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Abstract. In systems which combine fast and slow motions it is usually impossible to study
directly corresponding two scale equations and the averaging principle suggests to approxi-
mate the slow motion by averaging in fast variables. We consider the averaging setup when
both fast and slow motions are diffusion processes depending on each other (fully coupled)
and show that there exists a diffusion process which approximates the slow motion in the
L? sense much better than the averaged motion prescribed by the averaging principle.

1. Introduction

Consider a system of stochastic differential equations

dx®(t) = ev(x°(1), Yo (1), &) dt + & 37w (x5 (1), Y2 (1), ) o dw' (1),
dys(t) = b(xf(t), Y6 (1), ) dt + Y1t a;i (x (1), yE (1), &) o dw' ()
(1.1)

in the Stratonovich form defined on the Cartesian product of two Riemannian man-
ifolds X x Y where m > dimY, v, u;, b, a; are smooth vector fieldson X x Y,
and w(t) = (w!@), ..., w™(r)) is a standard Brownian motion (see [14]). Such
two scale equations emerge naturally when we study, first, an idealized system
described by a family of stochastic differential equations

dy (1) = b(x, yo (1) dt + Y ai(x, (1)) o dw' (¢) (12)
i=1
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on Y depending on a parameter x preserved by the system where b(x, y) =
b(x,y,0) and a;(x,y) = a;(x,y,0). Then the real system viewed as a pertur-
bation of the idealized one should be described by perturbed equations in the form
(1.1) which exhibit mutually dependent slow x¢(¢) and fast y®(¢) motions. Such
problems (though without a stochastic term) were first encountered already in 18th
century in celestial mechanics in the study of perturbations of planetary motion. It
was observed later and justified only by heuristic arguments that by averaging in
fast variables one obtains a much simpler averaged equation which often gives a
good approximation of the slow motion on long time intervals.

In the fully coupled situation as above, i.e. when both slow and fast motions
depend on each other the justification of this averaging principle is not easy. Assum-
ing compactness of Y and nondegeneracy of the diffusion terms in (1.2) each process
vx has a unique invariant measure p, on Y with a smooth density with respect to
the Riemannian volume which depends smoothly on x, as well. Then

= l = dui(x, y,0) _
B(x)-/y(v(x,y,0)+ 2;—@ a,<x,y,0>)dux(y> (1.3)

is a smooth vector field and we can consider the averaged ordinary differential
equation for the process z°(¢) = x(¢/¢) having the form

dz(t)

7 = B&@). (1.4)

It follows, essentially, from [1] and [3] that
lim Ed(z°(1),7(1)) =0 (1.5)
E—>

provided z#(0) = z(0), where dy is the distance on X, and, in general, this expec-
tation is of order ¢.

Relying on some physical intuition Hasselmann [12] suggested to approximate
Z8(t) = x®(t/¢) (in the case when u; = 0) by a diffusion process r¢(¢) on X solving
a stochastic differential equation in the It6 form

dré(t) = B(r® (1)) dt + en(rf(t)) dt + eo (r¥ (1)) db(t), (1.6)

where n = (nl,...,n"), o = (o]’:), i,j=1,...,n, wis an n-dimensional
Brownian motion and n = dim X. Hasselmann wrote (1.6) without the drift  but
since we consider this equation on a manifold X and write it in the Itd form in
local coordinates this term comes, in general, into the picture, as well (see the cor-
responding discussion in Section 2). We will justify this approximation showing
that for each ¢ > 0 and an initial condition x = z*(0) = r°(0) a Brownian motion
driving this equation can be chosen (on may be a richer probability space) in such

a way that

E sup dy(z(t),r* (1)) < Ce'™? (1.7)
0<t<T
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for some § > 0. This result can be considered as a strong diffusion approxima-
tion of the slow motion in averaging which has a global manifold invariant form.
This result implies also a weak Gaussian approximation of the normalized error
in averaging, i.e. that e~ V228 (1) — 2(1)) converges weakly to a Gaussian process
g(t) (see Corollary 2.2). In the much simpler case of a fast motion independent of
the slow one this result was obtained long ago in [15]. Observe that this Gaussian
approximation makes sense only in R” or in local coordinates and, as any weak
convergence result, it cannot truly justify Hasselmann’s nonlinear diffusion approx-
imation of z°(¢) by r®(¢). One may argue that relying on the above weak Gaussian
approximation and the Skorokhod representation theorem (see, for instance, [4])
it follows from comparison between ¢ and Z + /eg that after a redefinition on
an appropriate probability space ¢~ 1/2 SUpg<;<7 dx (z°(t), r®(t)) tends to zero in
probability. However, this approach cannot give, in principle, any estimates of the
speed of this convergence and it requires a huge (product) probability space which
hinders any resemblance of the redefined processes with the original diffusions
x® and y® while our approach provides an explicit redefinition which does not
change essentially the structure of these diffusions. Moreover, in our fully coupled
situation it is not easy to derive the weak Gaussian approximation, as well. It is
clear that § in (1.7) cannot, in general, exceed 1 and we show that (1.7) holds true
with any 8 < (18 + 8n)~! and C depending on 8. Still, (1.7) may hold true with
larger § and it is an interesting open problem to find the optimal bound there.

A similar result was proved in [17] for the case when the fast motion is a suffi-
ciently fast mixing stationary process & which does not depend on the slow motion
so that (1.1) is replaced by one equation dx®(¢) /dt = ev(x®(t), &). Though & here
does not have to be necessarily a diffusion this case has been treated by more tra-
ditional methods than the perturbations machinery employed in the present paper.
Using the technique from [1]—[2] it is possible to extend our results to the setup
of fully coupled averaging in difference equations with fast motions being either
Markov chains satisfying Doeblin type conditions or Axiom A diffeomorphisms
considered in a neighborhood of an attractor.

2. Main results

We will consider the stochastic differential equations (1.1) on a product X x Y of
two Riemannian manifolds, where Y is compact and connected. The small param-
eter ¢ in (1.1) will run over an interval I = [—e&g, g9]. We assume that the vector
fields v, u;, b, a; are of smoothness class CNtI(X x Y x I) with N > 6 and,
furthermore, for any x, y the family of vectors {a;(x, y, 0)}{", spans the tangent
space TyY. In addition, to simplify proofs, we assume that the vector fields v, u;
vanish outside some compact subset Xo C X. At the beginning of Section 4 we
shall explain how this assumption can be relaxed and replaced by the condition that
the Euclid norms |v|, |#;| grow at most lineary with respect to the distance on X.
The main result of this paper is the following

Theorem 2.1. Without changing its distribution, for each ¢ > 0 and any initial
condition x = x*(0) we can redefine the Brownian motion w(t) from (1.1) on a
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richer probability space where there exists a family of diffusion processes r®(t) on
X solving (1.6) such that z5(¢t) = x°(t/e) and r®(t) (with r¢(0) = x) satisfy the
inequality (1.7) with any 8 < (18 + 8n)~! while C = C(8, T) in (1.7) depends on
8 and T. The new probability space (2, F, P) can be taken in the product form
([0, 11, B, Leb) x (2, F, P), where B is the Borel o-algebra and Leb is the
Lebesgue measure on [0, 1], redefining w'(t) on Q by w'(t, (u, w)) = w'(t, w),
u € [0,1], o € Q. The diffusion matrix ¢ = (0;) in (1.6) satisfies o (x)o™*(x) =
a(x) where a(x) is a CN symmetric nonnegatively definite matrix function defined
in Proposition 3.13 of the next section.

The matrix function a(x) is C" but, in general, it is only nonnegatively defi-
nite so we can only be sure that o (x) is Lipschitz (see, for instance, [13], Section
1.3) which does not enable us to write (1.6) in the Stratonovich form which is
used usually when dealing with diffusions on manifolds. Still, it is easy to see
from the formula for a(x) = (a'/(x)) that if it is written in local coordinates

=l,...,xand a(X) = (Elij ()Nc)) is its expression in another set of local
coordinates ¥ = (X!, ..., ¥") at the same point then

G = Y a0 10T @

Py axi axi’
i.e. a(x) is a (2, 0) tensor field. Next, we observe that there exists a (not unique)
second order elliptic differential operator L on the manifold X with a prescribed
symbol, i. e. coefficients in second derivatives a(x) = a*/ (x) provided (2.1) holds
true. Define, for instance, L in local coordinats (x], ..., x™) by the formula

11 "9 [ 9
—— E 1] / P
NS i.j=1 ox! (a 0 g(x)axf)’ 2

where /g (x) is the density of the Riemannian volume, i.e.dV (x) = /g(x) dx!---
dx". This is a (weakly) elliptic operator which is self-adjoint with respect to the
Riemannian volume and its coefficients obey (as it is easy to check) the correct
change of coordinates transformation rules, i. e. L is indeed a differential operator
on the manifold. Since

. 9
B = ZB’(X)Q
i=1

is a vector field then L® = ¢L + B is again an elliptic 2-nd order differential oper-
ator on the manifold X. Next, we can proceed as in Section 1.3 of [13] in order to
construct a diffusion ¢ which solves a stochastic differential equation of the form
(1.6) and has the generator L® implying that r¢ is now well defined on the manifold
X. Namely, relying on the Whitney embedding theorem embed smoothly X as a
closed submanifold into a Euclidean space R¥ of sufficiently high dimension k. As
in [13] extend the operator L¢ into a 2-nd order elliptic operator L¢ with CN coef-
ficients on the whole R¥. This operator serves as a generator of a diffusion on R¥
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solving a stochastic differential equation similar to (1.6) with Lipschitz coefficients
and its restriction to X yields the required diffusion ¢ (¢) which solves, in fact, the
martingale problem for f(ré(t)) — f(r¢(0)) — fot LE f(ré(s))ds.

The proof of Theorem 2.1 consists of two main parts. The first one is based on
the perturbations machinery and it studies the asymptotic bahaviour as ¢ — 0 of
characteristic functions of z®(¢) (considered, say, in local coordinates). The second
part presented in Section 4 below is based on the technique developped in [5],
[8], [19] which yields random variables close in probability or in average as soon,
as corresponding (conditional) characteristic functions are sufficiently close in a
certain sense. This will enable us to construct a Gaussian process on a richer prob-
ability space which is sufficiently close in the L?-sense to both z¢ and r¢ after the
latter processes are properly redefined there. It is well known that this type of strong
limit theorems cannot be derived without appropriate redefinitions of processes in
question since this is impossible even in the central limit theorem setup (see [4],
[21], [20] and the discussion in the next paragraph).

Observe, that the Brownian motion w(z) in (1.6) should be chosen separately
for each ¢ and it is impossible to have (1.7) with w in (1.1) and w in (1.6) the same
for all ¢. Indeed, consider the simple case when b and a; in (1.1) do not depend on
the slow variable x and on ¢ so that y(¢) is a nondegenerate diffusion on a compact
manifold Y. Let also u; = 0 and v(x, y, &) depends only on the variable y. Then

t/e
e 2(5 (1) — 2(0)) = 81/2/0 v(y(s))ds. (2.3)

Assume that B = 0. By Strassen’s type invariance principle for the law of the
iterated logarithm (see, for instance, [21]) it follows that with probability one the
right hand side of (2.3) diverges. If the right hand side of (2.3) would converge in
the L2-sense as ¢ — 0 to a random variable then the latter should be measurable
with respect to the tail o-algebra of the diffusion y which is strongly mixing, and
so this o -algebra is trivial. So the limit could only be a constant and, in fact, zero
since B = 0. But it is easy to see that, in general, the variance of the right hand
side of (2.3) does not tend to zero as ¢ — 0. Thus, the right hand side of (2.3)
does not converge in the L?-sense anywhere, in particular, it does not converge to
a diffusion.

Hasselmann suggested that the diffusion (1.6) could describe the long time
behaviour of the slow motion where large deviations effects should be taken into
account, for instance, in the study of rare transitions of the slow motion between
attractors of the averaged one. It turns out that this does not hold true and it is not dif-
ficult to see that the rate functionals describing large deviations for the slow motion
x¢ and for the diffusion r¢ are usually different. For instance, if again u; = 0 then
velocity vectors of paths of the process z°(¢#) must belong to vector fields v(:, y, €)
while the diffusion r® can move rather arbitrarily with some positive probability. In
order to clarify this point consider the following simple one dimensional example.
Letu; = Oand v(x, y) = c(x)+38 sin @ where c¢(x) = 2x —4x> and the fast variable
y = €'¢ belongs to the unit circle S'. As the fast motion y(r) we take the Brownian
motion on S'. Then B(x) = ¢(x) and the averaged motion has two attracting fixed
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points x_ = —271/2 x, = 271/2 and one repelling fixed point xo = 0. It is
easy to see that if § > 0 is small enough then the slow motion z®(¢) cannot pass
at all between small neighborhoods of x_ and x though (as a direct computation
shows) the corresponding diffusion approximation r¢(¢) is nondegenerate and with
probability one it exhibits rare transitions between these neighborhoods described
by the corresponding rate functional (see [10]).

Suppose that X = R" and consider a Gaussian process g(¢) on R” solving the
following linear stochastic differential equation

dg(t) = VB(Z(t)g(t)dt + o (Z(t)) dib (1) 2.4)

where z(0) = x and VB is the matrix whose i, j—th element is Béi(x)/axj.
Standard estimates at the end of Section 4 below yield that

E sup [rf() — () — Veg(0)|* < C&? 2.5)

0<t<T

for some C > 0 provided r¢(0) = x and g(0) = 0, and so we arrive at the following
result.

Corollary 2.2. Suppose X = R" in Theorem 2.1. Then we have also that

E sup [2() — Z(t) — Veg)|* < Ce't? (2.6)

0<t<T

for some C > 0 where § is the same as in Theorem 2.1 and z°(0) = z(0) = x. In
particular, the process e 122 (1) —z(1)), t € [0, T, converges in the weak sense
as ¢ — 0 to the Gaussian process g(t), t € [0, T].

3. Semigroup perturbations machinery

The arguments of this section are quite technical by their nature, and so for read-
ers’ sake we start with a short overview of our goals here. The main result of this
section is Corollary 3.9 providing Gaussian type asymptotics for the characteris-
tic functions of certain functionals of the processes x° and y® which will be used
in the next section in order to construct the required diffusion approximation of
z8(t) = x%(t/e). The parameters emerging in Corollary 3.9 are further specified
in Propositions 3.13 and 3.14. In order to pass from the global setup to local
coordinats along the averaged motion we will need also estimates of probabilities of
large deviations of the slow motion from the averaged one obtained in Proposition
3.12. Both Corollary 3.9 and Proposition 3.12 follow from the crucial Proposition
3.8 which provides a formula for certain exponential functionals of the processes
x% and y®. The whole proof is based on Propositions 3.1 and 3.3 which are rather
standard and whose detailed proof can be found in [2]. These statements deal with
the unperturbed case ¢ = 0. The first one is an exponential ergodicity type result
which follows from our nondegeneracy assumption on the diffusion coefficients of
the fast motion y®. The second one is a result of the type of the Perron-Frobenius
theorem for positive operators and it employs also a version of the implicit function
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theorem to ensure a nice dependence of the corresponding quantities on parame-
ters. In Propositions 3.4-3.6 we continue to elaborate on the quantities obtained in
Proposition 3.3 for the unperturbed case after which the perturbation technique of
Proposition 3.7 leads to the desired result of Proposition 3.8.

Let us fix some 7 > 0 and a solution {z(¢) | 0 < ¢t < T} to the equation (1.4).
For this averaged path there exists a compact neighborhood X such that we can
choose a global coordinate system in it (i.e., X; can be covered by one chart). In
order to simplify proofs we assume that the compact set X containing supports of
the vector fields v, u;, in turn, is contained in the interior of X and so a trajectory
x¢(t) cannot leave X . At the beginning of the next section this assumption will be
dropped.

Let W™ = {w(r)} be the set of trajectories of the m-dimensional Wiener process
and P be the Wiener measure on W”. Denote by (x° (1), y°(¢)) = (x8(z, w), y°(¢, w))
the solution to the system (1.1) that has an initial condition (x, y). It is known
from the theory of stochastic differential equations that if f € C*(X x Y), where
i =1, ..., N,thenforevery p > 1theprocess f(x®(t), y¢(¢)) forms a continuous
curve in the space L? (W™, P) which depends i times continuously differentiably
on the initial data x, y and on the parameter ¢ (see, for instance, [14] and [18]).
Let us define the semigroup of operators of conditional expectation in the space
C(X1 x Y) by the formula

A f,y) =Eqy fOF (D), (1) = /wm fOEE w), ¥ (@, w) dP(w).  (3.1)

Proposition 3.1 (see [2]). For the semigroup A{ given by (3.1) with & = 0 there
exists a projection A: C(X1 x Y) — C(X1) and numbers Co > 0, Ag € (0, 1)
such that forany i =0, 1, ..., N and a function f € C' (X1 x Y) the following
estimate ||(Al) — A) fll; < CoAbll fI; is true.

This proposition implies A = lim;_, oo A{, and therefore AA! = A. This means
that if & = 0 the following equalities are true

A(f(x,y) = A(ALF(x,y) = A(Exy £ (x, Y (1)) (3.2)

Note that when ¢ = 0 the system (1.1) is a family of nondegenerate diffusion
processes on Y depending on the parameter x. It is well known that each of these
processes has a unique invariant probability measure (., on Y and the value of the
function A f at a point x € X is equal to the integral of f with respect to jiy.
For the system (1.1) let us define the vector fields
m

1 du;(x,y,0)
B(x.y) = (. .0 +35 Y %ai(x, v, 0), (3.3)
i=1

B(x) = A(B(x,y)),  B(x,y)=B(x,y) — B(x). (34)
It is clear that the vector field B(x, y) is of the class C¥ (X x Y) and it vanishes

outside the compact subset Xo C Int X ;. Moreover, Proposition 3.1 implies that
the vector fields B and B have the same properties.
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For any functions F, ¢ € Ccit? (X1), i =1, ..., N,letus consider the differ-
entials

1dF(x) _dF(x) dF(x) ;
DeF(x,y) = —— = odx = —~ dt—l—z S odu' (), (3.5)

: Ui
i=1
~ do(x)
De@(x,y) = Degp(x, y) — —=—dt, (3.6)
dB
where v = v(x, y, €), u; = u;(x,y, ¢). Letx = (x',..., x™) be the local coordi-
nates on X and in these coordinates v = (v!, ..., v") andu; = (ul.l, ..., u?). Then
we have
( ) e du; 1 du;
D.F(x,y) = ( dt+le: (u; dw'’ (t)+—— dt +§dy a; dr)
32 F (x) iy k
hd Z Tk uiug dt. 3.7

i,j.k

Let as above (x°(¢), y°(¢)) be the solution to the system (1.1) with the initial
condition (x, y). By means of the differentials (3.5)—(3.6) we define the families
of stochastic processes

t
Fts = F[E(x’ )’) = /(; DSF(XS(T)s yg('f)), (38)

t
¢;=¢;(x,y)=/0 Dep(x*(x). ¥ (1)). (3.9)

In particular, by the It6 formula we have ¢ Ff (x, y) = F(x°(t)) — F(x). And if
& = 0 then (3.7), (3.3), and (3.4) imply

dF
FO(x,y) =/O di )<B(x y (r))dr+Zu (x, y°(1), 0) dw' (r)) (3.10)
i=1

d
¢?<x,y>=f0 "’(x)(B( y(r))dr+2u<xy(r) 0) dw’ (r)) (3.11)

dx
i=1

The processes exp(F;) and exp(¢;) satisfy the linear stochastic differential
equations with bounded coefficients

dexp(Ff) = exp(Ff) o D F(x* (1), y (1)),
d exp(¢f) = exp(¢f) o Dep(x (1), y° (1))

From the theory of stochastic differential equations it is well known that if F', ¢ €
Ci+2(X1), where i = 1, ..., N, then for every p > 1 the processes F, ¢;,
exp(Ff) and exp(¢;) form continuous curves in the space L7 (W™, P) and these
curves depend i times continuously differentiably on the initial data x, y and the
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parameter €. For any functions F, ¢ € Ci+2()(_1), i=1, ..., N,letus define the
family of semigroups AL[F, ¢] on the space C' (X x Y) by the following formula

ALLF, @1 f (x, y) = Ex y(exp(Ff (x, ¥) + @/ (x, 1)) f(x° (), (1)) (3.12)

From (3.12) and the equality e F (x, y) = F(x®(t)) — F(x) it follows that when
e #0,

AL[F, lf = e FIeAL[0, ] (eF/8f> . (.13)

Proposition 3.2. If F, ¢ € Ci+2(X1), where 1 <i < N, then the linear operator
fx,y) > g(x,y, e) = AL[F, 9] f (x, y) maps continuously the space Ci(X1xY)
into the space Ci(X1 x Y x [—&0, &0]) and this operator depends analytically on
F, @. If the parameters t, F, ¢ range over bounded domains then this family of
operators is uniformly bounded in norm.

Proof. The statement follows from formula (3.12) and the smooth dependence of
the processes exp(Fy (x, ¥)), exp(@?f (x, y)) and f(x°(t), y*(t)) onx, y, &. o

Proposition 3.3. For all sufficiently small F, ¢ € Ci+1(X1), i=1, ..., N there
exist uniquely defined functions L[ F, ¢] € Ci(Xy), h[F, vl e Ci(X1 xY)and a
C!(X1)-linear functional v[F, ¢]: C'(X1xY) — C!(X1) that depend analytically
on F, ¢ and satisfy the conditions

A[0,0]1=0, A[0,0]=1, v[0,0]=A, Ah[F,¢l=1, v[F,¢l(h[F,¢]) =1;
ALF, @Ih[F, @] = eME9IR[F g1, v[F, glo Aj[F, 9] = eMFCI[F, ¢];
lim e MFAIAGF, o] = A[F, 9], where A[F,@lf = v[F,pl(f)[F. ¢].

—00
The proof of this proposition can be obtained by a simple application of the
implicit function theorem. It is given in Proposition 2.1 of [2] for the family of
operators A{[F, 0] (that is in the case ¢ = 0). In the situation when ¢ # 0 the
proof is absolutely the same.

Proposition 3.4. Under the conditions and notation of Proposition 3.3 the
Sfunctions A[F, @] and h[F, ¢] have the form A[F, ¢](x) = A(x, p, q) and h[F, ¢]
(x,y) = h(x,y, p,q) respectively, where p = dF (x)/dx and ¢ = de(x)/dx.
The functions AM(x, p,q) and h(x,y, p, q) depend analytically on the covectors
D.q € T} Xy and they are N times continuously differentiable with respect to x €
X1,y € Y. Inaddition, if x € X1\ Xo then M(x, p,q) =0and h(x,y, p,q) = 1.

Proof. We have by definition that A{[F,¢]f(x,y) = Ei,(exp(F) + ¢?)
f(x, yO(t))). If we substitute in this formula the expressions (3.10) and (3.11)
for the processes Ft0 and (ﬁlo then it becomes clear that the operator Aj[F, ¢] acts
independently on every fiber x = const and its restriction onto this fiber depends
analytically on the covectors p = d F(x)/dx and ¢ = d¢(x)/dx. For any fixed x
the number ¢/*F>#1%) is the maximal eigenvalue for the restriction of the operator
Af)[F, @] onto the fiber x = const and the functior_l h[F, ¢](x, y) is the corre-
sponding eigenvector normalized by the condition AA[F, ¢] = 1. Therefore the
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functions L[ F, ¢](x) and k[ F, ¢](x, y) also depend analyticallyon p = d F (x) /dx
and g = d(x)/dx and thus they have the form A(x, p, g) and h(x, y, p, q) respec-
tively. Further, if we choose the functions F and ¢ in such a way that in some local
coordinates x p = dF(x)/dx = const and ¢ = d¢(x)/dx = const then Prop-
osition 3.3 implies that the functions A(x, p,g) and h(x, y, p,q) are at least
N times continuously differentiable with respect to x, y. Finally, the vector fields
B(x,y), B(x, y), ui(x, y, &) vanish outside Xg. In view of (3.10) and (3.11) we
have F,O = 0 and gb? = 0if x € X1\ Xo. Thus the operator Af)[F, @] coincides
with Af) in X1 \ Xo and as aresult A(x, p,q)=0and h(x, y, p,g)=1there. O

Proposition 3.5. Under the conditions and notation of Proposition 3.3 we have

dA[EF, 0] _dF dk[O,égo]‘ ~o
I

=, 3.14
d L=o dB 14

Proof. From (3.2) and (3.4) it follows that A(E, yB(x, y*(r))) = A(B(x, y)) =
B(x) and A(Ex,yg(x, yo(r))) = A(B(x, y)) = 0. In view of these equalities
along with (3.10) and (3.11) we have

- "dF(x) - dF(x) -
AP n) = [ SR AR B 00 ) =T B,
(3.15)

: . Tdp(x) ; .
A (Exw?(x, y)) - /0 = A(Ex,yB(x, yo(t))>dt —0. (3.16)
The equalities (3.12), (3.15), and (3.16) imply

(d ) r o _ dF(x)
A (dg 's—o AL[EF, o11> = A(Eq, F)(x, y)) = ST

| Y — A(E, 5 _
A ‘ Apl0, §9]1 | = A(Ex,y‘/’t (-xsy)) =0.
dé [z

Moreover, it f(_)llows from Proposition 3.3 that Ah[é F,tpl=1.So A(dh [EF,0]/
d§) = 0and A(dhl0, ¢¢]/d¢) = 0. Now to finish the proof it is enough to differ-
entiate the identity A(A)[EF, ¢@lh[EF, (¢]) = EF-4¥] with respect to £ and

¢ (when& =¢ =0). O
We shall fix once and for all a family of functions ¢ = (p1(x), ..., @,(x)) €
(CN*T2(X1))". Let us introduce the n-dimensional parameter £ = (&1, ..., &,) and

the notation £ (x) = &1¢1(x) + - - - + &9, (x). Consider in the domain X the first
order partial differential equation depending on the parameter & € R":

F, = A[F,, £¢], Fo = 0. (3.17)

We shall denote by F;(§) = F; (&, x) a solution to this equation. By construction,
the function A[F, ¢] vanishes in X| \ X¢o and in addition A[0, 0] = 0. Thus for
& = 0 we have F;(0, x) = 0. Under these conditions and in view of Proposition 3.3
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it follows from general theory of the first order partial differential equations that
for any T > O there exists a (small) neighbourhood U of the origin in R” such that
equation (3.17) has a solution F; (€, x) defined foreveryt € [0, T], £ e U, x € X
and this solution is at least N — 1 times continuously differentiable with respect to
t, &, x. Letus fix a time segment [0, T'], the corresponding neighborhood U C R”
and the solution F; (&) = F; (&, x).

By Proposition 3.3 to any function F;(£) € C¥~!(X}) there corresponds the
function h[F;(£), £p] € CN72(X| x Y). For the sake of brevity we introduce the
notation 4 (&) = h[F; (&), E¢]. Proposition 3.4 implies that the function 4;(§) =
h(x, y, dF;(§,x)/dx, dép(x)/dx) is at least N — 2 times continuously differ-
entiable with respect to the totality of variables r+ € [0, T], § € U, x € Xj,
yeY.

Let Ftk (¢§) and hf(é) be the Taylor polynomials for the functions F;(£) and
h: (&) of power k on &:

k .
1 : d'F,
RO =3 R, s o " (3.18)
k .
1 ; d'h
hiE) =) <ha),  hi= d—@)‘ : (3.19)
iz £ le=o

Proposition 3.6. In the notation (3.18), (3.19) we have Fy; =0, F1; =0, hos = 1
and the quadratic form Fy;, being considered as a function of t and x, satisfies the
linear partial differential equation

dFy  d*M0,
2, 4 fgﬂ]' . Fx=0. (320)
3 £=0

Fy = —2
* T 4B d

Proof. We know already that F; = F;(0) = 0. By Proposition 3.3, A[0,0] = 1.
Therefore, ho; = h[F;(0), 0] = 1. Linearizing equation (3.17) by means of (3.14),
we obtain an equation for the family of linear functionals Fi;:

dA[F1;(§), 0]

= ’
t dE o

—, Fio=0.

dA[o0, &0]‘ dFy
+ —=—| =—=
dé  |_y dB

Evidently, it has zero solution. Then, extracting the quadratic part in (3.17), we get
exactly (3.20). |

In the notation of (3.18), (3.19) consider the expression

ri (€, &) = exple T (FF (&) — Fl\ e ©))AL[FF (8). E@)hf (6) — B, (B).
(3.21)

Since Ftk (&) and hf(é ) are polynomials in £ € R”, the last formula is well defined
for all &€ € C".
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Proposition 3.7. Let k < N — 4. Then given T > 0 there exists a neighbor-
hood V7 of the origin in C" such that the expression rtkr (&, ¢) from (3.21) can
be represented in the form rlkr &,¢) = ecar (&, €) + Bi: (&), where the families
o (E,8) € CN=4kX, x Y) and B (&) € CN=3=k(X, x Y) are analytic in
& e Vrand forall t,7r € [0,T], § € Vr, ¢ € [—eo, 0] satisfy estimates
letee €, &) In—a—k < CIEL 1BieE)lIn—=3—k < CI&[*TL, the constant C being
independent of t, T, &, e.

Proof. First of all note that the family Ftk (&) is a polynomial in & with coefficients
belonging to the space CN=1=k{(t,x) € [0, T] x X1} and the family hf &) is
a polynomial in & with coefficients belonging to the space CN=27%{ (¢, x,y) €
[0, T] x X1 x Y }. Hence Proposition 3.2 implies that the family rtkr (&, &) is ana-
Iytic in & and at least N — 3 — k times continuously differentiable with respect to
t, x, y, € and all its partial derivatives up to order mentioned above are uniformly
bounded if ¢, T € [0, T']. Put B, (§) = rlkr (&,0) and

Vdrk &, 0¢) 50,
do

Recall that e "MFESPIATIF, (&), £plh, (§) = h,(§) (by Proposition 3.3) and
F;(§) = A[F;(§), £¢] (by (3.17)). So (3.21) implies that r£ (€,0) = O (|€[*+1)
and r,kr (0, &) = 0. From here we get easily the required estimates for §;;(¢) and
o (€, €). O

Proposition 3.8. Suppose ¢ = (¢1, ..., ¢,) € (CNT2(X1)" and 0F = @7 (x,y)
is a family of n-dimensional stochastic processes defined by (3.9). Then given
T > 0and k < N — 4 there exist a small neighborhood Vr of zero in C", a
number e > 0 and a family of stochastic processes G£(§) = GY (&, x,y) such
that for all ¢ € (0,er), t € [0,T/e], € € Vr, x € X1, y € Y the following
equality holds:

e (£, 8) =1k (£, 8) —rF.(£,0) = fo

E., exp(§9f + Gf(§)) = exp(FL (£)/e), (3.22)

in which Ftk (&) is the Taylor polynomial (3.18) for the solution of equation (3.17).
Here G (&) depends analytically on &, is real-valued for real & and satisfies the
estimate |G5 (&, x,y)| < Cl§| + Ct|E|H) ) the constant C being independent of

e t, & x,y.
Proof. It follows from (3.13) and (3.21) that
_Fk K
k(& e) = e @ 4710, 6] (O RE®)) — hE L ©). (323)
Define families of nonrandom functions g; (§) = g (£, x, y) by the formulas

g5(&) = Inhk(®),

Rk (&)
W &)+ &8
g1 = —In [ AOL A0, gg) (SO HE @)} 325

g = i=1,2, ..., [t (3.24)
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(where [ -] and { - } denote the integer and the fractional part, respectively, and the
principal value of the logarithm function is taken everywhere). By (3.23) and (3.24)
we have

e 1 Fk k Fk k
S © A0, £¢] (e “—s@)/fhsi_s(é)) — FEO Rk (), (3.26)
As before, let (x®(z), y®(t)) be a solution to system (1.1)) with initial data (x, y).

Put

[z]

Gi.x.y) =gi(E.x.y)+ Y gf (6. x"(t —i). y*(t —i)). (3.27)
i=0

Proposition 3.7 implies the desired estimate for the family G¢ (£, x, y). From the
definition (3.9) of the stochastic process @7 (x, y) it follows that

[1]
@r (x, y) = @y (x, y) + Z(ﬁf(xg(t —1),y°(t — ). (3.28)

i=1
Therefore, by (3.27) and (3.28),

Eyyexp(£@; (x, y) + G{ (. x, )
prLES N y(eérﬁf,,(x,y) o8 Ex° D).y ()

X Ee (1)) (1) (es¢f EEADYAD) | L8 At =Dy (=1)

xEXS(,_l),ys(,_l)(ﬁ*ﬁf(ﬁ<’—1>’y£<’—1>)e85@’x5(’W‘E(f))))...)
= 81 ® Alt), sgo](eg[rl@)A;[o,g(p] <egf(5>A;[o,g<p]hg(g))...).

To calculate the last expression use successively (from right to left) equality (3.26)
fori =1, 2, ..., [t] and equality (3.25) at the end. As a result we obtain exactly
(3.22). ]

Corollary 3.9. In the setting of Proposition 3.8 for all ¢ € (0,¢er), t € [0, T],
(x,y) € (X1 xY) and ¢ € R" we have

Ev.y exp(i Va0 G (+, 1)) = exp(=3(Fo, (1), ©) = 0 (Velel + 1/ele ).
where the matrix F; ;(x) is defined by the formulas

! d*1[0,
Fou(x) = /0 aGo)ds,  atx) = %LZO,

provided 7(0) = x. Here (§,¢) = &151 + - - - + &n8n, and O(¢) is a function satis-
fying the estimate |0 (¢)| < Cr|¢| whenever |{| < t, the constants Cr, 8T being
positive and independent of ¢.
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Proof. The first formula above follows from Proposition 3.8 if we take £k = 2,
& = i\/e¢ and replace t by t/¢ in it. The second formula merely defines the
solution to (3.20). |

Proposition 3.10. Given T > 0 and a function ¢ € CN12(X ) there exist e > 0
so small and C = C(T) so large that for all ¢ € (0,e7), t € [0,T/¢e], (x,y) €
X1 x Y and positive » we have the estimates

P{7; (x, 1) = #} = Cexp (=x/v/C+ Ci), (3.29)
P{ sup [¢(x, y)| = %} < C(1 +1)exp (—%/\/C T Ct) . (3.30)
0<s<t

Proof. Apply Proposition 3.8 forn = k = 1. In this case F, () = 0. Hence (3.22)
yields for all small enough £ > 0 inequality

P{7 (v, y) = 7} < Evyexp(5(@f — )
< By exp(E@F + Gi(E) + CE + Cr&* — £)
= exp (Cé +Cre* — g%> ,

Taking § = (C + Cn)~'/Zinit, we get
P{7;(r,y) = ) < exp (VC + 1= 2/VC+Cr).

Thus (3.29) is proved. From (3.6)—(3.9) it follows that for any ¢ > s,
t t
5 = = [ Riondet [ 04w du)
s N

where R (x, y) and QF (x, y) are uniformly bounded stochastic processes. By stan-
dard estimates for stochastic integrals (see, for instance, [14] or [18]) we see that

P{ sup |¢§(x, y) — <Z)f(x,y)| > %} < Ce—#1C
s<t<s+1

for some C independent of ¢, s, x, y, s. Combining this with (3.29) for all integer
s € [0, t], we obtain (3.30) with some larger C. m|

Proposition 3.11. For any function ¢ € CNT2(X1) and numbers T > 0 and
p > 0 there exist e > 0 so small and C = C(p, T) so large that

Eml@f(x,y)lz” <C+1)?, (3.31)
E., sup |¢5(x, )| < CA+0)P 0?2 +1) (3.32)
0<s<t

foralle € (0,e7), t €[0,T/e], (x,y) € X1 xY.
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Proof. Denote by ® () the distribution function for the random variable ¢; (x, y)
and by W (5¢) the distribution function for —¢? (x, y). Obviously,

) o0 o0
E.,y|@f (e, )| = /0 7P dD () + fo PG, (3.33)

Consider the first of two integrals in the right-hand side of (3.33). Take s»; =
iv/C + Ct. Then by (3.29),

/ 2P A () = Z/ - P dd () < Z%, {6 (x.y) = 54}
0 i=0 Y i =0

o0
<(C+CHPY i+ 1)PCe™
i=0
The second integral in the right-hand side of (3.33) can be evaluated in the same
manner. So (3.31) is proved. Now take s;; = i+/C + CtIn(2 + t). Then by (3.30),

Eqy sup |50 0|7 < 5 +Z%ILP { sup |@f(x, )| = %i}
0<s<t 0<s<t
<(C+ Cz)!’ In??Q2+1)+ (C+CHPIn*P 2 +1)
« i(i + 1)2pcef(i71)ln(2+t)
i=1
and (3.32) is proved too. |

Proposition 3.12. Given T > 0 and p > 0 there exist er > 0 so small and
C =C(p,T) solarge that forall ¢ € (0,¢e7), (x,y) € X1 XY and » > 0,

P, {oi?fr dx (25 (1), 3(1)) > %} < e exp(—ciﬁ), (3.34)
2p
E., <OsupT dyx (5 (1), z(z))> < CePIn?(e7"), (3.35)
=I=

where dy is the distance function on X.

Proof. Choose a set of coordinate functions ¢ = (g1, ..., ¢,) € (CV*2(X)"
on X. From (3.6) and (3.9) it follows that

~& ! & & d(p =
@; (x,y) =/ Dep(x®(s), y°(s)) — —=(z(es)) ds
0 dB

(% e o)
+/0 <dB(Z(Ss)) dB(x (s)) ) ds

=& (p(x* () — G (e1))

" lde _ de .
+/(; (dé (z(es)) — 75 (x (s))) ds. (3.36)
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Hence,

t
dx (x°(1), Z(e1)) < Ce|@f (x, y)| + Cs/ dx (x°(s), Z(es))ds
0
for some C > 0. It follows by Gronwall’s inequality that

sup dx(z°(1), 2(1)) < eTCce  sup |@f (x, )|
0<t<T 0<t<T/e

Combining this with (3.30) and (3.32), we obtain (3.34) and (3.35) respectively. O

Proposition 3.13. The matrix

o) — dz)\[O,éw]'
=l

has the CN dependence on x and satisfies the identity

.1 ~0 2
(a(0g, &) = lim —Ev, (6600, 0) . (3.37)
t—oo
So it is symmetric and nonnegatively definite.
Proof. Take k = 2 in Proposition 3.8. Then
E. yexp(§g; + G{(§)) = exp((F2.e1(0)§, §)/2¢), (3.38)

where F;;(x) is a matrix satistying differential equation (3.20) and G7 (&) is a
family of stochastic processes which is analytic in & = (§1,...,§&,) € Vr Cc C"
and satisfies the inequality |G¢(§)| < C|&| + Ct|&[° for all § € V7. Consider the
Taylor expansion of G¢(£) in &:

n n
1
Gi&) =Y gii+5 D gikibi+-
i=1 ij=1

Let ¢ be so large that if |£] < t~!/? then £ € V7. In this case by the Cauchy
inequality from complex variable analysis we have

lgfl </t sup |GE(®)] < 2C, (3.39)
|E|<t—1/2

g5l <t sup |Gi(&)] < CVr. (3.40)
|E|<t—1/2

Let us differentiate (3.38) twice in £ at the origin:

By (@01 @); + @0rgs + @l + ) =" P, (34D
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From (3.31) it follows that E.., |@0); | = Cv/T+7. Now,if we take the limit in
(3.41) as ¢ — 0 and use (3.39), (3.40) and (3.20), we get

xy{(‘Pl)z (QDJ) } +0 (\/_t) =1 323%3’;@‘5—0.

Thus (3.37) is proved. The CV-smoothness of a(x) follows from Proposition 3.4.
O

Proposition 3.14. Consider the vector fields u; = u;(x,y,0), a; = a;(x,y,0)

from the system (1.1) and V(x,y) = I ALB(x, y)dt, where B is defined by
(34). Let o = (1, ..., ¢n) € (CNT2(X ) and € = (&1, ..., &) € R". Then the
function A[0, £ ] from Proposition 3.3 satisfies the equality

0E;0&, dui du;  dB dV  dB dV

Zi dﬂ 43 de dv; .
1d dy P du; dx \ dy

(3.42)

azx[o,w]‘ z,g(m djdoc | dejdex | do do;
£=0

Proof. By Proposition 3.3, A[0,0] =0, 2[0,0] =1, and Ah[0, &p] = 1. Hence,

2
FOM0-Eel _ (o 207hI0.Eg] (343)

9§ 0808k

Recall that by (3.11) and (3.12) for any function ¢ € CN*2(X )
AYLO. 1S ) = By (exp {00 1) | £ 6 300)) (3.44)

~ d
P, y) = / W)(m y (s))ds+2u(x V(). 0) du’ <s>) (3.45)

where (x, yo(t)) is a solution to the system (1.1) for ¢ = 0 with initial condition
(x, y). Differentiating the identity ¢'*0-¢¢11[0, £¢] = AQ[0, E@1h[0, E¢] (from
Proposition 3.3) in §; when & = 0 and taking into account (3.15), (3.44), (3.45) we
obtain

9h[0, Efp]‘ dh[0, Efﬂ]’

_ =B (@) + 45

" do: .
- f Y0 B, yO(s)) ds + Al
0

0hl0, §¢] ‘
dx ;

"do; ~ d0h[0,
= / 2152 A)B(x, y)ds + A} 9h10, §91 ‘
0 dx
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Passing to the limit here as r — oo and combining the equalities A = lim,_, A}
and (3.43) we derive

w‘ = / MA(S)B():, y)ds = Mf/(x’ ). (3.46)
0 dx dx

Consider the identity e'1%6¢] = AA[0, £p]h[0, £¢]. Differentiating it in &; we
get

00,601 IA0, E0] —(31“6[0 £¢]

i H0, £ + AL[0, g1 1054 g“)
3Ej

0&; 0&;

Next, differentiating this expression in & at the point £ = 0 we have

2 27t t
M0 89]| A<a Aol0.£¢] | DAGIO. £¢] 910, E9]
0808k |e_g 0808k 0§ 08k
+8A5[0,5<p] 0h[0.8¢1 azh[0,5¢]>| '
08 0&; RETIET A A

Using (3.43), (3.44), and (3.46) we conclude from the last equality that

9220, £¢] oz : ~0 der(xX) 5 g
558 |y xy((go,) - (o, >+AEX,,V((¢,),~ V@)
~0 do; -
£GP, 0. (3.47)

Differentiation of (3.47) in ¢ for ¢t = 0 by means of the Itd formula and (3.45) gives
us (3.42). ]

Now let us make some supplementary remarks, which can be proved easily by
the methods developed above.

Remark 3.15. In the special case when the fast motion y* does not depend on the
slow one x?, i.e. when the coefficients of the second equation in (1.1) do not depend
on the slow variable x, the formula (3.37) for a(x) reduces to the formula (3.2)
obtained in [15].

Remark 3.16. If we replace ¢; = fot D, by ol = fot D¢ in the definition of
the operator AL[F, ¢], then we get immediately the central limit theorem and the
Cramer asymptotics for ¢ (x® (t)) where t <T/e(see[l]- [2]) In this case we have
in (3.14) the equality )‘[0 £5<p le=0 = 7% % and respectively Fj; = d‘p + F“

Remark 3.17. The function A[F, ¢] is convex with respect to the pair (F, ¢).
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4. Diffusion approximation

Since we are interested in uniform in time estimates we always consider in this
section continuous in time modifications of the processes and stochastic integrals
in question. We will estimate the distance between the processes z° and r¢ using
first the standard moment inequalities for stochastic integrals and then employ Cor-
ollary 3.9 which shows that as ¢ — 0 the characteristic functions of increments
x8(@) — x8(s) + f; B(x®(u))du become close to the Gaussian ones. This together
with the technique from [5], [8], and [19] extended for the averaging setup in [17]
will enable us to construct on a richer probability space certain Gaussian process
which is sufficiently close in the L2-sense both to z¢ and to the diffusion 7 solving
(1.6).

Assuming that the vector fields v, u; from system (1.1) vanish outside some
compact neighborhood X of an averaged path {z(¢) | 0 < ¢ < T}, we have estab-
lished in Proposition 3.12 that P (supy—, <7 dx (z° (1), Z(t)) > §) is exponentially
small for any § > 0. So the behaviour of v and u; outside a §-vicinity of the aver-
aged path affects the process {z(t) | 0 < t < T} only with exponentially small
probability. We shall see soon that the same is true for the process ¢ (¢) from (1.6).
Hence the desired estimate (1.7) does not depend on the size of X, provided this
size is finite, and it is enough to prove (1.7) for any Xy. Moreover, if we allow the
vector fields v, u; not to have compact supports but to grow at most lineary in the
distance from some point in X, this still has no affect on (1.7). Though this can be
proved by means of usual large deviations estimates, we will not go into details and
proceed in the setting of compact supports contained in small X¢. Then we may
work in local coordinates and it is enough to prove Theorem 2.1 for the case when
X = R”" which we assume in this section.

Taking ¢(x) = x = (x!, ..., x") and denoting @? (x, y) in this case by x; (x, y)
we obtain from (3.36) that

t

x(1) — x°(0) = Xy (x, y) + 8/ B(x%(s)) ds. 4.1)
0

The matrix a(x) from Proposition 3.13 is bounded in C"-norm and it is sym-
metric and nonnegatively definite. Hence, by Theorem 2.1 from § 3.2 in [9] there
exists a bounded Lipschitz continuous symmetric square root o (x) of a(x), i.e.
a(x) = (o(x))? = o(x)o*(x). In what follows we consider (1.6) with such o and

n
d i d
— — (d / — 4.2
2/g() ,»,Z_l ox! (a ) g(x)) dx 4.2)
Then the diffusion r°(¢) defined by (1.6) has the generator (2.2) written in a man-
ifold invariant form. Taking initial conditions z°(0) = r¢(0) = x we obtain from

(4.1), (1.6) that

¢ - -
M) —rf) = [0 (B(z* () — B(r®(s))) ds + &37 ). (x, )

t
_\/E/ o (Z(s)) dw(s) — R°(t) — R (1), (4.3)
0



176 V. Bakhtin, Y. Kifer

where R°(f) = /& [y (0 (r*(5)) — 0 (Z(s))) dib(s) and RE(t) = e [y n(r®(s)) ds.
Recall, that B € CN(X1) (see remark following (3.4)) and so it is Lipschitz con-
tinuous. Hence (4.3) and the Gronwall inequality yield

sup ‘zg(t) - rg(t)‘ < eCT( sup

t
£F (x. y) — VE /0 o (G(5)) dii(s)

0<t<T 0<t<T
+ sup |R°(1)| + sup |1§€(t)|> (4.4)
0<t<T 0=<t<T

for some C > 0 independent of ¢.
By Lipschitz continuity of o and standard martingale estimates of stochastic
integrals,

T
E suwp [RE()| < Csf E|r* () — 2(0)| dr 4.5)
0

0<t<T

for some C > 0. Next, by Lipschitz continuity of B and boundedness of 7 we
obtain from (1.4) and (1.6) that

t
[rf@) —z(0)| < c/ |72 (s) — Z(s)| ds + Cre + /&
0

t
/ o (¥ () dib(s)
0

(4.6)

) . A7)

Taking squares of both parts of (4.7), applying the expectation, using moment
inequalities for stochastic integrals and taking into account (4.5) we arrive at

for some C > 0, and so by Gronwall’s inequality

(1) — 2(0)] < e (Cts + /& sup

0<s<t

/S o (rf () d (u)
0

E sup |R°(t)|> < 4C2T22CT 2 (4.8)
0<t<T

for some C > 0 independent of ¢. Clearly, we have also

E sup |[RE()| < E21%? (4.9)
0<t<T

for some C > 0 independent of ¢.

It remains to deal with the first term in the right hand side of (4.4) where we will
have to pick up an appropriate Brownian motion w in order to obtain the desired
estimates. Denote by F; the o —algebra generated by {w(s) | 0 < s < ¢}. By the
Markov property forany t > s > 0and ¢ = (¢1,...,¢,) € R?,

Eyy (exp{ivelc, ¥ (x, y) — X2 (x, )} F)
= Exe(9),y¢(9) exp{iv/e(t, 5, (x*(9), y* ()} (4.10)
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where, again, (¢, x) = {jx' 4 - - + ¢, x". The matrix a(x) from Proposition 3.13 is
Lipschitz continuous and nonnegatively definite, and so is the matrix F> ;(x) from
Corollary 3.9. Then, using the inequality |e™% — e’bl < |b—al, wherea,b > 0,
we obtain that forany 0 <s <7t < T,

Evy |oxp{—{Foi—s (2 (90)¢, ¢)} = exp{—2(Fo—s G181}
< C(t = 9)|EPExy |25 () — 2(5)]. @.11)
Now (4.10), (4.11) together with Corollary 3.9 and (3.35) yield

E.,

Evy (exp{ivele, &, (e,3) = 50 )} 7se)
—exp{—{Fo-s GE, ¢}
= C(Velel + Vet = 9)lcP + @ = 9)lePVeine™)  @12)

for some C = C(T).
Take some small T > 0 and set

Uk = Uk(t. &) = Ve (T, o (0. 3) = F_yye/e . 2), (4.13)
kt
Hi(t) = / o(z(t)dW(t), k=1,2,...,[T/7], 4.14)
(k—Dt

where W (t) is a standard continuous rn-dimensional Brownian motion. Clearly,
Hj. () has the characteristic function

1 kt
exp{_sz i (aG@)e, ;)dt} =exp (—5(F: Gkt — ). L)) (415)

and so it satisfies
P {H(v) > L} < exp(—CrL?*/7) (4.16)

for any L > 0, where Cr > 0 depends only on T'. This together with (4.12), (4.15)
and Theorem 4.6 from [7] (or with its older version Theorem 1 from [5]) yield
that we can redefine the sequence Uy, kK = 1, 2, ..., [T/t] on a richer proba-
bility space where there exists a sequence Vi = Vi(t), k=1, 2, ..., [T/t] of
independent random vectors such that Vi has the same distribution as Hy () and

P{|Ux — Vil = B} < B. k=1,2, ..., [T/t], 4.17)
where

B =16nL " log L +4/L" 4+ exp(—CrL?/7),
pw=Cye(L+Lt+L*tne™"). (4.18)

It follows easily that for any R > 0 and p > 1 (see (4.23) in [17]),
E|Ux — Vi> < 3¢ = B> +4R*B + RP PV (E|UL? + EIVi?P).  (4.19)
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Since the sequences Vi and Hi(t) have the same distributions the Kolmogo-
rov existence theorem yields that for each ¢ and k we can redefine the Brownian
motion in (1.1) without changing its distribution on a richer probability space where
there exists another n-dimensional Brownian motion W (¢) such that U, = Ui (z, €)
defined by (4.13) and Hi(t) defined by (4.14) via these new processes satisfy

E|Uy — Hy ()] < . (4.20)

In fact, according to [8] and [19] (see also the discussion concerning this question on
p- 551in[20]) if the original probability space is already rich enough then there is no
need in redefining both the sequence Uy, k =1, 2, ..., [T/t] and the Brownian
motion from (1.1) and, in any case, it is possible to enrich the original probability
space in the specific way multiplying it by the interval [0, 1] and redefining the
above processes explicitly via projections as described in Theorem 2.1.

Now we have

t
I= sup |Veki,(x,y)— f 7 (Z(5) dW(s)
0<t<T 0
& (1) (2)
< Uy — H, J JP(,e), @21
< §| c- @I+ max U@+ max S0 (e, (@42D)
where
! kt+60
J0@) = sup / o (Z(1) dW (1)],
0<O<tl|Jkt
IP ey = sup  JelE (. y) — F ().
kt<t<kt+t
By (4.20),
(T/7] 2
E Z|Uk—Hk(1:)| <[T/t)s. (4.22)
k=1

Employing standard martingale moment estimates for stochastic integrals (see, for
instance, [14]) we obtain that for any p > 1,

2
E ‘Jk(l)(r)’ "< crr (4.23)
for some C > 0. It follows from (3.32) that for any p > 1,
@ 2p 2
E ‘Jk (z, 8)‘ <C(e+1)’In"P2+t/¢) (4.24)

for some C > 0.
It is easy to derive from (4.23) and (4.24) similarly to (4.33) and (4.34) in [17]
that forany Q > Oand p > 1,

2
E ‘J(l) ‘ < 0+4C,0 P O[T /r]cP 425
051?%2[1¥m e (@] =0+C,0 [T/t]r (4.25)
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and

E max

2
2 —(p—1 2
ooimax J 7 (z, 8)‘ <0+C,0 P=DIT/T](e + T)P In*P (2 + T/8)

(4.26)

for some C,, > 0 independent of ¢, Q, 7. It follows from (4.21), (4.22), (4.25),
(4.26) that

> <C(p. T)pe. (4.27)
where
e =T 24+ Q+ 0 P Ve e+ )P In®P (2 + 7 /e). (4.28)
Employing (4.13) and (3.31) we obtain that
E|U*” < C(e +1)?
and by martingale moment inequalities we see also that
E|Vi[*P < Cz”
for some C = C(p) > 0. Hence, by (4.19) and (4.28) we get the estimate
pe = C(x2(B2 + 4R+ RV V(e +1)7)
+0+0 P Dl e )P P2+ r/s)). (4.29)

Now we have to minimize p, by appropriate choice of the parameters t, R, O, p
here and L in (4.18). To do this, let us take

So=(18+8n)" !, r=&% Q=17 R=1?7, p:y_l—i—l, L =12

where y > 0 is arbitrarily small. It is easy to check in this case that § < £200~¥

and p; < €572 as ¢ — 0. So Theorem 2.1 is proved. O

Remark 4.1. The right hand side of (4.29) cannot be made less than £% by order.
Indeed, omitting the constant C, we may write it in the form

B? ﬂ+<8+‘(>17*2<8 +1>2 1

P2 R? T R?
+0+ (é)p_l (Z+1) e+ /e,

Observing the last term here, we conclude that if p is small then T < Q. Observ-
ing the third term, we see that R? must be greater than 7. Hence the second term
is greater than 7~ 8. From (4.18) it follows that 8 > L_l logL + /uL" >

—1 4 V4 L3t L". This inequality 1rnphes B > £4n+10 T R for any positive L.

—4 1
Thus, we have p > Q + 7718 > 7 + 84"+10‘C e and so p > e®+18 for any
positive t.
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Finally, in order to establish Corollary 2.2 we have to obtain (2.5). Taking in
(1.6) three terms of the Taylor expansion of B and subtracting (1.4), (2.4) we obtain
that

d(rf(t) — 2(t) — Veg(1)) = VBE®)) (r* (1) — 2(t) — V/eg (1)) dt
+0 (|r€(t> - Z(r>|2) dt + en(re () di + Ve (o (1)) — o G(1))) dib ().

Then by the Gronwall inequality,

T
sup [rf(1) — 2(1) — Veg()| < CeCT/ (1) — 2| d
0

0<t<T

t t
+CeCT sup 8/ n(ré(s))ds + ﬁ/ (a(re(s)) —J(Z(s))) dw(s)|.
o<t<T| Jo 0
Taking the square and employing (4.7), (4.8) and (4.9) we arrive at (2.5). m|
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