≤ τ(ρa + 2ε).

Proof. Repeating Step 32 for blockwise independent processes gives

0 ≤
∏
k

Pr
{
wT (jq)|ξ(jq)| ≤ u, jq ∈ Ik

} −
∏
k

Pr
{
Mw(Ik) ≤ u

} ≤ τρa,

and Step 31 likewise gives

0 ≤
∏
k

Pr
{
Mw(Ik) ≤ u

} −
∏
k

Pr
{
Mw(Jk) ≤ u

} ≤ 2τε

for all u large enough.
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The four sub-steps put together give that

lim sup
T →∞

∣∣∣ Pr
{
Mw(R) ≤ u

} −
∏
k

Pr
{
Mw(Jk) ≤ u

}∣∣∣ ≤ 2τ(ρa + 2ε),

and letting ε and a tend to zero, that this limit is zero. That is, taking Step 2 into
account,

lim
T →∞

[
Pr

{
sup

t
w(t/T )|ξ(t)| ≤ u

} −
∏
k

Pr
{

sup
0≤t<1

|ξ(t)| ≤ u/w(k/T )
}] = 0.

(3.15)

By (3.3) and (w2) the series
∑

k Pr
{
M[0, 1) > u/w(k/T )

}
converges for all

u > u0, and by (3.3) maxk Pr
{
M[0, 1) > u/w(k/T )

} → 0 as u → ∞ (recall
‖w‖∞ = 1). Therefore,

∑
k

log Pr
{
M[0, 1) ≤ u/w(k/T )

} � −
∑

k

Pr
{
M[0, 1) > u/w(k/T )

}
.

Again by (3.3),

Pr
{
M[0, 1) > u/w(k/T )

} = �α(u/w(k/T )) + o(�α(u/w(k/T )))

uniformly in k, and therefore (3.14) and (3.8’) give

lim
T →∞

∏
k

Pr
{

sup
0≤t<1

|ξ(t)| ≤ u/w(k/T )} = e−τ .

By (3.15), this concludes the proof of the theorem. ��
Remark. AT in theorem 2 does not need to satisfy equation (3.6), but only the
following:

lim
T →∞

T �α(AT ) = 1, (3.6′)

and this follows directly from the proof.

Remark. If we take w(t) = I|t |≤a in Theorem 2, we get

lim
T →∞

Pr

{
AT

(
sup
|t |≤a

|ξ(tT )| − AT

)
≤ x

}
= exp

(−e−x
)
,

where AT is any function of T such that

lim
T →∞

T �α(AT ) = 1

2a
. (3.7)

If we put together this result and the version of Theorem 1 in the remark following
it, we obtain a result which is equivalent to Bickel and Rosenblatt’s for kernels
with bounded support. It is easy to see directly that AT � √

log T so that, taking

An := A
h−1

n
, condition (A.1) becomes hn ↘ 0 and nhn/

(
(log n)2

√
log h−1

n

) → ∞.
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The conditions on the kernel K under which both theorems hold are (K.1) and (K.2).
And the conditions on f are those in the remark following Theorem 1. Under these
assumptions, and with the above definition of An, we conclude:

lim
n→∞ Pr

{
An

(√
nhn

‖K‖2

∥∥∥fn − Efn√
f

∥∥∥
[−a,a]

− An

)
≤ x

}
= exp

(−e−x
)
, x ∈ R.

4. Kernel density estimators: Convergence in distribution of the uniform
deviations from their means

As we will see below, the results in Giné and Guillou (2002) and in Giné, Koltchin-
skii and Zinn (2001) allow us to deal with ‖fn − Efn‖Dc

a
as a → ∞ (we recall

Da = {|t | ≤ a, f (t) ≥ a}). So, in order to control the supremum over Da we must
show first that we can replace the supremum over R in Theorem 2 by the sup of the
same variables over Da without changing the centering or the normalization. We
set, for a > 0 and u > 0,

Wa = {t : |t | ≤ a, w(t) ≥ a−1}, �(a)
α (u) =

∫
Wa

�α(u/w(y))dy, (4.1)

and, in general, for any measurable set D ⊂ R,

�(D)
α =

∫
D

�α(u/w(y))dy. (4.2)

Lemma 3. Let w be a non-negative function continuous on {w > 0} ⊆ Bf , where
Bf is an open set, such that ‖w‖∞ = 1, w(t) → 0 as |t | → ∞ and �α(u) > 0
for some 0 < u < ∞. Then, there exists a < ∞ such that, for any measurable set
D satisfying Wa ⊆ D ⊆ {w > 0} (in particular for Wb for b ≥ a),

lim
u→∞

�α(u)

�
(D)
α (u)

= 1. (4.3)

Proof. By monotonicity of �
(D)
α with respect to D, it suffices to show that the

limit (4.3) holds for D = Wa for some a < ∞. Since w(y) → 0 as |y| → ∞,
‖w‖∞ = 1, and w is continuous on the open set Bf , there exists an interval I in Bf

such that M := inf t∈I w(t) > 1/2 and I ⊆ Wa1 for some a1 < ∞, and there exists
a2 such that sup|y|>a2

w(y) ≤ 1/(2
√

2). Taking a = max{a1, a2, 2}, we have

I ⊆ Wa and M = inf
t∈I

w(t) > 1/2 >
√

2 sup
|y|>a

w(y). (4.4)

We also have supy∈Wa
w(y) = 1. We show that the limit (4.3) holds for D = Wa .

Since
�α(u)

�
(a)
α (u)

= 1 +
∫
Wc

a
�α(u/w(y))dy∫

Wa
�α(u/w(y))dy

,

the lemma will follow if we show that both
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∫
|y|>a

�α(u/w(y))dy∫
Wa

�α(u/w(y))dy
→ 0 and

∫
|y|≤a, w(y)<a−1 �α(u/w(y))dy∫

Wa
�α(u/w(y))dy

→ 0

as u → ∞. Since �α is eventually decreasing, for all u large enough the second
quotient is dominated by

2a�α(u/w(y))

|I |�α(u/M)
≤ 2a2/αe−u2a2/2

|I |M1−2/αe−u2/2M2 ,

which tends to zero as u → ∞ by (4.4). As for the first quotient, we have, also for
all u large enough,∫

|y|>a
�α(u/w(y))dy∫

Wa
�α(u/w(y))dy

≤ 1

|I |
∫

|y|>a

�α(u/w(y))

�α(u/M)
dy

= M2/α−1

|I |
∫

|y|>a

1

(w(y))2/α−1

exp
{
−u2

2

(
w−2(y) − M−2)}dy

≤ M2/α−1

|I |
∫

|y|>a

u/
√

2

(w(y))2/α−1 exp
{
− (u/

√
2)2

2w2(y)

}
dy

≤ M2/α−1

|I |C1/αHα

√
2/π

�α(u/
√

2) → 0

as u → ∞ by (4.4). ��
This lemma allows us to apply Theorem 2 (and the remark following its proof)

to the restriction of w to D without changing the norming constants AT obtained
from w via (3.6) or (3.6’), with the added advantage that the full condition (w3) is
not required, but only its restriction to D. The effect of this is that the end result
will apply to the normal distribution and to many other distributions with thin tails.

Corollary 4. Let ξ(t) be the Gaussian process of Theorem 2. Let w(t) be a non-
negative function satisfying conditions (w.1) and (w.2) and such that {w > 0} is an
open set, and let a > 0 be as in Lemma 3. Let D be a set consisting of a finite union
of closed intervals or half lines such that Wa ⊆ D ⊆ {w > 0}. Assume further that

sup
t∈D,t+τ∈D

|τ |≤1/T

∣∣∣w(t + τ)

w(t)
− 1

∣∣∣ = o(A−2
T ) as T → ∞. (w3D)

and let AT be as prescribed by (3.6) or (3.6’). Then,

lim
T →∞

Pr
{
AT

(
sup
t∈D

w(t/T )|ξ(t)| − AT

)
≤ x

}
= e−e−x

for all x ∈ R.

AT is not independent of f or �, but its order of magnitude is, and we will need
this to complete the proofs of our main results.
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Lemma 5. Under the hypotheses of Lemma 3, if AT is defined by (3.6) or (3.6’),
then

0 < lim inf
T →∞

AT√
log T

≤ lim sup
T →∞

AT√
log T

< ∞. (4.5)

Proof. Let I and M be as in the proof of the previous lemma. Then, since, as shown
in the previous proof,∫

|y|>a
�α(u/w(y))dy

�α(u/M)
→ 0 as u → ∞

it follows that for all n large enough,

1

T
= �α(AT ) =

∫
|y|≤a

�α

( AT

w(y)

)
dy +

∫
|y|>a

�α

( AT

w(y)

)
dy

≤ 2a�α(AT ) +
∫
|y|>a

�α(AT /w(y))dy

�α(AT /M)
�α

(AT

M

)
≤ 3a�α(AT ),

since M < 1 and �α is eventually decreasing. So, there is a constant C independent
of T such that, for all T large enough,

CA
2/α−1
T exp

(
−A2

T

2

)
≥ 1

T
,

which implies that lim supT

[
AT /

√
log T

]
< ∞. The left side of inequality (4.5)

follows trivially from the observation that

1

T
= �α(AT ) ≥

∫
I

�α

( AT

w(y)

)
dy ≥ |I |�α

(AT

M

)
.

This completes the proof of the lemma if we take (3.6) as the definition of AT , but
it is clear that the same proof with two obvious formal changes gives the lemma if
one only assumes that AT satisfies (3.6’). ��

We now prove the distributional limit result for the kernel density estimator.
Given f , �, K and {hn} satisfying both the ‘usual hypotheses’from Giné, Koltchin-
skii and Zinn (2001) and the ‘additional hypotheses’ from the Introduction, all the
conditions for the validity of Theorems 1 and 2, hence also of the lemmas from this
section and Corollary 4, are satisfied. Define w := �f 1/2, with � normalized so
that ‖w‖∞ = 1 and, for this w, set

An := A
h−1

n
,

that is

�α(An) = hn or just lim
n→∞

�α(An)

hn

= 1, (4.6)

where �α is defined by equation (3.5) for this w. We also recall, from the just
mentioned reference, the notation

‖g‖�,∞ := sup
t∈Bf

|�(t)g(t)|.
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We then have

Theorem 6. Assume f , �, K and {hn} satisfy both the ‘usual hypotheses’for some
0 < β < 1/2, the ‘additional hypotheses’, and moreover, that either Bf = R or
K(0) = ‖K‖∞. Assume � is normalized so that ‖�f 1/2‖∞ = 1. Let An be defined
as in (4.6). Then the condition

lim
t→∞ t Pr

{
�(X) >

√
tht | log ht |

}
= 0, (4.7)

is necessary and sufficient for

lim
n→∞ Pr

{
An

(√
nhn

‖K‖2
‖fn − Efn‖�,∞ − An

)
≤ x

}
= exp{−e−x}. (4.8)

Proof. We refer to the proof of Theorem 2.1 in Giné, Koltchinskii and Zinn (2001),
where Bf is partitioned into four subsets, Da and An, Bn and Cn,a , and where it is
proved, under the ‘usual hypotheses’, that

lim
n→∞

√
nhn

log 1
hn

sup
t∈An

|�(t)(fn(t) − Efn(t))| = 0 in pr.,

√
nhn

log 1
hn

sup
t∈Bn

|�(t)(fn(t) − Efn(t))| = κ max
1≤i≤n

�(Xi)√
nhn| log hn|

+ oP (1)

and

lim
a→∞ lim sup

n→∞
E

√
nhn

log 1
hn

sup
t∈Cn,a

|�(t)(fn(t) − Efn(t))| = 0,

where

An :=
{
t ∈ Bf : �(t) > cβ

n (nhn| log hn|)1/2
}
,

Bn :=
{
t ∈ Bf : f (t)�(t) ≤ ε1−β

n

( | log hn|
nhn

)1/2

, �(t) ≤ cβ
n (nhn| log hn|)1/2

}
,

Cn,a := {
t ∈ Dc

a ∩ Bf : f (t)�(t) ≥ ε1−β
n (| log hn|/nhn)

1/2}
(see (2.8), (2.10) and (2.20) in the aforementioned reference). Condition (4.7) im-
plies that limn→∞ max1≤i≤n �(Xi)/

√
nhn| log hn| = 0 in probability, so that the

above expression for the sup over Bn also tends to zero in probability. By Lemma
5, for all x ∈ R,

lim sup
An + x/An√

log 1
hn

< ∞,

and therefore we can replace
√

log h−1
n by An +x/An for all x ∈ R in the previous

limits. This substitution gives:
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lim
n→∞ Pr

{
An

(√
nhn

‖K‖2
sup
t∈An

|�(t)(fn(t) − Efn(t))| − An

)
≥ x

}
= 0, (4.9)

lim
n→∞ Pr

{
An

(√
nhn

‖K‖2
sup
t∈Bn

|�(t)(fn(t) − Efn(t))| − An

)
≥ x

}
= 0 (4.10)

and

lim
a→∞ lim sup

n→∞
Pr

{
An

(√
nhn

‖K‖2
sup

t∈Cn,a

|�(t)(fn(t) − Efn(t))| − An

)
≥ x

}
= 0

(4.11)

for all x ∈ R. Now, set w := �f 1/2. Since ‖�f β‖∞ ≤ c < ∞, we have

Wa = {t : |t | ≤ a, w(t) ≥ 1/a} ⊂ Da′ = {t : |t | ≤ a′, f (t) ≥ 1/a′}

where a′ := (ac)
1

1/2−β ∨ a. Hence, there exists a0 < ∞ such that Corollary 4
applies to D = Da for all a ≥ a0. This and Theorem 1 give that for all a > a0 and
all x ∈ R,

lim
n→∞ Pr

{
An

(√
nhn

‖K‖2
sup
t∈Da

|�(t)(fn(t) − Efn(t))| − An

)
≤ x

}
= e−e−x

.

(4.12)

Now sufficiency of (4.7) follows from (4.9)-(4.12).
Next we prove the necessity of (4.7). Since the limit distribution exp{−e−x} in

(4.8) is continuous, the convergence in (4.8) is uniform in x. Then for any t > 1

lim sup
n→∞

Pr

{ √
nhn

An‖K‖2
‖fn − Efn‖�,∞ > t

}

≤ lim
n→∞ Pr

{ √
nhn

An‖K‖2
‖fn − Efn‖�,∞ >

An + A2
n

A2
n

}

= lim
n→∞ Pr

{
An

(√
nhn

‖K‖2
‖fn − Efn‖�,∞ − An

)
> An

}

= lim
n→∞(1 − exp{−e−An}) = 0.

By Montgomery-Smith (1993) maximal inequality (e.g., de la Peña and Giné
(1999), p. 6), the previous limit implies that

lim
n→∞Pr

{ √
nhn

An‖K‖2

1

nhn

max
1≤i≤n

‖K((Xi−·)/hn)−EK((X−·)/hn)‖�,∞ >
t

30

}
=0.

Then, following the proof of the necessity in Theorem 2.1 in Giné, Koltchinskii
and Zinn (2001), one has

lim
n→∞ Pr

{
1

An

√
nhn

max
1≤i≤n

�(Xi) >
t‖K‖2

30

}
= 0,
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which implies

lim
n→∞ nP r

{
�(X) > t‖K‖2An

√
nhn/30

} = 0,

and (4.7) follows (in view of Lemma 5 and the regular variation of
λn := (nhn| log hn|)1/2). ��

Specially interesting is the case � = ‖f ‖−1/2
∞ , which yields convergence in

distribution for the unweighted sup norm of ‖fn − Efn‖Bf
. In this case it is more

efficient to invoke Theorem 3.3 (actually Proposition 3.2) and Remark 3.5 in Giné
and Guillou (2002), to obtain, under weaker hypotheses, that

lim
a→∞ lim sup

n→∞
Pr

{
An

(√
nhn sup

t∈Dc
a∩Bf

|fn(t) − Efn(t)| − An

)
≥ x

}
= 0

for all x ∈ R. Combining the hypotheses under which this limit holds with the
hypotheses for Theorems 1 and 2, we obtain that the following theorem will hold
under the following conditions:

i). Conditions on {hn}:

hn ↘ 0, nhn ↗ ∞,
nhn

| log hn|(log n)2 → ∞,

log hn

log log n
→ ∞.

ii). Conditions on f : f is bounded, Hölder continuous and piecewise
monotone on Bf , which is an open set consisting
of the union of a finite number of intervals (or half-
lines), and, for every a > 0,

sup
s,t∈Da|s−t |<1/T

∣∣∣∣1 −
√

f (t)√
f (s)

∣∣∣∣ = o
( 1

log T

)
.

iii). Conditions on K: the same as in Theorem 7 except that K(0) needs
not equal ‖K‖∞ when Bf is not all of R.

Theorem 7. Under the conditions immediately above,

lim
n→∞ Pr

{
An

( √
nhn

‖K‖2‖f ‖1/2
∞

‖fn − Efn‖Bf
− An

)
≤ x

}
= exp{−e−x}, (4.13)

where An is defined by equation (4.6) with w = (f/‖f ‖∞)1/2.

The next two theorems follow directly from results in Giné, Koltchinskii and
Zinn (2001) (see Theorem 2.1, Corollary 2.4 and Theorem 3.1 there).

Let
λt := λ(t) :=

√
tht | log ht |.

For γ > 0 and L > 0, let Zγ,L be a nonnegative random variable with distribution
function

Pr{Zγ,L ≤ t} = exp{−Lt−1/γ }, t > 0.

If L = 0, we set Zγ,L := 0.
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Theorem 8. Assume f , �, K and {hn} satisfy the ‘usual hypotheses’for some 0 <

β < 1/2. and moreover, that either Bf = R or K(0) = ‖K‖∞. Let γ := (1−η)/2
(where −η is the exponent of regular variation of hn). Then, the sequence of random
variables √

nhn

2| log hn|
∥∥∥∥fn − Efn

∥∥∥∥
�,∞

, n ∈ N, (4.14)

converges in distribution if and only if the limit

lim
t→∞ t Pr

{
�(X) > λt

}
=: L ∈ [0, +∞) (4.15)

exists. In this case, the limit of the sequence (4.14) is equal in distribution to

(‖K‖∞Zγ,L√
2

) ∨(‖K‖2‖f 1/2‖�,∞
)
.

Proof. According to Theorem 2.1 in Giné, Koltchinskii and Zinn (2001), the se-
quence (4.14) is stochastically bounded iff

lim sup
t→∞

t Pr
{
�(X) > λt

}
< +∞, (4.15′)

and in this case√
nhn

2| log hn|
∥∥∥∥fn − Efn

∥∥∥∥
�,∞

=
(

‖K‖∞
max1≤i≤n �(Xi)√

2λn

)

∨(
‖K‖2‖f 1/2‖�,∞

)
+ op(1). (4.16)

Of course, this is true under condition (4.15), which also implies that

Pr{�(X) > u} = L + o(1)

λ−1(u)
as u → ∞.

Since λ−1 is a regularly varying function (with exponent 1/γ ), we obtain that for
all x > 0

Pr{�(X) > xλn} = L + o(1)

λ−1(xλn)
= Lx−1/γ + o(1)

n
as n → ∞.

This, of course, implies by a standard computation (e.g., Theorem 1.5.1 in Lead-
better, Lindgren and Rootzén (1986)) that the sequence

max1≤i≤n �(Xi)

λn

converges in distribution to Zγ,L, and this together with (4.16) yields the limit of
(4.14) in distribution.
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On the other hand, if (4.14) does converge in distribution, then it is stochastically
bounded and (4.15’) holds. This implies the representation (4.16) (by Theorem 2.1
in Giné, Koltchinskii and Zinn (2001)), which in turn implies the convergence in
distribution of the sequence

max1≤i≤n �(Xi)

λn

∨
B,

where
B :=

√
2‖K‖2‖f 1/2‖�,∞/‖K‖∞.

If G denotes the limit distribution of the last sequence, then we have, for all x > B,

x a continuity point of G,

Pr
{

max
1≤i≤n

�(Xi) ≤ xλn

}
→ G(x) as n → ∞.

For all x > B (continuity points of G) such that G(x) > 0 this gives, again as in
Theorem 1.5.1 in Leadbetter, Lindgren and Rootzén (1986), that

n Pr
{
�(X) > xλn

}
→ − log G(x) =: g(x).

Hence, we have (using simple properties of regularly varying functions) that

Pr
{
�(X) > u

}
= g(x) + o(1)

λ−1(u/x)
= g(x)x1/γ + o(1)

λ−1(u)
as u → ∞.

This implies that, for some constant L, g(x) = Lx−1/γ and we have

Pr
{
�(X) > λt

}
= L + o(1)

t
,

so condition (4.15) holds. ��
Theorem 9. Assume f , �, K and {hn} satisfy the ‘usual hypotheses’ for some
0 < β ≤ 1 and, moreover, that either Bf = R or K(0) = ‖K‖∞. Let dt be a
strictly increasing regularly varying function with exponent γ such that dt/λt → ∞
and dt ≥ ctβ for some c > 0. The sequence of random variables

nhn

dn

∥∥∥∥fn − Efn

∥∥∥∥
�,∞

, n ∈ N, (4.14′)

converges in distribution if and only if the limit

lim
t→∞ t Pr

{
�(X) > dt

}
=: L ∈ [0, +∞) (4.17)

exists. Moreover, the limit in (4.14’) is ‖K‖∞Zγ,L.

The proof is similar to the previous one and is based on Theorem 3.1 in Giné,
Koltchinskii and Zinn (2001).
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Remark. If dt is a strictly increasing regularly varying function such that either
dt = λt , or dt/λt → ∞, dt ≥ ctβ for some c > 0, and if condition (4.17) holds,
then it’s easy to see that, up to a linear rescaling, the cases described in Theorems
6, 8 and 9 are the only cases when the norm ‖fn −Efn‖�,∞ (properly centered and
normalized) converges to a non-degenerate distribution. The proof follows from
a well known result of Khinchin (see Theorem 1.2.3 in Leadbetter, Lindgren and
Rootzén (1986)).

Remark. Theorem 9 covers the asymptotic behavior of the statistic
‖(fn − Efn)/

√
f ‖∞, and shows how this statistic behaves in a markedly dif-

ferent way from ‖(fn − Efn)/
√

f ‖[−a,a] (that is, from the case considered by
Bickel and Rosenblatt (1973), see also the last remark in Section 3 above). For
instance, if f (x) = 1/x2, |x| > 1, then Theorem 9 shows that n−1hn‖(fn −
Efn)/

√
f ‖[−1,1]c →d ‖K‖2Z2,1 and that, in general, its behavior strongly depends

on f . On the contrary, in the Bickel and Rosenblatt situation, An is independent of
f , and in the situation of Theorems 6 and 7, although An depends on f , its order
of magnitude does not (Lemma 5).

5. Data-dependent normings

The normings An in Theorem 6 depend on the unknown density f , which makes it
difficult to use this result directly to develop hypotheses tests or confidence bands
for unknown densities. In this section, we sketch an approach to a (statistically)
more practical version of this result which takes care of this difficulty as well as of
the bias of the kernel density estimator. It’s not our goal at this moment to develop
these more statistical aspects of the problem to their full extent, but only to indicate
possible ways to do it. (We pursue this subject in Giné, Koltchinskii and Sakhanenko
(2003), a subsequent paper that has however appeared before the present one.)

First, we define

ωf (t; δ) := sup
{
|f (t1) − f (t2)| : t1, t2 ∈ (t − δ, t + δ)

}

and

ω�
f (δ) := sup

t∈R
�(t)ωf (t; δ),

and note that, under the standard assumption
∫

R K(x)dx = 1, we have the follow-
ing straightforward bound on the bias of fn :

‖Efn − f ‖�,∞ ≤ ω�
f (hn). (5.1)

In what follows we denote

w := �
√

f , ŵ := ŵn := �
√

fn.

Given a > 0, denote

Ŵa := {y : |y| ≤ a, ŵ(y) ≥ a−1}.
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Given a sequence an → ∞, let Ân be defined as the solution of the equation

∫
Ŵan

�α

( Ân

ŵn(y)

)
dy = hn.

Theorem 10. Suppose that all the conditions of Theorem 6 hold (including condi-
tion (4.7)), that

∫
R K(x)dx = 1 and that, in addition,

ω�
f (hn) = o

(
(nhn| log hn|)−1/2

)
as n → ∞. (5.2)

If

a2
n sup

|t |≤an

�(t) = o

(√
nhn| log hn|−3/2

)
, (5.3)

for some sequence an → ∞, then

lim
n→∞ Pr

{
Ân

(√
nhn

‖K‖2
‖fn − f ‖�,∞ − Ân

)
≤ x

}
= exp{−e−x} (5.4)

for all x ∈ R, where Ân are as defined above.

Proof. We start with several simple observations. By bound (5.1) on the bias, con-
dition (5.2) and Theorem 6, we have

lim
n→∞ Pr

{
An

(√
nhn

‖K‖2
‖fn − f ‖�,∞ − An

)
≤ x

}
= exp{−e−x}, (5.4)

where An is any sequence such that

h−1
n

∫
R

�α

( An

w(y)

)
dy → 1 as n → ∞. (5.5)

In particular, by Lemma 3, An can be chosen as a sequence such that

h−1
n

∫
Wbn

�α

( An

w(y)

)
dy → 1 as n → ∞ (5.6)

for any bn → ∞ (since then (5.5) also holds). Note that if An and Ān are two
sequences satisfying (5.5) (and, hence, also (5.4)), then

∣∣∣ Ān

An

− 1
∣∣∣ = o(A−2

n ) as n → ∞. (5.7)

On the other hand, if (5.7) holds, then An in (5.4) can be replaced by Ān (even
if Ān is a sequence of r.v. and (5.7) holds in probability, which will be the case
later in the proof). All this follows easily from the fact that two sequences of r.v. ηn

and Cnηn + Dn converge in distribution to the same continuous r.v. (e.g., double
exponential) if and only if Cn → 1 and Dn → 0 as n → ∞.
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Next we show that under condition (5.3)

sup
y∈Wan∪Ŵan

∣∣∣∣ ŵ(y)

w(y)
− 1

∣∣∣∣ = oP

(
1

| log hn|
)

. (5.8)

Indeed, we have

sup
y∈Wan

∣∣∣∣ ŵ(y)

w(y)
− 1

∣∣∣∣ = sup
y∈Wan

∣∣∣√fn(y) − √
f (y)

∣∣∣
√

f (y)

= sup
y∈Wan

∣∣∣fn(y) − f (y)

∣∣∣
√

f (y)
(√

fn(y) + √
f (y)

)

≤ sup
y∈Wan

�2(y)

∣∣∣fn(y) − f (y)

∣∣∣
�2(y)f (y)

≤ a2
n sup

|y|≤an

�(y)

∥∥∥fn − f

∥∥∥
�,∞

=: �n. (5.9)

Quite similarly, we get

sup
y∈Ŵan

∣∣∣∣w(y)

ŵ(y)
− 1

∣∣∣∣ ≤ �n. (5.10)

Theorem 6 and Lemma 5 imply that

∥∥∥fn − f

∥∥∥
�,∞

= OP

(√
| log hn|

nhn

)

and this together with condition (5.3) implies that

�n = oP

(
1

| log hn|
)

. (5.11)

Now (5.8) follows from (5.9)–(5.11). Note that (5.8) implies the existence of a
sequence εn → 0 such that

εn = o

(
1

| log hn|
)

(5.12)

and

Pr

{
sup

y∈Wan∪Ŵan

∣∣∣∣ ŵ(y)

w(y)
− 1

∣∣∣∣ ≥ εn

}
→ 0 as n → ∞. (5.13)

To complete the proof, we observe that, on the event

E :=
{

sup
y∈Wan∪Ŵan

∣∣∣∣ ŵ(y)

w(y)
− 1

∣∣∣∣ < εn

}
,
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we have

(1 − εn)w(y) ≤ ŵ(y) ≤ (1 + εn)w(y) for all y ∈ Wan ∪ Ŵan,

which, in turn, yields the inclusion

Wan(1−εn) ⊂ Ŵan ⊂ Wan(1+εn).

Thus, we have (on the same event E)
∫

Wan(1−εn)

�α

( Ân

(1 − εn)w(y)

)
dy ≤

∫
Ŵan

�α

( Ân

ŵn(y)

)
dy = hn

≤
∫

Wan(1+εn)

�α

( Ân

(1 + εn)w(y)

)
dy. (5.14)

Defining now A−
n and A+

n respectively as the solutions of the equations
∫

Wan(1−εn)

�α

( A−
n

w(y)

)
dy = hn

and ∫
Wan(1+εn)

�α

( A+
n

w(y)

)
dy = hn,

we conclude from (5.14) (using the monotonicity of the corresponding functions)
that on the event E

A−
n (1 − εn) ≤ Ân ≤ A+

n (1 + εn). (5.15)

According to the observations made at the beginning of the proof, (5.4) holds with
An replaced by A+

n or by A−
n , which implies that (by (5.7))

∣∣∣A+
n

An

− 1
∣∣∣ = o(A−2

n )

and ∣∣∣A−
n

An

− 1
∣∣∣ = o(A−2

n ) as n → ∞.

Since, by Lemma 5, An is of the order | log hn|1/2, it follows from (5.12), (5.13)
and (5.15) that ∣∣∣ Ân

An

− 1
∣∣∣ = op(A−2

n ) as n → ∞.

This implies that An can be replaced by Ân in (5.4), which completes the proof.
��

Theorem 10 is not completely satisfactory in the sense that the weight � itself
might depend on f , so that, in the end, f has only been partially replaced by fn.
However this theorem is part of the solution. To illustrate this point we will specify
a distribution free result for the simplest case, namely, the case � =constant, which
corresponds to Theorem 7.
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Corollary 11. Suppose that the conditions of Theorem 7 hold, that Bf = R and
that

∫
R K(x)dx = 1. Assume further that

ωf (hn) = o
(
(nhn| log hn|)−1/2

)

and let an → ∞ be such that

a2
n = o

(√
nhn| log hn|−3/2

)
.

Let
w̄ = w̄n =

√
fn/‖fn‖∞

and let Ān be the sequence of random variables defined by the relation

∫
W̄an

�α

( Ān

w̄n(y)

)
dy = hn,

where W̄an = {y : |y| ≤ an, w̄n(y) ≥ a−1
n }. Then we have both,

lim
n→∞ Pr

{
Ān

( √
nhn

‖K‖2‖fn‖1/2
∞

‖fn − f ‖∞ − Ān

)
≤ x

}
= exp{−e−x}

and

lim
n→∞ Pr

{
Ān

( √
nhn

‖K‖2‖fn‖1/2
∞

‖fn − Efn‖∞ − Ān

)
≤ x

}
= exp{−e−x}

for all x ∈ R.

Proof. The proof is just like that of Theorem 10 once we show that

sup
y∈Wan∪W̄an

∣∣∣∣ w̄(y)

w(y)
− 1

∣∣∣∣ = oP

(
1

| log hn|
)

. (5.8′)

In this case we have

sup
y∈Wan

∣∣∣∣ w̄(y)

w(y)
− 1

∣∣∣∣ = sup
y∈Wan

∣∣∣∣
√‖f ‖∞fn(y)√‖fn‖∞f (y)

− 1

∣∣∣∣

≤
√

‖f ‖∞
‖fn‖∞

sup
y∈Wan

∣∣∣∣
√

fn(y)√
f (y)

− 1

∣∣∣∣ +
∣∣∣∣
√‖f ‖∞√‖fn‖∞

− 1

∣∣∣∣.

Using (5.4) for � = 1/‖f ‖1/2
∞ and proceeding as in the previous proof, we have

that on Wan ,

∣∣∣∣
√

fn(y)√
f (y)

− 1

∣∣∣∣ = |fn(y) − f (y)|√
f (y)(

√
fn(y) + √

f (y))
= oP

(
1

| log hn|
)

.
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Moreover, again by (5.4), we have both, that
√‖fn‖∞/

√‖f ‖∞ → 1 and that

∣∣∣∣
√‖f ‖∞√‖fn‖∞

− 1

∣∣∣∣ ≤ ‖f − fn‖∞
‖fn‖∞

= OP

(√
| log hn|

nhn

)
.

Hence,

sup
y∈Wan

∣∣∣∣ w̄(y)

w(y)
− 1

∣∣∣∣ = oP

(
1

| log hn|
)

.

Likewise, we get that

sup
y∈W̄an

∣∣∣∣w(y)

w̄(y)
− 1

∣∣∣∣ = oP

(
1

| log hn|
)

.

��
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