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Abstract. This paper proves that D-valued solutions to the SDE dX = c(θ − X)dt +√
2g(X)dB are unique in distribution, when D ⊂ R

d is convex and open, θ ∈ D, c > 0,
g : D → is positive and locally Lipschitz on D and zero on ∂D, and {x ∈ D : g(x) ≥ r} is
convex for r sufficiently small. The proof (for θ = 0) is based on the transformation Xt �→
ectXt , which removes the drift, and a random time change. Although the set-up is rather
specialized the result gives uniqueness for some SDE’s that cannot be treated by any of the
conventional techniques.

1. Main result

Assume that D ⊂ R
d (d ≥ 1) is convex and open, and let ∂D := D\D denote its

boundary. Let g : D → [0,∞) be continuous and assume that g = 0 on ∂D and
g > 0 on D. Fix θ ∈ D and c ≥ 0. Consider the operator

A
c,g
θ f (x) := c

d∑

i=1

(θi − xi)
∂
∂xi
f (x)+ g(x)

d∑

i=1

∂2

∂xi
2 f (x) (x ∈ D, f ∈ C2

c (D)),

(1)

where C2
c (D) denotes the class of real continuous compactly supported functions on

D, whose first and second order partial derivatives exist onD and can be extended
to continuous functions on D. Our main result is the following.

Theorem 1 (Uniqueness for isotropic diffusions with a linear drift). Assume that
θ ∈ D and c > 0. Assume that g is positive and locally Lipschitz on D and that
there exists an ε > 0 such that for all r ∈ (0, ε), the level sets {x ∈ D : g(x) ≥ r}
are convex. Then solutions to the martingale problem for Ac,gθ are unique.

Here, aD-valued processX = (Xt )t≥0 with continuous sample paths is said to
solve the martingale problem forAc,gθ if for every f ∈ C2

c (D), the process (Mf
t )t≥0
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given by

M
f
t := f (Xt )−

∫ t

0
(A

c,g
θ f )(Xs)ds (t ≥ 0) (2)

is a martingale with respect to the filtration generated byX. One says that solutions
to the martingale problem for Ac,gθ are unique, if any two solutions with identical
initial laws are equal in distribution.As is well-known [EK86, Theorem 5.3.3], every
solution to the martingale problem for Ac,gθ is equal in distribution to a solution of
the stochastic differential equation (SDE)

dXt = c(θ −Xt)dt +
√

2g(Xt )dBt (t ≥ 0), (3)

where B is d-dimensional Brownian motion. Thus, uniqueness for the martingale
problem for Ac,gθ is equivalent to distribution uniqueness for the SDE (3). Note
that our result does not follow from the standard results on pathwise uniqueness,
since the function

√
g may not be Lipschitz at ∂D. Solutions to (3) are isotropic

diffusions since the random fluctuations are equally strong in all directions, i.e., the
diffusion coefficient

√
2g is a function and not a matrix.

For the information of the reader, we provide here a quick discussion of existence
of solutions to the martingale problem forAc,gθ . IfD is bounded, then there exists a
solution for each initial law on D (see [EK86, Theorem 4.5.4 and Problem 4.19]).
IfD is not bounded, then the same is true provided that one can show that solutions
to the SDE (3) are nonexplosive. For this, it suffices to find functions fn ∈ C2

c (D)

and f, h ∈ C(D) such that fn → f and Afn → h uniformly on compacta,
f ≥ 0, f (x) → ∞ as x → ∞, and h is bounded from above. For example, if
D = (0,∞)d , then one may take f (x) = ∑d

i=1 xi . For arbitrary domains in dimen-
sion one, one may take f (x) := |x| and in dimension two f (x) := log(|x|), for x
outside some neighborhood of 0. For arbitrary domains and dimensions, solutions
to the SDE (3) are nonexplosive if g satisfies a quadratic growth condition [EK86,
Proposition 5.3.5].

2. Applications and discussion

Our interest in SDE’s of the form (3) is motivated by models for catalytic branch-
ing and resampling. For models with multitype branching or resampling where the
branching or resampling rate of one type is allowed to depend on the frequency
of the other types, uniqueness is usually hard to prove. This motivated, for exam-
ple, the recent work in [ABBP02, BP02]. Their results apply to a large class of
perturbations of the independent branching case, but do not cover the following
proposition, which gives an application of our Theorem 1 to a model for mutually
catalytic branching.

Proposition 2 (Mutually catalytic Feller’s branching diffusions). Let d ≥ 1, c > 0,
and θ ∈ (0,∞)d . Then, for each initial law on [0,∞)d , there exists a unique (in
distribution) [0,∞)d -valued (weak) solution to the SDE

dXi(t) = c(θi −Xi(t))dt +
√∏d

k=1Xk(t) dBi(t) (i = 1, . . . , d). (4)
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Proof. Existence of a (weak) solution follows from the remarks at the end of the
last section. Since x �→ log

∏d
k=1 xk = ∑d

k=1 log xk is a concave function, the
level sets of x �→ ∏d

k=1 xk are convex. Thus, distribution uniqueness of solutions
to (4) follows from Theorem 1. �	
Infinite systems of mutually catalytic Feller’s branching diffusions with d = 2 and a
linear interaction between the components have been the subject of extensive study
[DP98, DFMPX01]. Uniqueness for these systems follows from Mytnik’s self-
duality [Myt98], but this argument works only for d = 2. The SDE (4) describes
just one way to generalize mutually catalytic branching to dimensions d > 2. For
example, also cyclically catalytic branching has been discussed [FX01, DFX03].

We also give an application of our Theorem 1 to a model with multitype resam-
pling.

Proposition 3 (A p-type resampling model). Forp ≥ 2, setKp := {x ∈ (0,∞)p :∑p
i=1 xi = 1}. Let c > 0 and θ ∈ Kp. Then, for each initial law on Kp, there

exists a unique (in distribution) Kp-valued (weak) solution to the SDE

dXi(t) = c(θi −Xi(t))dt

+
√∏p

k=1Xk(t)
(

dBi(t)− 1

p

p∑

j=1

dBj (t)
)

(i = 1, . . . , p). (5)

Proof. A simple calculation shows that solutions to (5) solve the martingale prob-
lem for the operator

Af (x) := c(θ − x) · ∇f (x)+
( p∏

k=1

xk

)
�f (x) (x ∈ Kp, f ∈ C2(Kp)),

(6)

where ∇ is the gradient and� is the Laplacian in the plane {x ∈ R
p :

∑p
i=1 xi = 1}.

Mapping this plane to R
p−1 by an orthonormal transformation and writing A in

the new coordinates, we end up with an operator of the form (1). In the proof of
Proposition 2 we have already seen that x �→ ∏p

k=1 xk has convex level sets, and
therefore Theorem 1 is applicable. �	
For p = 2, the diffusion in (5) is the well-known (one-dimensional) Wright-Fisher
diffusion with a linear drift. For general p ≥ 2, the diffusion in (5) arises from
a p-tuple resampling procedure [Swa99, Section 1.1]. It seems that there are at
present no other techniques available that would give uniqueness for this diffusion
when p ≥ 3.

3. Proof and further results

We will derive Theorem 1 from a result that is stronger, but the assumptions of
which are more complicated to verify. Let

Sd := {x ∈ R
d : |x| = 1} (7)
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denote the surface of the unit ball in R
d . Assume that R : Sd → (0,∞) is contin-

uous, and put

D := {rx : x ∈ Sd, 0 ≤ r < Rx}. (8)

Then D ⊂ R
d is open and bounded (but D need not be convex). Let ∂D := D\D

denote its boundary and write C2(D) for the class of real functions on D that can
be extended to a twice continuously differentiable function on R

d . Assume that
g : D → [0,∞) is continuous and satisfies g(x) = 0 ⇔ x ∈ ∂D. For any c > 0,
let Ac,g be defined by

Ac,gf (x) := −c
∑

i

xi
∂
∂xi
f (x)+ g(x)

d∑

i=1

∂2

∂xi
2 f (x) (x ∈ D, f ∈ C2(D)). (9)

Theorem 4 (Basic uniqueness result). Assume that c > 0. Assume that there exists
a constant M < ∞ such that

1

g(r1x)
− 1

g(r2x)
≤ M(r2 − r1) (x ∈ Sd, 0 < r1 < r2 < Rx). (10)

Then uniqueness holds for the martingale problem for Ac,g .

Assumption (10) says that r �→ 1/g(rx) decreases at most with speed M . There
is no bound on the speed of increase. The proof of Theorem 4 is based on the
following three lemmas.

Lemma 5 (Process leaves the boundary immediately). Assume that c > 0. LetX be
a solution to the martingale problem for Ac,g with initial condition X0 = x ∈ ∂D,
and put τ := inf{t ≥ 0 : Xt ∈ D}. Then τ = 0 a.s.

The next lemma shows that the process (ectXt )t≥0 is a random time-changed
Brownian motion. The fact that the function ψ below is strictly increasing will
follow from Lemma 5.

Lemma 6 (Random time change). Assume that c > 0 and that X solves the mar-
tingale problem for Ac,g . Then X may be coupled to a Brownian motion B in such
a way that

ectXt = Bψ(t) (t ≥ 0), (11)

where ψ : [0,∞) → [0,∞) is a (random) continuous, strictly increasing func-
tion satisfying ψ(0) = 0 and moreover, if ψ(∞) := limt→∞ ψ(t) and ψ−1 :
[0, ψ(∞)) → [0,∞) denotes the inverse of ψ , then ψ−1 solves the equation

ψ−1(τ ) =
∫ τ

0

(
2e2cψ−1(σ )g

(
e−cψ

−1(σ )Bσ
))−1

dσ (τ ∈ [0, ψ(∞))). (12)

Our final and crucial lemma shows that solutions to (12) are unique.
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Lemma 7 (Uniqueness of the random time change). Assume that c > 0 and that
g satisfies (10). Let b : [0,∞) → R

d be continuous and let b0 ∈ D. Then there
exists at most one constant T ≤ ∞ and continuous strictly increasing function
φ : [0, T ) → [0,∞) with limτ→T φ(τ) = ∞, such that e−cφ(τ)bτ ∈ D for all
τ ∈ [0, T ) and

φ(τ) =
∫ τ

0

(
2e2cφ(σ )g

(
e−cφ(σ )bσ

))−1
dσ (τ ∈ [0, T )). (13)

We will now proceed as follows. First, we show that Lemmas 6 and 7 imply The-
orem 4. Then we prove Lemmas 5–7. Finally, we show that Theorem 4 implies
Theorem 1.

Proof of Theorem 4. Let X be a solution to the martingale problem for Ac,g and
letψ and B be as in Lemma 6. Since B is a Brownian motion and L(B0) = L(X0),
B is determined uniquely in distribution. It follows from (11) that

Xt = e−ctBψ(t) (t ≥ 0). (14)

Since solutions to (13) are unique, for every path of the Browninan motion B
there exists a unique ψ such that (12) holds, and therefore the distribution of X is
determined uniquely by (14). �	
Proof of Lemma 5. RepresentX as a solution to the stochastic differential equation
(written in integral form)

Xt = x − c

∫ t

0
Xs ds +

∫ t

0

√
2g(Xs) dBs (t ≥ 0). (15)

SinceXt ∈ ∂D for t ≤ τ and g = 0 on ∂D, the second term on the right-hand side
of (15) is zero for t ≤ τ . Differentiating and solving for (Xt )t≤τ we find that

Xτ = e−cτ x a.s. (16)

Since e−ct x ∈ D for all t > 0 and Xτ ∈ ∂D, it follows that τ = 0 a.s. �	
Proof of Lemma 6. RepresentX as a solution to the stochastic differential equation
(15). Set

Yt := ectXt (t ≥ 0). (17)

Then, by Itô’s formula

dYt = cectXtdt + ectdXt
= cectXtdt − cectXtdt + ect

√
2g(Xt )dBt , (18)

and therefore

dYt = ect
√

2g(e−ctYt )dBt . (19)
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The quadratic variation of Y is given by

〈Yi, Yj 〉t = δijψ(t) (t ≥ 0, i, j = 1, . . . , d), (20)

where we define ψ : [0,∞) → [0,∞) by

ψ(t) :=
∫ t

0
2e2csg(e−csYs) ds (t ≥ 0). (21)

Note thatψ is continuously differentiable, and by Lemma 5,ψ is strictly increasing.
Put ψ(∞) := limt→∞ ψ(t).1 Let ψ−1 denote the inverse of ψ , i.e.,

ψ−1(τ ) := inf
{
t ≥ 0 : ψ(t) > τ

}
(τ ∈ [0, ψ(∞))). (22)

Note that ψ−1 is continuous and strictly increasing since ψ is. By [RY91, Theo-
rem V.1.10], there exists a d-dimensional Brownian motion B (not the same one as
the Brownian motion in (19)) such that

Bτ := Yψ−1(τ ) (τ ∈ [0, ψ(∞))). (23)

Using the substitution of variables

σ = ψ(s), dσ = 2e2csg(e−csYs) ds,

ψ−1(σ ) = s,
(
2e2cψ−1(σ )g(e−cψ−1(σ )Yψ−1(σ ))

)−1 dσ = ds,
(24)

we see that

ψ−1(τ ) =
∫ ψ−1(τ )

0
ds

=
∫ τ

0

(
2e2cψ−1(σ )g(e−cψ

−1(σ )Bσ )
)−1dσ (τ ∈ [0, ψ(∞))). (25)

�	
Proof of Lemma 7. We start by showing that (10) implies that

1

g(e−λx)
− 1

g(x)
≤ MRλ (x ∈ D, λ > 0), (26)

whereR := sup{Rx : x ∈ Sd}. Indeed, (26) is trivial if x = 0 so assume that x �= 0,
in which case x = rx̃ for some x̃ ∈ Sd and r ≤ R. Then, by (10),

1

g(e−λx)
− 1

g(x)
= 1

g(e−λrx̃)
− 1

g(rx̃)
≤ M(r − e−λr) ≤ MRλ. (27)

Put

Ft(λ) :=
(

2e2cλg
(
e−cλbt

))−1
(t, λ ≥ 0, e−cλbt ∈ D). (28)

1 It is probably true that ψ(∞) = ∞ a.s. but this requires some work to prove. Since this
is a problem concerning the long-time behavior ofX that has little to do with the uniqueness
problems that we are studying at present, we will not touch this subject here.
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Then, for every t ≥ 0 and 0 ≤ λ1 < λ2 such that e−cλ1bt ∈ D one has Ft(λ2) < ∞
and, by (26),

Ft(λ2)− Ft(λ1) ≤ 1
2e

−2cλ1
( 1

g
(
e−c(λ2−λ1)e−cλ1bt

)

− 1

g
(
e−cλ1bt

)
)

≤ 1
2MRc(λ2 − λ1). (29)

Now let φ, φ̃ be solutions to (13) defined up to explosion times T , T̃ , respectively.
Assume that φ(t) > φ̃(t) for some t < T ∧ T̃ and set u := sup{s ≤ t : φ(s) =
φ̃(s)}. Note that φ(s) > φ̃(s) for every s ∈ (u, t]. Then

φ(r)− φ̃(r) =
∫ r

u

Fs(φ(s))ds −
∫ r

u

Fs(φ̃(s))ds

≤ 1
2MRc

∫ r

u

(φ(s)− φ̃(s))ds (r ∈ (u, t]).
(30)

It follows from Gronwall’s inequality that φ(t) = φ̃(t) and thus we arrive at a
contradiction. In the same way we see that φ(t) �< φ̃(t) for all t < T ∧ T̃ and we
conclude that φ = φ̃ and T = T̃ . �	
Proof of Theorem 1. By a simple translation of our space we may choose θ = 0.
Fix K > 0 and for x ∈ Sd , set Rx := sup{r ≥ 0 : rx ∈ D} if Kx �∈ D and
Rx := K+g(Kx) ifKx ∈ D. It is not hard to see that R : Sd → (0,∞) is contin-
uous. Put D′ := {rx : x ∈ Sd, 0 ≤ r < Rx} and for x ∈ Sd , put g′(rx) := g(rx)

if 0 ≤ r ≤ Rx ∧ K and g′(rx) := g(Kx) − (r − K) if K < r ≤ Rx . We
will show that D′, g′ satisfy the assumptions of Theorem 4. Since g and g′ coin-
cide on D ∩ {x : |x| ≤ K} = D

′ ∩ {x : |x| ≤ K}, this implies that solu-
tions X to the martingale problem for Ac,θ0 are unique up to the stopping time
τK := inf{t ≥ 0 : |Xt | ≥ K}. Letting K ↑ ∞ we arrive at Theorem 1.

To see that D′, g′ satisfy the assumptions of Theorem 4, choose ε ∈ (0, g(0))
such that the level sets {x ∈ D : g(x) ≥ r} are convex for all r ∈ (0, ε]. Set
Tx := K ∧ sup{r ≥ 0 : g(rx) ≥ ε(x ∈ Sd)}. Then

the map r �→ 1/g′(rx) is nondecreasing on [Tx, Rx). (31)

Since g is locally Lipschitz and positive on D so is 1/g and therefore there exists
an M < ∞ such that for all x ∈ Sd

1

g′(r2x)
− 1

g′(r1x)
≤ M|r2 − r1| (r1, r2 ∈ [0, Tx]). (32)

Formulas (31) and (32) imply that g′ satisfies (10) and therefore Theorem 4 is
applicable. �	
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Hölder continuous coefficients and super-Markov chains. Trans. Am. Math.
Soc. 355, 373–405 (2003)

[DP98] Dawson, D.A., Perkins, E.A.: Long-time behavior and coexistence in a mutu-
ally catalytic branching model. Ann. Probab. 26, 1088–1138 (1998)

[DFMPX01] Dawson, D.A., Fleischmann, K., Mytnik, L., Perkins, E.A., Xiong, J.: Mutu-
ally catalytic branching in the plane: Uniqueness. Ann. Inst. H. Poincare Pro-
bab. Statist. 39 (1), 135–191 (2003)

[DFX03] Dawson, D.A., Fleischmann, K., Xiong, J.: Strong uniqueness for cyclically
symbiotic branching diffusions. WIAS preprint 853, 2003, http://www.wias-
berlin.de/publications

[EK86] Ethier, S.N., Kurtz, T.G.: Markov Processes; Characterization and Conver-
gence. John Wiley & Sons, New York, 1986

[FX01] Fleischmann, K., Xiong, J.: A cyclically catalytic super-Brownian motion.
Ann. Prob. 29, 820–861 (2001)

[Myt98] Mytnik, L.: Uniqueness for a mutually catalytic branching model. Prob. The-
ory Relat. Fields. 112 (2), 245–253 (1998)

[RY91] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer,
Berlin, 1991

[Swa99] Swart, J.M.: Large Space-Time Scale Behavior of Linearly Interacting Dif-
fusions. PhD thesis, Katholieke Universiteit Nijmegen, 1999, http://heli-
kon.ubn.kun.nl/mono/s/swart /largspscb.pdf


