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Abstract. We consider a model of lattice gas dynamics in Z
d in the presence of disorder.

If the particle interaction is only mutual exclusion and if the disorder field is given by i.i.d.
bounded random variables, we prove the almost sure existence of the hydrodynamical limit
in dimension d ≥ 3. The limit equation is a non linear diffusion equation with diffusion
matrix characterized by a variational principle.

1. Introduction

Hopping motion of particles between spatially distinct locations is one of the funda-
mental transport mechanisms in solids and it has been extensively used in a variety
of models, including electron conduction in disordered systems under a tight bind-
ing approximation. The interested reader is referred to [5] for a detailed physical
review.

From a mathematical point of view, hopping motion is often modeled as an
interacting particle system in which each particle performs a random walk over
the sites of an ordered lattice like Z

d , with jump rates depending, in general, on
the interaction with the nearby particles and, possibly, on some external field. Typ-
ically the interaction between the particles is assumed to be short range with an
hard core exclusion rule (multiple occupancy of any site is forbidden) and only
jumps between nearest neighbors sites are allowed. In the conduction models the
hard core exclusion condition reflects the underlying Pauli exclusion principle for
electrons. The main focus of the mathematical and physics literature on hopping
motion models has been the understanding of transport properties and particularly
of the collective diffusive behavior (see for instance [34]).

In this paper we consider an interacting particle system related to conduction of
free electrons in doped crystals that can be described as follows.A particle sitting on
a site x of the cubic lattice Z

d waits an exponential time and then attempts to jump
to a neighbor site y. If the site y is occupied then the jump is cancelled otherwise it

A. Faggionato: Fakultät II - Mathematik und Naturwissenschaften, Technische Universität
Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany.
e-mail: faggiona@math.tu-berlin.de

F. Martinelli: Dipartimento di Matematica, Universita’ di Roma Tre, L.go S. Murialdo 1,
00146, Roma, Italy. e-mail: martin@mat.uniroma3.it

Mathematics Subject Classification (2000): 60K40, 60K35, 60J27, 82B10, 82B20

Key words or phrases: Hydrodynamic limit – Disordered systems – Lattice gas dynamics –
Exclusion process



536 A. Faggionato, F. Martinelli

is realized with a rate cαxy depending only on the values (αx, αy) of some external
quenched disorder field {αx}x∈Zd that, for simplicity, is assumed to be a collection
of i.i.d. bounded random variables. Our assumptions on the transition rates are quite
general. We require them to be translation covariant, strictly bounded and positive
(to avoid trapping phenomena), and to satisfy the detailed balance condition w.r.t.
to the (product) Gibbs measureµα(η) ∝ e−Hα(η),Hα(η) = − ∑

x αxηx , where ηx
is the particle occupation number at site x. These requirements are general enough
to include some popular models like the Random Trap and the Miller–Abrahams
models, but not other models like the Random Barrier Model in which the jumps
rates between x, y is assumed to depend only on the unoriented bond [x, y] [19].
For a detailed derivation of the HamiltonianHα in the tight-binding approximation
and a discussion of the regime of its validity we refer to [5].

Since in the linear–response regime the conductivity in a solid is linked to the
diffusion matrix via the Einstein relation (see [34]), our main target has been the
study of the bulk diffusion of the disordered lattice gas discussed above. Our main
result states that, for d ≥ 3, for almost every realization of the random field α,
the diffusively rescaled system has hydrodynamical limit given by a non linear
differential equation

∂tm = ∇ · (D(m)∇m)
where m(t, θ) denotes the macroscopic density function at time t at the point θ
of the d–dimensional torus in R

d with unit volume and the non random matrix
D(·) is the diffusion matrix. Moreover, we give a variational characterization of the
matrix D(m) in terms of the distribution of the random field α similar to the usual
Green–Kubo formula and we prove that infm D(m) > 0 and that D(·) is bounded
and continuous in the open interval (0, 1).

To the best of our knowledge the problem of collective behavior in disordered
lattice gas has been discussed mathematically only for models with either homo-
geneous equilibrium measures (see for example [27], [15] for the one–dimensional
Random Barrier model and its Brownian version) or with periodicity in the random
fieldα allowing to solve directly the generalized Fick’s law (see [32] and [38] for the
one–dimensional Random Trap model having random field α of period 2) or finally
for models satisfying the so called “gradient condition” (see below) [24]. From
the physical point of view, diffusion of lattice gases in systems with site disorder
has been studied mainly by means of simulations and more or less rough approx-
imations like mean field . We refer the interested reader to [18], [19], [20], [21],
[23] and to [16] for an iterative procedure to compute corrections to the mean–field
approximation.

Before analyzing more closely the main technical features of the model under
investigation, we remark that a stronger version of our result (no restriction on the
dimension d) for exactly the same model was announced in [28] several years ago
with only some sketchy argument for its proof.

Our initial project was actually different from the one presented here since our
plan was to analyze the hydrodynamic behavior of the randomly dilute Ising lattice
gas in the so called Griffiths region. This latter model share many of the main
features of the site disorder lattice gas treated here, but it also has some important
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additional difficulties (e.g the absence of a uniform diffusive bound on the spectral
gap), due to the ferromagnetic interaction between the particles, that make it harder
to analyze. Shortly after learning about the announcement [28] we were kindly
provided by J. Quastel with a set of unpublished notes (together with H.T.Yau)
[29] were some of the technical ideas sketched in [28] were somewhat expanded.
However it turned out that some of the steps behind the scheme of proof indicated in
[28] were troublesome even in the absence of disorder (symmetric simple exclusion
model) (see ch. 6 in [14] for a more detailed discussion) and, in our opinion, the
whole argument needed to be reconsidered. Therefore we decided to tackle again
the problem of hopping motion with site disorder without the extra complications
of the Ising model but we had to take a different route from that indicated in [28].

As we explain later on, we use two technical tools that were already present in
[28] and [29]. The first one, known as the moving particle lemma (see for example
[35]), is a basic estimate in the mathematical theory of hydrodynamic limit and it
has been generalized to the disordered case in a very neat way in [29] (see also a
recent preprint [30]). The precise statement of this result is provided in the appendix
(of course, without proof).

The second technical tool is represented by the so called “long jumps” (see
page 76 in [28]). However, as we explain in some more detail in remark 7.9, the
role played by the long jumps in our approach is completely different from that
indicated in [28] and in [29] as well as the technical tools to deal with them (see
section 7.2). The remaining part of our argument is sort of more traditional and our
main sources of inspiration have been [22] and [37].

The main technical features of the model considered here are the absence
of translation invariance (for a given disorder configuration) and the non valid-
ity of the so called gradient condition. This condition corresponds to the Fick’s law
of fluid mechanics according to which the current can be written as the gradient of
some function. Since the continuity equation states that ∂tm = ∇ · J , J being the
macroscopic current, the main problem is to derive J from the family of micro-
scopic instantaneous currents jαx,y(η) := cαx,y(η)

(
ηx−ηy

)
, defined as the difference

between the rate at which a particle jumps from x to y and the rate at which a particle
jumps from y to x. The gradient condition (the Fick’s law) is satisfied if, for each
disorder configuration α, there exists a local function hα(η) such that jαx,x+e(η) =
τx+ehα(η)− τxh

α(η) for any x ∈ Z
d , where τxhα(η) := hτxα(τxη) and τxη, τxα

denote the particle and disorder configurations η, α translated by the vector x.
If the system satisfies the gradient condition, the derivation of J is not too dif-

ficult (see [22] and reference therein). It is however simple to check (as in [34],
p. 182) that our system never satisfies the gradient condition except for constant
disorder field α. We thus have to appeal to the methods developed by Varadhan
[36], Quastel [31] and Varadhan-Yau [37] (see also [22] and references therein) for
studying the hydrodynamic limit of non disordered non gradient systems. There
the main idea is to prove a generalized Fick’s law of the form

jα0,e ≈
∑

e′∈E
De,e′(m�)(ηe′ − η0)+ Lαge (1.1)



538 A. Faggionato, F. Martinelli

for a suitable non random matrix D(m), where m� is the particle density in a cube
centered in the origin of mesoscopic side �, g(α,η)e is a local function, Lα is the
generator of the dynamics and ε is the canonical basis of Z

d .
One (among many others) main difficulty in proving such an approximation

for a disordered system is due to the fact that the disorder itself induces strong
fluctuations in the gradient density field as it is easily seen by taking, for any fixed
disorder configuration α, the average w.r.t. to the Gibbs measure µα of (1.1). By
construction the current jα0,e and the fluctuation term Lαge have in fact zero average
while the average of ηe′ − η0 (we neglect the factor D(m�) for simplicity) is in
general O(1) because of the disorder. However, and this is a key input, the average
over the disorder of the Gibbs average of µα

(
ηe′ − η0

)
vanishes and therefore one

can hope to tame the disorder induced fluctuations in the gradient of the density field
by first smearing them out using suitable spatial averages and then by appealing to
the ergodic properties of the disorder field α, at least in high enough dimension.
It turns out that the above sketchy plan works as soon as d ≥ 3 (see section 5 for
more details).

We conclude this short introduction with a plan of the paper. In section 2 we fix
the notation, describe the model and state the main results. In section 3 and section 4
we discuss most of the “high level” technical tools (entropy estimates, perturbation
theory, spectral gap bounds) and complete the proof of the main theorems following
the standard route of non gradient systems, modulo some key technical results. In
section 5 we discuss in detail the problem of the fluctuations of the gradient density
field induced by the disorder. Section 6 is devoted to the proof of several technical
bounds while in section 7 we discuss at length central limit variance, closed and
exact forms in our context together with our own interpretation of the long jump
method described in [28]. Finally some very technical estimates are collected in an
appendix at the end.

We finish by saying that most of the material presented here is based on the
unpublished thesis [14] written by one of us (A.F) where an expanded version of
several of the arguments used in this paper can be found.

2. Notation, the model and main results

In this section we fix the notation, we define the model and state our main result.

2.1. Notation

Geometric setting. We consider the d dimensional lattice Z
d with sites

x = {x1, . . . , xd}, canonical basis E and norm |x| = max{|x1|, . . . , |xd |}. The
bonds of Z

d are non oriented couple of adjacent sites and a generic bond will be
denoted by b.

The cardinality of a finite subset � ⊂ Z
d is denoted by |�| and F denotes the

set of all nonempty finite subsets of Z
d .

Given � ∈ N we denote by �� the cube centered at the origin of side 2�+ 1. If
� = 2j + 1 we also setQ� = �j . The same cubes centered at x will be denoted by
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�x,� and Qx,� respectively. More generally, for any V ⊂ Z
d and x ∈ Z

d , we will
set Vx := V + x.

Next, given e ∈ E and � = 2�′ + 1 with �′ ∈ N, we let

�
1,e
� := �−(�′+1)e,�′ , �

2,e
� := ��′e,�′ , �e

� := �
1,e
� ∪�

2,e
� . (2.1)

Finally, given ε ∈ (0, 1) such that ε−1 ∈ N, we define the discrete torus of side ε−1

by T
d
ε := Z

d/ε−1
Z
d . The usual d–dimensional torus R

d/Zd (with unite volume)
will instead be denoted by T

d . M1(T
d) will denote the set of positive Borel mea-

sures on T
d with total mass bounded by 1, endowed with the weak topology, while

M2 ⊂ M1 will denote the set of measures in M1 which are absolutely continuous
w.r.t. the Lebesgue measure with density ρ satisfying ‖ρ‖∞ ≤ 1.

Spatial averages. We will make heavy use of spatial averages and it is better to
fix from the beginning some handy notation. Given � ∈ F and � ∈ N, the spatial
average of {fx}x∈Zd in � ∩ �Z will be denoted by Av(�)x∈�fx . When � = 1 we will
simply write Avx∈� fx .

Next, given e ∈ E and two odd integers � = 2�′ + 1, s = 2s′ + 1 such that
s
�

∈ N, we let Q(�)
s := �Z

d ∩Qs . Notice that, if we divide the cube �1,e
s in cubes

of side �, the centers of these cubes form the set Q(�)
x,s with x = −(s′ + 1)e.

With these notation we define the (�, s, e) spatial average around y ∈ Z
d by

Av�,sz,y fz := 1

(s/�)

(s/�)−1∑

i=0

Av
z∈Q(�)

s
fy+z+(�′+i�−s′)e. (2.2)

The motivation of introducing such a spatial average will be discussed in subsection
4.2.

The disorder field. We assume the disorder to be described by a collection of real
i.i.d random variables α := {αx}x∈Zd such that supx |αx | ≤ B for some finite con-

stant B. The corresponding product measure on�D := [−B,B]Z
d

will be denoted
by P. Expectation w.r.t. P will be denoted by E.

Notice that, for any given ε ∈ (0, 1) such that ε−1 is an odd integer, the random
field α induces in a natural way a random field on T

d
ε via the identification of T

d
ε

with the cubeQ1/ε . For notation convenience the induced random field will always
be denoted by α.

Finally, given α ∈ �D and � ⊂ Z
d , we define α� := {αx}x∈�.

The particle configuration space. Our particle configuration space is � = SZ
d
,

S = {0, 1} endowed with the discrete topology, or �� = S� for some � ∈ F.
When � = T

d
ε we will simply write �ε . Given η ∈ � and � ⊂ Z

d we denote
by η� the natural projection over ��. Given two sites x, y ∈ Z

d and a particle
configuration η we denote by ηx,y and ηx the configurations obtained from η by
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exchanging the values of η at x, y and by “flipping” the value of η at x respectively.
More precisely,

(
ηx,y

)
z

:=






ηy if z = x

ηx if z = y

ηz otherwise

, (ηx)z :=
{

1 − ηx if z = x

ηz otherwise.

Sometimes we will write ηx,y := Sx,yη and call Sx,y the exchange operator
between x and y. Given a probability measure µ and a σ–algebra F on ��,
we will denote by Varµ(ξ) the variance of the random variable ξ w.r.t. µ, by
Varµ(ξ | F) := µ(ξ2 | F) − µ(ξ | F)2 the conditional variance of ξ given F , by
µ(ξ ; ξ ′) the covariance between ξ and ξ ′ and byµ(ξ, ξ ′) the scalar product between
ξ and ξ ′ in the Hilbert space L2(��, dµ).

Local functions. If f is a measurable function on �̃ := �D × �, the support of
f , denoted by �f , is the smallest subset of Z

d such that f (α, η) depends only on
α�f

, η�f
and f is called local if �f is finite. By ‖f ‖∞ we mean the supremum

norm of f . Given two sites x, y ∈ Z
d we define

∇x,yf (α, η) := f (α, ηx,y)− f (α, η),

∇xf (α, η) := f (α, ηx)− f (α, η).

We write G for the set of measurable, local and bounded functions g on �̃ and for
any g ∈ G we introduce the formal series g

g :=
∑

x∈Zd

τxg

where τxf (α, η) := f (τxα, τxη) and τxα and τxη are the disorder and particle
configurations translated by x ∈ Z

d respectively:

(τxα)z := αx+z, (τxη)z := ηx+z.

Although the above series is only formal, by the locality of g, the gradient ∇x,y g

is meaningful for any x, y ∈ Z
d .

Limits. Givennparameters�1, . . . �n we use the compact notation lim�n→�′n,...,�1→�′1
for the ordered limits lim�n→�′n . . . lim�1→�′1 . The same convention is valid when
“lim” is replaced by “lim sup” or “lim inf”.

2.2. The model

In this subsection we describe the lattice gas model at the microscopic scale ε for
a given disorder configuration α.
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Gibbs measures. Given an external chemical potential λ ∈ R, the Hamiltonian of
the system in the set � ⊂ Z

d is defined as

H
α,λ
� (η) = −

∑

x∈�
(αx + λ)ηx

and the corresponding grand canonical Gibbs measure on ��, denoted by µα,λ� , is
simply the product measure

µ
α,λ
� (η) := 1

Z
α,λ
�

exp(−Hα,λ
� (η)) (2.3)

where Zα,λ� is such that µα,λ� (��) = 1.
For our purposes it is important to introduce also the canonical measures να�,m.

Let N�(η) = ∑
x∈� ηx and let m ∈ [0, 1

|�| , . . . , 1]. Then

να�,m(·) = µ
α,λ
� (· |N� = m|�|) (2.4)

The random variable N� will usually be refered to as the number of particles and
m� := N�/|�| as the particle density or simply the density. The set of all canonical
measure να�,m asm varies in [0, 1

|�| , . . . , 1] will be denoted by Mα(�). Notice that
να�,m does not depend on the chemical potential λ. However, as it is well known
[6], the canonical and grand canonical Gibbs measures are closely related if the
chemical potential λ is canonically conjugate to the density m in the sense that the
average density w.r.t. µα,λ� is equal to m. With this in mind, for any m ∈ [0, 1],
we define the empirical chemical potential λ�(α,m) as the unique value of λ such
that µα,λ� (N�) = m|�|, the annealed chemical potential λ0(m) as the unique λ
such that E

[
µα,λ(η0)

] = m and the corresponding static compressibility χ(m)

as χ(m) = E
[
µα,λ0(m)(η0; η0)

]
. Since ∂

∂λ
µ
α,λ
� (f ) = µ

α,λ
� (f ;N�) for any local

function f , we get the following thermodynamic relations:

∂

∂m
λ�(α,m) = [

µ
α,λ�(α,m)
� (m�;N�)

]−1 and
∂

∂m
λ0(m) = χ(m)−1.

Notation warning. From now on, in order to keep the notation to an acceptable
level, we need to adopt the following shortcuts whenever no confusion arises.

i) Most of the times the label α will be omitted. That means that quantities like
µλ�(f ) will actually be random variables w.r.t the disorder α. Moreover, the
label λ of the chemical potential will be omitted when λ = 0.

ii) If the region � on which the Gibbs measures or, later, the generator of the
dynamics are defined coincides with T

d
ε , then the suffix�will be simply replaced

by ε while if � = Z
d it will simply be dropped (i.e. µε := µα

Tdε
).

iii) The symbol µλ(m)� will always denote the grand canonical Gibbs measure on
�� with empirical chemical potential λ�(α,m).

iv) The letter c will denote a generic positive constant depending only on d and B
that may vary from estimate to estimate.
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v) Given two positive functions f, g : (0,∞) → (0,∞) we will write f = O(g)

if

0 < lim inf
x→0+

f (x)

g(x)
≤ lim sup

x→0+
f (x)

g(x)
< ∞

and similarly for x → 0+ replaced by x → +∞.

The dynamics. The lattice gas dynamics we are interested in is the continuous time
Markov chain on �ε described by the Markov generator ε−2Lε where Lε := LTdε

and for any � ⊂ Z
d

L�f (η) =
∑

b⊂�
Lbf (η)

where, for any bond b = {x, y},
Lx,yf (η) := cαx,y(η)∇x,yf (η)

The non-negative real quantities cαx,y(η) are the transition rates for the process.
They are defined as

cαx,x+e(η) = fe(αx, ηx, αx+e, ηx+e) ∀x ∈ Z
d , e ∈ E

wherefe is a generic bounded function on
(
[−B,B]×S)2 such thatfe(a, s, a′, s′) =

fe(a
′, s′, a, s) and fe ≥ c > 0 for a suitable constant c. Thanks to this definition

the transition rates are translation covariant, i.e.

cαx+z,y+z(η) = c
τzα
x,y (τzη) ∀z ∈ Z

d .

The key hypothesis on the transition rates is the detailed balance condition w.r.t
the Gibbs measures µλ�, � ⊂ Z

d and λ ∈ R, i.e.

fe(a, s, a
′, s′) = fe(a, s

′, a′, s)e−(s
′−s)(a′−a) ∀e ∈ E, a, a′ ∈ [−B,B], s, s′ ∈ S

which implies that the generator L� becomes a selfadjoint operator on L2(µλ�)

for any λ. Actually, since the moves of the Markov chain generated by L� do not
change the number of particles, for any canonical Gibbs measure ν ∈ M(�) the
operator L� is selfadjoint on L2(ν) with a positive spectral gap

gap(L�, ν) := inf
{ ν(f,−L�f )

Varν(f )
; Varν(f ) �= 0

}
(2.5)

and the corresponding Markov chain is irreducible on {η ∈ �� : N�(η) = n} for
any n ∈ [0, 1, . . . , |�|].

Given g ∈ G we denote by Lg the function
∑

b⊂Zd
Lb g. Given � ⊂ �

and a probability measure µ on ��, for any f with support inside � we will
set

D�(f ;µ) := 1

2

∑

b⊂�
µ

(
cb(∇bf )

2).
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Notice that, if � = � and µ is either a grand canonical or a canonical measure on
�, then the above expression is nothing but the Dirichlet form of the Markov chain
generated by L� w.r.t. µ.

Finally, given a probability measure µ on �ε and T > 0, we denote by P
α,µ
T

the distribution at time T of the Markov chain on T
d
ε with generator ε−2Lαε and

initial distributionµ, and by P
α,µ the induced probability measure on the Skorohod

spaceD([0, T ], �ε) (see [4]). The expectation w.r.t. P
α,µ will be denoted by E

α,µ.
Notice that, in turn, P

α,µ induces a probability measure Qα,µ on D([0, T ],M1)

by the formula P
α,µ ◦ π−1

ε , where

πε(η) := Avx∈Tdε
ηx δεx ∈ M1(T

d)

denotes the empirical measure.

Warning. In all the above measures, the crucial dependence on the parameter ε > 0
does not appear in the various symbols in order to keep the notation to an acceptable
level.

2.3. Main results

Our first result concerns the existence and regularity of the diffusion matrix D(m)
corresponding to the usual Green-Kubo matrix (see [34], proposition 2.2 page 180).

Theorem 2.1. Let d ≥ 3. Then for any density m ∈ (0, 1) there exists a unique
symmetric d × d matrix D(m), such that

(
a,D(m)a

) = 1

2χ(m)
inf
g∈G

∑

e∈E
E

[
µα,λ0(m)

(
cα0,e

(
ae(ηe − η0)

+∇0,eg
)2

) ]
∀a ∈ R

d . (2.6)

Moreover D(m) is continuous in the open interval (0, 1) and

0 < c−1
I ≤ D(m) ≤ cI ∀m ∈ (0, 1)

for some positive constant c.

Remark 2.2. We actually expect the matrix D to be extended continuously to the
closed interval [0, 1]. In particular we expect that D(m) converges to the diffusion
matrix of the random walk of a single particle in the random environment α as m
goes to zero, as confirmed by simulations (see [21]).

In order to state the next main result we need the following definition.

Definition 2.3. Given a Lebesgue absolutely continuous measure m(θ)dθ ∈
M2(T

d), a sequence of probability measures µε on �ε is said to correspond
to the macroscopic profile m(·) if, under µε , the random variable πε in M1(T

d)

converges in probability to m(θ)dθ as ε ↓ 0, i.e. for any smooth function H on T
d

and any δ > 0

lim
ε↓0

µε
(∣
∣ Avx∈Tdε

H(εx)ηx −
∫

Td
H(θ)m(θ)dθ

∣
∣ > δ

) = 0 .
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With the above definition the existence of the hydrodynamical limit for almost
all disorder configurations reads as follows.

Theorem 2.4. Let d ≥ 3, let T > 0 and assume that D(m) can be continuously
extended to the closed interval [0, 1]. Then almost all disorder configurations α
satisfy the following property. Let m0(θ)dθ ∈ M2 and suppose that the Cauchy
problem

{
∂tm(t, θ) = ∇θ

(
D

(
m(t, θ)

)∇θ m(t, θ)
)

m(0, θ) = m0(θ)
(2.7)

has a unique weak solution m ∈ C([0, T ],M2) satisfying the energy estimate
∫ T

0
dt

∫

Td
dθ |∇θm(t, θ)|2 < ∞. (2.8)

Let also {µε}ε>0 be a sequence of probability measures on �ε corresponding
to the macroscopic density profile m0(θ). Then the measure Qα,µε converges
weakly to the probability measure on D([0, T ],M1) concentrated on the path
{m(t, θ)dθ}t∈[0,T ]. In particular, for any 0 ≤ t ≤ T , the sequence of time depen-

dent probability measures {Pα,µεt }ε>0 corresponds to the macroscopic density pro-
file m(t, θ), i.e. for any smooth function H on T

d and any δ > 0

lim
ε↓0

P
α,µε

t

(∣
∣ Avx∈Tdε

H(εx)ηx −
∫

Td
H(θ)m(t, θ)dθ

∣
∣ > δ

) = 0. (2.9)

The thesis remains valid also if D(m) has no continuous extension provided that
one assumes instead that, for some fixed ρ ∈ (0, 1), there exists a sequence of
product (over x ∈ Z

d ) probability measures µε∗ on �ε such that

H [µε |µε∗] = o(ε−d) and inf
ε

inf
x∈Tdε

min
(
µε∗(ηx), 1 − µε∗(ηx)

) ≥ ρ, (2.10)

where H [·|·] denotes the relative entropy.

Remark 2.5. Notice that condition (2.10) becomes rather natural if the initial profile
m0(·) satisfies ρ ≤ m0(θ) ≤ 1 − ρ for any θ ∈ T

d .

3. Plan of the proof of the two main theorems

The proof of theorem 2.1 will be given in section 7.4 and it is based on more or
less standard techniques. The proof of theorem 2.4 is more involved and it can be
divided into several steps that we illustrate in what follows. In order to work in
the simplest possible setting, in the sequel we assume that the diffusion matrix D
can be continuously extended to the closed interval [0, 1]. Only at the end (see
subsection 4.8) we will explain how to treat the other case.

Let us begin with some remarks on the weak interpretation of (2.7) and (2.8).
Let A(m), m ∈ [0, 1], be a d × d matrix such that A′(m) = D(m) so that

(
D(m(t, θ))∇θm(t, θ)

)
e

=
∑

e′∈E
∂θe′Ae,e′(m(t, θ)) , ∀e ∈ E .
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It is simple to prove (see appendix of [14]) that given m ∈ D([0, T ],M2) there
is a measurable function m(t, θ) univocally defined up to sets of zero Lebesgue
measure such that mt = m(t, θ)dθ for any t ∈ [0, T ] (see appendix of [14]). In
what follows, we will often identify m with the function m(t, θ).

A pathm ∈ D([0, T ],M2) is called a weak solution of (2.7) ifm(0, ·) = m0(·)
and

�(m,H) = 0 ∀H ∈ C1,2([0, T ] × T
d)

where

�(m,H) : =
∫

Td
m(T , θ)H(T , θ) dθ −

∫

Td
m(0, θ)H(0, θ) dθ

−
∫ T

0

∫

Td
m(s, θ)∂sH(s, θ) dθ ds

−
∑

e,e′

∫ T

0

∫

Td
Ae,e′

(
m(s, θ)

)
∂2
θe,θe′H(s, θ) dθ ds. (3.1)

Moreover, m ∈ D([0, T ],M2) satisfies the energy estimate (2.8) if

sup
e∈E

sup
H∈C1([0,T ]×Td )

∫ T

0

∫

Td

(
2m∂θeH −H 2)dθ ds < ∞. (3.2)

Warning. In what follows, we will introduce some other mesoscopic scales in addi-
tion to the microscopic scale ε. For example, we will introduce some positive scale
parameters a, b and consider the mesoscopic scales

[
a
ε

]
and

[
b
ε

]
, where [·] denotes

the integer part. For simplicity of notation these new scales will be denoted only by
a
ε

and b
ε

. Moreover, we will introduce the scale n where n is a positive odd integer.
The property of n to be odd will be always understood.

3.1. Tightness

The first step toward the proof of theorem 2.4 is to show that, for all disorder
configurations α, if {µε}ε>0 is a sequence of probability measures on �ε then the
sequence of measures on D([0, T ],M1), {Qα,µε }ε>0, is relatively compact. For
this purpose it is enough to use the Garsia-Rodemich-Rumsey inequality as done
in [22], chapter 7, section 6.

3.2. Regularity properties of the limit points

In the second step one proves that, for almost all α, given a sequence {µε}ε>0 of
probability measures on �ε , any limit point Qα of the sequence {Qα,µε }ε>0 is
concentrated on paths enjoying a certain regularity property. For this purpose we
first observe that, for any α, Qα must satisfy Qα

(
C([0, T ],M2)

) = 1, since for
any η ∈ �ε , H ∈ C(Td) and b ⊂ T

d
ε

∣
∣πε(η)[H ]

∣
∣ ≤ Avx∈Tdε

|H(εx)| and
∣
∣πε(η

b)[H ] − πε(η)[H ]
∣
∣ ≤ 2 ‖H‖∞εd .
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Moreover, if the sequence of {µε}ε>0 corresponds to the macroscopic profilem0(θ),
then necessarily

Qα
(
m ∈ C([0, T ],M2) : m(0, θ) = m0(θ)

) = 1 ∀α. (3.3)

The key result here, whose proof will be given later in section 4.7, is the following.
Given a path η(·) ∈ D([0, T ], �ε), x ∈ T

d
ε and � ∈ N, let mx,�(t) be the

particle density of η(t) in the cube Qx,�. Then we have

Lemma 3.1 (Energy estimate). Let d ≥ 3, let T > 0 and assume that D(m)
can be continuously extended to the closed interval [0, 1]. Then almost any dis-
order configurations α have the following property. For any sequence {µε}ε>0 of
probability measures on �ε and any e ∈ E

sup
b>0

lim sup
a↓0,ε↓0

E
α,µε

(
Avx∈Tdε

∫ T

0

[ m
x+ b

ε
e, a
ε
(s)−mx, a

ε
(s)

b

]2
ds

)
< +∞. (3.4)

Moreover any limit point Qα of the sequence {Qα,µε }ε>0 satisfies

Qα
{
m ∈ C([0, T ],M2) : l.h.s. of (3.2) < ∞

}
= 1. (3.5)

3.3. Microscopic identification of the hydrodynamic equation

In the third step of the proof one identifies at the microscopic level the hydrody-
namic equation. It is convenient to introduce some more notation. Given e, e′ ∈ E ,
two positive numbers a, b and a smooth function H on [0, T ] × T

d , we set

H̄b,a,ε := Avx∈Tdε

[
H(T, εx)ηx(T )−H(0, εx)ηx(0)−

∫ T

0
dsηx(s)∂sH(s, εx)

]

+
∑

e,e′∈E

∫ T

0
ds Avx∈Tdε

∇ε
eH(s, εx)De,e′

(
mx, a

ε
(s)

)

×
[ m

x+ b
ε
e′, a

ε
(s)−m

x− b
ε
e′, a

ε
(s)

2b

]
(3.6)

where ∇ε
eH(s, εx) := 1

ε

[
H(s, εx + εe)−H(s, εx)

]
.

The following theorem, whose proof will be discussed in a little while, corre-
sponds to the microscopic identification of the hydrodynamical equation.

Theorem 3.2. Let d ≥ 3, let T > 0 and assume that D(m) can be continuously
extended to the closed interval [0, 1]. Then almost all disorder configurations α
have the following property. For any sequence {µε}ε>0 of probability measures on
�ε , any δ > 0 and any H ∈ C1,2([0, T ] × T

d)

lim sup
b↓0, a↓0, ε↓0

P
α,µε

( |H̄b,a,ε | > δ
) = 0. (3.7)

The proof of theorem 2.4, given Lemma 3.1 and theorem 3.2, now follows by
more or less standard arguments and it can be found in section 1.5 of [14].
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4. Proof of theorem 3.2 modulo some technical steps

In this section we prove theorem 3.2 modulo certain technical results that will be
discussed in the remaining sections. Following [37] the first main step is to reduce
the proof of the theorem to the eigenvalue estimates of certain symmetric operators,
via the entropy inequality and the Feynman–Kac formula. To this aim we define
jx,x+e as the instantaneous current through the oriented bond {x, x + e}, i.e. as the
difference between the rate at which a particle jumps from x to x + e and the rate
at which a particle jumps from x + e to x. It is simple to check that

jx,x+e(η) = cx,x+e(η)(ηx − ηx+e)

and

Lεηx =
∑

e∈E
(−jx,x+e(η)+ jx−e,x(η)).

In particular (see lemma 5.1, appendix 1 in [22], or [14]), for any smooth H(t, x),
integration by parts and stochastic calculus show that

Avx∈Tdε

[
H(T, εx)ηx(T )−H(0, εx)ηx(0)

]

= Avx∈Tdε

∫ T

0
∂sH(s, εx)ηx(s)ds

+ ε−1
∑

e∈E
Avx∈Tdε

∫ T

0
∇ε
eH(s, εx)jx,x+eds +M(T ) (4.1)

where M(·) is a martingale w.r.t P
µε satisfying

P
µε

[ |M(T )| > δ
] ≤ c(H) δ−2εd ∀δ > 0. (4.2)

In order to benefit by the ergodicity of the system, it is convenient to replace the
current jx,x+e in (4.1) by its local average around x. To this aim let us introduce a
new scale parameter �, that will be sent to ∞ after the limit ε ↓ 0. Then, because of
the smoothness of the functionH , for any � � 1 one can safely replace in the r.h.s.
of (4.1) the current jx,x+e by a local average Avy:|y−x|≤�1jy,y+e, �1 := �− √

�, in
the sense that, for any δ > 0

lim
ε↓0

P
µε

[ ∣
∣ε−1Avx∈Tdε

×
∫ T

0
∇ε
eH(s, εx)

[
jx,x+e − Avy:|y−x|≤�1jy,y+e

]
ds

∣
∣ > δ

]
= 0. (4.3)

The key observation in the theory of non-gradient systems is that, thanks again to
stochastic calculus,

lim
ε↓0

P
µε

[ ∣
∣ε−1Avx∈Tdε

∫ T

0
∇ε
eH(s, εx)τxLg ds

∣
∣ > δ

] = 0 ∀δ > 0, ∀g ∈ G

(4.4)

and similarly for Avy:|y−x|≤�1τyLg in place of τxLg.
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In conclusion, thanks to (4.1), (4.2), (4.3) and (4.4), in order to prove (3.7) it is
enough to show that for almost all disorder configuration α and for any e ∈ E

inf
g∈G

lim sup
b↓0, a↓0, �↑∞, ε↓0

E
µε

( ∣
∣
∫ T

0
ε−1Avx∈Tdε

∇ε
eH(s, εx)

[
Avy:|y−x|≤�1

× (jy,y+e + τyLg)+
∑

e′∈E
De,e′(mx, a

ε
)
[mx+ b

ε
e′, a

ε
−m

x− b
ε
e′, a

ε

2b/ε

]]
ds

∣
∣
)

= 0.

(4.5)

We next reduce (4.5) to certain equilibrium eigenvalue estimates by means of the
entropy inequality and the Feynman-Kac formula (see proposition A.8). Let us
recall the former: given two probability measures π, π ′ on the same probability
space, for any β > 0 and any bounded and measurable function f ,

π(f ) ≤ β−1{H(π |π ′)+ ln
(
π ′(eβf )

)}
(4.6)

where H(π |π ′) denotes the entropy of π w.r.t. π ′. It is simple to verify that, for
any initial distribution µ on �ε , the relative entropy between the path measure
P
µ starting from µ and the equilibrium path measure P

µε starting from the grand
canonical measure µε with zero chemical potential, satisfies

H
(
P
µ | Pµε ) ≤ c ε−d .

Therefore, for any γ > 0 and any function h on [0, T ] ×�ε

E
µ
( ∣
∣
∫ T

0
h(s, η(s))ds

∣
∣
)

≤ c

γ
+ εd

γ
ln E

µε
(

exp
{
γ ε−d ∣∣

∫ T

0
h(s, η(s))ds

∣
∣
})
. (4.7)

The Feynman–Kac formula (see proposition A.8) now shows that,

εd

γ
ln E

µε
(

exp
{
γ ε−d(±

∫ T

0
h(s, η(s))ds

)})

≤
∫ T

0
sup specL2(µε)

{±h(s, ·)+ γ−1εd−2Lε
}
ds . (4.8)

We now apply the above reasoning to the function h(s, η) = integrand of (4.5).
Since for any ε > 0 sups∈[0,T ] supx∈Td |∇ε

eH(s, εx)| ≤ c(H), after a suitable
re-parametrization of γ , in order to prove (4.5) it is enough to prove the following
key eigenvalue estimate.

Proposition 4.1. Let d ≥ 3. Then, almost all disorder configurations α have the
following property. For all γ > 0

inf
g∈G

lim sup
b↓0, a↓0, �↑∞, ε↓0

sup
J

sup specL2(µε)

{
ε−1J̄

g
b,a,�,ε + γ εd−2Lε

} ≤ 0 (4.9)
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where

J̄
g
b,a,�,ε := Avx∈Tdε

J (εx)
[
Avy:|y−x|≤�1(jy,y+e + τyLεg)

+
∑

e′∈E
De,e′(mx, a

ε
)
[mx+ b

ε
e′, a

ε
−m

x− b
ε
e′, a

ε

2b/ε

]]
(4.10)

and J varies in {J ∈ C(Td) : ‖J‖∞ ≤ 1}.

4.1. Some technical tools to bound the spectrum

Before we turn to the proof of proposition 4.1, let us introduce some tools to deal
with the eigenvalue problem posed in (4.9).

We begin by recalling a useful sub-additivity property of the supremum of the
spectrum of a selfadjoint operator and explain its role in the so–called localization
technique.

Given a finite family {Xi}i∈I of self-adjoint operators on L2(µε),

sup specL2(µε)
{
∑

i∈I
Xi} ≤

∑

i∈I
sup specL2(µε)

{Xi}, (4.11)

and similarly with
∑

i∈I replaced by Avi∈I . The sub-additivity property allows
one to exploits the localization method which is best explained by means of an
example, although the underlying idea has a much wider application. Let ε > 0,
� < 1

ε
and for any x ∈ T

d
ε let fx be a local function with support in �x,�. Recall

the definition of M(�x,�) as the set of all possible canonical Gibbs measures on
�x,� and that for each x ∈ T

d
ε , each b ∈ �x,� and any ν ∈ M(�x,�) the operator

Lb is a selfadjoint non–positive operator in L2(ν). Then

sup specL2(µε)

{
Avx∈Tdε

fx + εd−2Lε
}

≤ Avx∈Tdε
sup specL2(µε)

{
fx + c ε−2Avb∈�x,�

Lb
}

≤ Avx∈Tdε
sup

ν∈M(�x,�)

sup specL2(ν)

{
fx + c ε−2Avb∈�x,�

Lb
}

(4.12)

where the former inequality follows from εdLε ≤ cAvx∈Tdε
Avb∈�x,�

Lb, for a suit-
able geometrical constant c = c(d) together with the sub-additivity property (4.11),
while the latter follows from the inequality

µε(fx g
2)+ c ε−2µε(g [ Avb∈�x,�

Lb ] g)

= µε
(
µε(fx g

2 |mx,�, {ηy}y /∈�x,�
)
)

+ c ε−2µε
(
µε(g [ Avb∈�x,�

Lb ] g |mx,�, {ηy}y /∈�x,�
)
)

≤ sup
ν∈M(�x,�)

sup specL2(ν)

{
fx + c ε−2Avb∈�x,�

Lb
}
µε(g

2) ∀g ∈ L2(µε) .

Next we state a very general result on sup specL2(ν){L + βV }, where L is an
ergodic reversible Markov generator on a finite set E with invariant measure µ,
and whose proof is based on perturbation theory for selfadjoint operators (see e.g.
[22]).
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Proposition 4.2. Let gap(L, µ) be the spectral gap of −L in L2(µ) and let, for
β > 0 and V : E �→ R,

λβ := sup specL2(µ){L + βV }.
Assume without loss of generality µ(V ) = 0. If

2β gap(L, µ)−1‖V ‖∞ < 1

then

0 ≤ λβ ≤ β2

1 − 2β gap(L, µ)−1‖V ‖∞
µ

(
V, (−L)−1 V

)
.

The above proposition suggests that in order to prove proposition 4.1 we must
be able to estimate:

(1) the spectral gap of the generator L� in a generic box �;
(2) the H−1 norm appearing above.

We begin with the first one.

Proposition 4.3. [10] Let � ⊂ Z
d be a parallelepiped with longest side �. Then

there exist c > 0 such that, for all disorder configurations α and all ν ∈ M(�),

gap(L�; ν) ≥ c �−2 (4.13)

In particular, for all disorder configurations and all ν ∈ M(�), the following
Poincaré inequality holds

Varν(f ) ≤ c �2D�(f ; ν) (4.14)

Remark 4.4. The key aspect of the above result is the uniformity in the disorder
configuration. Its proof is based on some clever technique developed recently in
[12] to deal with the Kac model for the Boltzmann equation and extended in [11]
and [10] to other kind of diffusions. For other models of lattice gas dynamics like
the dilute Ising lattice gas in the Griffiths regime the above uniformity will no
longer be available and a more sophisticated analysis is required (see [14] for a
discussion).

Let us now tackle with theH−1 norm. Unfortunately that will requires the proof
of some technical bounds that, on a first reading, can be just skipped.

Following the theory of non disordered non-gradient systems, we introduce the
space G ⊂ G defined as

G := {g ∈ G : ∃� ∈ F such that, ∀α and ∀ν ∈ Mα(�) , ν(g) = 0 }. (4.15)

Equivalently, G can be defined as the set of functions g ∈ G such that there exists
� ∈ F and h ∈ G with g = L�h. Since the dynamics is reversible w.r.t. Gibbs
measures, this second characterization assures an integration by parts property that
will play an important role in the sequel. More precisely, if g = L�h, then, for any
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�′ containing � and any ν ∈ M(�′), ν
(
g, f ) = ν(h,L�f ). Moreover, if V and

� are such that �x ⊂ V for any x ∈ �, then for any A > 0 and ν ∈ Mα(V ),
∣
∣ν

(∑

x∈�
τxg, f

)∣
∣ ≤ c(g)|�| 1

2 DV (f ; ν) 1
2

≤ Ac(g)|�| + A−1 c(g)DV (f ; ν) (4.16)

where, for some suitable constant c(�),

c(g) := c(�) sup
α

sup
ν∈Mα(V )

(
ν(h2)

) 1
2 . (4.17)

A first simple consequence of integration by parts (see chapter 7 of [22] and section
1.16 of [14] for a proof) is the following bound.

Proposition 4.5. Let g ∈ G have support included in �s . Then for any disorder
configuration α, any γ > 0 and any family of functions F := {fx}x∈Tdε

on �ε ,

sup specL2(µε)
{ε−1Avx∈Tdε

(τxg fx)+ γ εd−2L}
≤ ε−1c(g, ‖F‖∞)‖∇F‖∞ + sup specL2(µε)

{c(g)Avx∈Tdε
f 2
x

+ 1

2
γ εd−2L}, (4.18)

where ‖F‖∞ := supx∈Tdε
‖fx‖∞ and ‖∇F‖∞ := supx∈Tdε

supb⊂�x,s
‖∇bfx‖∞.

In the space G it is also possible to introduce aH−1 norm closely related to that
given by perturbation theory (see proposition 4.2 above).
Given positive integers �, s with s2 ≤ � and f, g ∈ G with �f ,�g ⊂ �s , for any
canonical or grand canonical Gibbs measure µ on �� we define

V�(f, g;µ) := (2l)−dµ
( ∑

|x|≤�1

τxf,
( − L��

)−1 ∑

|x|≤�1

τxg
)
. (4.19)

If �� is replaced by �z,� and the above sums are over x ∈ �z,�1 we will simply
write Vz,�(f, g;µ) and if f = g we write V�(g;µ) or Vz,�(g;µ).
It is simple to check that V�(g;µ) can be variationally characterized as follows:

V�(g;µ) = (2l)−d sup
h

{
2µ

( ∑

|x|≤�1

τxg, h
) − D��

(h;µ)}

= (2l)−d sup
h

µ(
∑

|x|≤�1
τxg, h)

2

D��
(h;µ) (4.20)

where suph is taken among the non constant functions with support contained in
��.

The variational characterization allows one to derive some simple bounds on
V�(g;µ). Let � be a box such that �g ⊂ � ⊂ �s and for any x ∈ Z

d let Fx be
the σ–algebra generated by m�x and {ηy}y /∈�x . Then, for any function h,

µ(τxg, h) = µ
(
µ(τxg;h | Fx)

) ≤ µ
(

Varµ(τxg | Fx)
1
2 Varµ(h | Fx)

1
2
)

≤ µ
(

Varµ(τxg | Fx)
) 1

2µ
(

Varµ(h | Fx)
) 1

2
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which implies that

µ(
∑

|x|≤�1

τxg, h)
2 ≤ c

∑

|x|≤�1

µ
(

Varµ(τxg | Fx)
) ∑

|x|≤�1

µ
(

Varµ(h | Fx)
)
. (4.21)

If we appeal now to the Poincaré inequality (4.14)

Varµ(h | Fx) ≤ cs2
∑

b⊂�x

µ
(
cb(∇bh)

2 | Fx

)
,

the last sum in (4.21) is bounded by c sd+2D��
(h;µ). Recalling (4.20), for any

� > s2 we finally get

V�(g;µ) ≤ c sd+2Av|x|≤�1µ
(

Varµ(τxg | Fx)
)
. (4.22)

In particular

V�(g;µ) ≤ c sd+2‖g‖2
∞. (4.23)

In order to benefit of the ergodicity of the random field, it is natural to define, for
any m ∈ (0, 1) and any g ∈ G,

Vm(g) := lim
�↑∞

(2�)−d E

[
µλ0(m)

( ∑

|x|≤�1

τxg, (−L��
)−1

∑

|x|≤�1

τxg
)]

(4.24)

where, we recall, λ0(m) is the annealed chemical potential corresponding to the
particle density m. If m = 0, 1 we simply set Vm(g) = 0 for any g ∈ G. In section
7 we will prove, among other results, that the limit appearing in (4.24) exists finite
and that it defines a semi–inner product on G (see theorem 7.2 there). With this
definition we have the following result.

Lemma 4.6. Let g ∈ G. Then

lim sup
�↑∞, ε↓0

Av|x|≤ 1
ε

sup
ν∈M(�x,�)

Vx,�
(
g; ν) ≤ sup

m∈[0,1]
Vm(g). (4.25)

Proof. As in [22], chapter 7, lemma 4.3, we introduce a scale parameter k, with
k ↑ ∞ after � ↑ ∞, and partition �� in cubes of side 2k + 1. More precisely,
we define �(k)

� := �� ∩ (2k + 1)Zd and write �� = Bk,l ∪ (∪
z∈�(k)

�

�z,k

)
where

Bk,� := �� \ ∪
z∈�(k)

�

�z,k . Then, by proceeding as in [22] and by using the varia-

tional characterization (4.20) together with the integration by parts formula (4.16),
for any ν ∈ M(��) we get

V�(g; ν) ≤ (2�)−d sup
h

{ ∑

z∈�(k)
�

Fz(hz; ν)+ c(g)

√

k�−1 + k− 1
2
}

(4.26)

where c(g) is as in (4.17), Fz(hz; ν) := 2
∑

y∈�z,k1
ν(τyg, hz)− D�z,k

(hz; ν) and
the supremum suph is taken over all families h = {hz}z∈�(k)

�

such that hz depends

only on η�z,k
and D(hz; ν) ≤ c(g)kd .
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Actually it is simple to check that in (4.26) we can restrict the supremum to
families h that satisfy the extra condition ‖h‖∞ ≤ c(g)ck for some constant ck
depending on k.

Therefore, ifm is the particle density associated to the canonical measure ν and
thanks to the equivalence of ensembles (see lemmas A.4 and A.3), for any disorder
configuration α we get
∣
∣

∑

z∈�(k)
�

Fz(hz; ν)−
∑

z∈�(k)
�

Fz(hz;µλ(m)��
)
∣
∣ ≤ c(g)ck,

∣
∣

∑

z∈�(k)
�

Fz(hz;µλ(m)��
)−

∑

z∈�(k)
�

Fz(hz;µλ0(m))
∣
∣ ≤ c(g)ck �

d
∣
∣m− µλ0(m)(m��

)
∣
∣.

Thanks to the previous observations we finally obtain

Av|x|≤ 1
ε

sup
ν∈M(�x,�)

Vx,�
(
g, ν

) ≤ c

√

k�−1 + k− 1
2 + ck�

−d + ck�1 + ck,��2

where ck,� is a positive constant depending on k, � such that limk↑∞,�↑∞ ck,� = 1
and

�1 := Av|x|≤ 1
ε

sup
m∈[0,1]

∣
∣m− µλ0(m)(m�x,�

)
∣
∣,

�2 := Av|x|≤ 1
ε

sup
m∈[0,1]

τx

(
sup
h

{
(2k)−dAv

z∈�(k)
�

Fz(hz, µ
λ0(m))

})
,

and suph is as before.
It is clear that, by considering a fixed density m in the definition of �1 and

�2, for almost all disorder configurations α, �1 is negligible as � ↑ ∞, ε ↓ 0.
Moreover, because of the ergodicity of the random field α and of the variational
characterization (4.20), it is also clear that for almost all disorder configurations α

lim sup
�↑∞,ε↓0

�2 ≤ E
(
Vk(g;µλ0(m))

)

To handle the supremum over m ∈ [0, 1] requires some simple additional observa-
tions based on compactness of [0, 1] and lemma A.3 (see e.g section 1.13 in [14]).

��

4.2. Back to the proof of proposition 4.1

Given the technical tools developed in the previous paragraph, let us now complete
the proof of proposition 4.1 modulo some non trivial results to be proved later on.

The basic idea would be to benefit of the ergodicity of the model by means of
the localization technique discussed in subsection 4.1. Unfortunately, the function
J̄
g
b,a,�,ε appearing in (4.9) cannot be written as Avx∈Tdε

fx (or as a more complex spa-
tial average) for suitable functions fx having support independent of ε. We will need
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some subtle techniques developed for non-gradient systems in order to approximate
J̄
g
b,a,�,ε with such a spatial average. There is however one piece of J̄ gb,a,�,ε , namely

the density “gradient”
(
2b/ε

)−1[
m
x+ b

ε
e′, a

ε
−m

x− b
ε
e′, a

ε

]
which can be conveniently

written as a suitable spatial average. To this aim recall the definition (2.2) of the
spatial average Av�,sz,y and define for any particle configuration η, m1,e

� , m
2,e
� and

me
� to be the particle density associated to η in the sets�1,e

� ,�
1,e
� and�e

� defined in
(2.1) respectively. It is then simple to check the following identity (which motivates
the introduction of Av�,sz,y):

Av�,sz,yτz
m

2,e
� −m

1,e
�

�
= τy

m
2,e
s −m

1,e
s

s
. (4.27)

Let now n, a
ε
, b
ε

be odd integers such that a
nε

∈ N and b
a

∈ N. Then, it is simple to
check that

Av
2b
a

−1
u=0 τxu

m
2,e
a
ε

−m
1,e
a
ε

a/ε
=
m
x+ b

ε
e, a
ε

−m
x− b

ε
e, a
ε

2b/ε
(4.28)

where

xu := x +
(
u
a

ε
− b

ε
+ 1

2

(a

ε
− 1

) + 1
)
e.

Therefore, if we define

Av∗
z,x fz := Av

2b
a

−1
u=0 Av

n, a
ε

z,xufz (4.29)

(when necessary we will also add the vector e ∈ E into the notation by writing
Av∗,e

z,x), thanks to (4.27) and (4.28) we obtain:

Av∗
z,xτz

m
2,e
n −m

1,e
n

n
=
m
x+ b

ε
e, a
ε

−m
x− b

ε
e, a
ε

2b/ε
. (4.30)

If the above conditions on n, a
ε
, b
ε

are not satisfied, we extend the definition of

Av∗
z,x by replacing in (4.29) a

ε
, b
ε

, 2b
a

with r1, r2 and 2r2
r1

respectively, where r1 is
the smallest odd number in nZ such that a

ε
≤ r1 and r2 is the smallest odd number

in r1Z such that b
ε

≤ r2.

Warning. In the sequel, for the sake of simplicity we will always assume n, a
ε
, b
ε

to be odd integers such that a
nε

∈ N and b
a

∈ N. The way to treat the general case
is shortly discussed in section 4.5.

It is convenient to introduce also Av�z,x defined as the dual average of Av∗
z,x , i.e.

Avx∈Tdε

(
fx

(
Av∗

z,xgz)
)

= Avx∈Tdε

(
gx

(
Av�z,xfz)

)
. (4.31)

The explicit formula of Av�z,xfz can be easily computed and it is similar to the
formula of Av∗

z,xfz.
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We introduce at this point some special functions related to the gradient of the
density field. Given two integers 0 ≤ n ≤ s, e ∈ E and a grand canonical measure
µ on an arbitrary set � containing �e

s , we write

m2,e
n −m1,e

n = ψe
n,s + φen,s , with φen,s := µ

[
m2,e
n −m1,e

n | Fe
s

]
, (4.32)

where Fe
s is the σ–algebra generated by me

s . Notice that, in absence of disorder,
the function φen,s would be identically equal to zero and thatψe

n,s ∈ G for all n < s,
since ν(ψe

n,s) = 0 for all ν ∈ M(�) and all � containing �e
s . Thanks to (4.22)

with � := �e
n and s := n and thanks to the equivalence of ensembles (see lemma

A.5), given � ≥ n2 it is easy to check that

V�
(ψe

n,n

n
; ν) ≤ c ∀ν ∈ M(��), V�

(ψe
n,n

n
;µλ0(m)

) ≤ c m(1 −m).

(4.33)

Using decomposition (4.32) we can now write J̄ gb,a,�,ε as

J̄
g
b,a,�,ε =

5∑

j=0

Avx∈Tdε
J (εx)ψ

(j)
x

where (we omit in the notation the suffix b, a, �, ε, g)

ψ(0)
x := Avy:|y−x|≤�1

[
jy,y+e + τyLg +

∑

e′∈E
De,e′(mx,�)τy

ψe′
n,n

n

]
,

ψ(1)
x :=

∑

e′∈E
De,e′(mx,�)

[
τx
ψe′
n,n

n
− Avy:|y−x|≤�1τy

ψe′
n,n

n

]

ψ(2)
x :=

∑

e′∈E

[
De,e′(mx, a

ε
)−De,e′(mx,�)

]
τx
ψe′
n,n

n

ψ(3)
x :=

∑

e′∈E
De,e′(mx, a

ε
)
[
Av∗,e′

z,x τz
ψe′
n,n

n
− τx

ψe′
n,n

n

]

ψ(4)
x :=

∑

e′∈E
De,e′(mx, a

ε
)
[m

x+ b
ε
e′, a

ε
−m

x− b
ε
e′, a

ε

2b/ε
− Av∗,e′

z,x τz
m

2,e′
n −m

1,e′
n

n

]

ψ(5)
x :=

∑

e′∈E
De,e′(mx, a

ε
)Av∗,e′

z,x τz
φe

′
n,n

n

and we define

�j := sup specL2(µε)

{
ε−1AvxJ (εx)ψ

(j)
x + γ εd−2Lε

}
j = 0, . . . , 5 .

Then, thanks to the sub-additivity of “sup spec", proposition 4.1 follows from the
next result.
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Proposition 4.7. Let d ≥ 3 and γ > 0. Then, for almost every disorder configu-
ration α,

inf
g∈G

lim sup
n↑∞,�↑∞,ε↓0

sup
J

�0 ≤ 0 (4.34)

and, for any j = 1, . . . , 5,

lim sup
n↑∞,b↓0,a↓0,�↑∞,ε↓0

sup
J

�j ≤ 0 (4.35)

where J varies in {J ∈ C(Td) : ‖J‖∞ ≤ 1}.
The proof of proposition 4.7 is best divided into several pieces according to the
value of the index j .

4.3. The term �0

Let us first prove (4.34). By localizing on cubes of side 2� + 1 (see (4.12)) and
using the regularity of J (·), it is enough to prove that for almost every disorder
configuration α,

inf
g∈G

lim sup
n↑∞,�↑∞,ε↓0

Avx∈Tdε
sup
|β|≤1

sup
m

sup spec
L2(ν�x,�,m)

×
{

ε−1β Avy:|y−x|≤�1τyψ
(n,g)
m + c�−dε−2L�x,�

}

≤ 0 (4.36)

where

ψ
(n,g)
m := j0,e + Lg +

∑

e′∈E
De,e′(m)

ψe′
n,n

n
.

Since ε ↓ 0 before � ↑ ∞ and since for any � large enough, any |y − x| ≤ �1 and
any ν ∈ M(�x,�), ν

(
τy ψ

(n,g)
m

) = 0, we can appeal to perturbation theory (see
proposition 4.2) and conclude that it is enough to show that

inf
g∈G

lim
n↑∞,�↑∞,ε↓0

Avx∈Tdε
sup

m∈[0,1]
V�x,�

(
ψ
(n,g)
m , ν�x,�,m) = 0 (4.37)

where Vx,� has been defined right after (4.19). A minor modification of the proof
of lemma 4.6 shows that (4.37) follows from

inf
g∈G

lim sup
n↑∞

sup
m∈[0,1]

Vm
(
ψ
(n,g)
m

) = 0 ∀d ≥ 3 (4.38)

(see (4.24) for the definition of Vm) which, in turn, follows from theorem 7.23.
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4.4. The three terms �1, �2, �3

Let us prove (4.35) for j = 1, 2, 3. In what follows, by means of proposition 4.5,
we will reduce the eigenvalues estimate�1, �2 and�3 to the Two Blocks estimate
(see subsection A.7). To this aim, by integrating by parts, we can write

ε−1AvxJ (εx)ψ
(j)
x =

∑

e′∈E
ε−1Avxτx

ψe′
n,n

n
· B(j)x ∀ j = 1, 2, 3

where

B(1)x := J (εx)De,e′(mx,�)− Avy:|y−x|≤�1J (εy)De,e′(my,�)

B(2)x := J (εx)
[
De,e′(mx, a

ε
)−De,e′(mx,�)

]

B(3)x := Av�,e
′

z,x J (εz)De,e′
(
mz, a

ε

) − J (εx)De,e′
(
mx, a

ε

)
.

Notice that, for any b ⊂ �x,n,

∇bB
(1)
x = ∇bB

(2)
x = 0, |∇bB

(3)
x | ≤ c n

ε

a
Osc

(
D, c

εd

ad

)
.

Therefore, using proposition 4.5, it is enough to prove that for almost every disorder
configuration α, given γ > 0,

lim sup
b↓0,a↓0,�↑∞,ε↓0

sup
J

sup specL2(µε)

{
Avx∈Tdε

× (
B
(j)
x

)2 + 1

2
γ εd−2Lε

} = 0 ∀j = 1, 2, 3. (4.39)

Since D can be approximated by Lipschitz functions and J is smooth, (4.39) can
be derived from the Two Blocks estimate (see subsection A.7). For simplicity of
notation, let us consider the case j = 2 (the case j = 1 is simpler, while j = 3 is
a slight variation) and D Lipschitz continuous. Since

(
B
(2)
x

)2 ≤ c
∣
∣mx,� −mx, a

ε
|,

by introducing a scale parameter k such that k ↑ ∞ after a ↓ 0, � ↑ ∞ and ε ↓ 0,
we can estimate

(
B(2)x

)2 ≤ cAv|y|≤�Av|z|≤ a
ε
|mx+y,k −mx+z,k| + c

k

�
+ c

k

a/ε
.

At this point, by the sub-additivity (4.11) of “sup spec”, the thesis follows from the
Two Blocks estimate.

4.5. The term �4

The proof of (4.35) for j = 4 is based on the Two Blocks estimate. Notice that,
thanks to (4.30), the function ψ(4)

x entering in the definition of �4 is either iden-
tically equal to zero if n, a

ε
, b
ε

are odd integers such that a
nε

∈ N and b
a

∈ N, or it
can be written as

ψ(4)
x =

∑

e′∈E
De,e′(mQx, aε

)

[m
x+ b

ε
e′, a

ε
−m

x− b
ε
e′, a

ε

2b/ε
− mx+r2e′,r1 −mx−r2e′,r1

2r2

]

(4.40)
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where r1, r2 have been defined in subsection 4.2. By the Two Blocks estimate it is
simple to check that for any γ > 0 and for almost any disorder configuration α

lim
a↓0,ε↓0

sup specL2(µε)

{
Avx∈Tdε

∣
∣mx, a

ε
−mx,r1 | + γ εd−2Lε

} = 0 (4.41)

lim
a↓0,ε↓0

sup
|w|≤2 a

ε

sup specL2(µε)

{
Avx∈Tdε

∣
∣mx, a

ε
−mx+w, a

ε
|+γ εd−2Lε

}=0 (4.42)

(hint: introduce the scale parameter k with a ↓ 0, k ↑ ∞, ε ↓ 0 and write
mx,s = Avy∈�x,smy,k +O(k/s) for s = a

ε
, r1).

In (4.40) we can substitute r1 by a
ε

(thanks to (4.41)) and after that in the numer-
ators we can substitute r2 by b

ε
(thanks to (4.42)). In order to conclude is enough

to observe that ε−1
∣
∣ 1
b/ε

− 1
r2

∣
∣ ≤ c a

b2 which goes to 0.

4.6. The term �5

The proof of (4.35) for j = 5 is based on the key results of section 5 and it is
one place where the restriction on the dimension d ≥ 3 is crucial for us. We refer
the reader to the beginning of section 5 for an heuristic justification of the above
condition. Here it is enough to say that the main contribution to the term�5 comes
from the fluctuations in the density field induced by the fluctuations of the disorder
field.

By the sub-additivity of “sup spec” we only need to prove that for almost all α,
given e, e′ ∈ E and γ > 0,

lim sup
n↑∞, b↓0, a↓0, ε↓0

sup
J

sup specL2(µε)

×{
ε−1AvxJ (εx)De,e′(mx, a

ε
)Av∗,e′

z,x τz
φe

′
n,n

n
+ γ εd−2Lε

} ≤ 0. (4.43)

Recall the definition of Av∗,e′
z,x and xu given in (4.29). Then, thanks again to the

sub-additivity of "sup spec", the "sup spec" in the l.h.s. of (4.43) is bounded from
above by

Av
2b
a

−1
u=0 sup specL2(µε)

{
ε−1AvxJ (εx)De,e′(mx, a

ε
)Av

n, a
ε

z,xuτz
φe

′
n,n

n
+ γ εd−2Lε

}
.

(4.44)

Observe that Av
n, a

ε
z,xuτz

φe
′
n,n

n
has support inside �e′

xu,
a
ε
. We would like at this point

to localize on boxes of side length of order O
(
a
ε

)
in such a way that De,e′(mx, a

ε
)

becomes a constant. To this aim, given u ∈ {0, . . . , 2b
a

− 1} and x ∈ T
d
ε , we set

�x,u :=
{
Qx,10 a

ε
if Qx, a

ε
∩�xu,2 aε

�= ∅
Qx, a

ε
otherwise

.

and we observe that either �x,u is disjoint from or completely contains �xu,2 aε
.

Therefore, if in (4.44) we could replace the term De,e′(mx, a
ε
) by the new term
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De,e′(m�x,u), then it would be simple to check (by localizing on boxes�xu,2 aε
) that

all what is needed is that for d ≥ 3, for all T ∈ N and for almost all α,

lim sup
n↑∞,a↓0,ε↓0

Avx∈Tdε
sup

|β|≤T
sup

ν∈M(�x,2 aε
)

sup specL2(ν)

×{
ε−1βAv

n, a
ε

z,x τz
φe

′
n,n

n
+ ε−2Avb∈�x,2a/εLb

} ≤ 0 (4.45)

Section 5 is devoted to the proof of (4.45) (see theorem 5.3 there).
Therefore, it remains to prove that for d ≥ 3, for almost all α and for any γ > 0

lim sup
n↑∞,b↓0,a↓0,ε↓0

sup
J

Av
2b
a

−1
u=0 sup specL2(µε)

{
ε−1Avx∈Tdε

J (εx)

× [
De,e′(mx, a

ε
)−De,e′(m�x,u)

]
Av

n, a
ε

z,xuτz
φe

′
n,n

n
+ γ εd−2Lε

} ≤ 0. (4.46)

Notice that the only values of u which contribute to the Av
2b
a

−1
u=0 above, in what

follows called “bad values”, are those for which Qx, a
ε

�= �x,u for some x ∈ T
d
ε . It

is easy to check that the cardinality of the bad values of u is of order O(1) for any
fixed x ∈ T

d
ε . Thus we only need to bound the "sup spec" appearing in (4.46) by

o( b
a
), uniformly in u in the bad set. Thanks to (4.30) and (4.32) we can write

Av
n, a

ε
z,xuτz

φe
′
n,n

n
=
m
xu+ b

ε
, a
ε

−m
xu− b

ε
, a
ε

2b/ε
− Av

n, a
ε

z,xuτz
ψe′
n,n

n
(4.47)

Then, the contribution in (4.46) coming from the first addendum in the r.h.s. of
(4.47) is not larger than O( 1

b
) and therefore negligible.

Let us consider the contribution of the second addendum. An integration by
parts shows that

Avx∈Tdε
J (εx)

(
De,e′(mx, a

ε
)−De,e′(m�x,u

)
Av

n, a
ε

z,xuτz
ψe′
n,n

n
= Avx∈Tdε

τx
ψe′
n,n

n
Bx,u

where the functions Bx,u satisfy ‖Bx,u‖ ≤ c together with

|∇bBx,u| ≤ c
nε

a
Osc(De,e′ , c

εd

ad
) ∀b ∈ �e′

x,n.

Moreover,Bx,u is a particular spatial average (dual to Av
n, a

ε
z,xu ) ofJ (εz)

(
De,e′(mz, a

ε
)−

De,e′(m�z,u

)
. Therefore, by proposition 4.5 and the Two Blocks estimate (see sub-

section A.7), the contribution of the second addendum is also negligible (see also
the discussion at the end of subsection 4.4).
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4.7. Proof of the energy estimate

In this subsection we prove lemma 3.1. It is simple to check that

spatial–time average in (3.4) = sup
H∈Hb

H�
b,a,ε (4.48)

where Hb := {H smooth on [0, T ] × T
d , ‖H‖∞ ≤ 1

b
} and

H�
b,a,ε := Avx∈Tdε

∫ T

0

(
2H(s, εx)

[m
x+ b

ε
e, a
ε
(s)−mx, a

ε
(s)

b

]
−H(s, εx)2

)
ds.

In what follows letH belong to Hb. By the entropy inequality and the Feynman-Kac
formula (see (4.6) and (4.7) ), for any γ > 0,

E
µε

(
H�

2b,a,ε

) ≤ κ

γ
− Avx∈Tdε

∫ T

0
dsH(s, εx)2

+ γ−1
∫ T

0
ds sup spec

L2(µε)

{
γ ε−1Avx∈Tdε

2H(s, εx)

×
[m

x+ 2b
ε
e, a
ε
(s)−mx, a

ε
(s)

2b/ε

]
+ εd−2Lε

}
. (4.49)

It is convenient to introduce a free scale parameter n, with n ↑ ∞ after a ↓ 0 and

ε ↓ 0, and write the gradient of masses appearing in (4.49) as Av∗
z,xτz

(ψen,n
n

+ φen,n
n

)

(see (4.30) and (4.32)).
By the definition of Av∗

z,x , the sub-additivity of sup spec and theorem 5.3,

lim sup
n↑∞,a↓0,ε↓0

∫ T

0
ds sup spec

L2(µε)

{
ε−1γAvx∈Tdε

2H(s, εx)Av∗
z,xτz

φen,n

n
+ εd−2Lε

} ≤ 0.

Let us consider, for fixed b, n, a,

sup specL2(µε)

{
ε−1γAvx∈Tdε

2H(s, εx)Av∗
z,xτz

ψe
n,n

n
+ εd−2Lε

}
. (4.50)

Thanks to the definition of the dual average Av�z,x we can write

Avx∈Tdε
2H(s, εx)Av∗

z,xτz
ψe
n,n

n
= Avx∈Tdε

axτx
ψe
n,n

n

where ax := Av�z,x2H(s, εz). Since Av�z,x is translationally invariant w.r.t. x and
H is smooth, we can proceed as at the very beginning of this section and safely

replace τx
ψen,n
n

by a local average Av|y−x|≤�1τy
ψen,n
n

, � � n, to get

(4.50) ≤ sup specL2(µε)

{
ε−1γAvx∈Tdε

axAv|y−x|≤�1τy
ψe
n,n

n
+ εd−2Lε

}

+ c(H)γ ε�2. (4.51)
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By the usual trick of localizing on boxes �x,� and proposition 4.2, if ε is small
enough then the first term in the r.h.s. of (4.51) is bounded from above by

c γ 2Avx∈Tdε
a2
x sup
ν∈M(�x,l )

Vx,�
(ψe′

n,n

n
; ν)

which in turn, thanks to (4.33), is bounded from above by

c γ 2Avx∈Tdε
a2
x ≤ c∗ γ 2Avx∈Tdε

H(s, εx)2

for some suitable positive constant c∗. Let us now choose γ so small that c∗γ 2 −
γ < 0. Then, by the previous estimates, if ε is small enough,

lim sup
n↑∞,a↓0,ε↓0

r.h.s. of (4.49) ≤ κ

γ
+ (c∗γ − 1)

∫ T

0

∫

Td
H(s, θ)2dθ ds

≤ κ

γ
. (4.52)

In order to conclude the proof it is enough to observe that there exists a finite set
H∗
b ⊂ Hb depending on b such that

sup
H∈Hb

H�
b,a,ε ≤ 1 + sup

H∈H∗
b

H�
b,a,ε

so that

lim sup
n↑∞,a↓0,ε↓0

E
µε

(
sup
H∈Hb

H�
b,a,ε

) ≤ 1 + lim sup
n↑∞,a↓0,ε↓0

E
µε

(
sup
H∈H∗

b

H�
b,a,ε

)

≤ 1 + κ

γ
(4.53)

thus allowing to conclude the proof of (3.4).
Let us now sketch the proof of (3.5). Since C1([0, T ] × T

d) has a countable
base, by Beppo–Levi theorem it is enough to prove that there exists a constant c0
such that, given H1, . . . , Hn in C1([0, T ] × T

d), then

∫

dQ(m)
[

sup
i=1,...,n

∫ T

0

∫

Td

(
2m(s, θ)

∂

∂θe
Hi(s, θ)−Hi(s, θ)

2)dθ ds
]

≤ c0.

(4.54)

By the Lebesgue density theorem and the dominated convergence theorem, the
l.h.s. of (4.54) is equal to lima↓0 EQ

(
�(a)

)
where, for any ν ∈ D([0, T ],M1),

�(a)(ν) := sup
i=1,...,n

∫ T

0

∫

Td

(
2 ν(a)(s, θ)

∂

∂θe
Hi(s, θ)−H 2

i (s, θ)
)
dθ ds, (4.55)

with

ν(a)(s, θ) := 1

(2a)d
νs

({θ ′ ∈ T
d : sup

i=1,...,d
|θ ′
i − θi | ≤ a}).
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It is simple to prove (see [14], section 1.18) that

lim
a↓0

∫

dQ(m)
(
�(a)(m)

) ≤ lim sup
a↓0,ε↓0

∫

dQα,µε (ν)
(
�(a)(ν)

)

= lim sup
b↓0,a↓0,ε↓0

E
α,µε

(
sup

i=1,...,n

∫ T

0
Avx∈Tdε

(
2mx, a

ε
(s, εx)

× [Hi(s, εx + be)−Hi(s, εx)

b

] −H 2
i (s, εx)

) )
.

By integrating by parts and observing that

sup
H∈Hb

H�
b,a,ε = sup

H∈C1([0,T ]×Td )

H�
a,b,ε,

the thesis follows from (4.53).

4.8. Hydrodynamic limit without regularity of the diffusion matrix.

In this last paragraph we shortly discuss the hydrodynamic limit when the regularity
condition on the diffusion matrix is replaced by the two conditions at the end of
theorem 2.4, in the sequel referred to as assumptions A(ρ). The main idea here is
to prove that one can safely introduce a density cutoff near the edges of the interval
(0, 1), and for this purpose the main technical tool is the following result.

Lemma 4.8. Assume that the sequence of initial probability measures µε satisfy
A(ρ). Then there exists a constant 0 < ρ̄ ≤ ρ such that, for any T > 0 and any
disorder configuration α,

lim
�↑∞,ε↓0

E
µε

( ∫ T

0
ds Avx∈Tdε

(
I{mx,�(s)<ρ̄} + I{mx,�(s)>1−ρ̄}

) )
= 0. (4.56)

Proof. For simplicity, we consider in (4.56) only the contribution coming from
I{mx,�(s)<ρ̄}, the other one being similar. Given two probability measures µ1, µ2
on �ε , we will write µ1 ≤ µ2 if µ1(f ) ≤ µ2(f ) for any function f which is
increasing w.r.t. the partial order in�ε given by η ≤ η′ ⇔ η(x) ≤ η′(x) ∀ x ∈ T

d
ε .

It is then simple to check that our model is attractive [25] in the sense thatµ1 ≤ µ2
implies that P

µ1
t ≤ P

µ2
t for any t > 0 and for any disorder configuration α. There-

fore, condition A(ρ) implies that there exists λ < 0 such that µλε ≤ µε∗ for any

ε and any α. Let now ρ̄ := 1
2 min

(
eλ−B

1+eλ−B , ρ
)
. Then, given β > 0 and thanks to

attractivity, the entropy inequality (4.6) and the identityH [µε |µε∗] = H [Pµ
ε |Pµε∗ ],

E
µε

(
∫ T

0
ds Avx∈Tdε

Imx,�(s)<ρ̄

)

≤ 1

β
H

[
µε |µε∗

] + 1

β
ln

(
E
µλε

(
exp

{
∫ T

0
ds β Avx∈Tdε

Imx,�(s)<ρ̄

}) )
. (4.57)
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Thanks to the Jensen’s inequality and the reversibility of Lε w.r.t. µλε the second
addendum in the r.h.s. of (4.57) can be bounded by

1

β
ln

(
µλε

(
exp{T β Avx∈Tdε

Imx,�<ρ̄}
) )
. (4.58)

Let νλ be the product measure on �ε with νλ(ηx) = eλ−B
1+eλ−B . Then νλ ≤ µλε and

therefore

(4.58) ≤ 1

β
ln

(
νλ

(
exp{T β Avx∈Tdε

Imx,�<ρ̄}
) ) ∀α.

At this point, let us recall a general result based on the Herbst’s argument and the
logarithmic Sobolev inequality (see [1] for a complete discussion): for any γ > 0
and any function f on �ε

νλ(eγf ) ≤ ecf γ
2+γ νλ(f )

where cf := c
∑

x∈Tdε
‖∇xf ‖2∞ and c = c(B, λ) is a suitable constant independent

of ε (c is related to the logarithmic Sobolev constant of the Bernoulli measure νλ).
Thus

1

β
ln

(
νλ

(
exp{T β Avx∈Tdε

Imx,�<ρ̄}
) ) ≤ c T 2 β εd�d + T Avx∈Tdε

νλ
(
Imx,�<ρ̄

)
.

(4.59)

Since ρ̄ < νλ(η0), by choosing β2 := H [µε |µε∗]/(T 2 εd�d) the r.h.s. of (4.59)
is negligible as � ↑ ∞, ε ↓ 0. Since H [µε |µε∗] = o(ε−d), the thesis follows by
collecting all the above estimates. ��
Using the above result we are in position to discuss our density cutoff. Let us
recall first that, given a generic continuous extensions D̄ of D outside the inter-
val [ρ, 1 − ρ], any weak solution m(t, θ) of the Cauchy problem (2.7), where
D has been replaced by D̄ and ρ ≤ m0(θ) ≤ 1 − ρ for any θ ∈ T

d , satisfies
ρ ≤ m(t, θ) ≤ 1 − ρ for any 0 ≤ t ≤ T and any θ ∈ T

d . Let D̄ be defined as

D̄(m) :=






D(ρ̄) if 0 ≤ m ≤ ρ̄

D(m) if ρ̄ ≤ m ≤ 1 − ρ̄

D(1 − ρ̄) if 1 − ρ̄ ≤ m ≤ 1.

Let us explain next how one should modify the proof of theorem 3.2 in order to
get the same result but with D replaced by D̄ in the definition of H̄b,a,ε (in what
follows this replacement will be understood without further notice). To this aim it
is convenient to introduce the following shorter notation

χx,� := Imx,�<ρ̄ + Imx,�>1−ρ̄ .

Then, thanks to lemma 4.8, equation (4.5) can be substituted by
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inf
g∈G

inf
r≥0

lim sup
b↓0,a↓0,l↑∞,ε↓0

E
µε

( ∣
∣
∫ T

0
ε−1Avx∈Tdε

∇ε
eH(s, εx)

×
[
Avy:|y−x|≤�1(jy,y+e + τyLg)+

∑

e′∈E
D̄e,e′(mx, a

ε
)
[mx+ b

ε
e′, a

ε
−m

x− b
ε
e′, a

ε

2b/ε

]]

−r
∫ T

0
ds Avx∈Tdε

χx,� ds
∣
∣
)

= 0

and the main issue is to prove proposition 4.1 with J̄ gb,a,�,ε replaced by

J̄
g,r
b,a,�,ε :=

{
r.h.s. of (4.10) with D → D̄

}
− ε r

∫ T

0
ds Avx∈Tdε

χx,� .

In turn the proof of the modified version of proposition 4.1 is splitted into several
steps, one for each term �

(r)
j , j = 0, 1, . . . 5, where now

�
(r)
0 := sup specL2(µε)

{
ε−1AvxJ (εx)ψ

(0)
x − rAvx∈Tdε

χx,� + γ εd−2L}
.

and all the other �j are unchanged. It thus remains to explain how the discussion

in subsection 4.3 has to be modified in order to apply to �(r)
0 . Because of the new

definition of �0, (4.36) has to be replaced by

inf
g∈G

inf
r≥0

lim sup
n↑∞,�↑∞,ε↓0

Avx∈Tdε
sup

|β|≤T
sup

m∈[0,1]

×
[

sup spec
L2(ν�x,�,m)

{
ε−1β Avy:|y−x|≤�1τyψ

(n,g)
m + εd−2Lε

}

− rIm<ρ̄ − rIm>1−ρ̄
]

≤ 0 (4.60)

where D → D̄ in the definition of ψ(n,g)
m .

We observe that, provided ε�d+2 � 1, the sup spec inside the square bracket
in (4.60) is bounded by cg T

2, for a suitable constant cg depending on g. That
follows immediately from perturbation theory (see proposition 4.2) and the esti-
mate (4.33). Therefore, by choosing r large enough, we only need to prove (4.60)
with m ∈ [ρ̄, 1 − ρ̄] where D(m) and D̄(m) coincide. Similarly one shows that
the two “supm∈[0,1]” appearing in (4.37) and (4.38) can be safely replaced by
“supm∈[ρ̄,1−ρ̄]”.

5. Disorder induced fluctuations in the averaged gradient density field

In this section we analyze a key term that, as we have seen in section 4, arises
naturally when one tries to approximate spatial averages of the current with spatial
averages of gradients of the density profile. Since the currents jx,x+e have, by con-
struction, zero canonical expectation with respect to any canonical measure on any
set� � x, x+ e, in order to approximate Avx jx,x+e with suitable averages of gra-
dients of the density field, one is forced to subtract from these gradients appropriate
canonical expectations. Therefore, a key point in order to establish the hydrody-
namical limit, is to prove that these “counter terms” vanish as ε ↓ 0. These kind of
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terms arise also in the hydrodynamical limit of non–disordered lattice gases (see
[37], section 7) with short range interaction. In our context however their nature is
quite different and, as we will show next, they are basically produced by fluctuations
in the disorder field.

In order to be more precise recall first, for any given e ∈ E , the notation
�

1,e
n ,�

2,e
n and �e

n := �
1,e
n ∪ �

2,e
n described in section 2.1, together with the

associated densities m1,e
n := m

�
1,e
n
, m

2,e
n := m

�
2,e
n
, me

n := m�e
n
.

Using the above notation and given two integers n ≤ s and a vector e ∈ E , the
basic object of our investigation is defined as (see (4.32)):

φn,s := µ[m2,e
n −m1,e

n |me
s ] (5.1)

Notice that if the disorder configuration α was identical in the two cubes �1,e
n and

�
2,e
n then φn,n would be identically equal to zero. Moreover E

(
φn,s

) = 0 and
E

(
[φn,s]2

) = O(n−d) uniformly in s ≥ n.

Remark 5.1. The fact that φn,s is small (on some average sense) with n and not with
s is one of the main differences with non disordered lattice gases where, instead,
the analogous term goes very fast to zero as s ↑ ∞ (see [37], section 10).

The main result of this section is the proof that the contribution to the hydrody-
namical limit of suitable spatial averages of φn,n

n
is negligible as ε ↓ 0 at least in

dimension d ≥ 3.
In order to be more precise let us introduce the following equivalence relation.

Definition 5.2. Given two families of functions fx,n,a,ε(α, η) and gx,n,a,ε(α, η)

with x ∈ T
d
ε , n ∈ N, a > 0, ε > 0 we will write fx ≈ gx if, for any given T > 0

and for almost all disorder configurations α,

lim sup
n↑∞,a↓0,ε↓0

Avx∈Tdε
sup

|β|≤T
sup
ν

sup specL2(ν)

× {
ε−1β(fx − gx)+ ε−2Avb∈�x,2a/εLb

} ≤ 0

where supν is the supremum over ν in the set M(�x,2 a
ε
) of all the canonical mea-

sures on �x,2 a
ε
.

We are now in a position to state our main result. Assume that a given direction
e has been fixed once and for all and, given two integers � ≤ s with s

�
∈ N and

x ∈ T
d
ε , recall the definition of the spatial average Av�,sz,x given in (2.2).

Theorem 5.3. For any d ≥ 3

Av
n, a

ε
z,x τz

φn,n

n
≈ 0 .

Before discussing the plan of the proof of the theorem we would like to justify the
restriction d ≥ 3. If we pretend that the particle density is constant everywhere,
say equal to m, then

sup specL2(ν)

{
ε−1βAv

n, a
ε

z,x τz
φn,n

n
+ ε−2Avb∈�x,2a/εLb

}

≤ ε−1βAv
n, a

ε
z,x τz

φn,n(m)

n
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Since the typical fluctuations (in α) of the quantity

ε−1Av
n, a

ε
z,x τz

φn,n(m)

n

are of the order of ε
d−2

2 C(a, n), necessarily we must assume d ≥ 3 since ε ↓ 0
before a ↓ 0 and n ↑ ∞.

5.1. Plan of the proof of theorem 5.3.

The main difficulty in proving theorem 5.3 lies in the fact that first ε ↓ 0 and only
afterward n ↑ ∞. In particular there is no hope to beat the diverging factor ε−1

appearing in definition 5.2 with the typical smallness O(n− d+2
2 ) of φn,n

n
. The main

idea is therefore first to try to prove that

Av
n, a

ε
z,x τz

φn,n

n
≈ Av

s, a
ε

z,x τz
φs,s

s
(5.2)

where the new mesoscopic scale s = s(ε) diverges sufficiently fast as ε ↓ 0.
By standard large deviations estimates (see lemma 6.7) it is simple to verify that,
given 0 < δ � 1 and 0 < γ < 1, for almost every disorder configuration α and
s = O(ε−γ )

sup
x∈Tdε

|τx φs,s | ≤ Cs−
d
2 +δ (5.3)

for any ε small enough. In particular, by a trivial L∞ estimate,

Av
s, a
ε

z,x τz
φs,s

s
≈ 0 if γ >

2

d + 2
. (5.4)

The above simple reasoning suggests to define a first mesoscopic critical scale

s∞ := ε− 2
d+2 above which things become trivial. It is important to outline that we

will not be able to prove (5.2) with s � s∞ but only with s = s̄ where s̄ := εδs∞
and 0 < δ � 1 can be taken arbitrarily small.

Once we have reached scale s̄ we cannot simply use L∞ bounds but we need
to appeal to an improved version of the well known Two Blocks Estimate (see

proposition 5.9 below) in order to conclude that Av
s̄, a
ε

z,x τz
φs̄,s̄
s̄

≈ 0.
We now explain the main steps in the proof of (5.2) with s = s̄. As discussed

in subsection 4.1, a main tool for estimating eigenvalues is given by localization
together with perturbation theory. However, because of proposition 4.2, it turns out
that this technique can be applied to prove (5.2) only if

εsd+2‖Av
n, a

ε
z,x τz

φn,n

n
− Av

s, a
ε

z,x τz
φs,s

s
‖∞ ≤ const,

that is if εsd+2 ≤ const. In particular we see immediately that this approach cannot
be used directly to prove (5.2) for s = s̄, but only up to a new critical mesoscopic

scale s0 := ε− 1
d+2 .
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Assuming that we have been able to replace Av
n, a

ε
z,x τz

φn,n
n

with Av
s0,

a
ε

z,x τz
φs0,s0
s0

,
we face the problem to increase the mesoscopic scale from s0 to s̄.

The main observation now is that theL∞ norm of the new quantity Av
s0,

a
ε

z,x τz
φs0,s0
s0

is at least smaller than s
− d+2

2
0 (see (5.3)) almost surely (here and in what follows

we deliberately neglect the correction sδ appearing in (5.3)). This means that the
limit scale beyond which perturbation theory cannot be applied, previously equal
to s0, is now pushed up to a new scale s1 given by

εsd+2
1 s

− d+2
2

0 ≤ const ⇒ s1 = ε
− 3

2(d+2)

The above remark clearly suggests an inductive scheme on a sequence of length
scales {sk}k≥0 given by

s0 := ε− 1
d+2 ; sk+1 := ε− 1

d+2
√
sk

in which one proves recursively, by means of localization on scale sk+1 combined
together with perturbation theory, that

Av
sk,

a
ε

z,x τz
φsk,sk

sk
− Av

sk+1,
a
ε

z,x τz
φsk+1,sk+1

sk+1
≈ 0.

Notice that limk→∞ sk = s∞ where s∞ = ε− 2
d+2 represents the limiting scale

introduced at the beginning of this section.
A large but finite number of steps of the inductive scheme proves that

Av
n, a

ε
z,x τz

φn,n

n
− Av

s̄, a
ε

z,x τz
φs̄,s̄

s̄
≈ 0

where, as before, s̄ = εδs∞. We remark that for this part of the proof we only need
d ≥ 2, while we will assume d ≥ 3 when proving the improved version of the Two
Blocks estimate (see proposition 5.9).

5.2. Preliminary tools.

In this section we collect some general techniques that are common to all the steps
of the proof of theorem 5.3. We recall that �e

z,� denotes the translated by z of the
box �e

�.

Lemma 5.4. Let �0 < �1 < �2 be odd integers such that �2
�0

∈ N. Let ν be an
arbitrary canonical measure on the cube�2�2 and let f be a function with support
in �e

�1
. Then

sup specL2(ν){Av�0,�2
z,0 τzf + Avb∈�2�2

Lb} ≤
Av�0,�2

z,0 sup
ν′

sup specL2(ν′){τzf + cAvb∈�e
z,�1

Lb}

where ν′ varies in Mα(�e
z,�1

) and c is a suitable constant.
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Proof. It is sufficient to observe that

Avb∈�2�2
Lb ≤ cAv�0,�2

z,0

(
Avb∈�e

z,�1
Lb

)

and localize in the box �e
z,�1

. ��
At this point, it is convenient to observe the factorization property of the average
Av�,sz,x defined in (2.2): given odd integers �, �′, L such that �

′
�
, L
�′ ∈ N, then

Av�,Lz,x fz = Av�
′,L
z,x

(
Av�,�

′
w,zfw

)
. (5.5)

Proposition 5.5. Let d ≥ 2, 0 < γ ≤ γ ′ < 1 and γ ′ < 1
d+2 + γ

2 . If either � = n

and s = O
(
ε− 1

d+2
)

or � = O(ε−γ ) and s = O(ε−γ ′
), then

Av
�, a
ε

z,x τz
φ�,s

�
≈ Av

s, a
ε

z,x τz
φs,2s

s
.

Proof. By the factorization property (5.5), we have

Av
�, a
ε

z,x τz
φ�,s

�
− Av

s, a
ε

z,x τz
φs,2s

s
= Av

s, a
ε

z,x

[
Av�,sw,zτw

φ�,s

�
− τz

φs,2s

s

]
.

Therefore, by lemma 5.4, it is enough to prove that for any T > 0 and for almost
all disorder configuration α

lim sup
n↑∞,a↓0,ε↓0

Avx∈Tdε
sup

|β|≤T
sup

ν∈Mα(�e
x,2s )

fx,ν ≤ 0 (5.6)

where

fx,ν := sup specL2(ν)

{
ε−1β

[
Av�,sz,xτz

φ�,s

�
− τx

φs,2s

s

]
+ cε−2Avb∈�e

x,2s
Lb

}

for a suitable constant c. Notice that τx
φs,2s
s

= ν
(
Av�,sz,xτz

φ�,s
�

)
ν a.s..

Because of lemma 6.7, given 0 < δ � 1, for almost all α and ε small enough

sup
x∈Tdε

∥
∥τx

φ�,s

�

∥
∥∞ ≤

{
�−1 if � = n

�−(d+2)/2+δ if � = O(ε−γ )

Thanks to the above bound, to the choice γ ′ < 1
d+2 + γ

2 and the fact that minν
gap(L�e

x,2s
, ν) ≥ cs−2 (see 4.13), for almost all α and ε small enough we can apply

proposition 4.2 together with lemma A.5 to get

sup
ν∈Mα(�e

x,2s )

fx,ν ≤ c T 2�−2sd+2 sup
m
F(x,m) (5.7)

where m varies among all possible particle densities in �e
x,2s and

F(x,m) := Varµλx(m)
(
Av�,sz,x τzφ�,s

)

and λx(m) := λ�e
x,2s
(m).
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We claim that for almost all α and ε small enough

sup
x∈Tdε

sup
m
F(x,m) ≤ c s−2d+2δ (5.8)

thus proving the proposition since d ≥ 2. The proof of (5.8) follows exactly the
same lines of the proof of proposition 6.5 with the main difference that it is nec-
essary to use lemma 6.4 in order to control the empirical chemical potentials (see
also section 4.7 in [14]) ��
Proposition 5.6. Let d ≥ 2, 1

d+2 ≤ γ ≤ γ ′ < 1 and γ ′ < 1
d+2 + γ

2 . Set s =
O(ε−γ ) and s′ = O(ε−γ ′

). Then

Av
s, a
ε

z,x τz
φs,s

s
≈ Av

s, a
ε

z,x τz
φs,s′

s
.

Proof. By lemma 5.4 it is enough to prove that for any T > 0 and for almost every
disorder configuration α

lim sup
a↓0,ε↓0

Avx∈Tdε
sup

|β|≤T
sup

ν∈Mα(�e
x,s′ )

fx,ν ≤ 0

where

fx,ν := sup specL2(ν)

{
ε−1βτx

[φs,s

s
− φs,s′

s

]
+ cε−2Avb∈�e

x,s′
Lb

}

for a suitable constant c. Notice that ν(φs,s) = φs,s′ ν a.s..
Because of lemma 6.7, given 0 < δ � 1, for almost all α and ε small enough

sup
x∈Tdε

∥
∥τx

φs,s

s

∥
∥∞ ≤ s−(d+2)/2+δ.

Thanks to the above bound and to the choice γ ′ < 1
d+2 + γ

2 , for almost every α
and ε small enough, we can apply proposition 4.2 together with lemma A.5 to get

sup
ν∈Mα(�e

x,s′ )
fx,ν ≤ c T 2s−2(s′)d+2 sup

m
F(x,m), (5.9)

where m varies among all possible particle densities in �e
x,s′ ,

F(x,m) := Varµλx(m)
(
τxφs,s)

and now λx(m) = λ�e
x,s′
(m).

We claim that for almost all α and ε small enough

sup
x∈Tdε

sup
m
F(x,m) ≤ c s−2d+2δ (5.10)

thus proving the proposition because of the constraint on γ, γ ′, d . The proof of
(5.8), requiring d ≥ 2, follows exactly the same lines of the proof of proposition
6.5 with the main difference that it is necessary to use lemma 6.4 in order to control
the empirical chemical potentials (see also section 4.6 in [14]) ��
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5.3. From scale n to scale s0

Here we show how to replace the starting scale n with our first mesoscopic scale

increasing with ε, s0 = O
(
ε− 1

d+2
)
.

Proposition 5.7. Let d ≥ 3. Then

Av
n, a

ε
z,x τz

[φn,n

n
− φn,s0

n

]
≈ 0. (5.11)

Proof. Without loss of generality, we assume that s0
n

∈ N and similarly for a/ε
n

.

By the definition of Av
n, a

ε
z,x and setting B = Qa/ε ∩ nZ

d , in order to prove
(5.11) it is enough to show that

lim sup
n↑∞,a↓0,ε↓0

Avx∈Tdε
sup

|β|≤T
sup
ν

sup specL2(ν)

× {
ε−1βAvz∈B+xτzfn,s0 + c ε−2Avb∈�x,3a/2εLb

} ≤ 0 (5.12)

where fn,s0 := φn,n
n

− φn,s0
n

and ν varies in M(�x,3a/2ε). The proof is nothing more

than a careful writing of the spatial average Av
n, a

ε
z,x together with the sub-additivity

property of sup spec.
Setting B ′ = Qs0 ∩ nZ

d , Y = Qa/ε ∩ s0Z
d we can write B = ∪y∈Y (B ′ + y)

so that
Avz∈B+xτzfn,s0 = Avy∈Y+xAvz∈B ′+yτzfn,s0

and
Avb∈�x,3a/2εLb ≤ cAvy∈Y+xAvb∈�y,2s0

Lb .
By the sub-additivity property of sup spec, (5.12) is bounded from above by

lim sup
n↑∞,a↓0,ε↓0

Av
x∈Tdε

sup
|β|≤T

supν sup specL2(ν){ε−1βAv(n)y∈Qs0
τx+yfn,s0

+ c ε−2Avb∈�x,2s0
Lb}

where ν varies among M(�x,2s0) and Av(n)y∈� := Avy∈�∩ nZd .
At this point we can apply perturbation theory (see proposition 4.2): since

limn↑∞ supε>0 εs
d+2
0 ‖fn,s0‖∞ = 0, it is enough to prove that for almost all disor-

der α

lim sup
n↑∞,ε↓0

1

n2 Avx∈Tdε
supν∈M(�x,2s0 )

�(ν)
s0

(
τx

[
φn,n − φn,s0

]) = 0 (5.13)

where
�(ν)
s0
(f ) = sd0 ν

(
Av(n)y∈Qs0

τyf, (−L�2s0
)−1Av(n)y∈Qs0

τyf
)
.

In order to prove (5.13) it is clearly sufficient to prove it with φn,n replaced by
φn,n4 , provided one is able to show that for almost every disorder α

lim sup
n↑∞,ε↓0

1

n2 Avx∈Tdε
supν∈M(�x,2s0 )

�(ν)
s0

(
τx

[
φn,n − φn,n4

]) = 0. (5.14)
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We will concentrate only on the first step and refer the reader to section 4.5 in [14]
for the details of the proof of (5.14).

Given ν ∈ M(�2s0) we first estimate �(ν)
s0

(
φn,n4 − φn,s0

)
as follows (a similar

bound will then be applied to any translation by x).
Assume, without loss of generality, that s0 = N4 for some N ∈ N and set

�k := k4 for any k ∈ N. Then, given 0 < ρ � 1, by Schwarz inequality,

�(ν)
s0
(φn,n4 − φn,s0) ≤ cρ

N−1∑

k=n
k1+ρ �(ν)

s0
(φn,�k − φn,�k+1).

In order to estimate �(ν)
s0 (φn,�k − φn,�k+1) we divide Qs0 in cubes {Qi,k}i∈Ik with

side �k where, without loss of generality, we assume that s0/�k ∈ N and similarly
for �k/n. Let Q̄i,k be the cube of side 10�k concentric to Qi,k . Then by lemma 6.1
with

I := Ik+1, � := �2s0 , �i := Q̄i,k+1, fi := Av(n)x∈Qi,k+1
τx[φn,�k − φn,�k+1 ]

we obtain (thanks also to lemma A.5)

�(ν)
s0
(φn,�k − φn,�k+1) ≤ c �d+2

k+1Avi∈Ik+1Varµλ
(

Av(n)x∈Qi,k+1
τx[φn,�k − φn,�k+1 ]

)

(5.15)

where µλ is the grand canonical measure corresponding to ν.
Let now J be the set of possible densities on �2s0 . Then, thanks to (5.15), it is

enough to prove that, for ρ small enough and for almost every disorder α,

lim
n↑∞,ε↓0

Avx∈Tdε

1

n2

N∑

k=n+1

k1+ρ�d+2
k Avi∈Ik sup

m∈J
Var

µ
λ(m)
�x,2s0

×
(

Av(n)y∈x+Qi,k
τyφn,�k

)
= 0 (5.16)

and similarly with φn,�k replaced by φn,�k−1 .
Given γ > 0 we set Jk = {�−γk , 2�−γk , . . . , 1 − �

−γ
k }. Then, using (A.1), the

variance in (5.16) can be bounded from above by

Var
µ
λ(m̄)

x+Q̄i,k

(
Av(n)y∈x+Qi,k

τyφn,�k

)
+ c�

d−γ
k

provided that m̄ ∈ Jk satisfies |m̄−m| ≤ �
−γ
k .

Therefore, by choosing γ large enough, we can replace in (5.16) µλ(m)�x,2s0
by

µ
λ(m)

x+Q̄i,k
and J by Jk . We can at this apply proposition 6.6 to get that

sup
m∈Jk

Var
µ
λ(m)

Q̄i,k+x

(
Av(n)y∈x+Qi,k

τyφn,�k

)
≤ cIAc

x,i,k
(α)�−2d+2δ

k + IAx,i,k
(α) , (5.17)



572 A. Faggionato, F. Martinelli

where Ax,i,k is a set of disorder configurations in x+ Q̄i,k with P(Ax,i,k) ≤ e−c �
δ
k ,

δ > 0.
Therefore

l.h.s. of (5.16) ≤ lim
n↑∞,ε↓0

n−2
N∑

k=n+1

k1+ρ�d+2
k Avx∈Tdε

Avi∈Ik IAx,i,k

+ lim
n↑∞,ε↓0

n−2
N∑

k=n+1

k1+ρ�2−d+2δ
k . (5.18)

The second addendum in the r.h.s. of (5.18) is zero because of the definition of �k
and the condition d ≥ 3.

Let us consider the first addendum in the r.h.s. of (5.18). By Chebyschev inequal-
ity, for any q > 0 and any x, k

P
(

Avi∈Ik IAx,i,k
≥ �

−q
k

) ≤ P
( ∃i ∈ Ik : IAx,i,k

≥ �
−q
k

)

≤ sd0 �
q−d
k e−c �

δ
k . (5.19)

Moreover, by setting ĪAx,i,k
= IAx,i,k

− P
(Ax,i,k

)
, we have for any r ∈ N and any

x, k

P
(

Avi∈Ik IAx,i,k
≥ �

−q
k

) ≤ cr�
2rq
k E

[(
Avi∈Ik ĪAx,i,k

)2r] ≤ c′r�
2rq+dr
k s−dr0 (5.20)

By taking the geometric average of the two estimates (5.19) and (5.20) we finally
obtain

P
(

Avi∈Ik IAx,i,k
≥ l

−q
k

) ≤ c(q, r)s
−d(r−1)/2
0 .

It is enough at this point to choose q and r large enough, define

�ε := { ∃x ∈ T
d
ε : Avi∈Ik IAx,i,k

≥ �
−q
k for some k ≤ N },

and apply Borel-Cantelli lemma to get that also the first addendum in the r.h.s. of
(5.18) is negligible. ��

5.4. From scale sk to scale sk+1.

Here we define precisely the sequence of length scales sk and discuss the details of
the inductive step sk → sk+1 described section 5.1.

Let {ak}k≥0 be defined inductively by

a0 = 1 and ak+1 = 1 + (1

2
− 1

2k+1

)
ak

It is easy to verify that the sequence {ak}k≥0 is increasing with limk→∞ ak = 2.

Let also sk := ε− ak
d+2 .

Proposition 5.8. Let d ≥ 2. Then

Av
sk,

a
ε

z,x τz
φsk,sk

sk
≈ Av

sk+1,
a
ε

z,x τz
φsk+1,sk+1

sk+1
∀k ≥ 0. (5.21)
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Proof. In order to prove (5.21) observe that, by construction, the two exponents
ak
d+2 and ak+1

d+2 satisfy the conditions of propositions 5.5 and 5.6 with γ := ak
d+2 and

γ ′ := ak+1
d+2 . Therefore we have the following chain of equivalences:

Av
sk,

a
ε

z,x τz
φsk,sk

sk
≈ Av

sk,
a
ε

z,x τz
φsk,sk+1

sk
≈ Av

sk+1,
a
ε

z,x τz
φsk+1,2sk+1

sk+1

Finally, using again proposition 5.6 with s=sk+1 and s′ =2s, we obtain (5.21). ��

5.5. Analysis of φs̄,s̄
s̄

via an improved Two Blocks Estimate

Here we describe the final step in the proof of theorem 5.3, namely we show that

Av
s̄, a
ε

z,x τz
φs̄,s̄

s̄
≈ 0

where s̄ = εδs∞ and s∞ = ε− 2
d+2 (see section 5.1). The basic tool is represented by

the following improved version of the Two Blocks Estimate (see e.g. [22]), whose
proof mainly relies on the same techniques used for proving proposition A.9 (see
section 4.10 in [14]).

Proposition 5.9 (Improved Two Blocks Estimate). Let d ≥ 3, 0 < γ < γ ′ < 1
and set s = ε−γ , � = ε−γ ′

. Then, for any r such that 0 < r < min
( 2(1−γ ′)

d+4 ,
γ
2

)

and for almost every disorder configuration α

lim sup
a↓0,ε↓0

Avx∈Tdε
sup
ν

sup specL2(ν)

× {
ε−rAv

�, a
ε

w,x Av
s,�
z,w |me

z,s −me
w,�| + ε−2Avb∈�x,2 aε

Lb
} ≤ 0

where ν varies among M(�x,2 a
ε
).

Corollary 5.10. Let d ≥ 3 and 0 < δ � 1. Then

Av
s̄, a
ε

z,x τz
φs̄,s̄

s̄
≈ 0. (5.22)

Proof. For simplicity of notation we omit the bar in s̄ and we set�m := m
2,e
s −m1,e

s

and N := N�e
s
.

Let φ̂s,s(η) = µ
λ(mes (η))

�e
s

(�m). Then, by the equivalence of ensembles (see

proposition A.4), it is enough to prove (5.22) with φs,s replaced by φ̂s,s . Let m be
a particle density on �e

s that, without loss of generality, we can suppose in (0, 1
2 )

and set λ := λ�e
s
(m) and λ0 := λ0(m). Then, by Taylor expansion,

µλ(�m) = µλ0(�m)+ µλ0(�m;N)(λ− λ0)+ µλ
′
(�m;N;N)(λ− λ0)

2

(5.23)

where λ′ is between λ and λ0.
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Let us observe that |µλ′
(�m;N;N)| ≤ c, while by lemma A.3

|λ− λ0| ≤ c |1 − µλ0(me
s)

m
|.

Moreover, E
[
µλ0(me

s)
] = m and E

[
µλ0(�ms;N)

] = 0. Therefore, thanks to the

large deviations estimate of lemma A.1 applied to the function f (α) := µλ0 (η0)
m

−1,
for any β ∈ (0, 1) and ε small enough

P(|λ− λ0| ≥ s−
d
2 + β

2 ) ≤ P(|Avx∈�e
s
τx f | ≥ 1

c
s−

d
2 + β

2 ) ≤ e−cs
β

.

A similar reasoning applies to the term µλ0(�m;N) if we consider instead the
function f (α) := µλ0(η0; η0)− E

(
µλ0(η0; η0)

)
. The above bounds together with

the fact that the number of possible choices of m is polynomially bounded in s
and together with Borel Cantelli lemma, implies in particular that for almost all
disorder configuration α and for ε small enough

sup
x∈Tdε

‖τx( φ̂s,s − µλ0(m
e
s )(�m) )‖∞ ≤ s−d+β.

Thanks to the above estimate it is enough to prove (5.22) with φs,s replaced by
µλ0(m

e
s )(�m), that is

Av
s, a
ε

z,x µ
λ0(m

e
z,s )

(
τz
m

2,e
s −m

1,e
s

s

)
≈ 0. (5.24)

We assert that we only need to show that

l.h.s. of (5.24) ≈ Av
�, a
ε

z,x µ
λ0(m

e
z,�)

(
τz
m

2,e
� −m

1,e
�

�

)
(5.25)

where � = ε1−ρ is a new mesoscopic scale with 0 < ρ < 1 so small that s < �

and ε−1�−
d+2

2 ↓ 0 as ε ↓ 0. In fact, thanks to lemma A.1 applied with f (α) :=
µ
λ0(m

e
z,�)(η0 − η�e), given 0 < β � 1 for almost every disorder configuration α

and for ε small enough the r.h.s. of (5.25) is bounded by �−
d+2

2 +β . Because of our
choice of �, the r.h.s. of (5.25) is equivalent to 0.

Let us prove (5.25). To this aim, we observe that thanks to (5.5) and (4.27)

l.h.s. of (5.24) = Av
�, a
ε

w,x Avs,�z,w µ
λ0(m

e
z,s )

(
τz
�m

s

)
,

r.h.s. of (5.25) = Av
�, a
ε

w,x Avs,�z,w µ
λ0(m

e
w,�)

(
τz
�m

s

)
.

Therefore, we only need to prove that

Av
�, a
ε

w,x Avs,�z,w
(
µλ0(m

e
z,s )

(
τz
�m

s

) − µ
λ0(m

e
w,�)

(
τz
�m

s

)) ≈ 0.
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Let us assume for the moment that, given 0 < β � 1, for almost all disorder
configuration α and ε small enough

sup
x∈Tdε

|µλ0(m)
(
τx�m

) − µλ0(m
′)(τx�m

)|

≤ cs−
d
2 +β |m−m′| + cs−

d
2 −β ∀m,m′ ∈ [0, 1]. (5.26)

Then it is simple to deduce (5.25) from (5.26) and proposition 5.9 with γ = 2
d+2 −

δ , γ ′ = 1 − ρ and r = −δβ + d+2
2 δ + 2

d+2β by choosing suitable 0 < β � δ �
ρ � 1.

It remains to prove (5.26). For simplicity of notation, let us consider only the
case x = 0 (the general case is a simple variation). By continuity, we may assume
0 < m < m′ < 1 and by Taylor expansion,

|µλ0(m
′)(�m

) − µλ0(m)
(
�m

)| = |µλ0(m̄)(�m;N)λ′
0(m̄)(m

′ −m)|

≤ c |µ
λ0(m̄)(�m;N)

m̄
|(m′ −m)

wherem < m̄ < m′. If we could restrict the possible values of m̄ to {s−d , 2s−d , . . . ,
1−s−d}, then, by means of large deviations estimate as in the first part of the proof,

we would obtain 1
m̄

|µλ0(m̄)(�m;N)| ≤ c s−
d
2 +β for almost every disorderα and for

ε small enough, thus implying (5.26). The complete proof requires some additional
straightforward computations (see also section 4.10 in [14]). ��

6. Some technical results needed in section 5

In this section we collect some technical results, mostly based on estimates of large
deviations in the disorder field α, that are used in the proof of theorem 5.3. Our
bounds mainly concern canonical or grand canonical variances of suitable spatial
averages of local functions. Such variances arise naturally from eigenvalue esti-
mates via perturbation theory. We have seen in fact that, when perturbation theory
applies (see proposition 4.2), the maximal eigenvalue is bounded by an expression
containing an H−1 norm that, in general, can be bounded from above by:

ν
(
f,−L−1

� f
) ≤ c �2Varν(f ) ≤ c �2Varµ(f ) (6.1)

where ν is a canonical measure on the cube� of side �with disorder α,µ is the cor-
responding grand canonical measure (with suitable empirical chemical potential)
and f is a (mean zero w.r.t. ν) function. Above we used the spectral gap bound
gap(L�) ≥ c�−2 together with lemma A.5.

When the function f is the spatial average of local functions {fi}i∈I each with
support much smaller than � it is possible to do better than (6.1). We have in fact:

Lemma 6.1. Let � be a box in Z
d and {�i}i∈I be a family of cubes �i ⊂ � with

side R satisfying
∣
∣ {i ∈ I : x ∈ �i}

∣
∣ ≤ 1010d ∀x ∈ �.
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Let f = Avi∈I fi where, for any i ∈ I and for all α, fi has support in �i and has
zero mean w.r.t. any canonical measure on �i . Then, for any canonical measure ν
on � with disorder configuration α,

ν
(
f,−L−1

� f
) ≤ c R2|I |−1Avi∈I ν

(
Varν(fi | Fi )

)
.

Proof. Let Fi := σ(m�i
, ηx with x �∈ �i) and observe that

ν(fi, g) = ν
(
ν(fi; g | Fi )

) ∀ g
Thus, by Schwarz and Poincaré inequalities and the diffusive scaling of the spectral
gap

|ν(f, g)| ≤ c RAvi∈I ν
{ [

Varν(fi | Fi )D�i

(
g; ν(·|Fi )

)]1/2 }

≤ c R |I |−1/2
(

Avi∈I ν
(

Varν(fi | Fi )
))1/2D�(g; ν)1/2.

It is enough now to take g = −L−1
� f . ��

6.1. Variance bounds.

One of the key issues is to provide sharp enough upper bounds (see proposition 6.5
below) on the variance

Varµλ0(m)

(
Avx∈�k

τxφn,s
)

(6.2)

where n, s, k are positive integers satisfying n ≤ s ≤ k and m ∈ (0, 1
2 ) and φn,s

has been defined in (5.1). Actually the method developed below is very general and
it can be used to estimate also other similar variances, like for example (6.2) with
λ0(m) replaced by the empirical chemical potential λ�k

(α,m).
It is convenient to define first some additional convenient notation besides those

already defined at the beginning of section 5:

φ̂n,s(η) := µ
λ(mes )

�e
s

(m2,e
n −m1,e

n )

ξ0(m) := µλ0(m)(m2,e
n −m1,e

n ;N�e
n
)

ξ(m) := µ
λ(m)
�e
s
(m2,e

n −m1,e
n ;N�e

s
)

σ 2
0 (m) := µλ0(m)(me

s;N�e
s
)

σ 2(m) := µ
λ(m)
�e
s
(me

s;N�e
s
), (6.3)

where N�e
n
, N�e

s
denote the particle number respectively in the box �e

n and �e
s .

Let us recall the definition of static compressibility χ(m) = E
(
µλ0(m)( η0; η0 )

)
.

Moreover, given 0 < δ � 1 and a site x, we define the events:

Mx(m) := {|me
x,s(η)−m| ≥ √

ms−
d
2 + δ

2 }
A(1)
x (m) := { 1

m
|m− µλ0(m)(me

x,s)| ≥ s−
d
2 + δ

2
}

A(2)
x (m) := { ∣

∣τx
σ 2

0 (m)

χ(m)
− 1

∣
∣ ≥ s−

d
2 + δ

2
}

(6.4)
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Remark 6.2. Notice that the first event is an event for the particles configuration η
while all the others are events for the disorder field.

Lemma 6.3. There exists s0(δ) such that the following holds for any s ≥ s0(δ).
Assume n ≤ s, 4s−d+δ ≤ m ≤ 1/2, η �∈ Mx(m) and α �∈ A(1)

x (m) ∪ A(2)
x (m).

Then, for any site y,

∣
∣
∣∇y[τxφ̂n,s](η)− (1 − 2ηy)

2sd
τx
ξ0(m)

χ(m)

∣
∣
∣ ≤ c s−d

{ s−d

m
+ 1√

m
s−

d
2 + δ

2

}
. (6.5)

Proof. By Lagrange theorem we can write

∇y[τxφ̂n,s](η) =
∫ mex,s (η

y)

mex,s (η)

τx
ξ(m′)
σ 2(m′)

dm′. (6.6)

Assume m′ in the interval with end-points me
x,s(η) and me

x,s(η
y). Then, by lemma

A.2,

ξ0(m
′) ≤ c m′, ξ(m′) ≤ c m′, σ 2

0 (m
′) ≥ c m′, σ 2(m′) ≥ c m′, χ(m′) ≥ c m.

Moreover, since η �∈ Mx(m), m′ ≥ c m if s is large enough depending on δ.
Therefore, by lemma A.3

∣
∣
∣τx

ξ(m′)
σ 2(m′)

− τx
ξ0(m

′)
σ 2

0 (m
′)

∣
∣
∣ ≤ c

m
|m′ − µλ0(m

′)(me
x,s)|, (6.7)

∣
∣
∣τx

ξ0(m
′)

σ 2
0 (m

′)
− τx

ξ0(m)

σ 2
0 (m)

∣
∣
∣ ≤ c

m
|m′ −m| ≤ c

m
|me

x,s(η)−m| + c

m
s−d , (6.8)

∣
∣
∣τx

ξ0(m)

σ 2
0 (m)

− τx
ξ0(m)

χ(m)

∣
∣
∣ ≤ c

∣
∣
∣τx

σ 2
0 (m)

χ(m)
− 1

∣
∣
∣. (6.9)

By lemma A.3 and the assumption α �∈ A(1)
x (m), the r.h.s. of (6.7) can be bounded

from above by

c

m
|m− µλ0(m)(me

x,s)| + c

m
s−d ≤ c

[
s−

d
2 + δ

2 + 1

m
s−d

]
. (6.10)

Similarly, the contribution of the r.h.s. of (6.8) together with (6.9) can be bounded
from above by

c
[ s−d

m
+ 1√

m
s−

d
2 + δ

2

]
(6.11)

The thesis follows immediately from (6.6) together with (6.10), (6.11). ��
Lemma 6.4. There exists s0(δ) such that the following holds for any s ≥ s0(δ).
Let n ≤ s, m ∈ (0, 1

2 ), and let λ(α) be a bounded measurable function such that
for any disorder configuration α

|λ(α)− λ0(m)| ≤ s−
d
2 + δ

4 . (6.12)
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Then, for any s ≥ s0(δ) and any finite set � ⊂ Z
d ,

P
(
µλ(α)

(∪x∈�Mx(m)
) ≥ |�|e−sδ/2

)
≤ c e−s

δ/2
. (6.13)

Proof. By the Chebyshev inequality and the translation invariance of P, the l.h.s.
of (6.13) can be bounded from above by exp(sδ/2)E

[
µλ(α)(M0(m))

]
.

Let us bound the term

es
δ
2
E

[
µλ(α)

(
me
s −m ≥ √

ms−
d
2 + δ

2
)]
. (6.14)

Thanks again to Chebyshev inequality, for any 0 < t < 1 (6.14) can be bounded
from above by

es
δ
2 −2t

√
ms

d
2 + δ

2
E

[ ∏

x∈�e
s

µλ(α)
(
et(ηx−m)

)]
. (6.15)

Using the basic assumption (6.12) and Lagrange theorem, it is not difficult to see
that

µλ(α)
(
et(ηx−m)

) ≤ (1 + c tms−
d
2 + δ

4 )µλ0(m)
(
et(ηx−m)

)

so that (6.15) is bounded from above by

es
δ
2 −2t

√
ms

d
2 + δ

2 +c tms d2 + δ
4
E

[
µλ0

(
et(η0−m))]2sd

.

Since ex ≤ 1 + x + 2 x2 if |x| ≤ 1, the above expression is bounded from above
by

exp
(
s
δ
2 − 2t

√
ms

d
2 + δ

2 + c t ms
d
2 + δ

4 + c t2msd
)
.

The thesis follows by choosing t such that t2m = s−d+δ/2. ��
We are finally in a position to state our main bound on the variance appearing in
(6.2).

Proposition 6.5. For d ≥ 2 there exists s0(δ) such that the following holds for
any s ≥ s0(δ). Let m ∈ (0, 1

2 ) and let n ≤ s ≤ k ≤ 1000s. Then there exists a

measurable set A with P(A) ≤ k2de− csδ/2 such that

Varµλ0(m)

(
Avx∈�k

τxφn,s
) ≤ cIAc (α)s−2d+2δ + IA(α). (6.16)

Proof. Let us consider first the case of “low density” m ≤ 4s−d+δ .
Since |τxφn,s | ≤ c me

x,s , |Avx∈�k
τxφn,s | ≤ c m�2k and therefore the l.h.s. of

(6.16) can be bounded from above by

µλ0(m)(m2
�2k

) ≤ c(k−dm+m2) ≤ cs−2d+2δ.

Let us now consider the “high density” case m ≥ 4s−d+δ .
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By the equivalence of ensembles (see propositionA.4), in the l.h.s. of (6.16) φn,s
can be substituted by φ̂n,s with an error of order s−2d . Therefore, by the Poincaré
inequality

Varµλ0(m) (f ) ≤ c mµλ0(m)(
∑

y

|∇yf |2), (6.17)

it is enough to estimate

c mµλ0(m)
[ 1

k2d

∑

y∈�2k

( ∑

x∈�k∩�y,s

∇y[τxφ̂n,s]
)2

]
. (6.18)

To this aim we set (recall (6.4))

M := ∪x∈�k
Mx(m) A0 := {

µλ0(m)
(M) ≥ kd exp(−sδ/2) },

A1 := ∪x∈�k
A(1)
x (m) A2 := ∪x∈�k

A(2)
x (m)

A3 := ∪y∈�2k

{ ∣
∣
∣Avx∈�k∩�y,s

[
τx
ξ0(m)

χ(m)

] ∣
∣
∣ ≥ |�k ∩�y,s |− 1

2 + δ
2d

}
,

A := A0 ∪ A1 ∪ A2 ∪ A3.

We first estimate

IAc (α)mµλ0(m)
[
IMc

1

k2d

∑

y∈�2k

( ∑

x∈�k∩�y,s

∇y[τxφ̂n,s]
)2

]
. (6.19)

By lemma 6.3, for s large enough (6.19) can be bounded from above by

c

k2d IAc (α)Avy∈�k

[ 1

sd

∑

x∈�k∩�y,s

τx
ξ0(m)

χ(m)

]2 + c
s−d+δ

kd
(6.20)

By straightforward computations and the definition of A3 the first addendum in
(6.20) can be bounded by c k−ds−d+δ . Moreover, because of the definition of A0,
expression (6.19) with IMc replaced by IM can be bounded by c s2de−sδ/2 .

In conclusion

IAc (α)mµλ0(m)
[ 1

k2d

∑

y∈�2k

( ∑

x∈�k∩�y,s

∇y[τxφ̂n,s]
)2

]

≤ c
[
k−ds−d+δ + s2de−s

δ/2
]
.

It remains to prove that P(A) ≤ k2de−c sδ/2 . To this aim we set

f1(α) := 1 − µλ0(m)(η0) ,

f2(α) := 1 − µλ0(m)(η0; η0)/σ
2
0 (m) ,

f3(α) := (
µλ0(m)(ηne; ηne)− µλ0(m)(η0; η0)

)
/χ(m).
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By lemma 6.4 P(A0) ≤ c e−sδ/2 while P(A(1)
x (m)) and P(A(2)

x (m)) can be bounded
from above by e−c sδ by means of lemmaA.1 with f = f1 and f = f2 respectively.
Therefore

P(A1)+ P(A2) ≤ kde−c s
δ

(6.21)

In order to bound P(A3) we observe that

Avx∈�k∩�y,s τx
ξ0(m)

χ(m)
= Av

z∈�1,e
n

Avx∈�k∩�y,s τx+zf3 .

Thus

A3 ⊂ ∪y∈�2k ∪
z∈�1,e

n
A3(y, z)

where
A3(y, z) = {|Avx∈�k∩�y,s τx+zf3| ≥ |�k ∩�y,s |− 1

2 + δ
2d } .

Using once more lemma A.1 we get

P(A3(y, z)) ≤ exp(−cs d−1
d
δ)

and the proof is complete. ��
We conclude this part with a slight modification of proposition 6.5.

Proposition 6.6. Let n ≤ s be positive integers and let 0 < δ � 1. Let also γ > 0
and set Js = {1/sγ , 2/sγ , . . . 1 − 1/sγ }. Then there exists a set A of disorder
configurations α in �2s satisfying

P(A) ≤ sγ e−c s
δ

and such that, for s large enough depending on δ,

sup
m∈Js

Var
µ
λ(m)
�2s

(
Av(n)x∈�s

τxφn,s

)
≤ cIAc (α)s−2d+2δ + IA(α) (6.22)

where Av(n)x∈�s
:= Avx∈�s∩nZd .

Proof. The proposition can be proved as proposition 6.5 with some slight modifi-
cations that we comment. For anym ∈ Js it is convenient to define M(m), A1(m),

and A2(m) as done respectively for M, A1, and A2 in the proof of proposition 6.5
and to set

A0(m) := {
µ
λ(m)
�2s

(M) ≥ sd exp(−sδ/2) },

A3(m) :=
{ ∣

∣
∣Av(n)x∈�s

τx
ξ0(m)

χ(m)

∣
∣
∣ ≥ s−

d
2 + δ

2

}
.

Then one sets again A(m) := A0(m)∪A1(m)∪A2(m)∪A3(m), A := ∪m∈JsA(m).
By the same arguments as in the proof of proposition 6.5 one obtains (6.22).
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Let us prove the estimate required for P(A) or, equivalently, that for anym ∈ Js

P(A(m)) ≤ e−csδ . For this purpose, given m ∈ Js , it is convenient to define

B(m) := { ∣
∣λ�2s (m)− λ0(m)

∣
∣ ≥ s−

d
2 + δ

4
}

and write

P(A(m)) ≤ P(B(m))+ P(Bc(m) ∩ A0(m))+ P(A1(m))

+ P(A2(m))+ P(A3(m)). (6.23)

Let us suppose 0 < m ≤ 1
2 . Then lemma A.3 implies that

∣
∣λ�2s (m)− λ0(m)

∣
∣ ≤ c

∣
∣1 −m−1µλ0(m)(m�2s )

∣
∣.

Thanks to the above estimate and to lemmaA.1 applied withf :=1−m−1µλ0(m)(η0),
the first term in the r.h.s. of (6.23) is smaller than e−c sδ/2 . The second term is smaller
than e−csδ/2 by lemma 6.4. Moreover, P(A1(m)) and P(A2(m)) can be bounded
by sde−c sδ as in the proof of proposition 6.5.

Finally, let us consider P(A3(m)). For simplicity of notation we restrict to the
case d = 1 and we write

n
∑

x∈�s∩nZ
τx
ξ0(m)

χ(m)
=

( ∑

x∈�s∩2nZ

∑

z∈�e
1,n

τx+zf
)

+
( ∑

x∈�s∩(2n+n)Z

∑

z∈�e
1,n

τx+zf
)

(6.24)

where f := χ(m)−1
(
µλ0(m)(η0; η0)− µλ0(m)(ηne; ηne)

)
. We remark that in both

the addenda in the r.h.s. of (6.24) the appearing functions have disjoint support
and form a set of cardinality O(kd), moreover E(f ) = 0. Therefore, by the same
arguments used in the proof of lemma A.1, we obtain that P(A3(m)) ≤ e−csδ . ��

6.2. An L∞ bound

We conclude this section with a simple L∞ bound on |τxφs,s′ | when s scales as an
inverse power of ε.

Lemma 6.7. Let 0 < γ < 1 and 0 < δ � 1 and set s = O(ε−γ ). Then, for almost
all configuration disorder α and ε small enough,

sup
x∈Tdε

|τxφs,s′ | ≤ c s−
d
2 +δ ∀s′ ∈ [s, ε−1]. (6.25)

Proof. By the equivalence of ensembles it is enough to prove (6.25) with φs,s′

replaced by φ̂s,s′ . Using lemma A.3 we get

|φ̂s,s′ − µ
λ0(m

e
s′ )

(
m1,e
s −m2,e

s

)| ≤ c |me
s′(η)− µλ0(me

s′)| (6.26)

and similarly upon translation by x.
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Let us define

Dx(m) := { |m− µλ0(m)(me
x,s′)| ≥ (s′)−

d
2 +δ }

D′
x(m) := { |µλ0(m)

(
τx(m

1,e
s −m2,e

s )
)| ≥ s−

d
2 +δ }

D := ∪m ∪x∈Tdε

(Dx(m) ∪ D′
x(m)

)

where, in the last formula, m varies among all possible values of me
s′ .

P(Dx(m)) and P(D′
x(m)) can now be estimated from above by e−cs2δ

thanks
to lemma A.1 applied to f (α) = µλ0(m)(η0) − m and f (α) = µλ0(m)(η0; η0) −
E

[
µλ0(m)(η0; η0)

]
respectively. Therefore, P(D) ≤ ε−2de−cs2δ

and a simple use of
Borel-Cantelli lemma proves the thesis. ��

7. Central Limit Theorem Variance

In this section we investigate the structure of the space G that we recall was defined
as (see (4.15))

G := {g ∈ G : ∃� ∈ F such that, ∀α and ∀ν ∈ Mα(�) , ν(g) = 0 }
endowed with the non negative semi-inner product

Vm(f, g) := lim
�↑∞

Vm,�(f, g) (7.1)

where

Vm,�(f, g) := (2l)−d E

[
µλ0(m)

( ∑

|x|≤�1

τxf, (−L��
)−1

∑

|x|≤�1

τxg
)]
, m ∈ (0, 1)

with �1 := �− √
�. For m = 0, 1 we simply define Vm(f, g) = Vm,�(f, g) = 0

In all what follows we fix a density m ∈ (0, 1), that most of the times will not
appear inside the notation, and we denote by P

∗ the annealed probability measure
on �̃ characterized by

P
∗(dα, dη) = P(dα)µα,λ0(m)(dη).

We remark that P
∗ is translation invariant and we write E

∗ for the corresponding
expectation.

7.1. The pre-Hilbert space G

In what follows we prove that the semi–inner product V is well defined and that
the subspace generated by the currents j0,e, e ∈ E , and by the fluctuations Lg,
g ∈ G, is dense in G. To this aim we need to generalize the standard theory ([22]
and references therein), based on closed and exact forms, to the disordered case.
The main new feature in the disordered case is a richer structure of the space of
closed forms which requires a proper analysis.
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We begin with a table of calculus that can be easily checked as in the non
disordered case. For any f ∈ G, u ∈ G and e ∈ E let

te(f ) :=
∑

x∈Zd

(x, e)E∗(ηx, f ), (f, u)0 :=
∑

x∈Zd

E
∗(τxf, u).

Lemma 7.1. For any f ∈ G, u ∈ G and e, e′ ∈ E

V (f,Lu) = −(f, u)0, V (Lu,Lu) =
∑

e∈E

1

2
E

∗(c0,e(∇0,eu)
2),

V (j0,e, f ) = −te(f ), V (j0,e, j0,e′) = 1

2
E

∗( c0,e(∇0,eη0)
2)δe,e′ ,

V (j0,e,Lu) = −1

2
E

∗(c0,e∇0,eu · ∇0,eη0
)
.

The main result of this paragraph is the following.

Theorem 7.2. i) For any f, g ∈ G the limit V (f, g) := lim�↑∞ V�(f, g) exists,
it is finite and it defines a non negative semi–inner product on G. In particular
V (f ) := lim�↑∞ V�(f, f ) is well defined.

ii) For any f ∈ G

V (f ) = sup
a∈Rd

sup
u∈G

{
2V (f,

∑

e∈E
aej0,e + Lu)− V (

∑

e∈E
aej0,e + Lu)

}

= sup
a∈Rd

sup
u∈G

{∑

e∈E
2aete(f )+ 2(f, u)0

−
∑

e∈E

1

2
E

∗(c0,e(ae∇0,eη0 − ∇0,eu)
2)

}
. (7.2)

iii) The subspace

{ ∑

e∈E
aej0,e + Lu : a ∈ R

d , u ∈ G
}

(7.3)

is dense in G endowed with the semi–inner product V .

Notice that the second equality in (7.2) follows immediately from lemma 7.1 to-
gether with a trivial change of sign of a, u.

Before proving the theorem we need to introduce the notion of closed and
exact forms together with their generalization to the disordered case and prove few
preliminary results. We refer the reader to [14] for a complete treatment.

Definition 7.3. A form on� is a family ξ = {ξb}b⊂Zd of functions ξb : � → R. It is
called closed if, given η ∈ � and bonds b1, . . . , bn with η = Sbn ◦· · ·◦Sb2 ◦Sb1(η),
then

n∑

i=1

ξbi (ηi−1) = 0 where η0 := η, ηi := Sbi ◦ · · · ◦Sb2 ◦Sb1(η) ∀i = 1, . . . , n.
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The expression
∑n

i=1 ξbi (ηi−1) can be thought of as the integral of the form ξ on
the closed path η0 = η, η1, . . . , ηn = η. It can be proved, see [14], that a form on
� is closed if and only if it satisfies the following properties P.1, P.2 and P.3.

P.1. Let a, v,w ∈ Z
d with |v| = |w| = 1 and v ± w �= 0. We set c = a + v + w,

x = a + v, x′ = a + w, b1 = {a, x}, b2 = {x, c}, b′
1 = {a, x′}, b′

2 = {x′, c}.
Then

ξb1 ◦ Sb2 ◦ Sb1 + ξb2 ◦ Sb1 + ξb1 = ξb′
1
◦ Sb′

2
◦ Sb′

1
+ ξb′

2
◦ Sb′

1
+ ξb′

1
.

P.2. For any couple of bonds b1, b2 ⊂ Z
d such that b1 ∩ b2 = ∅,

ξb2 ◦ Sb1 + ξb1 = ξb1 ◦ Sb2 + ξb2 .

P.3. For any bond b ⊂ Z
d ,

ξb ◦ Sb + ξb = 0.

The above characterization allows us to generalize the definition of closed forms
to the disorder case.

Definition 7.4. A form in L2(P∗) is a family of functions ξ = {ξb}b⊂Zd with ξb ∈
L2(P∗).

A form ξ is called closed if it satisfies properties P.1, P.2 and P.3 where equal-
ities are in L2(P∗). A form ξ = {ξb}b⊂Zd is called exact if ξb = ∇bu for some
u ∈ G. A form ξ is called translation covariant if τxξb = ξb+x for any x ∈ Z

d ,
b ⊂ Z

d .

It is easy to check that exact forms are automatically closed and translation covari-
ant. Given a closed form ξ in L2(P∗) the form on� {ξb(α, ·)}b⊂Zd is a closed form
on � for almost any disorder configuration α.

In what follows by a form we will always mean a form in L2(P∗).

Definition 7.5. A family of functions ξ = {ξe}e∈E , ξe ∈ L2(P∗), is called the germ
of the form ξ ′ = {ξ ′

b}b⊂Zd if ξ ′
x,x+e = τxξe for any x ∈ Z

d and e ∈ E .

It follows that ξ ′ is automatically translation covariant as soon as it is generated by
a germ ξ .

Within the subset of closed and translation covariant forms we consider the
special family {Ue}e∈E defined by

Uex,x+e′(η) := δe,e′(ηx+e − ηx) , ∀x ∈ Z
d , e, e′ ∈ E .

It is simple to check that the form Ue is not exact. Finally, we define �C as the set
of germs of closed forms and

�0 := {ξ = {ξe}e∈E : ∃a ∈ R
d , u ∈ G with ξe = aeU

e + ∇0,eu ∀e ∈ E }.

We remark that�0 ⊂ �C and that�C is a closed subspace in L2(⊗d
P

∗). A deeper
result is given by the following density theorem.
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Theorem 7.6. �C = �0 in L2(⊗d
P

∗).

Proof. The proof follows closely the proof of theorem 4.14 in appendix 3 of [22]
with the exception of the last step. As in [22] it can be proved that for any ξ ∈ �C
there exists a germ ω ∈ �C with the following properties:

i) ξ − ω ∈ �0;
ii) ω can be written as ω = ω− + ω+ with ω± = {ω±,e}e∈E , ω±,e(α, η) =

ω±,e(α, η0, ηe) such that ∀e ∈ E

ω−,e(α, η0, η2e)− ω−,e(α, η0, ηe) = ω−,e(α, ηe, η2e), (7.4)

ω+,e(α, η−e, ηe)− ω+,e(α, η0, ηe) = ω+,e(α, η−e, η0) .

It remains to prove thatω ∈ �0. Because of (7.4), ∀e ∈ E there exists a±,e ∈ L2(P)

such that ω±,e = a±,e(α)(ηe − η0). Lemma 7.7 then completes the proof of the
theorem. ��
Lemma 7.7. Let ω ∈ �C such that for any e ∈ E there exists ae ∈ L2(P) with
ωe = ae(α)(ηe − η0). Then ω ∈ �0.

Proof. By subtracting
∑

e∈E E(ae)U
e from the germω, we can assume that E(ae) =

0 for any e ∈ E . In what follows we denote the form generated by the germ ω by
the same symbol ω.

Given x ∈ Z
d let η(x) ∈ � the configuration with just one particle at x and let

{b1, . . . , br} be a sequence of bonds such that η(x) = Sbr ◦ · · · ◦ Sb2 ◦ Sb1(η
(0)).

Define

gx(α) =
r∑

i=1

ωbi (α, ηi−1) where

ηi := Sbi ◦ · · · ◦ Sb2 ◦ Sb1(η
(0)) ∀i = 1, . . . , r. (7.5)

Notice that, since {ωb(α, ·)}b⊂Zd is a closed form on � for almost every α, the
definition of gx does not depend on the particular choice of the bonds b1, . . . , br
and the family {gx}x∈Zd satisfies

gx+e − gx = −τxae ∀x ∈ Z
d , e ∈ E .

Therefore, by setting hn := − ∑
x∈�n

gx(α)ηx , we get

∇bhn = ωb ∀ n ∈ N, b ∈ �n (7.6)

In order to conclude the proof it is enough to show that

lim
n↑∞

ω(n)e = ωe ∀e ∈ E where ω
(n)
b := 1

(2n)d
∇b hn ∈ �0.

By translation covariance and (7.6) ∇0,eτxhn = ωe if −x,−x + e ∈ �n. Thus, for
any e ∈ E , we can write
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ω(n)e = (2n+ 1)d−1

(2n)d−1 ωe + 1

(2n)d
∑

x∈�n
xe=n

τ−x∇x,x+ehn

+ 1

(2n)d
∑

x∈�n−e
xe=−n−1

τ−x∇x,x+ehn . (7.7)

and we are left with the proof that the second and third term in the r.h.s.of (7.7)
tend to 0 in L2(P∗). Let us consider the second term (the third one being similar).
By Schwarz inequality and the identity

∇x,x+ehn = −gx(α)(ηx+e − ηx) ∀x ∈ �n with xe = n,

it is enough to show that

lim
n↑∞

1

nd+1

∑

x∈�n
xe=n

E(g2
x) = 0. (7.8)

To this aim, given x = (x1, . . . , xd), we choose the bonds b1, . . . , br in the def-
inition (7.5) in such a way that ηi = η(yi ) where y0 is the origin of Z

d , yr := x

and in general y0, y1, . . . , yr are the points encountered by moving in Z
d first

from (0, . . . , 0) to (x1, 0, . . . , 0) in the first direction, then from (x1, 0, . . . , 0) to
(x1, x2, 0, . . . , 0) in the second direction and so on until arriving to x.

Given this choice, it is simple to verify that for any x ∈ �n and e ∈ E there
exists ze ∈ �n and an integer ke ∈ [0, n] such that

g2
x ≤ c

∑

e∈E

( ke∑

s=0

τze+se ae
)2
.

Therefore, in order to prove (7.8), we need to show that

lim
n↑∞

sup
k=0,1,...,n

1

n2 E

(( k∑

s=0

τse ae
)2

)
∀e ∈ E .

To this aim, for simplicity of notation, we fix e ∈ E and we write as in place of
τseae. Moreover, for any r ∈ N we set a(r)s := E[as |α�se,r ]. Since a(r)s = τsea

(r)
0

and E(a
(r)
s ) = 0, we have for any 0 ≤ k ≤ n

1

n2 E

(( k∑

s=0

as
)2

)
≤ 2

1

n2 E

(( k∑

s=0

[as − a(r)s ]
)2

)
+ 2

1

n2 E

(( k∑

s=0

a(r)s
)2

)

≤ 2E

((
a0 − a

(r)
0 )2

) + c(r)

n
.

and the thesis follows. ��
The connection between the forms and the space G endowed with the semi–inner
product V (f, g) is clarified by next proposition, which can be proved, following
[22] and [37], as explained in section 5.5 of [14].
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Proposition 7.8. Given f ∈ G and e ∈ E there exists a function φe ∈ G such that

sup
ξ∈�0

�f (ξ) ≤ lim inf
�↑∞

V�(f ) ≤ lim sup
�↑∞

V�(f ) ≤ sup
ξ∈�C

�f (ξ) (7.9)

where

�f (ξ) :=
∑

e∈E
2 E

∗(c0,eφeξe)−
∑

e∈E

1

2
E

∗(ceξ2
e

)
.

Moreover, given a ∈ R
d and u ∈ G,

�f

(∑

e∈E
(−aeUe + ∇0,eu)

) =
∑

e∈E
2aete(f )+ 2(f, u)0

−
∑

e∈E

1

2
E

∗(c0,e(ae∇0,eη0 − ∇0,eu)
2). (7.10)

We are finally in a position to prove theorem 7.2. We first observe that theorem
7.6 proves that the inequalities in (7.9) are actually equalities so that V (f ) =
lim�↑∞ V�(f ) exists and it is given by (7.2). Moreover, because of (4.23), V (f ) <
∞ so that, by polarization, V (f, g) exists finite for any f, g ∈ G and it defines a
semi–inner product. The density of the subspace (7.3) follows at once from the first
equality in (7.2). ��

We conclude this section by proving the continuity of the map m �→ Vm(g) for
any fixed g ∈ G.

Lemma 7.9. For any g ∈ G, the map [0, 1] � m → Vm(g) is continuous.

Proof. Given � ∈ N large enough, we can write Av|x|≤�1τxg = L��
h for some

local function h and the continuity in m of V�,m(g) follows at once.
In order to prove the continuity of Vm(g) we only need to prove that

lim
�↑∞

V�,m�(g) = Vm(g) (7.11)

for all m ∈ [0, 1] and all sequence {m�}�∈N such that lim�→∞m� = m.
We begin by proving that

lim inf
�↑∞

V�,m�(g) ≥ Vm(g) (7.12)

To this aim we fix a local function u ∈ G, a vector a ∈ R
d and define

h� :=
∑

|x|≤�1

τxu+
∑

|x|≤�
(a, x)ηx . (7.13)

By the variational characterization (4.20)

V�,m�(g) ≥ (2�)−dE
(

2µλ0(m�)
( ∑

|x|≤�1

τxg, h�
) − D(h�;µλ0(m�))

)
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By recalling the notation te(g) and (g, u)0 (at fixed density m) introduced before
lemma 7.1 and using lemma A.3 we get

lim
�↑∞

(2�)−dEµλ0(m�)
( ∑

|x|≤�1

τxg,
∑

|x|≤�1

τxu
)

= (g, u)0

and

lim
�↑∞

(2�)−dEµλ0(m�)
( ∑

|x|≤�1

τxg,
∑

|x|≤�
xeηx

)
= te(g)

Moreover

L��

( ∑

|x|≤�
xeηx

)
=

∑

x:x,x+e∈��

jx,x+e

Therefore, thanks to lemma A.3, to the integration by parts property of currents and
straightforward computations, we get

lim
�↑∞

E

(
D(h�;µλ0(m�))

)
=

∑

e∈E

1

2
Eµλ0(m)

(
c0,e(ae∇0,eη0 − ∇0,eu)

2
)2

In conclusion

lim inf
�→∞

V�,m�(g) ≥ 2
∑

e∈E
aete(g)+ 2(g, u)0

−
∑

e∈E

1

2
Eµλ0(m)

(
c0,e(ae∇0,eη0 − ∇0,eu)

2
)2

and (7.12) follows at once from (7.2).
We now turn to the proof of

lim sup
�↑∞

V�,m�(g) ≤ Vm(g) (7.14)

We proceed as in the proof of lemma 4.6 (whose notation are not repeated here)
starting from (4.26) with ν := µλ0(m�). We simply notice that, thanks to lemma
A.3,

|Fz(hz,Eµλ0(m�))− Fz(hz,Eµ
λ0(m))| ≤ c(g, k)|m� −m|

Therefore

lim sup
�↑∞

V�,m�(g) ≤ lim sup
k↑∞

lim sup
�↑∞

(2�)−dE
(

sup
h

(
∑

z∈�(k)
�

Fz(hz, µ
λ0(m))

)

≤ lim
k↑∞

Vk,m(g) = Vm(g)

��
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7.2. The method of long jumps revisited

In this paragraph we consider, for any e ∈ E , a particular sequence {We
n/n}n∈N in

the space G which is asymptotically equivalent to the sequence

2m(1 −m)λ′
0(m)

ψe
n,n

n
, n ∈ N

where ψe
n,n has been defined in (4.32) as

ψe
n,n = m2,e

n −m1,e
n − µ

[
m2,e
n −m1,e

n |me
n

]

The functions We
n have been introduced in [28] in order to depress the extra fluc-

tuations produced by the disorder and are defined as

We
n := Av

x∈�1,e
n

Av
y∈�2,e

n
wx,y where

wx,y := (
1 + e−(αx−αy)(ηx−ηy)

)
(ηy − ηx).

We remark that, for any bond b = {x, y}, the quantities cx,y := 1+e−(αx−αy)(ηx−ηy)
are a possible choice of transition rates compatible with our general assumptions
(see section 2.2). Therefore, for generic x, y ∈ Z

d cx,y can be thought of as the rate
of the (long) jump from x to y and vice versa. In a sense the rates cx,y , x, y ∈ Z

d ,
define a new process with arbitrarily long jumps but still reversible w.r.t. the Gibbs
measure of the system.

Remark 7.10. The role of the functionWe
n here is very different from that indicated

in [28]. In our approach and for reasons that will appear clearly in the next sub-
section, we are interested in computing the asymptotic of the semi–inner product

V (j0,e′ ,
ψen,n
n
) as n ↑ ∞. Our strategy to compute V (j0,e′ ,

ψen,n
n
) is to replace (in G)

ψen,n
n

with We
n

n
and then to exploit some nice integration by parts properties pointed

out in [28] (see below).
In [28] instead, the main idea is first to approximate, as ε ↓ 0, the microscopic

current j0,e with a fluctuation term Lg plus a linear combination of the
We′
k

k
, e′ ∈ E ,

on a scale k that must diverge as ε ↓ 0 like ε− 2
d+2 . The second step indicated in

[28] is to replace
We
k

k
with

2m(1 −m)λ′
0(m)

(m
2,e
k −m

1,e
k )

k

Such a step is very similar to the main result of this subsection described at the
beginning but, at the same time, very different. The first main difference is that our
mesoscopic scale n is not linked with ε. The second difference is that our functions
ψe
n,n represent (discrete) gradient of the density minus their canonical average. Such

a counter term, discussed at length in section 5, is absent in the approach of [28].
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Our main result is given by the following theorem

Theorem 7.11. For any e ∈ E

lim
n↑∞

V
(We

n

n
− 2m(1 −m)λ′

0(m)
ψe
n,n

n

)
= 0. (7.15)

We will use the above result only to compute the limit of V (j0,e′ ,
ψen,n
n
) . Indeed,

as pointed in [28], the function wx,y satisfies the following integration by parts
property: for any � ∈ F with � � x, y and any ν ∈ M(�)

ν(wx,yg) = ν((ηx − ηy)∇x,yg).

By the above property and lemma 7.1 it is simple to check that, for any e, e′ ∈ E ,

V
(
j0,e′ ,

We
n

n

)
= −2m(1 −m)δe,e′ . Therefore, by theorem 7.11, we get

lim
n↑∞

V
(
j0,e′ ,

ψe
n,n

n

)
= −χ(m)δe,e′ , ∀e, e′ ∈ E . (7.16)

Proof. In order to prove theorem 7.11 it is convenient to introduce some notation.
First, we fix the vector e ∈ E which will be often omit in the notation and recall
that µ ≡ µ

α,λ=0
Zd

. Moreover we introduce the following equivalence relation.

Definition 7.12. Given two sequences of functions {fn}n∈N and {gn}n∈N such that
fn and gn have support in �e

n, we write fn ≈ gn if

lim
n↑∞

V
(fn − µ[fn |me

n]

n
− gn − µ[gn |me

n]

n

)
= 0.

• Step 1: fn := Wn − µ[Wn|m1,e
n ,m

2,e
n ] ≈ 0.

For any x ∈ Z
d , let νx,n be the random canonical measure µ[· | Fx,n] where

Fx,n is the σ–algebra generated by τxm
1,e
n , τxm

2,e
n and ηy with y �∈ �e

x,n. Let us
observe that
i) µλ0(m)(τxfn, g) = µλ0(m)

(
νx,n(τxWn; g)

)
for any function g;

ii) Wn can be written as sum of functions f of the following form

f = Av
z∈�1,e

n
τzhAv

z′∈�2,e
n
τz′h

′

where h and h′ depend only on α0 and η0.
Because of i) and ii) and thanks to the the variational characterization (4.20) of
V�(·, µλ0(m)), it is enough to prove that, for a function f as in ii),

lim
n↑∞

lim
k↑∞

1

n2kd
E

[
sup
g∈G

{φ(g)/D�k
(g;µλ0(m))} ] = 0 (7.17)

where

φ(g) := [ ∑

|x|≤k1

µλ0(m)
(
νx,n(τxf ; g))]2

, k1 := k −
√
k.
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By proposition A.6, for any δ > 0 there exists �0 ∈ N such that, if n ≥ � ≥ �0,
then

νx,n(τxf ; g)2 ≤ c(�)

nd
D(g; νx,n)+ δ

nd
Varνx,n(g)+ c

nd
Varνx,n(g)ϑ�e

x,n,�
(α)

(7.18)

where, for any given γ > 0 and � ≥ �1(γ ) ≥ �0,

P(ϑ�e
x,n,�

(α) ≥ γ ) ≤ e−c(γ,�)n
d

(7.19)

for a suitable constant c(γ, �). Using the spectral gap estimate (4.13), the r.h.s.
of (7.18) can be bounded by

D(g; νx,n)
(
c(�)+ c δ n2 + c n2ϑ�e

x,n,�
(α)

)
n−d

and therefore, by Schwarz inequality,

φ(g) ≤ D�k
(g;µλ0(m))

(
c(�)kd + c δkdn2 + c n2

∑

|x|≤k1

ϑ�e
x,n,�

)
.

By taking the limits δ ↓ 0, � ↑ ∞, n ↑ ∞, k ↑ ∞ (from right to left), in
order to prove (7.17) the thesis follows since limn↑∞ E

(
ϑ�e

n,�
(α)

) = 0 because
of (7.19).

• Step 2: µ[Wn|m1,e
n ,m

2,e
n ] ≈ 2m(1 −m)λ′

0(m)ψ
e
n,n.

The proof is based on the following lemma, which follows easily from the vari-
ational characterization of V�(·, µλ0(m)) given in (4.20).

Lemma 7.13. Let, for any n ∈ N, fn, hn ∈ G be such that

i) �fn ⊂ �e
n ;

ii) supn ‖hn‖∞ < ∞ and limn↑∞ ndE
[
µλ0(m)

(
h2
n

)] = 0;
iii) |fn| ≤ |hn|.
Then fn ≈ 0.

Thanks to the estimates given in the Appendix it can be proved (see [14]) that
condition ii) of the lemma is satisfied by any of the following sequences:

{n−d}n∈N,
{
(m−m�n)

2 }n∈N,
{
I{|m−m�n |≥c}

}
n∈N

,
{(
m− µλ0(m)(mi,e

n )
)2}

n∈N

where i = 1, 2, c > 0 and �n is either one of the sets �e
n, �1,e

n , �2,e
n .

As in [28] we define the (random w.r.t. α) function Fn(m1,m2) as

Fn(m1,m2) = µ
λ(m1)

�
1,e
n

⊗ µ
λ(m2)

�
2,e
n

(
Wn

)

It is not difficult to show that Fn(m1,m2) has the explicit expression

Fn(m1,m2) = m1 −m2 + eλ1,n(m1)−λ2,n(m2)(1 −m1)m2

− eλ2,n(m2)−λ1,n(m1)m1(1 −m2).
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The main reason to introduce Fn(m1,m2) is that

µ[Wn|m1,e
n ,m2,e

n ] ≈ Fn(m
1,e
n ,m2,e

n ). (7.20)

This equivalence follows at once from the equivalence of the ensembles together
with lemma 7.13 applied to fn = µ[Wn|m1,e

n ,m
2,e
n ] − Fn(m

1,e
n ,m

2,e
n ) and hn =

c n−d for a large enough constant c.
Next, again by lemma 7.13 applied with hn = I{|m−m1,e

n |≥cm} + I{|m−m2,e
n |≥cm},

cm = (m ∧ (1 −m))/2, we get that

Fn(m
1,e
n ,m2,e

n ) ≈ Fn(m
1,e
n ,m2,e

n )Im (7.21)

where Im := I{|m−m1,e
n |≤cm}I{|m−m2,e

n |≤cm}.
Next, by Taylor expansion around the arithmetic mean of m1,e

n and m2,e
n , we

write

Fn(m
1,e
n ,m2,e

n )

= Fn(m
e
n,m

e
n)+ ∂Fn

∂m1
(me

n,m
e
n)(m

1,e
n −me

n)

+ ∂Fn

∂m1
(me

n,m
e
n)(m

2,e
n −me

n)+ Rn(m
1,e
n ,m2,e

n )

Then, the zero order contribution Fn(me
n,m

e
n)Im is negligible, Fn(me

n,m
e
n)Im ≈ 0,

since Fn(me
n,m

e
n) ≈ 0 because of definition 7.12 and Fn(me

n,m
e
n)(1 − Im) ≈ 0

again by lemma 7.13.
The second order error term,Rn(m

1,e
n ,m

2,e
n )Im, is negligible because of lemma

7.13 applied with hn = c
[
(m

1,e
n −me

n)
2 + (m

2,e
n −me

n)
2
]
. Notice that it is here that

the characteristic function Im plays an important role since the second derivatives
of Fn(m1,m2) diverge as mi tends to 0 or to 1.

Let us now examine the relevant first order terms. We claim that for i = 1, 2

∂Fn

∂mi

(me
n,m

e
n)(m

i,e
n −me

n)Im + (−1)i2me
n(1 −me

n)λ
′
i,n(m

e
n)(m

i,e
n −me

n)Im ≈ 0

(7.22)

and

2me
n(1 −me

n)(λ
′
i,n(m

e
n)− λ′

0(m))(m
i,e
n −me

n)Im ≈ 0. (7.23)

where λi,n := λ
�
i,e
n

.
Before proving (7.22) and (7.23) let us summarize what we have obtained so far.

Thanks to (7.20), (7.21), the above discussion of the Taylor expansion and (7.22)
together with (7.23)

µ[Wn|m1,e
n ,m2,e

n ] ≈ 2me
n(1 −me

n)λ
′
0(m)(m

2,e
n −m1,e

n )Im

Using once more lemma 7.13 it is now rather simple to remove the factor Im and
to replace me

n with m, thus concluding the proof.
We are left with the proof of (7.22) and (7.23).
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Let us prove (7.22) for i = 1. By computing ∂Fn
∂m1

it is simple to check that the
l.h.s. of (7.22) is equal to

(eλ1,n(m
e
n)−λ2,n(m

e
n) − 1)me

n(λ
′
1,n(m

e
n)(1 −me

n)− 1)(m1,e
n −me

n)Im

+ (eλ2(m
e
n)−λ1,n(m

e
n) − 1)(1 −me

n)(λ
′
1,n(m

e
n)m

e
n − 1)(m1,e

n −me
n)Im. (7.24)

It is enough to show that both addenda in (7.24) are equivalent to 0 and for sim-
plicity we deal with only with the first one. Since supn ‖λ′

1,n(m
e
n)Im‖∞ ≤ km for

a suitable constant km depending on m, using the estimate |ez − 1| ≤ e|z||z| valid
for any z ∈ R and thanks to lemma A.3 we obtain

| first term in (7.24) | ≤ km |λ1,n(m
e
n)− λ2,n(m

e
n)| |m(i)

n −me
n|Im

≤ k′
m

( ∑

i=1,2

(
me
n − µλ0(m

e
n)(mi,e

n )
)2 + (m1,e

n −me
n)

2
)
.

(7.25)

The claim follows by applying lemma 7.13 with hn equal to the r.h.s. of (7.25).
Let us prove (7.23). By Schwarz inequality, it is enough to apply lemma 7.13

with hn := (λ′
i,n(m

e
n) − λ′

0(m))
2
Im + (m

i,e
n − me

n)
2. In order to verify condition

ii) of lemma 7.13 for hn, thanks to the boundedness of (λ′
i,n(m

e
n) − λ′

0(m))
2
Im

uniformly in n, we only need to prove that

lim
n↑∞

ndE
[
µλ0(m)

(
(λ′
i,n(m

e
n)− λ′

0(m))
4
Im

)] = 0

or equivalently

lim
n↑∞

ndE
[
µλ0(m)

({
Av

x∈�i,e
n

[
µλi,n(m

e
n)(ηx; ηx)− Eµλ0(m)(η0; η0)

] }4
)]

= 0

(7.26)

Let gx(λ) := µλ(ηx; ηx) and observe that l.h.s. of (7.26) is bounded from above
by

c lim
n↑∞

ndE
[
µλ0(m)

(
A(1)n + A(2)n + A(3)n

)]
(7.27)

where

A(1)n = {
Av

x∈�i,e
n

[ gx(λi,n(m
e
n))− gx(λi,n(m)) ]

}4

A(2)n = {
Av

x∈�i,e
n

[ gx(λi,n(m))− gx(λ0(m)) ]
}4

A(3)n = {
Av

x∈�i,e
n

[ gx(λ0(m))− Eµλ0(m)(η0; η0) ]
}4
.

By lemmaA.3,A(1)n ≤ c (me
n−m)4 andA(2)n ≤ c(m−µλ0(m)(m

i,e
n ))

4. At this point
(7.27) follows by simple considerations for sum of centered independent random
variables. ��
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7.3. The subspace orthogonal to the fluctuations

Here we introduce a convenient Hilbert space H containing G and we describe the
orthogonal subspace in H of the space of fluctuations {Lg : g ∈ G}.
Definition 7.14. Let N := {g ∈ G : V (g) = 0} and let H be the completion of
the pre-Hilbert space G/N . With an abuse of notation, we write V for the scalar
product in H induced by the semi-inner product V in G.

The sets

LG := {Lg : g ∈ G}, LG := {Lg : g ∈ G}
can be considered as subsets of H in a natural way. Our main result proves that for
any e ∈ E the sequence {ψe

n,n/n}n∈N converges in H to some limit point ψe and
that the set {ψe}e∈E forms a basis of LG

⊥. The Cauchy property of the sequence
{ψe

n,n/n}n∈N follows by a telescopic estimate based on the variance bounds dis-
cussed in subsection 6.1. To this aim the following lemma is crucial.

Lemma 7.15. Given k ∈ N, let f ∈ G be such that �f ⊂ �k . Then

V (f ) ≤ c kd+2
E

(
Varµλ0(m) (Avx∈�k

τxf )
)
.

Proof. We first estimate V�(f ) for � � 1 by means of lemma 6.1. To this aim we
partition the cube ��1 into non overlapping cubes {�xi,k}i∈I of side 2k + 1 and
write

Avx∈��1
τxf = Avi∈I

(
Avx∈�xi ,k

τxf
)

Therefore, by applying lemma 6.1 with � = �� and �i = �xi,2k , we obtain

V�(f ) ≤ c kd+2Avi∈IVarµλ0(m)

(
Avx∈�xi ,k

τxf
)
.

It is enough now to take the expectation w.r.t. α and then the limit � ↑ ∞. ��
Lemma 7.15 and proposition 6.5 allow us to prove the key technical estimate of
this subsection:

Lemma 7.16. Let d ≥ 2, n ≤ s ≤ k ≤ 100s be positive integers and 0 < δ � 1.
Then

V (φen,s − φen,k) ≤ c s2−d+δ ∀e ∈ E (7.28)

for any s large enough (s ≥ s0(δ)).

Proof. Since φen,s − φen,k ∈ G has support in �k , by lemma 7.15 we obtain

V (φen,s − φen,k) ≤ c kd+2
∑

r=s,k
E

(
Varµλ0(m) (Avx∈�k

τxφ
e
n,r )

)
.

The thesis now follows from proposition 6.5. ��
We also need a density result.



Hydrodynamic limit of a disordered lattice gas 595

Lemma 7.17. LG and LG have the same closure in H.

Proof. We fix g ∈ G and we prove that Lg = lims↑∞ L(g − gs) where gs =
µ[g |ms], i.e. that lims↑∞ V (Lgs) = 0. To this aim we define Xs := {x : s − 1 ≤
|x| ≤ s + 1}. Then lemma 7.1 implies that

V (Lgs) =
∑

e∈E

1

2
E

∗(c0,e(
∑

x∈Xs
∇0,eτxgs)

2). (7.29)

Let ĝs(α, η) := µ
λ(ms(η))
�s

(g). By the equivalence of ensembles (see lemma A.4), in

(7.29)gs can be substituted by ĝs with an error bounded by c s−2. By lemmaA.3,
|∇0,eτx ĝs | ≤ c s−d which, thanks to (7.29) with gs replaced with ĝs , implies that
V (Lgs) ≤ c s−2. ��
We are ready for the first result about the structure of the space LG

⊥.

Proposition 7.18. Let d ≥ 3 and e ∈ E . Then the sequence

ψe
1,s = ηe − η0 − µ[ηe − η0 |me

s ]

converges to some element ψe ∈ LG
⊥ as s ↑ ∞.

Moreover,

lim
s↑∞

ψe
n,s

n
= ψe ∀n ∈ N. (7.30)

Proof. We fix 0 < δ � 1. By lemma 7.16, if i ∈ N is large enough and i3 ≤ s ≤
(i + 1)3,

V (ψe
1,i3 − ψe

1,s) ≤ c i 3(2−d+δ).

Since d ≥ 3, it is enough to prove that the sequence {ψe
1,i3

}i∈N is Cauchy. This
follows by applying again lemma 7.16 to get

∞∑

i=1

V
1
2 (ψe

1,i3 − ψe
1,(i+1)3) ≤

∞∑

i=1

c i
3
2 (2−d+δ) < ∞.

Next we prove that ψe, the limit point of {ψe
1,s}s∈N, belongs to LG

⊥. To this aim,
by lemmas 7.1 and 7.17, we need to show that

lim
s↑∞

∑

x∈Zd

E[µλ0(m)(ψe
1,s , τxg) ] = 0 ∀g ∈ G,

or similarly (by translation invariance of the random field α)

lim
s↑∞

∑

x∈Zd

E[µλ0(m)(φe1,s , τxg) ] = 0 ∀g ∈ G,
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where we recall φe1,s = µ[ηe − η0 |me
s ]. To this aim we set

�s := {x ∈ Z
d : (x +�g) ∩�e

s �= ∅ and (x +�g) ∩ (�e
s)
c �= ∅ }.

Since g ∈ G,

∑

x∈Zd

E[µλ0(m)(φe1,s , τxg) ] = E[µλ0(m)(φe1,s ,
∑

x∈�s

τxg) ]. (7.31)

We estimate the r.h.s. of (7.31) by Schwarz inequality. Let us observe that

E [Varµλ0(m)

( ∑

x∈�s

τxg
)

] ≤ cg s
−d+1. (7.32)

for some finite constant cg . Therefore, in order to conclude the proof, it is enough
to show

E[ Varµλ0(m) (φ
e
1,s) ] ≤ c s−d . (7.33)

For this purpose recall the definition of φ̂e1,s given in (6.3) and the Poincaré inequal-
ity

Varλ0(m)
µ (f ) ≤ cµλ0(m)

( ∑

x

(∇xf )
2 ) ∀f

valid because µλ0(m) is a product measure. Then, by the equivalence of ensemble
(see lemma A.5) we obtain

Varµλ0(m) (φ
e
1,s) ≤ c s−2d + cVarµλ0(m) (φ̂

e
1,s)

≤ c s−2d + c sdµλ0(m)
(
(∇0φ̂

e
1,s)

2) . (7.34)

By lemma A.3 the last term in (7.34) is bounded by c s−d thus proving (7.33).
Finally we prove (7.30). To this aim, by writing

ψe
n,s = 1

n

n−1∑

v=0

Av
x∈�1,e

n

(
ηx+(v+1)e − ηx+ve − µ[ηx+(v+1)e − ηx+ve |me

s ]
)
,

and by the observation that τxf = f for any f ∈ H and x ∈ Z
d , it is enough to

prove that for any given x ∈ Z
d

V (µ[ηe − η0 |me
x,s] − µ[ηe − η0 |me

s ]) (7.35)

goes to 0 as s ↑ ∞. As in the proof of lemma 7.16 (7.35) is bounded from above
by c(δ)s2−d+δ for any 0 < δ � 1. ��

We are now able to exhibit a basis of LG
⊥ related to the functions

ψen,n
n

with n ∈ N

and e ∈ E .
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Theorem 7.19. Let d ≥ 3. Then

lim
n↑∞

ψe
n,n

n
= ψe ∀e ∈ E (7.36)

where ψe is as in proposition 7.18. Moreover,

V (j0,e′ , ψe) = −χ(m)δe′,e ∀e, e′ ∈ E (7.37)

and {ψe}e∈E forms a basis of LG
⊥.

Proof. For any n ∈ N let kn ∈ N be such that (kn−1)3 < n ≤ k3
n. Then, by lemma

7.16, V (ψe
n,n/n− ψe

n,k3
n
/n) ↓ 0 as n ↑ ∞. Therefore, thanks to (7.30),

lim
n↑∞

V
1
2 (ψe − ψe

n,n

n
) = lim

n↑∞
V

1
2 (ψe − ψe

n,kn

n
)

≤ lim
n↑∞

1

n

∞∑

i=1

V
1
2 (ψe

n,i3
− ψe

n,(i+1)3) (7.38)

and the last series is converging by lemma 7.16. Thus (7.36) follows as well as
(7.37), as shown in (7.16).

Let us prove that {ψe}e∈E forms a basis of LG
⊥. LetP be the orthogonal projec-

tion of H on LG
⊥. Then, LG

⊥ has dimension non larger than d since, by theorem
7.2, it is generated by {Pj0,e}e∈E . By (7.37) {ψe}∈E is a set of d independent vectors
belonging to LG

⊥ and therefore a basis of LG
⊥. ��

Remark 7.20. Let us make an observation which will reveal useful in the proof of
the continuity of the diffusion matrix D(m) (see next subsection).

Since the constant c appearing in (7.28) does not depend on the density m and
thanks to the estimate (7.38), the statement (7.36) in the above theorem can be
strengthen as

lim
n↑∞

sup
m∈(0,1)

Vm
(ψe

n,n

n
− ψe

) = 0 ∀e ∈ E .

7.4. Decomposition of currents

In this subsection we prove the characterization and the regularity of the diffusion
matrixD(m) stated in theorem 2.1 and we prove also theorem 7.23, which is crucial
for the estimate of �0 (see subsection 4.3). In what follows, we assume d ≥ 3.

Denoting byP the orthogonal projection of H on LG
⊥, thanks to theorem 7.19,

for a suitable d × d matrix D(m) we can write

j0,e = −
∑

e′∈E
De,e′(m)ψe′ + (1 − P)(j0,e) ∀e ∈ E . (7.39)

By taking the scalar product of both sides of (7.39) with j0,e′ , thanks to lemma 7.1
and (7.37), we obtain

De,e′(m) = 1

χ(m)
Vm(Pj0,e, Pj0,e′)
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thus proving that D(m) is a non-negative symmetric matrix. In particular, D(m)
can be characterized as the unique symmetric d × d matrix such that

(a,D(m)a) = 1

χ(m)
Vm

(
P(

∑

e∈E
aej0,e)

) ∀a ∈ R
d . (7.40)

Since the r.h.s. of (7.40) can be written as

inf
g∈G

1

χ(m)
Vm

(∑

e∈E
aej0,e − Lg),

by lemma 7.1 the matrixD(m) corresponds to the one described in proposition 2.1.
In the following lemmas we describe some properties of the diffusion matrix

D(m).

Lemma 7.21. There exists c > 0 such that cI ≤ D(m) ≤ c−1
I for anym ∈ (0, 1).

Proof. Given a ∈ R
d we set w := ∑

e∈E aeψe and v := ∑
e∈E aePj0,e. Then

(7.40) and lemma 7.1 imply the upper bound

(a,D(m)a) = 1

χ(m)
Vm(v, v) ≤ 1

χ(m)
Vm(

∑

e∈E
aej0,e) ≤ c ‖a‖2.

In order to prove the lower bound we observe that, by theorem 7.19, Vm(v,w) =
−χ(m)‖a‖2 while, thanks to (4.33), Vm(w) ≤ c m(1 − m)‖a‖2. Therefore, by
Schwarz inequality,

(a,D(m)a) ≥ 1

χ(m)

Vm(v,w)
2

Vm(w)
≥ c ‖a‖2

thus proving the lemma. ��
Lemma 7.22. D(m) is a continuous function on (0, 1).

Proof. Let 0 < β and 0 < δ < 1
2 . We observe that the limit point ψe of the

sequence
ψen,n
n

depends on the closure of G/N and therefore on m. Therefore, it is

convenient to denote it by ψ(m)
e . Moreover, thanks to remark 7.20 and lemma 7.21,

there exists n0 ∈ N such that

‖D‖∞ sup
m∈(0,1)

Vm
(
ψ(m)
e − ψe

n,n

n

) 1
2 ≤ β ∀e ∈ E ∀n ≥ n0 (7.41)

where, ‖D‖∞ := supe,e′∈E ‖De,e′ ‖∞.
Together with (7.39), this implies that, for any given m ∈ (0, 1), we can find

gm ∈ G such that

Vm
(
j0,e +

∑

e′∈E
De,e′(m)

ψe′
n0,n0

n0
+ Lgm

) 1
2 ≤ 2β. (7.42)
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Since λ0(m) is a smooth function of m ∈ (0, 1) and because of Lemma 7.1 and
7.9, (7.42) remains valid if Vm is replaced by Vm′ , where m′ is arbitrary inside an
open interval Im containing m. In what follows we restrict to the density interval
[δ, 1 − δ]. Thanks to compactness and interpolation and thanks to (4.33), there
exists a continuous matrix D(β)(·) and a family of functions g(β)m , m ∈ [δ, 1 − δ],
such that ‖D(β)

e,e′ ‖∞ ≤ ‖De,e′ ‖∞ and

Vm
(
j0,e +

∑

e′∈E
D
(β)

e,e′(m)
ψe′
n0,n0

n0
+ Lg(β)m

) 1
2 ≤ 3β ∀m ∈ [δ, 1 − δ]

and therefore

Vm
(
j0,e +

∑

e′∈E
D
(β)

e,e′(m)ψ
(m)

e′ + Lg(β)m

) 1
2 ≤ 4β ∀m ∈ [δ, 1 − δ] (7.43)

From the above formula and (7.39), we have

Pj0,e = −
∑

e′∈E
De,e′(m)ψ

(m)

e′ = −
∑

e′∈E
D
(β)

e,e′(m)ψ
(m)

e′ + ξ (m)e ∀m ∈ [δ, 1 − δ]

where Vm(ξ
(m)
e )

1
2 ≤ 4β. By taking the scalar product with j0,e′ we obtain (thanks

to theorem 7.19)

|χ(m)(De,e′(m)−D
(β)

e,e′(m)
)| ≤ 4Vm(j0,e)

1
2 β ∀m ∈ [δ, 1 − δ],

that is |De,e′(m)−D
(β)

e,e′(m)| ≤ c(δ)β, thus proving that De,e′(·) is continuous on
[δ, 1 − δ]. ��

We are now able to prove our main result.

Theorem 7.23. Let d ≥ 3. Then given δ > 0

inf
g∈G

lim sup
n↑∞

sup
m∈[δ,1−δ]

Vm

(
j0,e + Lg +

∑

e′∈E
De,e′(m)

ψe′
n,n

n

)
= 0. (7.44)

Moreover, if D has continuous extension to {0, 1}, (7.44) is valid with δ = 0.

Proof. (7.44) is a simple consequence of the estimates exhibited in the proof of
lemma 7.22. Let us observe that, given β > 0, by defining g(β)m as in the above
proof, then

lim sup
n↑∞

sup
m∈[δ,1−δ]

Vm

(
j0,e + Lg(β)m +

∑

e′∈E
De,e′(m)

ψe′
n,n

n

)
≤ c β. (7.45)

In order to define a function g independent of m, it is enough to proceed as in the
proof of corollary 5.9, chapter 7, [22]. If D has continuous extension to {0, 1} then
it is simple to extend (7.45) to all [0, 1]. ��
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A. Appendix

In this final appendix we have collected several technical results used in the previous
sections.

A.1. Large deviations estimates

Lemma A.1. Let f = f (α) be a mean-zero local function and� ∈ F be such that
(�f + x) ∩ (�f + y) = ∅ for any x, y ∈ �. Then

P[ |Avx∈�τxf | ≥ δ ] ≤ 2e
− δ2 |�|

4‖f ‖2∞ ∀δ > 0.

Proof. Given t > 0, since E(f ) = 0 and ex − x ≤ ex
2

for any x ≥ 0,

etf =
∞∑

n=0

(tf )n

n!
≤ et‖f ‖∞ − ‖f ‖∞t ≤ e‖f ‖2∞ .

Therefore, thanks to the conditions on f and �,

P[ Avx∈�τxf ≥ δ ] ≤ e−tδE(et Avx∈�τxf )

= e−tδ[E(etf |�|−1
)]|�| ≤ e−tδ+t

2‖f ‖2∞|�|−1
.

The thesis follows by taking t := δ|�|/(2‖f ‖2∞) and by considering the above
estimates with f replaced by −f . ��

A.2. Equilibrium bounds

Lemma A.2. Given � ∈ F and λ ∈ R we define m := µλ(m�) and am :=
min(m, 1 −m). Then, for any � ⊂ � and any function f such that �f ⊂ �,

a) c|�|m ≤ µλ(N�) ≤ c−1|�|m,
b) c |�|(1 −m) ≤ µλ(|�| −N�) ≤ c−1|�|(1 −m),

c) c|�|am ≤ µλ(N�;N�) ≤ c−1|�|am,
d) |µλ(f ;N�)| ≤ c‖f ‖∞ min

(
|�f |am,

√|�f |am
)
.

Proof. In what follows we assume m ≤ 1
2 .

a) and b) can be easily derived from the boundedness of the random field α.
Let us prove c). The upper bound follows by observing thatµλ(N�;N�) ≤ µλ(�)

and by applying a). In order to prove the lower bound, let us introduce the set
W := {x ∈ � : µλ(ηx) ≤ 1

2 }. Since |W | ≥ |�|/2 and thanks to a),

µλ(N�;N�) ≥ µλ(NW ;NW) ≥ 1

2
µλ(NW) ≥ c m|�|
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thus proving the lower bound in c) with � replaced by �. In order to consider
the general case, we define m′ = µλ(m�). Then by the previous arguments,
µλ(N�;N�) ≥ c m′|�| which, by a), is bounded from below by c m|�|.

Let us prove d). By Schwarz inequality and c)

|µλ(f ;N�)| ≤ µλ(f ; f ) 1
2µλ(N�f

;N�f
)

1
2 ≤ c µλ(f ; f ) 1

2
√
m |�f |

Since µλ(f ; f ) ≤ ‖f ‖2∞, it remains to prove that µλ(f ; f ) ≤ c m‖f ‖2∞|�f |. To
this aim let η∗ be the configuration with no particle. Then, thanks to a),

µλ(f ; f ) ≤ µλ
((
f − f (η∗)

)2) ≤ ‖f ‖2
∞µ

λ(N�f
) ≤ c ‖f ‖2

∞|�f |.
��

Lemma A.3. For any λ, λ′ ∈ R, � ∈ F and any function f with �f ⊂ �,

|µλ′
(f )− µλ(f )| ≤ c‖f ‖∞|�f | |µλ′

(m�)− µλ(m�)|, (A.1)

|µλ′
(ηx; ηx)− µλ(ηx; ηx)| ≤ c |µλ′

(m�)− µλ(m�)| ∀x ∈ �. (A.2)

For any m,m′ ∈ (0, 1) and any local function f ,

|µλ0(m
′)(η0)− µλ0(m)(η0)| ≤ c |m′ −m|, (A.3)

|µλ0(m
′)(η0; η0)− µλ0(m)(η0; η0)| ≤ c |m′ −m|, (A.4)

|µλ0(m
′)(f )− µλ0(m)(f )| ≤ c(|�f |) ‖f ‖∞|m′ −m| (A.5)

for a suitable constant c(|�f |) depending on |�f |.
Moreover, for any � ∈ F and any m ∈ (0, 1),

|λ�(m)− λ0(m)| ≤ c

m(1 −m)
|m− µλ0(m)(m�)|. (A.6)

Proof. It is simple to derive (A.2), (A.4) and (A.5) from (A.1) and (A.3).
Let us prove (A.1). By setting λ(s) := λ�(s), m := µλ(m�) and m′ :=

µλ
′
(m�), we have

µλ
′
(f )− µλ(f ) =

∫ m′

m

∂

∂s
µλ(s)(f ) ds =

∫ m′

m

µλ(s)(f ;N�f
)λ′(s)ds.

By lemma A.2, |µλ(s)(f ;N�f
)λ′(s)| ≤ c‖f ‖∞|�f |, thus concluding the proof of

(A.1).
In order to prove (A.3), we observe that

µλ0(m
′)(ηy)− µλ0(m)(ηy) =

∫ m′

m

d

ds
µλ0(s)(η0)ds =

∫ m′

m

µλ0(s)(η0; η0)

Eµλ0(s)(η0; η0)
ds.

Thanks to the boundedness of the random field α, the last integrand is bounded,
thus proving (A.3).

Let us prove (A.6). By Lagrange theorem

m = µ
λ(m)
� (m�) = µλ0(m)(m�)+ µλ(m�;N�)

(
λ�(m)− λ0(m)

)

for a suitable λ between λ�(m) and λ0(m). In order to conclude the proof, it is
enough to apply lemma A.2. ��
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A.3. Equivalence of ensembles

In this paragraph we compare multi-canonical and multi-grand canonical expecta-
tions. The following results can be proved by the same methods developed in [6]
with strong simplifications since here the grand canonical measures are product
(see [14] for a complete treatment).

In what follows we fix � ∈ F and we partition it as � = ∪ki=1�i . Moreover,
chosen a set N = {Ni}ki=1 of possible particle numbers in each atom �i , we define
the multi-grand canonical measure µ̄ and the multi-canonical measure ν̄ as

µ̄ := ⊗k
i=1µ

λ(mi)
�i

where mi := Ni

|�i | ,
ν̄ := µ(· |N�i

= Ni ∀i = 1, . . . , k).

Then we have the following main results (for the latter see also proposition 3.3 in
[7]).

Lemma A.4. (Equivalence of ensembles) Let γ, δ ∈ (0, 1) and f be a local func-
tion such that |�i | ≥ δ|�|, for any i = 1, . . . , k, �f ⊂ � and |�f | ≤ |�|1−γ .

Then there exist constants c1, c2, depending respectively on γ, δ, k and δ, k,
such that

|�| ≥ c1 ⇒ |ν̄(f )− µ̄(f )| ≤ c2 ‖f ‖∞
|�f |
|�| .

Lemma A.5. Let δ ∈ (0, 1) and f be a local function such that �f ⊂ � and
|�i \�f | ≥ δ|�i | for any i = 1, · · · , k.

Then there exist constants c1, c2, depending respectively on k and k, δ, such
that

|�i | ≥ c1 ∀i = 1, . . . , k ⇒ ν̄(|f |) ≤ c2 µ̄(|f |) and Varν̄ (f ) ≤ c2Varµ̄(f ),

A.4. Some special equilibrium covariances

In this paragraph we estimate the canonical covariance between a generic function
and a function which can be written as the spatial average of local functions. We
observe that the bound we provide differs from the standard Lu-Yau’s Two Blocks
Estimate (see [26]) by an additional term depending on the random field α and
satisfying a large deviations estimate.

In what follows we fix functions h, h′ ∈ G, depending only on α0 and η0, such
that ‖h‖∞, ‖h′‖∞ ≤ 1. Moreover, for any positive integer L, we denote by RL the
set of boxes with sides of length in [L, 100L].

Proposition A.6. Given 0 < δ < 1
2 there exists �0 ∈ N having the following

property.
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Let �, L ∈ N be such that �0 ≤ � ≤ L and let V,W ∈ RL with V ∩ W = ∅.
Then, for any ν ∈ M(V ) and any function g ∈ G,

ν(Avv∈V τvh; g)2 ≤ c(�)

|V | D(g; ν)+ cδ

|V |Varν(g)+ c

|V |Varν(g)I{m∈Iδ}ϑV,�(α)

(A.7)

where m := ν(mV ) and Iδ := [δ, 1 − δ]. Moreover, for any γ > 0 there exists
�1 = �1(γ ) ≥ �0 such that

�1 ≤ � ≤ L ⇒ P( ϑV,�(α) ≥ γ ) ≤ e−c(γ,�)L
d

. (A.8)

Finally, for any ν ∈ M(V ∪W) and any function g ∈ G,

ν(Avv∈V τvh·Avw∈Wτwh′; g)2 ≤
c(�)

|�| D(g; ν)+ cδ

|�|Varν(g)+ c

|�|Varν(g)
(
ϑV,�(α)+ ϑW,�(α)

)

(A.9)

Proof. We first prove (A.7) by referring, for many steps, to the proof of proposition
A.1 in [7]. Let us fist introduce some useful notation.

We fix a partition V = ∪i∈IQi , with Qi ∈ R�, and define Ni := NQi
, mi :=

NQi
/|Qi |, hi := ∑

x∈Qi
τxh, F := σ(mi | i ∈ I ) and for s ∈ [0, 1]

Ai(m) := µ
λ(m)
V (hi;Ni)

µ
λ(m)
V (Ni;Ni)

− Eµλ0(m)(h0; η0)

Eµλ0(m)(η0; η0)

Bi(s) := µ
λ(s)
Qi

(hi;Ni)
µ
λ(s)
Qi

(Ni;Ni)
− µ

λ(m)
V (hi;Ni)

µ
λ(m)
V (Ni;Ni)

.

As in [7], if m �∈ Iδ then it is enough to apply Schwarz inequality and lemma A.5
to obtain the thesis, otherwise it is convenient to bound the l.h.s. of (A.7) as

ν(Avv∈V τvh; g)2 ≤ 2ν
(
ν(Avv∈V τvh; g | F) )2 + 2ν

(
ν(Avv∈V τvh | F); g )2

(A.10)

As in [7] we can bound the first addendum in the r.h.s. of (A.10) by c(�)D(g; ν)
and the second one by

cVarν(g)
( 1

�dLδ
+ 1

Ld

∑

i∈I
Var

µ
λ(m)
V

(ξ
γ

i )
)

(A.11)

where, for an arbitrarily fixed γ , ξγi (η) := µ
λ(mi(η))
Qi

(hi −γNi). Let us explain how
to proceed. Thanks to Poincaré inequality for Glauber dynamics we obtain

Var
µ
λ(m)
V

(ξ
γ

i ) ≤ c
∑

x∈Qi

µ
λ(m)
V ((∇xξ

γ

i )
2). (A.12)
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By choosing γ = Eµλ0(m)(h0;η0)

Eµλ0(m)(η0;η0)
it is simple to check that

∇xξ
γ

i = Ai + (−1)ηx
∫ mi(η

x)

mi(η)

Bi(s)ds.

By writing

Bi(s) = |Qi |
µ
λ(m)
V (Ni;Ni)

(∫ s

µ
λ(m)
V (mi)

µ
λ(s′)
Qi

(hi;Ni;Ni)
µ
λ(s′)
Qi

(Ni;Ni)
ds′

+ µ
λ(s)
Qi

(hi;Ni)
µ
λ(s)
Qi

(Ni;Ni)

∫ s

µ
λ(m)
V (mi)

µ
λ(s′)
Qi

(Ni;Ni;Ni)
µ
λ(s′)
Qi

(Ni;Ni)
ds′

)
,

by lemma A.2 and the conditionm ∈ Iδ we obtain that |Bi(s)| ≤ c
δ
|s−µ

λ(m)
V (mi)|

and therefore

|∇xξ
γ

i | ≤ Ai + c

δ

∣
∣mi(η)− µ

λ(m)
V (mi)

∣
∣ + c

δ
�−d . (A.13)

By (A.11), (A.12) and (A.13) it is simple to conclude the proof if � is large enough
and

ϑV,�(α) := sup
m∈MV

Avi∈IAi(m)2 where MV = { 1

|V | ,
2

|V | , . . . , 1 − 1

|V |
}
.

By standard arguments (as for lemma 3.9 in [7]) (A.9) can be derived from
(A.7).

Let us prove (A.8). By lemmas A.2 and A.3

|Ai | ≤ c

m(1 −m)

(
|µλ0(m)(hi;mi)− Eµλ0(m)(h0; η0)|

+ |(µλ0(m)(Ni;mi)− Eµλ0(m)(η0; η0)| + |m− µλ0(m)(mV )|
)
.

Therefore it is enough to prove that given a function f = f (α0) with ‖f ‖∞ ≤ 1
then for any γ > 0 there exists �1 = �1(γ ) such that

P
(
Avi∈I (Avx∈Qi

τxf − E(f ))2 ≥ γ
) ≤ 2e

− cγ 2Ld

�d ∀� ≥ �1.

To this aim we define fi := (Avx∈Qi
τxf − E(f ))2 and f̄i := fi − E(fi). Then by

lemma A.1, for any 0 < δ < 1,

E(fi) ≤ P
( |Avx∈Qi

τxf − E(f )| ≥ δ
) + δ2 ≤ 2e−c δ

2�d + δ2.

Therefore, by choosing δ small enough and � large enough, E(fi) ≤ γ
2 for any

i ∈ I and (by applying again lemma A.1)

P(Avi∈I fi ≥ γ ) ≤ P(Avi∈I f̄i ≥ γ

2
) ≤ 2e−c γ

2|I | (A.14)

thus concluding the proof. ��
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A.5. Moving Particle Lemma

Given x, y ∈ Z
d we define

zi := (y1, y2, . . . , yi, xi+1, . . . , xd) ∀i = 0, . . . , d

and write γx,y for the path connecting z0 = x to z1 by moving along the first
direction, then connecting z1 to z2 by moving along the second direction and so on
until arriving to zd = y. We denote by |γx,y | the length of the path γx,y .

Lemma A.7. (Moving Particles Lemma) Given a box � and ν ∈ M(�) then

ν
(
(∇x,yf )

2 ) ≤ c |γx,y |
∑

b∈γx,y
ν
(
(∇bf )

2 ) ∀x, y ∈ �, f ∈ G.

The above lemma is well known for non disordered systems (see for example [35]).
We learned from J.Quastel the generalization to the disordered case. Its proof has
been given in [29, 30].

A.6. An application of Feynman-Kac formula

The following proposition can be derived from the Feynman-Kac formula as ex-
plained in [22]. We report only the statement.

LetX be a finite set on which it is defined a probability measure ν and a Markov
generator L reversible w.r.t. ν. We denote by Eν the expectation w.r.t. the Markov
process having infinitesimal generator L and initial distribution ν and by xt the
configuration at time t .

Proposition A.8. Let V : R+ × X → R be a bounded measurable function and
let, for any t > 0,

 t := sup specL2(ν){L + V (t, ·)}.
Then

Eν

[
exp

{∫ t

0
V (s, xs)ds

}]
≤ exp

{∫ t

0
 s ds

}
∀t > 0.

A.7. Two Blocks Estimate

For a treatment of the Two Blocks estimate in non disordered systems see [22] and
reference therein. Let us state and prove a generalized version.

Proposition A.9. Given γ > 0, for almost every disorder configuration α

lim sup
a↓0,k↑∞,ε↓0

sup
w:|w|≤ a

ε

sup specL2(µε)
{Avx∈Tdε

|mx,k −mx+w,k| + γ εd−2Lε} ≤ 0.

(A.15)
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Proof. We extend to the disordered case the proof of the Two Blocks estimate of
[37] thanks to the ergodicity of the random field α. To this aim let us introduce the
scale parameter � with � ↑ ∞ after k ↑ ∞. Then, with a negligible error of order
O(�/k), for any x ∈ T

d
ε we can substitute mx,k with Avy∈�k

mx+y,�. Therefore,
thanks to the sub-additivity of sup spec, the l.h.s. of (A.15) can be bounded from
above (with an error O(δ)) by

sup
w:|w|≤ a

ε

Avy∈�k
Avy′∈�k : |w+y′−y|>2�

× sup spec
L2(µε)

{Avx∈Tdε
|mx+y,� −mx+w+y′,�| + γ εd−2Lε}

where the additional restriction |w + y′ − y| > 2� is painless. By renaming the
index variables, it is enough to show that given γ > 0, for almost every disorder
configuration α,

lim sup
�↑∞,a↓0,ε↓0

sup
w:2�<|w|≤ a

ε

sup spec
L2(µε)

{Avx∈Tdε
|mx,� −mx+w,�| + γ εd−2Lε} ≤ 0.

(A.16)

For any u, v ∈ Z
d let us define L̂u,v = (1 + e−(αu−αv)(ηu−ηv))∇u,v . It is simple

to check that L̂u,v is self-adjoint w.r.t. Gibbs measures. Then, given w as above,
thanks to the Moving Particle lemma (see lemma A.7) and the properties of the
transition rates, it is simple to prove that

Avx∈Tdε
Avu∈�x,�

Avv∈�x+w,�(−L̂u,v) ≤ c a2εd−2(−Lε). (A.17)

Therefore, by localizing as in (4.12), the supspec in (A.16) is bounded by

Avx∈Tdε
sup
ν

sup specL2(ν){|mx,�−mx+w,�|+c γ a−2 Avu∈�x,�
Avv∈�x+w,�(−L̂u,v)}

where ν varies in M(�x,� ∪ �x+w,�). Thanks to perturbation theory (see prop-
osition 4.2) we only need to prove that, for almost every disorder configuration
α,

lim sup
�↑∞,a↓0,ε↓0

sup
w:2�<|w|≤ a

ε

Avx∈Tdε
sup
ν
ν(|mx,� −mx+w,�|). (A.18)

We observe that by lemma A.5 in the above expression we can
substitute ν with the grand canonical measure µ such that µ(m�) = ν(m�) where
� := �x,� ∪�x+w,�.

Let us introduce the scale parameter s with s ↑ ∞ after � ↑ ∞. Then, by
approximating mx,� with Avy∈�x,�

my,s and thanks to lemma A.3

µ(|mx,� −mx+w,�|) ≤ cAvy∈�x,�
µλ0(m)(|my,s −my+w,s |)

+ c sd
∣
∣m− µλ0(m)(m�)

∣
∣+O(s/�).

where m = µ(m�) = ν(m�) and � is defined as above. Therefore, it is enough to
prove that for almost all disorder configuration α
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lim sup
s↑∞,�↑∞,ε↓0

Avx∈Tdε
sup
m

Avy∈��
µλ0(m)(|mx+y,s −m|) = 0,

lim sup
�↑∞,ε↓0

Avx∈Tdε
sup
m

|m− µλ0(m)(mx,�)| = 0.

Since Eµλ0(m)(mx,n) = m for any integer n and any site x, the above limits follow
by straightforward arguments from the ergodicity of the random field α and the
technical estimate (A.3). ��
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[30] Quastel, J., Yau, H.T.: Poincaré inequalities for inhomogeneous Bernoulli measures.
Preprint, March 2003

[31] Quastel, J.: Diffusion of color in the simple exclusion process. Comm. Pure Appl.
Math. 45 (6), 623–679 (1992)

[32] Richards. P.M.: Theory of one-dimensional hopping conductivity and diffusion. Phys.
Rev. B 16, 1393–1409 (1997)

[33] Seppalainen, T.: Recent results and open problems on the hydrodynamics of disordered
asymmetric exclusion and zero-range processes. Resenhas IME-USP 4, 1–15 (1999)

[34] Spohn. H.: Large Scale Dynamics of Interacting Particles. Springer Verlag, Berlin,
1991

[35] Spohn, H., Yau, H.T.: Bulk diffusivity of lattice gases close to criticality. J. Stat. Phys.
79, 231–241 (1995)

[36] Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor inter-
actions II. In K. D. Elworthy and N. Ikeda, (eds), Asymptotic Problems in Probability
Theory: Stochastic Models and Diffusion on Fractals. Vol. 283 of Pitman Research
Notes in Mathematics, John Wiley & Sons, New York, 75–128 (1994)

[37] Varadhan, S.R.S., Yau, H.T.: Diffusive limit of lattice gases with mixing conditions.
Asian J. Math. 1 (4), 623–678 (1997)

[38] Wick, W.D.: Hydrodynamic limit of non-gradient interacting particle process. J. Stat.
Phys. 54, 832–892 (1989)


