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Abstract. In systems which combine fast and slow motions it is usually impossible to study
directly corresponding two scale equations and the averaging principle suggests to approxi-
mate the slow motion by averaging in fast variables. We consider the averaging setup when
both fast and slow motions are diffusion processes depending on each other (fully coupled)
and show that there exists a diffusion process which approximates the slow motion in the
L2 sense much better than the averaged motion prescribed by the averaging principle.

1. Introduction

Consider a system of stochastic differential equations

{
dxε(t) = εv(xε(t), yε(t), ε) dt + ε

∑m
i=1 ui(x

ε(t), yε(t), ε) ◦ dwi(t),
dyε(t) = b(xε(t), yε(t), ε) dt +∑m

i=1 ai(x
ε(t), yε(t), ε) ◦ dwi(t)

(1.1)

in the Stratonovich form defined on the Cartesian product of two Riemannian man-
ifolds X × Y where m ≥ dim Y , v, ui, b, ai are smooth vector fields on X × Y ,
and w(t) = (w1(t), . . . , wm(t)) is a standard Brownian motion (see [14]). Such
two scale equations emerge naturally when we study, first, an idealized system
described by a family of stochastic differential equations

dyx(t) = b(x, yx(t)) dt +
m∑
i=1

ai(x, yx(t)) ◦ dwi(t) (1.2)
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on Y depending on a parameter x preserved by the system where b(x, y) =
b(x, y, 0) and ai(x, y) = ai(x, y, 0). Then the real system viewed as a pertur-
bation of the idealized one should be described by perturbed equations in the form
(1.1) which exhibit mutually dependent slow xε(t) and fast yε(t) motions. Such
problems (though without a stochastic term) were first encountered already in 18th
century in celestial mechanics in the study of perturbations of planetary motion. It
was observed later and justified only by heuristic arguments that by averaging in
fast variables one obtains a much simpler averaged equation which often gives a
good approximation of the slow motion on long time intervals.

In the fully coupled situation as above, i. e. when both slow and fast motions
depend on each other the justification of this averaging principle is not easy.Assum-
ing compactness ofY and nondegeneracy of the diffusion terms in (1.2) each process
yx has a unique invariant measure µx on Y with a smooth density with respect to
the Riemannian volume which depends smoothly on x, as well. Then

B̄(x) =
∫
Y

(
v(x, y, 0)+ 1

2

m∑
i=1

dui(x, y, 0)

dy
ai(x, y, 0)

)
dµx(y) (1.3)

is a smooth vector field and we can consider the averaged ordinary differential
equation for the process zε(t) = xε(t/ε) having the form

dz̄(t)

dt
= B̄(z̄(t)). (1.4)

It follows, essentially, from [1] and [3] that

lim
ε→0

Ed2
X(z

ε(t), z̄(t)) = 0 (1.5)

provided zε(0) = z̄(0), where dX is the distance on X, and, in general, this expec-
tation is of order ε.

Relying on some physical intuition Hasselmann [12] suggested to approximate
zε(t) = xε(t/ε) (in the case when ui ≡ 0) by a diffusion process rε(t) onX solving
a stochastic differential equation in the Itô form

drε(t) = B̄(rε(t)) dt + εη(rε(t)) dt + √
εσ (rε(t)) dw̃(t), (1.6)

where η = (η1, . . . , ηn), σ = (
σ ij

)
, i, j = 1, . . . , n, w̃ is an n-dimensional

Brownian motion and n = dimX. Hasselmann wrote (1.6) without the drift η but
since we consider this equation on a manifold X and write it in the Itô form in
local coordinates this term comes, in general, into the picture, as well (see the cor-
responding discussion in Section 2). We will justify this approximation showing
that for each ε > 0 and an initial condition x = zε(0) = rε(0) a Brownian motion
driving this equation can be chosen (on may be a richer probability space) in such
a way that

E sup
0≤t≤T

d2
X(z

ε(t), rε(t)) ≤ Cε1+δ (1.7)
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for some δ > 0. This result can be considered as a strong diffusion approxima-
tion of the slow motion in averaging which has a global manifold invariant form.
This result implies also a weak Gaussian approximation of the normalized error
in averaging, i.e. that ε−1/2(zε(t)− z̄(t)) converges weakly to a Gaussian process
g(t) (see Corollary 2.2). In the much simpler case of a fast motion independent of
the slow one this result was obtained long ago in [15]. Observe that this Gaussian
approximation makes sense only in R

n or in local coordinates and, as any weak
convergence result, it cannot truly justify Hasselmann’s nonlinear diffusion approx-
imation of zε(t) by rε(t). One may argue that relying on the above weak Gaussian
approximation and the Skorokhod representation theorem (see, for instance, [4])
it follows from comparison between rε and z̄ + √

εg that after a redefinition on
an appropriate probability space ε−1/2 sup0≤t≤T dX(zε(t), rε(t)) tends to zero in
probability. However, this approach cannot give, in principle, any estimates of the
speed of this convergence and it requires a huge (product) probability space which
hinders any resemblance of the redefined processes with the original diffusions
xε and yε while our approach provides an explicit redefinition which does not
change essentially the structure of these diffusions. Moreover, in our fully coupled
situation it is not easy to derive the weak Gaussian approximation, as well. It is
clear that δ in (1.7) cannot, in general, exceed 1 and we show that (1.7) holds true
with any δ < (18 + 8n)−1 and C depending on δ. Still, (1.7) may hold true with
larger δ and it is an interesting open problem to find the optimal bound there.

A similar result was proved in [17] for the case when the fast motion is a suffi-
ciently fast mixing stationary process ξt which does not depend on the slow motion
so that (1.1) is replaced by one equation dxε(t)/dt = εv(xε(t), ξt ).Though ξt here
does not have to be necessarily a diffusion this case has been treated by more tra-
ditional methods than the perturbations machinery employed in the present paper.
Using the technique from [1]–[2] it is possible to extend our results to the setup
of fully coupled averaging in difference equations with fast motions being either
Markov chains satisfying Doeblin type conditions or Axiom A diffeomorphisms
considered in a neighborhood of an attractor.

2. Main results

We will consider the stochastic differential equations (1.1) on a product X × Y of
two Riemannian manifolds, where Y is compact and connected. The small param-
eter ε in (1.1) will run over an interval I = [−ε0, ε0]. We assume that the vector
fields v, ui, b, ai are of smoothness class CN+1(X × Y × I ) with N ≥ 6 and,
furthermore, for any x, y the family of vectors {ai(x, y, 0)}mi=1 spans the tangent
space TyY . In addition, to simplify proofs, we assume that the vector fields v, ui
vanish outside some compact subset X0 ⊂ X. At the beginning of Section 4 we
shall explain how this assumption can be relaxed and replaced by the condition that
the Euclid norms |v|, |ui | grow at most lineary with respect to the distance on X.
The main result of this paper is the following

Theorem 2.1. Without changing its distribution, for each ε > 0 and any initial
condition x = xε(0) we can redefine the Brownian motion w(t) from (1.1) on a
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richer probability space where there exists a family of diffusion processes rε(t) on
X solving (1.6) such that zε(t) = xε(t/ε) and rε(t) (with rε(0) = x) satisfy the
inequality (1.7) with any δ < (18 + 8n)−1 while C = C(δ, T ) in (1.7) depends on
δ and T . The new probability space (�̃, F̃, P̃ ) can be taken in the product form
([0, 1], B, Leb) × (�, F, P ), where B is the Borel σ -algebra and Leb is the
Lebesgue measure on [0, 1], redefining wi(t) on �̃ by wi(t, (u, ω)) = wi(t, ω),

u ∈ [0, 1], ω ∈ �. The diffusion matrix σ = (σ ij ) in (1.6) satisfies σ(x)σ ∗(x) =
a(x) where a(x) is a CN symmetric nonnegatively definite matrix function defined
in Proposition 3.13 of the next section.

The matrix function a(x) is CN but, in general, it is only nonnegatively defi-
nite so we can only be sure that σ(x) is Lipschitz (see, for instance, [13], Section
1.3) which does not enable us to write (1.6) in the Stratonovich form which is
used usually when dealing with diffusions on manifolds. Still, it is easy to see
from the formula for a(x) = (aij (x)) that if it is written in local coordinates
x = (x1, . . . , xn) and ã(x̃) = (

ãij (x̃)
)

is its expression in another set of local
coordinates x̃ = (x̃1, . . . , x̃n) at the same point then

ãkl(x̃) =
n∑

i,j=1

aij (x)
∂x̃k

∂xi

∂x̃l

∂xj
, (2.1)

i. e. a(x) is a (2, 0) tensor field. Next, we observe that there exists a (not unique)
second order elliptic differential operator L on the manifold X with a prescribed
symbol, i. e. coefficients in second derivatives a(x) = aij (x) provided (2.1) holds
true. Define, for instance, L in local coordinats (x1, . . . , xn) by the formula

L = 1

2

1√
g(x)

n∑
i,j=1

∂

∂xi

(
aij (x)

√
g(x)

∂

∂xj

)
, (2.2)

where
√
g(x) is the density of the Riemannian volume, i. e.dV (x) = √

g(x) dx1 · · ·
dxn. This is a (weakly) elliptic operator which is self-adjoint with respect to the
Riemannian volume and its coefficients obey (as it is easy to check) the correct
change of coordinates transformation rules, i. e. L is indeed a differential operator
on the manifold. Since

B̄ =
n∑
i=1

B̄i(x)
∂

∂xi

is a vector field then Lε = εL+ B̄ is again an elliptic 2-nd order differential oper-
ator on the manifold X. Next, we can proceed as in Section 1.3 of [13] in order to
construct a diffusion rε which solves a stochastic differential equation of the form
(1.6) and has the generatorLε implying that rε is now well defined on the manifold
X. Namely, relying on the Whitney embedding theorem embed smoothly X as a
closed submanifold into a Euclidean space R

k of sufficiently high dimension k. As
in [13] extend the operator Lε into a 2-nd order elliptic operator L̃ε with CN coef-
ficients on the whole R

k . This operator serves as a generator of a diffusion on R
k
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solving a stochastic differential equation similar to (1.6) with Lipschitz coefficients
and its restriction to X yields the required diffusion rε(t) which solves, in fact, the
martingale problem for f (rε(t))− f (rε(0))− ∫ t0 Lεf (rε(s)) ds.

The proof of Theorem 2.1 consists of two main parts. The first one is based on
the perturbations machinery and it studies the asymptotic bahaviour as ε → 0 of
characteristic functions of zε(t) (considered, say, in local coordinates). The second
part presented in Section 4 below is based on the technique developped in [5],
[8], [19] which yields random variables close in probability or in average as soon,
as corresponding (conditional) characteristic functions are sufficiently close in a
certain sense. This will enable us to construct a Gaussian process on a richer prob-
ability space which is sufficiently close in the L2-sense to both zε and rε after the
latter processes are properly redefined there. It is well known that this type of strong
limit theorems cannot be derived without appropriate redefinitions of processes in
question since this is impossible even in the central limit theorem setup (see [4],
[21], [20] and the discussion in the next paragraph).

Observe, that the Brownian motion w̃(t) in (1.6) should be chosen separately
for each ε and it is impossible to have (1.7) with w in (1.1) and w̃ in (1.6) the same
for all ε. Indeed, consider the simple case when b and ai in (1.1) do not depend on
the slow variable x and on ε so that y(t) is a nondegenerate diffusion on a compact
manifold Y . Let also ui ≡ 0 and v(x, y, ε) depends only on the variable y. Then

ε−1/2(zε(t)− zε(0)
) = ε1/2

∫ t/ε

0
v(y(s)) ds. (2.3)

Assume that B̄ ≡ 0. By Strassen’s type invariance principle for the law of the
iterated logarithm (see, for instance, [21]) it follows that with probability one the
right hand side of (2.3) diverges. If the right hand side of (2.3) would converge in
the L2-sense as ε → 0 to a random variable then the latter should be measurable
with respect to the tail σ -algebra of the diffusion y which is strongly mixing, and
so this σ -algebra is trivial. So the limit could only be a constant and, in fact, zero
since B̄ ≡ 0. But it is easy to see that, in general, the variance of the right hand
side of (2.3) does not tend to zero as ε → 0. Thus, the right hand side of (2.3)
does not converge in the L2-sense anywhere, in particular, it does not converge to
a diffusion.

Hasselmann suggested that the diffusion (1.6) could describe the long time
behaviour of the slow motion where large deviations effects should be taken into
account, for instance, in the study of rare transitions of the slow motion between
attractors of the averaged one. It turns out that this does not hold true and it is not dif-
ficult to see that the rate functionals describing large deviations for the slow motion
xε and for the diffusion rε are usually different. For instance, if again ui ≡ 0 then
velocity vectors of paths of the process zε(t)must belong to vector fields v(·, y, ε)
while the diffusion rε can move rather arbitrarily with some positive probability. In
order to clarify this point consider the following simple one dimensional example.
Letui ≡ 0 and v(x, y) = c(x)+δ sin ϕwhere c(x) = 2x−4x3 and the fast variable
y = eiϕ belongs to the unit circle S1. As the fast motion y(t)we take the Brownian
motion on S1. Then B̄(x) = c(x) and the averaged motion has two attracting fixed
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points x− = −2−1/2, x+ = 2−1/2 and one repelling fixed point x0 = 0. It is
easy to see that if δ > 0 is small enough then the slow motion zε(t) cannot pass
at all between small neighborhoods of x− and x+ though (as a direct computation
shows) the corresponding diffusion approximation rε(t) is nondegenerate and with
probability one it exhibits rare transitions between these neighborhoods described
by the corresponding rate functional (see [10]).

Suppose that X = R
n and consider a Gaussian process g(t) on R

n solving the
following linear stochastic differential equation

dg(t) = ∇B̄(z̄(t))g(t) dt + σ(z̄(t)) dw̃(t) (2.4)

where z̄(0) = x and ∇B̄ is the matrix whose i, j−th element is ∂B̄i(x)/∂xj .
Standard estimates at the end of Section 4 below yield that

E sup
0≤t≤T

∥∥rε(t)− z̄(t)− √
εg(t)

∥∥2 ≤ Cε2 (2.5)

for someC > 0 provided rε(0) = x and g(0) = 0, and so we arrive at the following
result.

Corollary 2.2. Suppose X = R
n in Theorem 2.1. Then we have also that

E sup
0≤t≤T

∥∥zε(t)− z̄(t)− √
εg(t)

∥∥2 ≤ Cε1+δ (2.6)

for some C > 0 where δ is the same as in Theorem 2.1 and zε(0) = z̄(0) = x. In
particular, the process ε−1/2(zε(t)− z̄(t)), t ∈ [0, T ], converges in the weak sense
as ε → 0 to the Gaussian process g(t), t ∈ [0, T ].

3. Semigroup perturbations machinery

The arguments of this section are quite technical by their nature, and so for read-
ers’ sake we start with a short overview of our goals here. The main result of this
section is Corollary 3.9 providing Gaussian type asymptotics for the characteris-
tic functions of certain functionals of the processes xε and yε which will be used
in the next section in order to construct the required diffusion approximation of
zε(t) = xε(t/ε). The parameters emerging in Corollary 3.9 are further specified
in Propositions 3.13 and 3.14. In order to pass from the global setup to local
coordinats along the averaged motion we will need also estimates of probabilities of
large deviations of the slow motion from the averaged one obtained in Proposition
3.12. Both Corollary 3.9 and Proposition 3.12 follow from the crucial Proposition
3.8 which provides a formula for certain exponential functionals of the processes
xε and yε. The whole proof is based on Propositions 3.1 and 3.3 which are rather
standard and whose detailed proof can be found in [2]. These statements deal with
the unperturbed case ε = 0. The first one is an exponential ergodicity type result
which follows from our nondegeneracy assumption on the diffusion coefficients of
the fast motion yε. The second one is a result of the type of the Perron-Frobenius
theorem for positive operators and it employs also a version of the implicit function
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theorem to ensure a nice dependence of the corresponding quantities on parame-
ters. In Propositions 3.4–3.6 we continue to elaborate on the quantities obtained in
Proposition 3.3 for the unperturbed case after which the perturbation technique of
Proposition 3.7 leads to the desired result of Proposition 3.8.

Let us fix some T > 0 and a solution {z̄(t) | 0 ≤ t ≤ T } to the equation (1.4).
For this averaged path there exists a compact neighborhood X1 such that we can
choose a global coordinate system in it (i. e., X1 can be covered by one chart). In
order to simplify proofs we assume that the compact setX0 containing supports of
the vector fields v, ui , in turn, is contained in the interior of X1 and so a trajectory
xε(t) cannot leaveX1. At the beginning of the next section this assumption will be
dropped.

LetWm = {w(t)} be the set of trajectories of them-dimensional Wiener process
and P be theWiener measure onWm. Denote by (xε(t), yε(t)) = (xε(t, w), yε(t, w))

the solution to the system (1.1) that has an initial condition (x, y). It is known
from the theory of stochastic differential equations that if f ∈ Ci(X × Y ), where
i = 1, . . . , N , then for everyp ≥ 1 the process f (xε(t), yε(t)) forms a continuous
curve in the space Lp(Wm,P) which depends i times continuously differentiably
on the initial data x, y and on the parameter ε (see, for instance, [14] and [18]).
Let us define the semigroup of operators of conditional expectation in the space
C(X1 × Y ) by the formula

Atεf (x, y) = Ex,yf (xε(t), yε(t)) =
∫
Wm

f (xε(t, w), yε(t, w)) dP(w). (3.1)

Proposition 3.1 (see [2]). For the semigroup At0 given by (3.1) with ε = 0 there
exists a projection Ā : C(X1 × Y ) → C(X1) and numbers C0 > 0, 
0 ∈ (0, 1)
such that for any i = 0, 1, . . . , N and a function f ∈ Ci(X1 × Y ) the following
estimate ‖(At0 − Ā)f ‖i ≤ C0


t
0‖f ‖i is true.

This proposition implies Ā = limt→∞At0 and therefore ĀAt0 = Ā. This means
that if ε = 0 the following equalities are true

Ā
(
f (x, y)

) = Ā
(
At0f (x, y)

) = Ā
(
Ex,yf (x, y0(t))

)
. (3.2)

Note that when ε = 0 the system (1.1) is a family of nondegenerate diffusion
processes on Y depending on the parameter x. It is well known that each of these
processes has a unique invariant probability measure µx on Y and the value of the
function Āf at a point x ∈ X1 is equal to the integral of f with respect to µx .

For the system (1.1) let us define the vector fields

B(x, y) = v(x, y, 0)+ 1

2

m∑
i=1

dui(x, y, 0)

dy
ai(x, y, 0), (3.3)

B̄(x) = Ā
(
B(x, y)

)
, B̃(x, y) = B(x, y)− B̄(x). (3.4)

It is clear that the vector field B(x, y) is of the class CN(X1 × Y ) and it vanishes
outside the compact subset X0 ⊂ IntX1. Moreover, Proposition 3.1 implies that
the vector fields B̄ and B̃ have the same properties.
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For any functions F, ϕ ∈ Ci+2(X1), i = 1, . . . , N , let us consider the differ-
entials

DεF(x, y) = 1

ε

dF (x)

dx
◦ dx = dF(x)

dv
dt +

m∑
i=1

dF(x)

dui
◦ dwi(t), (3.5)

D̃εϕ(x, y) = Dεϕ(x, y)− dϕ(x)

dB̄
dt, (3.6)

where v = v(x, y, ε), ui = ui(x, y, ε). Let x = (x1, . . . , xn) be the local coordi-
nates onX and in these coordinates v = (v1, . . . , vn) and ui = (u1

i , . . . , u
n
i ). Then

we have

DεF(x, y) = dF(x)

dx

(
v dt +

m∑
i=1

(
ui dw

i(t)+ ε

2

dui

dx
ui dt + 1

2

dui

dy
ai dt

))

+ε
2

∑
i,j,k

∂2F(x)

∂xj ∂xk
u
j
i u
k
i dt. (3.7)

Let as above (xε(t), yε(t)) be the solution to the system (1.1) with the initial
condition (x, y). By means of the differentials (3.5)–(3.6) we define the families
of stochastic processes

Fεt = Fεt (x, y) =
∫ t

0
DεF(x

ε(τ ), yε(τ )), (3.8)

ϕ̃εt = ϕ̃εt (x, y) =
∫ t

0
D̃εϕ(x

ε(τ ), yε(τ )). (3.9)

In particular, by the Itô formula we have εF εt (x, y) = F(xε(t)) − F(x). And if
ε = 0 then (3.7), (3.3), and (3.4) imply

F 0
t (x, y) =

∫ t

0

dF(x)

dx

(
B(x, y0(τ )) dτ +

m∑
i=1

ui(x, y
0(τ ), 0) dwi(τ )

)
, (3.10)

ϕ̃0
t (x, y) =

∫ t

0

dϕ(x)

dx

(
B̃(x, y0(τ )) dτ +

m∑
i=1

ui(x, y
0(τ ), 0) dwi(τ )

)
. (3.11)

The processes exp(F εt ) and exp(ϕ̃εt ) satisfy the linear stochastic differential
equations with bounded coefficients

d exp(F εt ) = exp(F εt ) ◦DεF(xε(t), yε(t)),
d exp(ϕ̃εt ) = exp(ϕ̃εt ) ◦ D̃εϕ(xε(t), yε(t)).

From the theory of stochastic differential equations it is well known that if F, ϕ ∈
Ci+2(X1), where i = 1, . . . , N , then for every p ≥ 1 the processes Fεt , ϕ̃εt ,
exp(F εt ) and exp(ϕ̃εt ) form continuous curves in the space Lp(Wm,P) and these
curves depend i times continuously differentiably on the initial data x, y and the
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parameter ε. For any functions F, ϕ ∈ Ci+2(X1), i = 1, . . . , N , let us define the
family of semigroups Atε[F, ϕ] on the space Ci(X1 × Y ) by the following formula

Atε[F, ϕ]f (x, y) = Ex,y
(
exp
(
Fεt (x, y)+ ϕ̃εt (x, y)

)
f (xε(t), yε(t))

)
. (3.12)

From (3.12) and the equality εF εt (x, y) = F(xε(t)) − F(x) it follows that when
ε = 0,

Atε[F, ϕ]f = e−F/εAtε[0, ϕ]
(
eF/εf

)
. (3.13)

Proposition 3.2. If F, ϕ ∈ Ci+2(X1), where 1 ≤ i ≤ N , then the linear operator
f (x, y) �→ g(x, y, ε) = Atε[F, ϕ]f (x, y)maps continuously the spaceCi(X1×Y )
into the space Ci(X1 × Y × [−ε0, ε0]) and this operator depends analytically on
F, ϕ. If the parameters t, F, ϕ range over bounded domains then this family of
operators is uniformly bounded in norm.

Proof. The statement follows from formula (3.12) and the smooth dependence of
the processes exp(F εt (x, y)), exp(ϕ̃εt (x, y)) and f (xε(t), yε(t)) on x, y, ε. ��
Proposition 3.3. For all sufficiently small F, ϕ ∈ Ci+1(X1), i = 1, . . . , N there
exist uniquely defined functions λ[F, ϕ] ∈ Ci(X1), h[F, ϕ] ∈ Ci(X1 × Y ) and a
Ci(X1)-linear functional ν[F, ϕ] : Ci(X1×Y ) → Ci(X1) that depend analytically
on F, ϕ and satisfy the conditions

λ[0, 0] ≡ 0, h[0, 0] ≡ 1, ν[0, 0] = Ā, Āh[F, ϕ] ≡ 1, ν[F, ϕ](h[F, ϕ]) ≡ 1;
At0[F, ϕ]h[F, ϕ] = etλ[F,ϕ]h[F, ϕ], ν[F, ϕ] ◦ At0[F, ϕ] = etλ[F,ϕ]ν[F, ϕ];
lim
t→∞ e

−tλ[F,ϕ]At0[F, ϕ] = Ā[F, ϕ], where Ā[F, ϕ]f = ν[F, ϕ](f )h[F, ϕ].

The proof of this proposition can be obtained by a simple application of the
implicit function theorem. It is given in Proposition 2.1 of [2] for the family of
operators At0[F, 0] (that is in the case ϕ ≡ 0). In the situation when ϕ = 0 the
proof is absolutely the same.

Proposition 3.4. Under the conditions and notation of Proposition 3.3 the
functions λ[F, ϕ] and h[F, ϕ] have the form λ[F, ϕ](x) = λ(x, p, q) and h[F, ϕ]
(x, y) = h(x, y, p, q) respectively, where p = dF(x)/dx and q = dϕ(x)/dx.
The functions λ(x, p, q) and h(x, y, p, q) depend analytically on the covectors
p, q ∈ T ∗

x X1 and they are N times continuously differentiable with respect to x ∈
X1, y ∈ Y . In addition, if x ∈ X1 \X0 then λ(x, p, q) = 0 and h(x, y, p, q) = 1.

Proof. We have by definition that At0[F, ϕ]f (x, y) = Ex,y
(
exp(F 0

t + ϕ̃0
t )

f (x, y0(t))
)
. If we substitute in this formula the expressions (3.10) and (3.11)

for the processes F 0
t and ϕ̃0

t then it becomes clear that the operator At0[F, ϕ] acts
independently on every fiber x = const and its restriction onto this fiber depends
analytically on the covectors p = dF(x)/dx and q = dϕ(x)/dx. For any fixed x
the number etλ[F,ϕ](x) is the maximal eigenvalue for the restriction of the operator
At0[F, ϕ] onto the fiber x = const and the function h[F, ϕ](x, y) is the corre-
sponding eigenvector normalized by the condition Āh[F, ϕ] = 1. Therefore the
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functions λ[F, ϕ](x) and h[F, ϕ](x, y) also depend analytically onp = dF(x)/dx

and q = dϕ(x)/dx and thus they have the form λ(x, p, q) and h(x, y, p, q) respec-
tively. Further, if we choose the functions F and ϕ in such a way that in some local
coordinates x p = dF(x)/dx = const and q = dϕ(x)/dx = const then Prop-
osition 3.3 implies that the functions λ(x, p, q) and h(x, y, p, q) are at least
N times continuously differentiable with respect to x, y. Finally, the vector fields
B(x, y), B̃(x, y), ui(x, y, ε) vanish outside X0. In view of (3.10) and (3.11) we
have F 0

t = 0 and ϕ̃0
t = 0 if x ∈ X1 \ X0. Thus the operator At0[F, ϕ] coincides

with At0 in X1 \X0 and as a result λ(x, p, q)=0 and h(x, y, p, q)=1 there. ��
Proposition 3.5. Under the conditions and notation of Proposition 3.3 we have

dλ[ξF, 0]

dξ

∣∣∣∣
ξ=0

= dF

dB̄
,

dλ[0, ξϕ]

dξ

∣∣∣∣
ξ=0

= 0. (3.14)

Proof. From (3.2) and (3.4) it follows that Ā
(
Ex,yB(x, y0(τ ))

) = Ā
(
B(x, y)

) =
B̄(x) and Ā

(
Ex,yB̃(x, y0(τ ))

) = Ā
(
B̃(x, y)

) = 0. In view of these equalities
along with (3.10) and (3.11) we have

Ā
(

Ex,yF 0
t (x, y)

)
=
∫ t

0

dF(x)

dx
Ā
(

Ex,yB(x, y0(τ ))
)
dτ = t

dF (x)

dx
B̄(x),

(3.15)

Ā
(

Ex,y ϕ̃0
t (x, y)

)
=
∫ t

0

dϕ(x)

dx
Ā
(

Ex,yB̃(x, y0(τ ))
)
dτ = 0. (3.16)

The equalities (3.12), (3.15), and (3.16) imply

Ā

(
d

dξ

∣∣∣∣
ξ=0

At0[ξF, 0]1

)
= Ā

(
Ex,yF 0

t (x, y)
) = t

dF (x)

dB̄(x)
,

Ā

(
d

dξ

∣∣∣∣
ξ=0

At0[0, ξϕ]1

)
= Ā

(
Ex,y ϕ̃0

t (x, y)
) = 0.

Moreover, it follows from Proposition 3.3 that Āh[ξF, ζϕ] ≡ 1. So Ā(dh[ξF, 0]/
dξ) ≡ 0 and Ā(dh[0, ζϕ]/dζ ) ≡ 0. Now to finish the proof it is enough to differ-
entiate the identity Ā

(
At0[ξF, ζϕ]h[ξF, ζϕ]

) ≡ etλ[ξF,ζϕ] with respect to ξ and
ζ (when ξ = ζ = 0). ��

We shall fix once and for all a family of functions ϕ = (ϕ1(x), . . . , ϕn(x)) ∈
(CN+2(X1))

n. Let us introduce the n-dimensional parameter ξ = (ξ1, . . . , ξn) and
the notation ξϕ(x) = ξ1ϕ1(x)+· · ·+ ξnϕn(x). Consider in the domainX1 the first
order partial differential equation depending on the parameter ξ ∈ R

n:

Ḟt = λ[Ft , ξϕ], F0 ≡ 0. (3.17)

We shall denote by Ft(ξ) = Ft(ξ, x) a solution to this equation. By construction,
the function λ[F, ϕ] vanishes in X1 \ X0 and in addition λ[0, 0] ≡ 0. Thus for
ξ = 0 we have Ft(0, x) ≡ 0. Under these conditions and in view of Proposition 3.3
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it follows from general theory of the first order partial differential equations that
for any T > 0 there exists a (small) neighbourhood U of the origin in R

n such that
equation (3.17) has a solutionFt(ξ, x) defined for every t ∈ [0, T ], ξ ∈ U , x ∈ X1
and this solution is at least N − 1 times continuously differentiable with respect to
t, ξ, x. Let us fix a time segment [0, T ], the corresponding neighborhood U ⊂ R

n

and the solution Ft(ξ) = Ft(ξ, x).
By Proposition 3.3 to any function Ft(ξ) ∈ CN−1(X1) there corresponds the

function h[Ft(ξ), ξϕ] ∈ CN−2(X1 × Y ). For the sake of brevity we introduce the
notation ht (ξ) = h[Ft(ξ), ξϕ]. Proposition 3.4 implies that the function ht (ξ) =
h(x, y, dFt (ξ, x)/dx, dξϕ(x)/dx) is at least N − 2 times continuously differ-
entiable with respect to the totality of variables t ∈ [0, T ], ξ ∈ U , x ∈ X1,
y ∈ Y .

Let Fkt (ξ) and hkt (ξ) be the Taylor polynomials for the functions Ft(ξ) and
ht (ξ) of power k on ξ :

Fkt (ξ) =
k∑
i=0

1

i!
Fit (ξ

i), Fit = diFt (ξ)

dξ i

∣∣∣∣
ξ=0

, (3.18)

hkt (ξ) =
k∑
i=0

1

i!
hit (ξ

i), hit = diht (ξ)

dξ i

∣∣∣∣
ξ=0

. (3.19)

Proposition 3.6. In the notation (3.18), (3.19) we have F0t ≡ 0, F1t ≡ 0, h0t ≡ 1
and the quadratic form F2t , being considered as a function of t and x, satisfies the
linear partial differential equation

Ḟ2t = dF2t

dB̄
+ d2λ[0, ξϕ]

dξ2

∣∣∣∣
ξ=0

, F20 = 0. (3.20)

Proof. We know already that F0t = Ft(0) ≡ 0. By Proposition 3.3, h[0, 0] ≡ 1.
Therefore, h0t = h[Ft(0), 0] ≡ 1. Linearizing equation (3.17) by means of (3.14),
we obtain an equation for the family of linear functionals F1t :

Ḟ1t = dλ[F1t (ξ ), 0]

dξ

∣∣∣∣
ξ=0

+ dλ[0, ξϕ]

dξ

∣∣∣∣
ξ=0

= dF1t

dB̄
, F10 ≡ 0.

Evidently, it has zero solution. Then, extracting the quadratic part in (3.17), we get
exactly (3.20). ��

In the notation of (3.18), (3.19) consider the expression

rktτ (ξ, ε) = exp
{
ε−1(Fkt (ξ)− Fkt+ετ (ξ)

)}
Aτε
[
Fkt (ξ), ξϕ

]
hkt (ξ)− hkt+ετ (ξ).

(3.21)

Since Fkt (ξ) and hkt (ξ) are polynomials in ξ ∈ R
n, the last formula is well defined

for all ξ ∈ C
n.
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Proposition 3.7. Let k ≤ N − 4. Then given T > 0 there exists a neighbor-
hood VT of the origin in C

n such that the expression rktτ (ξ, ε) from (3.21) can
be represented in the form rktτ (ξ, ε) = εαtτ (ξ, ε) + βtτ (ξ), where the families
αtτ (ξ, ε) ∈ CN−4−k(X1 × Y ) and βtτ (ξ) ∈ CN−3−k(X1 × Y ) are analytic in
ξ ∈ VT and for all t, τ ∈ [0, T ], ξ ∈ VT , ε ∈ [−ε0, ε0] satisfy estimates
‖αtτ (ξ, ε)‖N−4−k ≤ C|ξ |, ‖βtτ (ξ)‖N−3−k ≤ C|ξ |k+1, the constant C being
independent of t, τ, ξ, ε.

Proof. First of all note that the family Fkt (ξ) is a polynomial in ξ with coefficients
belonging to the space CN−1−k{ (t, x) ∈ [0, T ] × X1 } and the family hkt (ξ) is
a polynomial in ξ with coefficients belonging to the space CN−2−k{ (t, x, y) ∈
[0, T ] × X1 × Y }. Hence Proposition 3.2 implies that the family rktτ (ξ, ε) is ana-
lytic in ξ and at least N − 3 − k times continuously differentiable with respect to
t, x, y, ε and all its partial derivatives up to order mentioned above are uniformly
bounded if t, τ ∈ [0, T ]. Put βtτ (ξ) = rktτ (ξ, 0) and

εαtτ (ξ, ε) = rktτ (ξ, ε)− rktτ (ξ, 0) =
∫ 1

0

drktτ (ξ, θε)

dθ
dθ.

Recall that e−τλ[Ft (ξ),ξϕ]Aτ0[Ft(ξ), ξϕ]ht (ξ) ≡ ht (ξ) (by Proposition 3.3) and
Ḟt (ξ) = λ[Ft(ξ), ξϕ] (by (3.17)). So (3.21) implies that rktτ (ξ, 0) = O

(|ξ |k+1
)

and rktτ (0, ε) ≡ 0. From here we get easily the required estimates for βtτ (ξ) and
αtτ (ξ, ε). ��
Proposition 3.8. Suppose ϕ = (ϕ1, . . . , ϕn) ∈ (CN+2(X1))

n and ϕ̃εt = ϕ̃εt (x, y)

is a family of n-dimensional stochastic processes defined by (3.9). Then given
T > 0 and k ≤ N − 4 there exist a small neighborhood VT of zero in C

n, a
number εT > 0 and a family of stochastic processes Gεt (ξ) = Gεt (ξ, x, y) such
that for all ε ∈ (0, εT ), t ∈ [0, T /ε], ξ ∈ VT , x ∈ X1, y ∈ Y the following
equality holds:

Ex,y exp
(
ξ ϕ̃εt +Gεt (ξ)

) = exp
(
Fkεt (ξ)/ε

)
, (3.22)

in which Fkt (ξ) is the Taylor polynomial (3.18) for the solution of equation (3.17).
Here Gεt (ξ) depends analytically on ξ , is real-valued for real ξ and satisfies the
estimate |Gεt (ξ, x, y)| ≤ C|ξ | + Ct |ξ |k+1, the constant C being independent of
ε, t, ξ, x, y.

Proof. It follows from (3.13) and (3.21) that

rktτ (ξ, ε) = e−F
k
t+ετ (ξ)/εAτε [0, ξϕ]

(
eF

k
t (ξ)/εhkt (ξ)

)
− hkt+ετ (ξ). (3.23)

Define families of nonrandom functions gεi (ξ) = gεi (ξ, x, y) by the formulas

gε0(ξ) = ln hk0(ξ),

gεi (ξ) = ln
hkεi(ξ)

hkεi(ξ)+ rkεi−ε,1(ξ, ε)
, i = 1, 2, . . . , [t], (3.24)

gεt (ξ) = − ln
{
e−F

k
εt (ξ)/εA{t}

ε [0, ξϕ]
(
e
Fkε[t](ξ)/εhkε[t](ξ)

)}
(3.25)
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(where [ · ] and { · } denote the integer and the fractional part, respectively, and the
principal value of the logarithm function is taken everywhere). By (3.23) and (3.24)
we have

eg
ε
i (ξ)A1

ε[0, ξϕ]
(
eF

k
εi−ε(ξ)/εhkεi−ε(ξ)

)
= eF

k
εi (ξ)/εhkεi(ξ). (3.26)

As before, let (xε(t), yε(t)) be a solution to system (1.1)) with initial data (x, y).
Put

Gεt (ξ, x, y) = gεt (ξ, x, y)+
[t]∑
i=0

gεi (ξ, x
ε(t − i), yε(t − i)). (3.27)

Proposition 3.7 implies the desired estimate for the family Gεt (ξ, x, y). From the
definition (3.9) of the stochastic process ϕ̃εt (x, y) it follows that

ϕ̃εt (x, y) = ϕ̃ε{t}(x, y)+
[t]∑
i=1

ϕ̃ε1(x
ε(t − i), yε(t − i)). (3.28)

Therefore, by (3.27) and (3.28),

Ex,y exp
(
ξ ϕ̃εt (x, y)+Gεt (ξ, x, y)

)
= eg

ε
t (ξ,x,y)Ex,y

(
e
ξϕ̃ε{t}(x,y)eg

ε
[t](ξ,x

ε({t}),yε({t}))

×Exε({t}),yε({t})
(
eξϕ̃

ε
1(x

ε({t}),yε({t})) . . . eg
ε
1(ξ,x

ε(t−1),yε(t−1))

×Exε(t−1),yε(t−1)

(
eξϕ̃

ε
1(x

ε(t−1),yε(t−1))eg
ε
0(ξ,x

ε(t),yε(t))
))
...
)

= eg
ε
t (ξ)A{t}

ε [0, ξϕ]
(
e
gε[t](ξ)A1

ε[0, ξϕ] . . .
(
eg

ε
1(ξ)A1

ε[0, ξϕ]hk0(ξ)
)
...
)
.

To calculate the last expression use successively (from right to left) equality (3.26)
for i = 1, 2, . . . , [t] and equality (3.25) at the end. As a result we obtain exactly
(3.22). ��
Corollary 3.9. In the setting of Proposition 3.8 for all ε ∈ (0, εT ), t ∈ [0, T ],
(x, y) ∈ (X1 × Y ) and ζ ∈ R

n we have

Ex,y exp
(
i
√
εζ ϕ̃εt/ε(x, y)

)− exp
(− 1

2 〈F2,t (x)ζ, ζ 〉
) = O

(√
ε|ζ | + t

√
ε|ζ |3

)
,

where the matrix F2,t (x) is defined by the formulas

F2,t (x) =
∫ t

0
a(z̄(s)) ds, a(x) = d2λ[0, ξϕ]

dζ 2

∣∣∣∣
ξ=0

,

provided z̄(0) = x. Here 〈ξ, ζ 〉 = ξ1ζ1 + · · · + ξnζn, and O(ζ) is a function satis-
fying the estimate |O(ζ)| ≤ CT |ζ | whenever |ζ | < δT , the constants CT , δT being
positive and independent of ζ .
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Proof. The first formula above follows from Proposition 3.8 if we take k = 2,
ξ = i

√
εζ and replace t by t/ε in it. The second formula merely defines the

solution to (3.20). ��
Proposition 3.10. Given T > 0 and a function ϕ ∈ CN+2(X1) there exist εT > 0
so small and C = C(T ) so large that for all ε ∈ (0, εT ), t ∈ [0, T /ε], (x, y) ∈
X1 × Y and positive κ we have the estimates

P
{
ϕ̃εt (x, y) ≥ κ

} ≤ C exp
(
−κ
/√

C + Ct
)
, (3.29)

P
{

sup
0≤s≤t

∣∣ϕ̃εs (x, y)∣∣ ≥ κ

}
≤ C(1 + t) exp

(
−κ
/√

C + Ct
)
. (3.30)

Proof. Apply Proposition 3.8 for n = k = 1. In this case F 1
εt (ξ) ≡ 0. Hence (3.22)

yields for all small enough ξ > 0 inequality

P
{
ϕ̃εt (x, y) ≥ κ

} ≤ Ex,y exp
(
ξ(ϕ̃εt − κ)

)
≤ Ex,y exp

(
ξ ϕ̃εt +Gεt (ξ)+ Cξ + Ctξ2 − ξκ

)
= exp

(
Cξ + Ctξ2 − ξκ

)
.

Taking ξ = (C + Ct)−1/2 in it, we get

P
{
ϕ̃εt (x, y) ≥ κ

} ≤ exp
(√
C + 1 − κ

/√
C + Ct

)
.

Thus (3.29) is proved. From (3.6)–(3.9) it follows that for any t > s,

ϕ̃εt (x, y)− ϕ̃εs (x, y) =
∫ t

s

Rετ (x, y) dτ +
∫ t

s

Qε
τ (x, y) dw(τ),

whereRεt (x, y) andQε
t (x, y) are uniformly bounded stochastic processes. By stan-

dard estimates for stochastic integrals (see, for instance, [14] or [18]) we see that

P
{

sup
s≤τ≤s+1

∣∣ϕ̃ετ (x, y)− ϕ̃εs (x, y)
∣∣ ≥ κ

}
≤ Ce−κ

2/C

for someC independent of ε, s, x, y, κ. Combining this with (3.29) for all integer
s ∈ [0, t], we obtain (3.30) with some larger C. ��
Proposition 3.11. For any function ϕ ∈ CN+2(X1) and numbers T > 0 and
p > 0 there exist εT > 0 so small and C = C(p, T ) so large that

Ex,y
∣∣ϕ̃εt (x, y)∣∣2p ≤ C(1 + t)p, (3.31)

Ex,y sup
0≤s≤t

∣∣ϕ̃εs (x, y)∣∣2p ≤ C(1 + t)p ln2p(2 + t) (3.32)

for all ε ∈ (0, εT ), t ∈ [0, T /ε], (x, y) ∈ X1 × Y .
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Proof. Denote by �(κ) the distribution function for the random variable ϕ̃εt (x, y)
and by �(κ) the distribution function for −ϕ̃εt (x, y). Obviously,

Ex,y
∣∣ϕ̃εt (x, y)∣∣2p =

∫ ∞

0
κ

2p d�(κ)+
∫ ∞

0
κ

2p d�(κ). (3.33)

Consider the first of two integrals in the right-hand side of (3.33). Take κi =
i
√
C + Ct . Then by (3.29),∫ ∞

0
κ

2p d�(κ) =
∞∑
i=0

∫
κi+1

κi

κ
2p d�(κ) ≤

∞∑
i=0

κ
2p
i+1P

{
ϕ̃εt (x, y) ≥ κi

}

≤ (C + Ct)p
∞∑
i=0

(i + 1)2pCe−i .

The second integral in the right-hand side of (3.33) can be evaluated in the same
manner. So (3.31) is proved. Now take κi = i

√
C + Ct ln(2 + t). Then by (3.30),

Ex,y sup
0≤s≤t

∣∣ϕ̃εs (x, y)∣∣2p ≤ κ
2p
1 +

∞∑
i=1

κ
2p
i+1Px,y

{
sup

0≤s≤t

∣∣ϕ̃εs (x, y)∣∣ ≥ κi

}

≤ (C + Ct)p ln2p(2 + t)+ (C + Ct)p ln2p(2 + t)

×
∞∑
i=1

(i + 1)2pCe−(i−1) ln(2+t)

and (3.32) is proved too. ��
Proposition 3.12. Given T > 0 and p > 0 there exist εT > 0 so small and
C = C(p, T ) so large that for all ε ∈ (0, εT ), (x, y) ∈ X1 × Y and κ > 0,

Px,y

{
sup

0≤t≤T
dX(z

ε(t), z̄(t)) ≥ κ

}
≤ Cε−1 exp

(
− κ

C
√
ε

)
, (3.34)

Ex,y

(
sup

0≤t≤T
dX(z

ε(t), z̄(t))

)2p

≤ Cεp ln2p(ε−1), (3.35)

where dX is the distance function on X.

Proof. Choose a set of coordinate functions ϕ = (ϕ1, . . . , ϕn) ∈ (CN+2(X1)
)n

on X. From (3.6) and (3.9) it follows that

ϕ̃εt (x, y) =
∫ t

0
Dεϕ(x

ε(s), yε(s))− dϕ

dB̄
(z̄(εs)) ds

+
∫ t

0

(
dϕ

dB̄
(z̄(εs))− dϕ

dB̄
(xε(s))

)
ds

= ε−1(ϕ(xε(t))− ϕ(z̄(εt))
)

+
∫ t

0

(
dϕ

dB̄
(z̄(εs))− dϕ

dB̄
(xε(s))

)
ds. (3.36)



172 V. Bakhtin, Y. Kifer

Hence,

dX
(
xε(t), z̄(εt)

) ≤ Cε
∣∣ϕ̃εt (x, y)∣∣+ Cε

∫ t

0
dX
(
xε(s), z̄(εs)

)
ds

for some C > 0. It follows by Gronwall’s inequality that

sup
0≤t≤T

dX
(
zε(t), z̄(t)

) ≤ eCT Cε sup
0≤t≤T/ε

∣∣ϕ̃εt (x, y)∣∣.
Combining this with (3.30) and (3.32), we obtain (3.34) and (3.35) respectively. ��

Proposition 3.13. The matrix

a(x) = d2λ[0, ξϕ]

dξ2

∣∣∣∣
ξ=0

has the CN dependence on x and satisfies the identity

〈a(x)ξ, ξ〉 = lim
t→∞

1

t
Ex,y

(
ξ ϕ̃0

t (x, y)
)2
. (3.37)

So it is symmetric and nonnegatively definite.

Proof. Take k = 2 in Proposition 3.8. Then

Ex,y exp
(
ξ ϕ̃εt +Gεt (ξ)

) = exp
(〈F2,εt (x)ξ, ξ〉/2ε

)
, (3.38)

where F2,t (x) is a matrix satistying differential equation (3.20) and Gεt (ξ) is a
family of stochastic processes which is analytic in ξ = (ξ1, . . . , ξn) ∈ VT ⊂ C

n

and satisfies the inequality
∣∣Gεt (ξ)∣∣ ≤ C|ξ | + Ct |ξ |3 for all ξ ∈ VT . Consider the

Taylor expansion of Gεt (ξ) in ξ :

Gεt (ξ) =
n∑
i=1

gεi ξi + 1

2

n∑
i,j=1

gεij ξiξj + · · · .

Let t be so large that if |ξ | ≤ t−1/2 then ξ ∈ VT . In this case by the Cauchy
inequality from complex variable analysis we have

|gεi | ≤ √
t sup

|ξ |≤t−1/2

∣∣Gεt (ξ)∣∣ ≤ 2C, (3.39)

|gεij | ≤ t sup
|ξ |≤t−1/2

∣∣Gεt (ξ)∣∣ ≤ C
√
t . (3.40)

Let us differentiate (3.38) twice in ξ at the origin:

Ex,y
{
(̃ϕi)

ε

t (̃ϕj )
ε

t
+ (̃ϕi)

ε

t g
ε
j + (̃ϕj )

ε

t
gεi + gεij

}
= ε−1F2,εt (x). (3.41)
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From (3.31) it follows that Ex,y
∣∣∣(̃ϕi)εt ∣∣∣ ≤ C

√
1 + t . Now, if we take the limit in

(3.41) as ε → 0 and use (3.39), (3.40) and (3.20), we get

Ex,y
{
(̃ϕi)

0
t (̃ϕj )

0
t

}
+O

(√
1 + t

)
= t

∂2λ[0, ξϕ]

∂ξi∂ξj

∣∣∣∣
ξ=0

.

Thus (3.37) is proved. The CN -smoothness of a(x) follows from Proposition 3.4.
��

Proposition 3.14. Consider the vector fields ui = ui(x, y, 0), ai = ai(x, y, 0)
from the system (1.1) and Ṽ (x, y) = ∫∞

0 At0B̃(x, y) dt , where B̃ is defined by
(3.4). Let ϕ = (ϕ1, . . . , ϕn) ∈ (CN+2(X1))

n and ξ = (ξ1, . . . , ξn) ∈ R
n. Then the

function λ[0, ξϕ] from Proposition 3.3 satisfies the equality

∂2λ[0, ξϕ]

∂ξj ∂ξk

∣∣∣∣
ξ=0

= Ā

( m∑
i=1

dϕj

dui

dϕk

dui
+ dϕj

dB̃

dϕk

dṼ
+ dϕk

dB̃

dϕj

dṼ

+
m∑
i=1

dϕj

dui
· dϕk
dx

(
dṼ

dy
ai

)
+

m∑
i=1

dϕk

dui
· dϕj
dx

(
dṼ

dy
ai

))
.

(3.42)

Proof. By Proposition 3.3, λ[0, 0] ≡ 0, h[0, 0] ≡ 1, and Āh[0, ξϕ] ≡ 1. Hence,

Ā
∂h[0, ξϕ]

∂ξj
= 0, Ā

∂2h[0, ξϕ]

∂ξj ∂ξk
= 0. (3.43)

Recall that by (3.11) and (3.12) for any function ψ ∈ CN+2(X1)

At0[0, ψ]f (x, y) = Ex,y
(

exp
{
ψ̃0
t (x, y)

}
f (x, y0(t))

)
, (3.44)

ψ̃0
t (x, y) =

∫ t

0

dψ(x)

dx

(
B̃(x, y0(s)) ds +

m∑
i=1

ui(x, y
0(s), 0) dwi(s)

)
, (3.45)

where (x, y0(t)) is a solution to the system (1.1) for ε = 0 with initial condition
(x, y). Differentiating the identity etλ[0,ξϕ]h[0, ξϕ] ≡ At0[0, ξϕ]h[0, ξϕ] (from
Proposition 3.3) in ξj when ξ = 0 and taking into account (3.15), (3.44), (3.45) we
obtain

∂h[0, ξϕ]

∂ξj

∣∣∣∣
ξ=0

= Ex,y
(
(̃ϕj )

0
t
(x, y)

)
+ At0

∂h[0, ξϕ]

∂ξj

∣∣∣∣
ξ=0

=
∫ t

0

dϕj (x)

dx
Ex,yB̃(x, y0(s)) ds + At0

∂h[0, ξϕ]

∂ξj

∣∣∣∣
ξ=0

=
∫ t

0

dϕj (x)

dx
As0B̃(x, y) ds + At0

∂h[0, ξϕ]

∂ξj

∣∣∣∣
ξ=0

.
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Passing to the limit here as t → ∞ and combining the equalities Ā = limt→∞At0
and (3.43) we derive

∂h[0, ξϕ]

∂ξj

∣∣∣∣
ξ=0

=
∫ ∞

0

dϕj (x)

dx
As0B̃(x, y) ds = dϕj (x)

dx
Ṽ (x, y). (3.46)

Consider the identity etλ[0,ξϕ] ≡ ĀAt0[0, ξϕ]h[0, ξϕ]. Differentiating it in ξj we
get

tetλ[0,ξϕ] ∂λ[0, ξϕ]

∂ξj
= Ā

(
∂At0[0, ξϕ]

∂ξj
h[0, ξϕ] + At0[0, ξϕ]

∂h[0, ξϕ]

∂ξj

)
.

Next, differentiating this expression in ξk at the point ξ = 0 we have

t
∂2λ[0, ξϕ]

∂ξj ∂ξk

∣∣∣∣
ξ=0

= Ā

(
∂2At0[0, ξϕ]

∂ξj ∂ξk
(1)+ ∂At0[0, ξϕ]

∂ξj

∂h[0, ξϕ]

∂ξk
+

+∂A
t
0[0, ξϕ]

∂ξk

∂h[0, ξϕ]

∂ξj
+ At0

∂2h[0, ξϕ]

∂ξj ∂ξk

)∣∣∣∣
ξ=0

.

Using (3.43), (3.44), and (3.46) we conclude from the last equality that

t
∂2λ[0, ξϕ]

∂ξj ∂ξk

∣∣∣∣
ξ=0

= ĀEx,y

(
(̃ϕj )

0
t
· (̃ϕk)0t

)
+ ĀEx,y

(
(̃ϕj )

0
t
· dϕk(x)

dx
Ṽ (x, y0(t))

+(̃ϕk)0t · dϕj (x)
dx

Ṽ (x, y0(t))
)
. (3.47)

Differentiation of (3.47) in t for t = 0 by means of the Itô formula and (3.45) gives
us (3.42). ��

Now let us make some supplementary remarks, which can be proved easily by
the methods developed above.

Remark 3.15. In the special case when the fast motion yε does not depend on the
slow one xε, i.e. when the coefficients of the second equation in (1.1) do not depend
on the slow variable x, the formula (3.37) for a(x) reduces to the formula (3.2)
obtained in [15].

Remark 3.16. If we replace ϕ̃εt = ∫ t
0 D̃εϕ by ϕεt = ∫ t

0 Dεϕ in the definition of
the operator Atε[F, ϕ], then we get immediately the central limit theorem and the
Cramer asymptotics for ϕ(xε(t)), where t ≤ T/ε (see [1]–[2]). In this case we have
in (3.14) the equality dλ[0,ξϕ]

dξ
|ξ=0 = dϕ

dB̄
and respectively Ḟ1t = dϕ

dB̄
+ dF1t

dB̄
.

Remark 3.17. The function λ[F, ϕ] is convex with respect to the pair (F, ϕ).
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4. Diffusion approximation

Since we are interested in uniform in time estimates we always consider in this
section continuous in time modifications of the processes and stochastic integrals
in question. We will estimate the distance between the processes zε and rε using
first the standard moment inequalities for stochastic integrals and then employ Cor-
ollary 3.9 which shows that as ε → 0 the characteristic functions of increments
xε(t)− xε(s)+ ∫ t

s
B̄(xε(u))du become close to the Gaussian ones. This together

with the technique from [5], [8], and [19] extended for the averaging setup in [17]
will enable us to construct on a richer probability space certain Gaussian process
which is sufficiently close in theL2-sense both to zε and to the diffusion rε solving
(1.6).

Assuming that the vector fields v, ui from system (1.1) vanish outside some
compact neighborhood X0 of an averaged path {z̄(t) | 0 ≤ t ≤ T }, we have estab-
lished in Proposition 3.12 that P

(
sup0≤t≤T dX(zε(t), z̄(t)) ≥ δ

)
is exponentially

small for any δ > 0. So the behaviour of v and ui outside a δ-vicinity of the aver-
aged path affects the process {zε(t) | 0 ≤ t ≤ T } only with exponentially small
probability. We shall see soon that the same is true for the process rε(t) from (1.6).
Hence the desired estimate (1.7) does not depend on the size of X0, provided this
size is finite, and it is enough to prove (1.7) for any X0. Moreover, if we allow the
vector fields v, ui not to have compact supports but to grow at most lineary in the
distance from some point in X, this still has no affect on (1.7). Though this can be
proved by means of usual large deviations estimates, we will not go into details and
proceed in the setting of compact supports contained in small X0. Then we may
work in local coordinates and it is enough to prove Theorem 2.1 for the case when
X = R

n which we assume in this section.
Taking ϕ(x) = x = (x1, . . . , xn) and denoting ϕ̃εt (x, y) in this case by x̃εt (x, y)

we obtain from (3.36) that

xε(t)− xε(0) = εx̃εt (x, y)+ ε

∫ t

0
B̄(xε(s)) ds. (4.1)

The matrix a(x) from Proposition 3.13 is bounded in CN -norm and it is sym-
metric and nonnegatively definite. Hence, by Theorem 2.1 from § 3.2 in [9] there
exists a bounded Lipschitz continuous symmetric square root σ(x) of a(x), i. e.
a(x) = (σ (x))2 = σ(x)σ ∗(x). In what follows we consider (1.6) with such σ and

η(x) = 1

2

1√
g(x)

n∑
i,j=1

∂

∂xi

(
aij (x)

√
g(x)

) ∂

∂xj
. (4.2)

Then the diffusion rε(t) defined by (1.6) has the generator (2.2) written in a man-
ifold invariant form. Taking initial conditions zε(0) = rε(0) = x we obtain from
(4.1), (1.6) that

zε(t)− rε(t) =
∫ t

0

(
B̄(zε(s))− B̄(rε(s))

)
ds + εx̃εt/ε(x, y)

−√
ε

∫ t

0
σ(z̄(s)) dw̃(s)− Rε(t)− R̃ε(t), (4.3)
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where Rε(t) = √
ε
∫ t

0 (σ (r
ε(s)) − σ(z̄(s))) dw̃(s) and R̃ε(t) = ε

∫ t
0 η(r

ε(s)) ds.
Recall, that B̄ ∈ CN(X1) (see remark following (3.4)) and so it is Lipschitz con-
tinuous. Hence (4.3) and the Gronwall inequality yield

sup
0≤t≤T

∣∣zε(t)− rε(t)
∣∣ ≤ eCT

(
sup

0≤t≤T

∣∣∣∣εx̃εt/ε(x, y)− √
ε

∫ t

0
σ(z̄(s)) dw̃(s)

∣∣∣∣
+ sup

0≤t≤T

∣∣Rε(t)∣∣+ sup
0≤t≤T

∣∣R̃ε(t)∣∣) (4.4)

for some C > 0 independent of ε.
By Lipschitz continuity of σ and standard martingale estimates of stochastic

integrals,

E sup
0≤t≤T

∣∣Rε(t)∣∣2 ≤ Cε

∫ T

0
E
∣∣rε(t)− z̄(t)

∣∣2 dt (4.5)

for some C > 0. Next, by Lipschitz continuity of B̄ and boundedness of η we
obtain from (1.4) and (1.6) that

∣∣rε(t)− z̄(t)
∣∣ ≤ C

∫ t

0

∣∣rε(s)− z̄(s)
∣∣ ds + Ctε + √

ε

∣∣∣∣
∫ t

0
σ(rε(s)) dw̃(s)

∣∣∣∣
(4.6)

for some C > 0, and so by Gronwall’s inequality

∣∣rε(t)− z̄(t)
∣∣ ≤ eCt

(
Ctε + √

ε sup
0≤s≤t

∣∣∣∣
∫ s

0
σ(rε(u)) dw̃(u)

∣∣∣∣
)
. (4.7)

Taking squares of both parts of (4.7), applying the expectation, using moment
inequalities for stochastic integrals and taking into account (4.5) we arrive at

E sup
0≤t≤T

∣∣Rε(t)∣∣2 ≤ 4C2T 2e2CT ε2 (4.8)

for some C > 0 independent of ε. Clearly, we have also

E sup
0≤t≤T

∣∣R̃ε(t)∣∣2 ≤ C̃2T 2ε2 (4.9)

for some C̃ > 0 independent of ε.
It remains to deal with the first term in the right hand side of (4.4) where we will

have to pick up an appropriate Brownian motion w̃ in order to obtain the desired
estimates. Denote by Ft the σ−algebra generated by {w(s) | 0 ≤ s ≤ t}. By the
Markov property for any t > s ≥ 0 and ζ = (ζ1, . . . , ζn) ∈ R

n,

Ex,y
(
exp
{
i
√
ε
〈
ζ, x̃εt (x, y)− x̃εs (x, y)

〉}∣∣Fs)
= Exε(s),yε(s) exp

{
i
√
ε
〈
ζ, x̃εt−s(x

ε(s), yε(s))
〉}

(4.10)
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where, again, 〈ζ, x〉 = ζ1x
1 +· · ·+ζnxn. The matrix a(x) from Proposition 3.13 is

Lipschitz continuous and nonnegatively definite, and so is the matrix F2,t (x) from
Corollary 3.9. Then, using the inequality |e−a − e−b| ≤ |b − a|, where a, b > 0,
we obtain that for any 0 ≤ s ≤ t ≤ T ,

Ex,y
∣∣∣exp

{− 1
2

〈
F2,t−s(zε(s))ζ, ζ

〉}− exp
{− 1

2

〈
F2,t−s(z̄(s))ζ, ζ

〉}∣∣∣
≤ C(t − s)|ζ |2Ex,y

∣∣zε(s)− z̄(s)
∣∣. (4.11)

Now (4.10), (4.11) together with Corollary 3.9 and (3.35) yield

Ex,y
∣∣∣Ex,y(exp

{
i
√
ε
〈
ζ, x̃εt/ε(x, y)− x̃εs/ε(x, y)

〉}∣∣∣Fs/ε)
− exp

{− 1
2

〈
F2,t−s(z̄(s))ζ, ζ

〉}∣∣∣
≤ C

(√
ε|ζ | + √

ε(t − s)|ζ |3 + (t − s)|ζ |2√ε ln ε−1
)

(4.12)

for some C = C(T ).
Take some small τ > 0 and set

Uk = Uk(τ, ε) = √
ε
(
x̃εkτ/ε(x, y)− x̃ε(k−1)τ/ε(x, y)

)
, (4.13)

Hk(τ) =
∫ kτ

(k−1)τ
σ (z̄(t)) dW(t), k = 1, 2, . . . , [T/τ ], (4.14)

where W(t) is a standard continuous n-dimensional Brownian motion. Clearly,
Hk(τ) has the characteristic function

exp

{
−1

2

∫ kτ

kτ−τ

〈
a(z̄(t))ζ, ζ

〉
dt

}
= exp

(− 1
2

〈
F2,τ (z̄(kτ − τ))ζ, ζ

〉)
(4.15)

and so it satisfies

P
{
Hk(τ) ≥ 1

4L
} ≤ exp(−CT L2/τ) (4.16)

for any L > 0, where CT > 0 depends only on T . This together with (4.12), (4.15)
and Theorem 4.6 from [7] (or with its older version Theorem 1 from [5]) yield
that we can redefine the sequence Uk , k = 1, 2, . . . , [T/τ ] on a richer proba-
bility space where there exists a sequence Vk = Vk(τ), k = 1, 2, . . . , [T/τ ] of
independent random vectors such that Vk has the same distribution as Hk(τ) and

P
{|Uk − Vk| ≥ β

} ≤ β, k = 1, 2, . . . , [T/τ ], (4.17)

where

β = 16nL−1 logL+ 4
√
µLn + exp(−CT L2/τ),

µ = C
√
ε
(
L+ L3τ + L2τ ln ε−1). (4.18)

It follows easily that for any R > 0 and p > 1 (see (4.23) in [17]),

E|Uk − Vk|2 ≤ κ = β2 + 4R2β + R−2(p−1)(E|Uk|2p + E|Vk|2p
)
. (4.19)
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Since the sequences Vk and Hk(τ) have the same distributions the Kolmogo-
rov existence theorem yields that for each ε and k we can redefine the Brownian
motion in (1.1) without changing its distribution on a richer probability space where
there exists another n-dimensional Brownian motionW(t) such thatUk = Uk(τ, ε)

defined by (4.13) and Hk(τ) defined by (4.14) via these new processes satisfy

E|Uk −Hk(τ)|2 ≤ κ. (4.20)

In fact, according to [8] and [19] (see also the discussion concerning this question on
p. 551 in [20]) if the original probability space is already rich enough then there is no
need in redefining both the sequence Uk , k = 1, 2, . . . , [T/τ ] and the Brownian
motion from (1.1) and, in any case, it is possible to enrich the original probability
space in the specific way multiplying it by the interval [0, 1] and redefining the
above processes explicitly via projections as described in Theorem 2.1.

Now we have

I = sup
0≤t≤T

∣∣∣∣√εx̃εt/ε(x, y)−
∫ t

0
σ(z̄(s)) dW(s)

∣∣∣∣
≤

[T/τ ]∑
k=1

|Uk −Hk(τ)| + max
0≤k≤[T/τ ]

J
(1)
k (τ )+ max

0≤k≤[T/τ ]
J
(2)
k (τ, ε), (4.21)

where

J
(1)
k (τ ) = sup

0≤θ≤τ

∣∣∣∣
∫ kτ+θ

kτ

σ (z̄(t)) dW(t)

∣∣∣∣,
J
(2)
k (τ, ε) = sup

kτ≤t≤kτ+τ

√
ε
∣∣x̃εt/ε(x, y)− x̃εkτ/ε(x, y)

∣∣.
By (4.20),

E


[T/τ ]∑
k=1

∣∣Uk −Hk(τ)
∣∣



2

≤ [T/τ ]2
κ. (4.22)

Employing standard martingale moment estimates for stochastic integrals (see, for
instance, [14]) we obtain that for any p ≥ 1,

E
∣∣∣J (1)k (τ )

∣∣∣2p ≤ Cτp (4.23)

for some C > 0. It follows from (3.32) that for any p ≥ 1,

E
∣∣∣J (2)k (τ, ε)

∣∣∣2p ≤ C(ε + τ)p ln2p(2 + τ/ε) (4.24)

for some C > 0.
It is easy to derive from (4.23) and (4.24) similarly to (4.33) and (4.34) in [17]

that for any Q > 0 and p ≥ 1,

E max
0≤k≤[T/τ ]

∣∣∣J (1)k (τ )

∣∣∣2 ≤ Q+ CpQ
−(p−1)[T/τ ]τp (4.25)
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and

E max
0≤k≤[T/τ ]

∣∣∣J (2)k (τ, ε)

∣∣∣2 ≤ Q+ CpQ
−(p−1)[T/τ ](ε + τ)p ln2p(2 + τ/ε)

(4.26)

for some Cp > 0 independent of ε, Q, τ . It follows from (4.21), (4.22), (4.25),
(4.26) that

EI 2 ≤ C(p, T )ρε, (4.27)

where

ρε = τ−2
κ +Q+Q−(p−1)τ−1(ε + τ)p ln2p(2 + τ/ε). (4.28)

Employing (4.13) and (3.31) we obtain that

E|Uk|2p ≤ C(ε + τ)p

and by martingale moment inequalities we see also that

E|Vk|2p ≤ Cτp

for some C = C(p) > 0. Hence, by (4.19) and (4.28) we get the estimate

ρε ≤ C
(
τ−2(β2 + 4R2β + R−2(p−1)(ε + τ)p

)
+Q+Q−(p−1)τ−1(ε + τ)p ln2p(2 + τ/ε)

)
. (4.29)

Now we have to minimize ρε by appropriate choice of the parameters τ , R, Q, p
here and L in (4.18). To do this, let us take

δ0 = (18 + 8n)−1, τ = εδ0 , Q = τ 1−γ , R = τ 1/2−γ , p = γ−1 + 1, L = τ−2,

where γ > 0 is arbitrarily small. It is easy to check in this case that β < ε2δ0−γ
and ρε < εδ0−2γ as ε → 0. So Theorem 2.1 is proved. ��
Remark 4.1. The right hand side of (4.29) cannot be made less than εδ0 by order.
Indeed, omitting the constant C, we may write it in the form

ρ = β2

τ 2 + 4R2β

τ 2 +
(ε + τ

R2

)p−2( ε
τ

+ 1
)2 1

R2

+Q+
( τ
Q

)p−1( ε
τ

+ 1
)p

ln2p(2 + τ/ε).

Observing the last term here, we conclude that if ρ is small then τ < Q. Observ-
ing the third term, we see that R2 must be greater than τ . Hence the second term
is greater than τ−1β. From (4.18) it follows that β > L−1 logL + √

µLn >

L−1 + ε1/4
√
L3τLn. This inequality implies β > ε

1
4n+10 τ

1
2n+5 for any positive L.

Thus, we have ρ > Q + τ−1β > τ + ε
1

4n+10 τ
−2n−4
2n+5 and so ρ > ε

1
8n+18 for any

positive τ .
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Finally, in order to establish Corollary 2.2 we have to obtain (2.5). Taking in
(1.6) three terms of the Taylor expansion of B̄ and subtracting (1.4), (2.4) we obtain
that

d
(
rε(t)− z̄(t)− √

εg(t)
) = ∇B̄(z̄(t)) (rε(t)− z̄(t)− √

εg(t)
)
dt

+O
(
|rε(t)− z̄(t)|2

)
dt + εη(rε(t)) dt + √

ε
(
σ(rε(t))− σ(z̄(t))

)
dw̃(t).

Then by the Gronwall inequality,

sup
0≤t≤T

∣∣rε(t)− z̄(t)− √
εg(t)

∣∣ ≤ CeCT
∫ T

0

∣∣rε(t)− z̄(t)
∣∣2 dt

+CeCT sup
0≤t≤T

∣∣∣∣ε
∫ t

0
η(rε(s)) ds + √

ε

∫ t

0

(
σ(rε(s))− σ(z̄(s))

)
dw̃(s)

∣∣∣∣.
Taking the square and employing (4.7), (4.8) and (4.9) we arrive at (2.5). ��
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