Probab. Theory Relat. Fields 127, 535-608 (2003)
Digital Object Identifier (DOI) 10.1007/s00440-003-0305-z

Alessandra Faggionato - Fabio Martinelli
Hydrodynamic limit of a disordered lattice gas

Received: 10 February 2003 / Revised version: 19 September 2003 /
Published online: 4 November 2003 — (©) Springer-Verlag 2003

Abstract. We consider a model of lattice gas dynamics in Z¢ in the presence of disorder.
If the particle interaction is only mutual exclusion and if the disorder field is given by i.i.d.
bounded random variables, we prove the almost sure existence of the hydrodynamical limit
in dimension d > 3. The limit equation is a non linear diffusion equation with diffusion
matrix characterized by a variational principle.

1. Introduction

Hopping motion of particles between spatially distinct locations is one of the funda-
mental transport mechanisms in solids and it has been extensively used in a variety
of models, including electron conduction in disordered systems under a tight bind-
ing approximation. The interested reader is referred to [5] for a detailed physical
review.

From a mathematical point of view, hopping motion is often modeled as an
interacting particle system in which each particle performs a random walk over
the sites of an ordered lattice like Z?, with jump rates depending, in general, on
the interaction with the nearby particles and, possibly, on some external field. Typ-
ically the interaction between the particles is assumed to be short range with an
hard core exclusion rule (multiple occupancy of any site is forbidden) and only
jumps between nearest neighbors sites are allowed. In the conduction models the
hard core exclusion condition reflects the underlying Pauli exclusion principle for
electrons. The main focus of the mathematical and physics literature on hopping
motion models has been the understanding of transport properties and particularly
of the collective diffusive behavior (see for instance [34]).

In this paper we consider an interacting particle system related to conduction of
free electrons in doped crystals that can be described as follows. A particle sitting on
a site x of the cubic lattice Z¢ waits an exponential time and then attempts to jump
to a neighbor site y. If the site y is occupied then the jump is cancelled otherwise it
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is realized with a rate ¢y, depending only on the values (e, ay) of some external
quenched disorder field {o,} 7 that, for simplicity, is assumed to be a collection
of i.i.d. bounded random variables. Our assumptions on the transition rates are quite
general. We require them to be translation covariant, strictly bounded and positive
(to avoid trapping phenomena), and to satisfy the detailed balance condition w.r.t.
to the (product) Gibbs measure p* (1) e HY) po () = — ), oxnx, where 1y
is the particle occupation number at site x. These requirements are general enough
to include some popular models like the Random Trap and the Miller—Abrahams
models, but not other models like the Random Barrier Model in which the jumps
rates between x, y is assumed to depend only on the unoriented bond [x, y] [19].
For a detailed derivation of the Hamiltonian H* in the tight-binding approximation
and a discussion of the regime of its validity we refer to [5].

Since in the linear—response regime the conductivity in a solid is linked to the
diffusion matrix via the Einstein relation (see [34]), our main target has been the
study of the bulk diffusion of the disordered lattice gas discussed above. Our main
result states that, for d > 3, for almost every realization of the random field «,
the diffusively rescaled system has hydrodynamical limit given by a non linear
differential equation

oom =V - (D(@m)Vm)

where m(t, ) denotes the macroscopic density function at time ¢ at the point 6
of the d—dimensional torus in R¢ with unit volume and the non random matrix
D(-) is the diffusion matrix. Moreover, we give a variational characterization of the
matrix D(m) in terms of the distribution of the random field « similar to the usual
Green—Kubo formula and we prove that inf,,, D(m) > 0 and that D(-) is bounded
and continuous in the open interval (0, 1).

To the best of our knowledge the problem of collective behavior in disordered
lattice gas has been discussed mathematically only for models with either homo-
geneous equilibrium measures (see for example [27], [15] for the one—dimensional
Random Barrier model and its Brownian version) or with periodicity in the random
field « allowing to solve directly the generalized Fick’s law (see [32] and [38] for the
one—dimensional Random Trap model having random field « of period 2) or finally
for models satisfying the so called “gradient condition” (see below) [24]. From
the physical point of view, diffusion of lattice gases in systems with site disorder
has been studied mainly by means of simulations and more or less rough approx-
imations like mean field . We refer the interested reader to [18], [19], [20], [21],
[23] and to [16] for an iterative procedure to compute corrections to the mean—field
approximation.

Before analyzing more closely the main technical features of the model under
investigation, we remark that a stronger version of our result (no restriction on the
dimension d) for exactly the same model was announced in [28] several years ago
with only some sketchy argument for its proof.

Our initial project was actually different from the one presented here since our
plan was to analyze the hydrodynamic behavior of the randomly dilute Ising lattice
gas in the so called Griffiths region. This latter model share many of the main
features of the site disorder lattice gas treated here, but it also has some important



Hydrodynamic limit of a disordered lattice gas 537

additional difficulties (e.g the absence of a uniform diffusive bound on the spectral
gap), due to the ferromagnetic interaction between the particles, that make it harder
to analyze. Shortly after learning about the announcement [28] we were kindly
provided by J. Quastel with a set of unpublished notes (together with H.T.Yau)
[29] were some of the technical ideas sketched in [28] were somewhat expanded.
However it turned out that some of the steps behind the scheme of proof indicated in
[28] were troublesome even in the absence of disorder (symmetric simple exclusion
model) (see ch. 6 in [14] for a more detailed discussion) and, in our opinion, the
whole argument needed to be reconsidered. Therefore we decided to tackle again
the problem of hopping motion with site disorder without the extra complications
of the Ising model but we had to take a different route from that indicated in [28].

As we explain later on, we use two technical tools that were already present in
[28] and [29]. The first one, known as the moving particle lemma (see for example
[35]), is a basic estimate in the mathematical theory of hydrodynamic limit and it
has been generalized to the disordered case in a very neat way in [29] (see also a
recent preprint [30]). The precise statement of this result is provided in the appendix
(of course, without proof).

The second technical tool is represented by the so called “long jumps” (see
page 76 in [28]). However, as we explain in some more detail in remark 7.9, the
role played by the long jumps in our approach is completely different from that
indicated in [28] and in [29] as well as the technical tools to deal with them (see
section 7.2). The remaining part of our argument is sort of more traditional and our
main sources of inspiration have been [22] and [37].

The main technical features of the model considered here are the absence
of translation invariance (for a given disorder configuration) and the non valid-
ity of the so called gradient condition. This condition corresponds to the Fick’s law
of fluid mechanics according to which the current can be written as the gradient of
some function. Since the continuity equation states that d,m = V - J, J being the
macroscopic current, the main problem is to derive J from the family of micro-
scopic instantaneous currents j)‘j" y ) := cij y ) (nx — ny), defined as the difference
between the rate at which a particle jumps from x to y and the rate at which a particle
jumps from y to x. The gradient condition (the Fick’s law) is satisfied if, for each
disorder configuration «, there exists a local function 2% () such that j¢ . () =
Topeh® (1) — Teh®(n) for any x € Z4, where t,h% () := h™%(t,n) and 7,7, Teo
denote the particle and disorder configurations 1, « translated by the vector x.

If the system satisfies the gradient condition, the derivation of J is not too dif-
ficult (see [22] and reference therein). It is however simple to check (as in [34],
p- 182) that our system never satisfies the gradient condition except for constant
disorder field «. We thus have to appeal to the methods developed by Varadhan
[36], Quastel [31] and Varadhan-Yau [37] (see also [22] and references therein) for
studying the hydrodynamic limit of non disordered non gradient systems. There
the main idea is to prove a generalized Fick’s law of the form

J8e™ Y Deo(mo)(me —no) + Lo (1.1)

e'ef
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for a suitable non random matrix D(m), where my is the particle density in a cube
centered in the origin of mesoscopic side ¢, géa’n) is a local function, £¢ is the
generator of the dynamics and ¢ is the canonical basis of Z9.

One (among many others) main difficulty in proving such an approximation
for a disordered system is due to the fact that the disorder itself induces strong
fluctuations in the gradient density field as it is easily seen by taking, for any fixed
disorder configuration «, the average w.r.t. to the Gibbs measure u“ of (1.1). By
construction the current j(‘)’f . and the fluctuation term £ g, have in fact zero average
while the average of 1, — ng (we neglect the factor D(m,) for simplicity) is in
general O(1) because of the disorder. However, and this is a key input, the average
over the disorder of the Gibbs average of u* (ne/ — 7]0) vanishes and therefore one
can hope to tame the disorder induced fluctuations in the gradient of the density field
by first smearing them out using suitable spatial averages and then by appealing to
the ergodic properties of the disorder field «, at least in high enough dimension.
It turns out that the above sketchy plan works as soon as d > 3 (see section 5 for
more details).

We conclude this short introduction with a plan of the paper. In section 2 we fix
the notation, describe the model and state the main results. In section 3 and section 4
we discuss most of the “high level” technical tools (entropy estimates, perturbation
theory, spectral gap bounds) and complete the proof of the main theorems following
the standard route of non gradient systems, modulo some key technical results. In
section 5 we discuss in detail the problem of the fluctuations of the gradient density
field induced by the disorder. Section 6 is devoted to the proof of several technical
bounds while in section 7 we discuss at length central limit variance, closed and
exact forms in our context together with our own interpretation of the long jump
method described in [28]. Finally some very technical estimates are collected in an
appendix at the end.

We finish by saying that most of the material presented here is based on the
unpublished thesis [14] written by one of us (A.F) where an expanded version of
several of the arguments used in this paper can be found.

2. Notation, the model and main results

In this section we fix the notation, we define the model and state our main result.

2.1. Notation

Geometric setting. We consider the d dimensional lattice Z? with sites

x = {x1,..., x4}, canonical basis £ and norm |x| = max{|x|,..., |x4|}. The
bonds of Z¢ are non oriented couple of adjacent sites and a generic bond will be
denoted by b.

The cardinality of a finite subset A C Z¢ is denoted by |A| and F denotes the
set of all nonempty finite subsets of Z9.

Given £ € N we denote by A, the cube centered at the origin of side 2¢ 4- 1. If
£ =2j+1wealsoset Q; = A ;. The same cubes centered at x will be denoted by



Hydrodynamic limit of a disordered lattice gas 539

Ay.¢ and Q. ¢ respectively. More generally, for any V C Z9 and x € Z¢, we will
set V, :=V +x.
Next, given e € £ and £ = 2¢' + 1 with £/ € N, we let

le . 2.e . . l,e 2,
A, ¢ = A_@winer, N €= Ao, AZ =A, ‘U A ‘. 2.1

Finally, given € € (0, 1) such that e ~! € N, we define the discrete torus of side £~
by Tf := 74 /€174 The usual d—dimensional torus R¢ /Z¢ (with unite volume)
will instead be denoted by T¢. M (T¢) will denote the set of positive Borel mea-
sures on T¢ with total mass bounded by 1, endowed with the weak topology, while
My € M will denote the set of measures in M| which are absolutely continuous
w.r.t. the Lebesgue measure with density p satisfying ||pllco < 1.

Spatial averages. We will make heavy use of spatial averages and it is better to
fix from the beginning some handy notation. Given A € F and £ € N, the spatial
average of { fy}yezq in A N €Z will be denoted by Av'?, f,. When £ = 1 we will
simply write Avyea fx.

Next, given ¢ € £ and two odd integers £ = 2¢' + 1, s = 25’ + 1 such that
% e N, we let Qg) = ¢7% N Q. Notice that, if we divide the cube A},’e in cubes

of side ¢, the centers of these cubes form the set Q)(f)s with x = —(s" + 1e.
With these notation we define the (¢, s, ¢) spatial average around y € Z¢ by

| G/o-

L,s . )
sz,y fZ = m IZ(:) szngf) fy+z+(€’+z€—s’)e- (2.2)

The motivation of introducing such a spatial average will be discussed in subsection
4.2.

The disorder field. We assume the disorder to be described by a collection of real
i.i.d random variables o := {ory}, <7« such that sup, |ay| < B for some finite con-
stant B. The corresponding product measure on Qp := [— B, B]Zd will be denoted
by P. Expectation w.r.t. P will be denoted by E.

Notice that, for any given € € (0, 1) such that e !isanodd integer, the random
field o induces in a natural way a random field on T¢ via the identification of T¢
with the cube Q1. For notation convenience the induced random field will always
be denoted by «.

Finally, given @ € Qp and A C 74, we define oy := {ay}xea-

The particle configuration space. Our particle configuration space is 2 = SZd,
S = {0, 1} endowed with the discrete topology, or Q5 = S* for some A € F.
When A = Tg we will simply write Q. Given n € Q and A C Z¢ we denote
by 7, the natural projection over 5. Given two sites x, y € Z¢ and a particle
configuration n we denote by n*¥ and n* the configurations obtained from 7 by
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exchanging the values of 1 at x, y and by “flipping” the value of n at x respectively.
More precisely,

ny ifz=x )
. 1—n, ifz=x
(), = ne ifz=y , ()= ! .
. N otherwise.
n, otherwise
Sometimes we will write 7% := S yn and call Sy , the exchange operator

between x and y. Given a probability measure p and a o—algebra F on Qj,,
we will denote by Var, () the variance of the random variable & w.r.t. u, by
Var, (§ | F) = w(€2 | F) — w(& | F)? the conditional variance of & given F, by
w(&; &) the covariance between & and §” and by (&, &) the scalar product between
£ and £ in the Hilbert space L2(Q4, d ).

Local functions. If f is a measurable function on  := Qp x €, the support of
f» denoted by A ¢, is the smallest subset of 74 such that f (o, n) depends only on
an;, na, and fis called local if Ay is finite. By || f|lcc We mean the supremum

norm of f. Given two sites x, y € 79 we define

Vx,yf(as 77) = f(as r’x’y) - f(Ol, 77)7
Vi fla,n) = fle,n) = fla,n).

We write G for the set of measurable, local and bounded functions g on Q and for
any g € G we introduce the formal series g

gi=) ug
xeZ4

where t, f(a, n) = f(1xe, 74n) and T and 7,7 are the disorder and particle
configurations translated by x € Z¢ respectively:

(Tx0)z = Qxtz,  (TaM)z = Nxz

Although the above series is only formal, by the locality of g, the gradient Vy y g
is meaningful for any x, y € Z4.

Limits. Givenn [')ar.amf?ters £y, ... én' we use the compact notation.hmp:nﬁ Uyonli 0}
for the ordered limits limg, ¢/ ...limg _, e The same convention is valid when
“lim” is replaced by “lim sup” or “lim inf”’.

2.2. The model

In this subsection we describe the lattice gas model at the microscopic scale € for
a given disorder configuration «.
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Gibbs measures. Given an external chemical potential 1 € R, the Hamiltonian of
the system in the set A C Z¢ is defined as

HY () = — Z(ax + )1

xeA

and the corresponding grand canonical Gibbs measure on 25, denoted by ,u‘;‘\’)‘, is
simply the product measure

oA . 1 ok
W) = — exp(— Hy " (1)) 2.3)
Zy

where Z% is such that % (Q24) = 1.
For our purposes it is important to introduce also the canonical measures v§ , .

Let No(n) = 3_,cp 11x and letm € [0, 7, .., 1]. Then
Ve () = puS* (| Na = m|A]) (2.4)

The random variable N, will usually be refered to as the number of particles and
mp := Na/|A| asthe particle density or simply the density. The set of all canonical
measure vf‘\)m as m varies in [0, |1]\_|’ ..., 1] will be denoted by M*(A). Notice that
Vi does not depend on the chemical potential A. However, as it is well known
[6], the canonical and grand canonical Gibbs measures are closely related if the
chemical potential A is canonically conjugate to the density m in the sense that the
average density w.r.t. ;Loj\’)\ is equal to m. With this in mind, for any m € [0, 1],
we define the empirical chemical potential )5 (o, m) as the unique value of A such
that M‘Z’)”(N A) = m|A|, the annealed chemical potential Ao(m) as the unique A
such that E[u®"(19)] = m and the corresponding static compressibility x (m)
as x(m) = E[u®*) (59; no)]. Since %u‘}‘\’)‘(f) = /L‘;\’)‘(f; Ny) for any local
function f, we get the following thermodynamic relations:

d -1 il _
—halo,m) =[O ma; N and —2g0m) = x(m)~.
am am

Notation warning. From now on, in order to keep the notation to an acceptable
level, we need to adopt the following shortcuts whenever no confusion arises.

i) Most of the times the label a will be omitted. That means that quantities like
ui\ (f) will actually be random variables w.r.t the disorder a. Moreover, the
label ) of the chemical potential will be omitted when A = 0.

ii) If the region A on which the Gibbs measures or, later, the generator of the
dynamics are defined coincides with T‘!, then the suffix A will be simply replaced
by € while if A = Z it will simply be dropped (i.e. e ‘= ,u%d ).

iii) The symbol M?\(m) will always denote the grand canonical Gibbs measure on
QA with empirical chemical potential A («t, m).

iv) The letter ¢ will denote a generic positive constant depending only on d and B
that may vary from estimate to estimate.
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v) Given two positive functions f, g : (0, 00) — (0, 00) we will write f = O(g)

if
f&) _ f&)

0 < liminf < lim sup
x—>0+ g(x) x>0+ 8&(%)

<0

and similarly for x — 07 replaced by x — +oo.

The dynamics. The lattice gas dynamics we are interested in is the continuous time
Markov chain on €2, described by the Markov generator € 2L, where L, := ET?

and for any A C Z¢

Lafm =Y LpfG)

bCA

where, for any bond b = {x, y},

Lyiyfm):= C?,y(n)vx,yf(n)

The non-negative real quantities c{, y(n) are the transition rates for the process.
They are defined as

Cz,xq_e(r/) = fe(0tx, Nx, Axte, Nxte) VX E Zd» ecé

. . . 2
where f, is a generic bounded function on ([—B, B]x S) suchthat f,(a, s, d’,s’) =
fe(@,s',a,s)and f, > ¢ > O for a suitable constant c. Thanks to this definition
the transition rates are translation covariant, i.e.

Cfcé+z,y+z(77) = Cff,‘;(tzn) vz e 74,

The key hypothesis on the transition rates is the detailed balance condition w.r.t
the Gibbs measures p, A C Z¢ and 1 € R, i.e.

fola,s,a',s") = f.(a, s’,a’,s)ef(slfs)(”/fw Vee&, a,a e[-B,B], s,s' €S

which implies that the generator £, becomes a selfadjoint operator on Lz(ui‘\)
for any A. Actually, since the moves of the Markov chain generated by £, do not
change the number of particles, for any canonical Gibbs measure v € M(A) the
operator £ is selfadjoint on L2(v) with a positive spectral gap

v(f. —Laf).
S V() #0 | 2.5)

and the corresponding Markov chain is irreducible on {n € Q5 : Na(n) = n} for
anyn € [0, 1,...,|Al]

Given ¢ € G we denote by Lg the function ) , 74 Ly g. Given A C A
and a probability measure © on Q,, for any f with support inside A we will
set

gap(Lp, v) := inf!

1
Da(fi ) =5 Y wlen(Vof)?).

bCA
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Notice that, if A = A and p is either a grand canonical or a canonical measure on
A, then the above expression is nothing but the Dirichlet form of the Markov chain
generated by £ w.r.t. .

Finally, given a probability measure 4 on Q, and 7 > 0, we denote by P
the distribution at time 7' of the Markov chain on ’]I'f with generator e‘zﬁ‘;‘ and
initial distribution p, and by P*# the induced probability measure on the Skorohod
space D([0, T], Q2¢) (see [4]). The expectation w.r.t. P%# will be denoted by E*-#.
Notice that, in turn, P*# induces a probability measure Q “* on D([0, T], M)
by the formula P*# o 716_1, where

d
Te(n) := AVxeTg Nx Sex € M (TY)
denotes the empirical measure.
Warning. In all the above measures, the crucial dependence on the parameter e > 0

does not appear in the various symbols in order to keep the notation to an acceptable
level.

2.3. Main results

Our first result concerns the existence and regularity of the diffusion matrix D (m)
corresponding to the usual Green-Kubo matrix (see [34], proposition 2.2 page 180).

Theorem 2.1. Let d > 3. Then for any density m € (0, 1) there exists a unique
symmetric d x d matrix D(m), such that

inf IE[ Ol,lo(m)<ca u _
2x (m) geG g s O,e( e(Me — M0)

+V0.8)’) | VaeR” (2.6)

(a, D(m)a) =

Moreover D(m) is continuous in the open interval (0, 1) and
0<c ' I<D@m)<cl Vme (0,1)
for some positive constant c.

Remark 2.2. We actually expect the matrix D to be extended continuously to the
closed interval [0, 1]. In particular we expect that D (m) converges to the diffusion
matrix of the random walk of a single particle in the random environment ¢« as m
goes to zero, as confirmed by simulations (see [21]).

In order to state the next main result we need the following definition.

Definition 2.3. Given a Lebesgue absolutely continuous measure m(0)d6 e
My (T9), a sequence of probability measures u€ on Q% is said to correspond
to the macroscopic profile m(-) if, under u, the random variable . in My (T%)
converges in probability to m(0)d0 as € | 0, i.e. for any smooth function H on T¢
and any § > 0

lim 1€ (| A, epa H (€)1 — / H®)m(0)do | > §) =0.
€l0 € Td
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With the above definition the existence of the hydrodynamical limit for almost
all disorder configurations reads as follows.

Theorem 2.4. Let d > 3, let T > 0 and assume that D(m) can be continuously
extended to the closed interval [0, 1]. Then almost all disorder configurations o
satisfy the following property. Let my(0)d0 € My and suppose that the Cauchy
problem

{atm(t, 0) = V@(D(m(t, 0)) Vo m(t, 9)) o

m(0, 0) = mo(6)

has a unique weak solution m € C ([0, T], M>) satisfying the energy estimate

T
/ d:/ do |Vom(t, 0)|* < oo. (2.8)
0 Td

Let also {u€}e=0 be a sequence of probability measures on Q2. corresponding
to the macroscopic density profile mo(0). Then the measure Q% ne converges
weakly to the probability measure on D([0, T'], M) concentrated on the path
{m(t, 0)d0}c(0,1]- In particular, for any 0 <t < T, the sequence of time depen-
dent probability measures {P;""* ’ }es0 corresponds to the macroscopic density pro-
file m(t,0), i.e. for any smooth function H on T and any § > 0

11?3P?”‘E(| AV, cra H(€x)n, — / H@®)m(t,0)do | > §) = 0. (2.9)
€ € Td

The thesis remains valid also if D(m) has no continuous extension provided that
one assumes instead that, for some fixed p € (0, 1), there exists a sequence of
product (over x € Z¢) probability measures W on Q¢ such that

HIu 5] = o) and inf inf min(uino). 1= uS000) = p.  (210)
xeT4

where H|[-|-] denotes the relative entropy.

Remark 2.5. Notice that condition (2.10) becomes rather natural if the initial profile
mo(-) satisfies p <mp(@) <1 — pforany 9 € T4,

3. Plan of the proof of the two main theorems

The proof of theorem 2.1 will be given in section 7.4 and it is based on more or
less standard techniques. The proof of theorem 2.4 is more involved and it can be
divided into several steps that we illustrate in what follows. In order to work in
the simplest possible setting, in the sequel we assume that the diffusion matrix D
can be continuously extended to the closed interval [0, 1]. Only at the end (see
subsection 4.8) we will explain how to treat the other case.

Let us begin with some remarks on the weak interpretation of (2.7) and (2.8).
Let A(m), m € [0, 1], be ad x d matrix such that A’(m) = D(m) so that

(D(m(t,0)Vom(1,0)), =Y 8g, Ace(m(1,0)), Ve €.

e'ef
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It is simple to prove (see appendix of [14]) that given m € D([0, T], M>) there
is a measurable function m(t, 6) univocally defined up to sets of zero Lebesgue
measure such that m; = m(t, 0)d6 for any t € [0, T] (see appendix of [14]). In
what follows, we will often identify m with the function m(¢, 6).

Apathm € D([0, T], M>) is called a weak solution of (2.7) if m(0, -) = mq(-)
and

®(m,H)=0 VH e C"2(0,T]x T%

where

d(m, H) : =/ m(T,O)H(T,Q)dQ—/ m(0,0)H (0, 6) do
T4 T4
T
—/ / m(s,0)dsH(s,0)d0ds
0o JT¢

T
—Z/ / Ao (m(s,0)) 85 o H(s,0)d0ds.  (3.1)
0o Jrd

e,e

Moreover, m € D([0, T], M) satisfies the energy estimate (2.8) if

T
sup sup / / (2m 09, H — H2)d9 ds < o0. (3.2)
ee€ HeCl([0,T1xTd) /0O JTd

Warning. In what follows, we will introduce some other mesoscopic scales in addi-
tion to the microscopic scale €. For example, we will introduce some positive scale
parameters a, b and consider the mesoscopic scales [‘e—l] and [g] where [-] denotes
the integer part. For simplicity of notation these new scales will be denoted only by
¢ and g. Moreover, we will introduce the scale n where n is a positive odd integer.
The property of n to be odd will be always understood.

3.1. Tightness

The first step toward the proof of theorem 2.4 is to show that, for all disorder
configurations «, if {1€}¢~0 is a sequence of probability measures on €2, then the
sequence of measures on D([0, T], M), {Q% “E}€>o, is relatively compact. For
this purpose it is enough to use the Garsia-Rodemich-Rumsey inequality as done
in [22], chapter 7, section 6.

3.2. Regularity properties of the limit points

In the second step one proves that, for almost all «, given a sequence {i€}¢= of
probability measures on €2, any limit point Q% of the sequence {Q% * }~¢ is
concentrated on paths enjoying a certain regularity property. For this purpose we
first observe that, for any «, Q% must satisfy Q%( C([0, T], M2)) = 1, since for
any n € Q¢, H € C(T?) and b C T¢

| e DIH]| < AvyeqalH(ex)| and | we(”)H] = 7e(IH]| < 2| Hllooe?.
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Moreover, if the sequence of {4€ } ¢~ ¢ corresponds to the macroscopic profile m(6),
then necessarily

0%(m € C([0, T1, Ma) = m(0,0) =mo(0)) =1 Va. (3.3)

The key result here, whose proof will be given later in section 4.7, is the following.
Given a path n(-) € D([0,T], Q¢), x € ’JI‘? and £ € N, let my ¢(¢) be the
particle density of n(¢) in the cube Q, (. Then we have

Lemma 3.1 (Energy estimate). Let d > 3, let T > 0 and assume that D(m)
can be continuously extended to the closed interval [0, 1]. Then almost any dis-
order configurations a have the following property. For any sequence {ii€}e~o of
probability measures on Q¢ and any e € €

. Tem b, als)—mya(s)q2
sup i sup B (Av, ¢y / [ | ds) < +o0. G4y
>0 a0,e40 <Jo b

Moreover any limit point Q% of the sequence {Q% "¢~ satisfies

Q“{ m e C([0, T], M) : Lh.s. of (3.2) < oo} =1 (3.5)
3.3. Microscopic identification of the hydrodynamic equation
In the third step of the proof one identifies at the microscopic level the hydrody-

namic equation. It is convenient to introduce some more notation. Given e, ¢’ € &,
two positive numbers a, b and a smooth function H on [0, T'] X T, we set

T
e i= Ay [H(T enu() = HO.om0) = [ dsneo)n.tis. )]
0

T
+ > /0 ds AV, c1aVEH (s, €x) Do o (1 2 (5))

e,e'e€

m . by a(S) —m,_ b, als)
|: x+ze' g x—ze, g ] (36)

2b

where Vi H (s, €x) := %[H(s, €x +¢€e) — H(s, ex)].
The following theorem, whose proof will be discussed in a little while, corre-
sponds to the microscopic identification of the hydrodynamical equation.

Theorem 3.2. Letd > 3, let T > 0 and assume that D(m) can be continuously
extended to the closed interval [0, 1]. Then almost all disorder configurations o
have the following property. For any sequence {|1€}¢~ ¢ of probability measures on
Q¢, any § > 0and any H € C1’2([0, T] x ']I‘d)

limsup P** (|Hpael >8) =0. (3.7)
bl0,al0,€l0

The proof of theorem 2.4, given Lemma 3.1 and theorem 3.2, now follows by
more or less standard arguments and it can be found in section 1.5 of [14].
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4. Proof of theorem 3.2 modulo some technical steps

In this section we prove theorem 3.2 modulo certain technical results that will be
discussed in the remaining sections. Following [37] the first main step is to reduce
the proof of the theorem to the eigenvalue estimates of certain symmetric operators,
via the entropy inequality and the Feynman—Kac formula. To this aim we define
Jx.x+e as the instantaneous current through the oriented bond {x, x + e}, i.e. as the
difference between the rate at which a particle jumps from x to x + e and the rate
at which a particle jumps from x + e to x. It is simple to check that
jx,x+e(77) = Cx‘x+e(77)(77x — Nx+te)
and
Leny = Z(_jx,x+e(n) + Ji—ex ().
ecf

In particular (see lemma 5.1, appendix 1 in [22], or [14]), for any smooth H (¢, x),
integration by parts and stochastic calculus show that

AV, cpa[H(T, €x)n(T) — H(0, ex),(0)]

T
ZAVxe'[rd/ s H (s, €x)ny(s)ds
< Jo

T
+e! ZAVxeT§/ VEH(s, €x) jx x+eds + M(T) 4.1)
eek 0

where M (-) is a martingale w.r.t PX* satisfying
PELIM(T)| > 8] < c(H)8 %! V8>0. (4.2)

In order to benefit by the ergodicity of the system, it is convenient to replace the
current jx x4 in (4.1) by its local average around x. To this aim let us introduce a
new scale parameter ¢, that will be sent to co after the limit € |, 0. Then, because of
the smoothness of the function H, for any £ >> 1 one can safely replace in the r.h.s.
of (4.1) the current jy . by alocal average Avy.|y_x|<¢; Jy,y+e» €1 := € — Ve, in
the sense that, for any § > 0

. € —1
lelJIBEDV' [|e AV, eTd
T
x/ VEH (s, €0)jure — AVyiyaize vyse] ds | > 8] =0 (43)
0

The key observation in the theory of non-gradient systems is that, thanks again to
stochastic calculus,

T
li&)lIP’”eHe_lAvxer/ VEH(s, ex)ToLgds | >8] =0 V8>0,YgeG
€ < Jo
4.4)

and similarly for Av,.|,_y|<¢, 7y £g in place of 7, Lg.
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In conclusion, thanks to (4.1), (4.2), (4.3) and (4.4), in order to prove (3.7) it is
enough to show that for almost all disorder configuration « and for any e € £

T
inf lim sup ]E“e(|/ e VAV, VEH (s, EX)I:AVy;\y—x\fﬁl
2€G p10,al0, t400, €10 0 ¢

X (yyre +TyLE) + Y Deomy o)

e'el

Tt T las ) = o0
/e =

4.5)

We next reduce (4.5) to certain equilibrium eigenvalue estimates by means of the
entropy inequality and the Feynman-Kac formula (see proposition A.8). Let us
recall the former: given two probability measures 7, 7" on the same probability
space, for any 8 > 0 and any bounded and measurable function f,

n(f) < B HH@@ |7 +In(x' (7))} (4.6)

where H (7 | ') denotes the entropy of w w.r.t. 7. It is simple to verify that, for
any initial distribution p on €2, the relative entropy between the path measure
PH starting from u and the equilibrium path measure P#¢ starting from the grand
canonical measure . with zero chemical potential, satisfies

H(P*|PHe) < ce

Therefore, for any ¥ > 0 and any function A on [0, T] x 2.

T
([ e noas))
d

T
<S4 S e (exp{ye—d}/ h(s, n(s))ds|}). “.7)
y v 0

The Feynman—Kac formula (see proposition A.8) now shows that,

d

e—lnIE“‘ (exp{ye‘d(:t/Th(s n(s))ds)})
v o

T
sf supspec 2 fEh(s, ) +y e 2L} ds (4.8)
0

We now apply the above reasoning to the function h(s, n) = integrand of (4.5).
Since for any € > 0sup;cio 7] Supyeta | Ve H(s, €x)| < c(H), after a suitable
re-parametrization of y, in order to prove (4.5) it is enough to prove the following
key eigenvalue estimate.

Proposition 4.1. Let d > 3. Then, almost all disorder configurations o have the
following property. For all y > 0

inf lim sup sup supspec2 € T, HvelTPLY <0 (49)
8€G p10,al0, t400,€,0 T o
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where

J_lf,a,z‘e = AVxeTZJ(”)[AVyZIy—XISM(jy,y+e + 17yLc8)
—m b, a

mx+§%% x—ze, ¢
+ % | e ]] (4.10)
e

and J varies in {J € C(']I‘d) oo < 1}
4.1. Some technical tools to bound the spectrum

Before we turn to the proof of proposition 4.1, let us introduce some tools to deal
with the eigenvalue problem posed in (4.9).

We begin by recalling a useful sub-additivity property of the supremum of the
spectrum of a selfadjoint operator and explain its role in the so—called localization

technique.
Given a finite family {X;};c; of self-adjoint operators on LQ(MG),
sup speCLz(ﬂE){Z X} < Z sup specy2(,.{Xi}, 4.11)
iel iel

and similarly with )", _; replaced by Av,¢;. The sub-additivity property allows
one to exploits the localization method which is best explained by means of an
example, although the underlying idea has a much wider application. Let € > 0,
l < % and for any x € ’IF‘EI let fy be a local function with support in Ay . Recall
the definition of M (A, ¢) as the set of all possible canonical Gibbs measures on
Ay ¢ and that for each x € Tf, eachb € Ay and any v € M(A, ¢) the operator

Ly is a selfadjoint non—positive operator in L2(v). Then

sup SPECLZ(MG){AVXE']T? Sfo+ ed_z,Ce}
< AVxE'HwEi supspecLz(#é){fx + ce*ZAVbEA”Eb}
<Aviers  sup  supspecia{fy +ce P Avien, Ly} (412)
UEM(AXV(/’)

where the former inequality follows from L. <c Av, Td AVpen,, Ly, for a suit-
able geometrical constant ¢ = c(d) together with the sub-additivity property (4.11),
while the latter follows from the inequality

te(fr 85 +ce 2 ue(g [Avpen, L1 8)
= pe(tte(fr 8% Imx e {nydyga,,))
e e (ne(g [ Avben, Lo 18 1 mee, (My}yga,))

< sup  supspecpa | fi + e Avpen, Lo}ue(g?) Ve € L2(ue).
veM(Ayx.¢)
Next we state a very general result on sup specy 2, {£ + BV}, where £ is an
ergodic reversible Markov generator on a finite set £ with invariant measure u,

and whose proof is based on perturbation theory for selfadjoint operators (see e.g.
[22]).
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Proposition 4.2. Let gap(£, j1) be the spectral gap of —£ in L*(w) and let, for
B>0andV : E— R,

Ap = supspecr2){L+ BV}
Assume without loss of generality (V) = 0. If
28 gap(€, )|V oo < 1
then

132
0<ig = 1
1 =28 gap(€, W)~ Vlleo

u(v, (—)~! v).

The above proposition suggests that in order to prove proposition 4.1 we must
be able to estimate:

(1) the spectral gap of the generator £, in a generic box A;
(2) the H_1 norm appearing above.

We begin with the first one.

Proposition 4.3. [10] Let A C Z¢ be a parallelepiped with longest side £. Then
there exist ¢ > 0 such that, for all disorder configurations o and all v € M(A),

gap(La;v) > cl? (4.13)

In particular, for all disorder configurations and all v € M(A), the following
Poincaré inequality holds

Var, (f) < c 2D (f; v) (4.14)

Remark 4.4. The key aspect of the above result is the uniformity in the disorder
configuration. Its proof is based on some clever technique developed recently in
[12] to deal with the Kac model for the Boltzmann equation and extended in [11]
and [10] to other kind of diffusions. For other models of lattice gas dynamics like
the dilute Ising lattice gas in the Griffiths regime the above uniformity will no
longer be available and a more sophisticated analysis is required (see [14] for a
discussion).

Let us now tackle with the H_ norm. Unfortunately that will requires the proof
of some technical bounds that, on a first reading, can be just skipped.

Following the theory of non disordered non-gradient systems, we introduce the
space G C G defined as

G:={geG : IA €T suchthat, Yo and Vv € MY(A), v(g) =0}. (4.15)

Equivalently, G can be defined as the set of functions g € G such that there exists
A € Fand h € G with g = L h. Since the dynamics is reversible w.r.t. Gibbs
measures, this second characterization assures an integration by parts property that
will play an important role in the sequel. More precisely, if g¢ = Lk, then, for any
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A’ containing A and any v € M(A), v(g, f) = v(h, LA f). Moreover, if V and
A are such that Ay C V forany x € A, then forany A > 0 and v € M%(V),

WY s f)| < c@IAIZDy(f:v)?

xeA

< Ac(@|Al+ A e(@Dy(f;v) (4.16)

where, for some suitable constant c(A),
1
c(g) :==c(A)ysup sup (v(hH)2. 4.17)
o veM(V)
A first simple consequence of integration by parts (see chapter 7 of [22] and section

1.16 of [14] for a proof) is the following bound.

Proposition 4.5. Let g € G have support included in Ag. Then for any disorder
configuration o, any y > 0 and any family of functions F = { f; }xe'ﬂ‘g’ on Qe,

sup specLz(ﬂe){e*IAvxeTg (te8 fro) + ye?=2L)
<€ e(g IFle) IV Flloo + sup specy2 ) {c(@) AV e f7

1
+Syei=2p), (4.18)

where || Flloo := sup,erd || fxlloo and ||V Flloo = sup,cd suppcp, 11V fxlloo-
In the space G it is also possible to introduce a H_| norm closely related to that

given by perturbation theory (see proposition 4.2 above).

Given positive integers £, s with s < ¢ and frg € Gwith Ay, A, C Ay, for any

canonical or grand canonical Gibbs measure ¢t on A, we define

_ -1
Velfgm = (Y wf (—a)Tt Y we). @19)
lx|=£1 lx|=£1
If Ay is replaced by A ¢ and the above sums are over x € A, ¢, we will simply

write Vo ¢(f, g; ) and if f = g we write Vi (g; w) or Vz ¢(g; p).
It is simple to check that V,(g; i) can be variationally characterized as follows:

V(g ) = @D~ sup{2u( D 18, h) — Dp, (h; )
h e
( c8, h)?
— (21)—d sup pr‘fel x8
h D, (h; p)
where sup,, is taken among the non constant functions with support contained in
Ay.
The variational characterization allows one to derive some simple bounds on
Ve(g; ). Let A be a box such that A, C A C Ay and for any x € Z4 let Fy be
the o—algebra generated by ma, and {ny}y¢a,. Then, for any function £,

(4.20)

ju(teg. ) = p(p(regs b | Fo)) < pu(Var,, (g | F)? Var, (h | F)?)
1 1
< p( Vary (teg | Fo))? u( Var, (h | Fr))?
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which implies that

p(Y wgh? <c Y p(Var (g | Fo) Y w(Varu(h| Fo).  421)

[x]=€ [x]<€; [x]<€

If we appeal now to the Poincaré inequality (4.14)

Var, (h | Fy) < es> Y u(ep(Voh)* | Fr),
bC Ay

the last sum in (4.21) is bounded by ¢ s?+2Dy, (h; ). Recalling (4.20), for any
¢ > s? we finally get

Ve(g: 1) < s AV <o Vary (neg | F))- (4.22)
In particular

Ve(g: w) < es? g2 (4.23)

In order to benefit of the ergodicity of the random field, it is natural to define, for
anym € (0,1)andany g € G,

V(@) = Jim QO E[i (3 mee (~LapT Y me)| @24

[x]<ey [x]<£y

where, we recall, Lo(m) is the annealed chemical potential corresponding to the
particle density m. If m = 0, 1 we simply set V,,,(g) = 0 for any g € G. In section
7 we will prove, among other results, that the limit appearing in (4.24) exists finite
and that it defines a semi—inner product on G (see theorem 7.2 there). With this
definition we have the following result.

Lemma 4.6. Let g € G. Then

lim sup Av

vl s Vee(giv) S sup V(. (425
€100, €0 €

veM(Ayp) me[0,1]

Proof. As in [22], chapter 7, lemma 4.3, we introduce a scale parameter k, with
k 1 oo after £ 1 oo, and partition Ay in cubes of side 2k + 1. More precisely,
we define A{” := Ay N (2k + DZ? and write Ay = Bis U (U, @ Az k) where
Br o= Ag\ UzeA@")AZ”" Then, by proceeding as in [22] and by uzsing the varia-

tional characterization (4.20) together with the integration by parts formula (4.16),
for any v € M(A¢) we get

Ve(giv) < @04 sup( 3 Folhziv) + c(@)y ke +k77 ) (4.26)
I

zeAék)
where ¢(g) is as in (4.17), F;(h;; v) :=2 ZyeAqq v(tyg, hy) — Dp,  (hy; v) and
the supremum sup;, is taken over all families 1 = {h Z}ze Ao such that /1. depends
- . 4

only on np,, and D(h;; v) < c(g)k?.
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Actually it is simple to check that in (4.26) we can restrict the supremum to
families & that satisfy the extra condition ||h||sc < c(g)ck for some constant ci
depending on k.

Therefore, if m is the particle density associated to the canonical measure v and
thanks to the equivalence of ensembles (see lemmas A.4 and A.3), for any disorder
configuration o we get

A
| > Fhiv) = Y Folha )™ < e(@)a,
zeAék) zeAEk)

A
1Y Flh i) = Y Falha: )| < e(g)er € m — 0 (my,)).
zeAék) zeAék)

Thanks to the previous observations we finally obtain

AV|x|< sup Vi, (g, V) <cy ke—1 + k_% + Ckz_d + ck®1 + ¢k 1®2

T veM(Arp)

where ¢y ¢ is a positive constant depending on k, £ such that limy e, ¢100 Ck,e = 1
and

Q) = Alelsl sup |m — ,uk"(m)(mAL
€ mel0,1]
@ :=Av,_1 sup tx<sup{(2k) TAV, g0 F(he, MW"))})

=€ mel0,1]

and supy, is as before.

It is clear that, by considering a fixed density m in the definition of ®; and
®,, for almost all disorder configurations «, @ is negligible as £ 1 oo, ¢ | O.
Moreover, because of the ergodicity of the random field « and of the variational
characterization (4.20), it is also clear that for almost all disorder configurations «

lim sup ©, < E(Vi(g; M“’(m)))
£100,e/0
To handle the supremum over m € [0, 1] requires some simple additional observa-
tions based on compactness of [0, 1] and lemma A.3 (see e.g section 1.13 in [14]).
0

4.2. Back to the proof of proposition 4.1

Given the technical tools developed in the previous paragraph, let us now complete
the proof of proposition 4.1 modulo some non trivial results to be proved later on.

The basic idea would be to benefit of the ergodicity of the model by means of
the localization technique discussed in subsection 4.1. Unfortunately, the function
JE b.a.0.c Appearing in (4.9) cannot be written as AV, cTd fx (or as amore complex spa-
tial average) for suitable functions fy having support 1ndependent of . We will need
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some subtle techniques developed for non-gradient systems in order to approximate
J,f a.¢. With such a spatial average There is however one piece of J b, namely
the density “gradient” (2b / e) [ iplo e "M by, a] which can be conveniently
written as a su1tab1e spatial average. To this aim recall the def1n1t10n (2 2) of the
spatial average AVZ, y and define for any particle configuration 7, m! z , 2 ¢ and

a,le’

my to be the particle density associated to 7 in the sets Aé’e, Az’e and A§ deﬁned in
(2.1) respectively. It is then simple to check the following identity (which motivates
. . £,sy.
the introduction of Av_’y):
2,e le 2,e le
ts mz —my o omy —my
Av it 7 =T . . (4.27)

Let now n, £, b be odd integers such that - € N and 2 € N. Then, it is simple to
check that

2b m2 ¢ — ml’e m._ b m.__p
AV et o et Tl (4.28)
afe 2b/e
where
=+ (us b )+1)
Xy =X ue -5 e
Therefore, if we define
Z =AY, sz ., fZ (4.29)

(when necessary we will also add the vector e € £ into the notation by writing
Av;'7), thanks to (4.27) and (4.28) we obtain:

2e Le m b,a —MmM b,a
m —m x+ze o x—ze o
AV T — - = < 62 be ek (4.30)

are not satisfied, we extend the definition of
2r2

If the above conditions on n, ¢, lg’

« by replacing in (4.29) £, g, 2ab with 71, o and respectively, where ry is

the smallest odd number in nZ such that £ c<n and rz 1s the smallest odd number
in r1Z such that g <nr.

a b
e’ €
to be odd integers such that - € N and % € N. The way to treat the general case
is shortly discussed in section 4.5.

It is convenient to introduce also AV . defined as the dual average of sz L le

Warning. In the sequel, for the sake of simplicity we will always assume n

AV ers (o (AVE 800 ) = Avyens (80 (AV: L S0))- (4.31)

The explicit formula of Av; | f; can be easily computed and it is similar to the
formula of Av} | f;.
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We introduce at this point some special functions related to the gradient of the
density field. Given two integers 0 < n < s, e € £ and a grand canonical measure
w on an arbitrary set A containing A¢, we write

mrC—mpy¢ =yt 4@t with ¢l =p[miC—ml¢|FE], (4.32)

where F¢ is the o—algebra generated by m¢. Notice that, in absence of disorder,
the function ¢;, ; would be identically equal to zero and that ¥, ¢ € G foralln < s,
since V(Y ) = O for all v € M(A) and all A containing A§. Thanks to (4.22)
with A := A¢ and s := n and thanks to the equivalence of ensembles (see lemma
A.S), given £ > n?itis easy to check that

e e
vg(—w;’”; v se WweM®, o V(= pHmy < em(1—m).
(4.33)

Using decomposition (4.32) we can now write J_i ate 38

I e = ZAvxerJ(ex)w(”
j=0

where (we omit in the notation the suffix b, a, ¢, €, g)

e/

n,n
9
n

w;o) = AVy:|y—x|§€1 I:j)f,y+e + T)“Cg + Z De,e’(mx,ﬂ)fy
e'ef
e/
7, n,n:l
n

Y i= 3 Do lmy )1
ee€

e

1[/)52) = Z[De,e’(mx,%) - De,e’(mx,l):lfx Z,n

e
e e
(3) — *,€ n,n n,n
vy E D, o (m, g[Av” 7, p, — Ty » ]

e'eE

m._ .b,a —M__b,a —

@ . x+ce e x—ze, 2 e/ my ny
‘(//x - De,e/(mx,g) - sz,x TZ
e'ef

%55) = Z De e’(mx —)AV r’;n
e'ek
and we define
Q; = supspec;2(, e LAV T (ex)y? + yel2 L} j=0,....5.

Then, thanks to the sub-additivity of “sup spec", proposition 4.1 follows from the
next result.
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Proposition 4.7. Let d > 3 and y > 0. Then, for almost every disorder configu-
ration «,

inf limsup supp <0 (4.34)
8€G ntoo,t400,el0 J

and, forany j =1,...,5,

lim sup sup 2; <0 (4.35)
ntoo,bl0,al0,100,el0 J

where J varies in {J € C(T%) : |J|loo < 1}.

The proof of proposition 4.7 is best divided into several pieces according to the
value of the index ;.

4.3. The term
Let us first prove (4.34). By localizing on cubes of side 2¢ 4 1 (see (4.12)) and

using the regularity of J(-), it is enough to prove that for almost every disorder
configuration o,

inf  limsup Avxer sup sup supspec
2€G ntoo,0400,el0 [Bl<l m L2(UA om)

{ B AV -y i<t Ty Yo g)+ce—de—zzw} <0  (436)

where

(ng) _]Oe+£g+ZDee’( ) nn
e'ef

Since € | 0 before ¢ 1 co and since for any £ large enough, any |y — x| < £; and

any v € M(Ay0), v(ty ¥ @, g)) = 0, we can appeal to perturbation theory (see
proposition 4.2) and conclude that it is enough to show that

inf lim Av sup V ,V =0 4.37
geGntoo, 100,60 veld me[()pl] At (wm Ax,g,m) ( )

where V, ¢ has been defined right after (4.19). A minor modification of the proof
of lemma 4.6 shows that (4.37) follows from

inf limsup sup V( @, g)) 0 Vd >3 (4.38)
8€G ntoo mel0,1]

(see (4.24) for the definition of V,;,) which, in turn, follows from theorem 7.23.
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4.4. The three terms 21, 22, Q3

Let us prove (4.35) for j = 1, 2, 3. In what follows, by means of proposition 4.5,
we will reduce the eigenvalues estimate 21, €2 and €23 to the Two Blocks estimate
(see subsection A.7). To this aim, by integrating by parts, we can write

e )
eTavi ey = e tavn, 2 B vji=1.2.3
el n
where
B)(cl) = J(Gx)De,e’(mx,l) - AVy:ly—xlfil J(ey)De,e’(my,f)
B = J(€x)[De,or(my a) = Do (me0)]

B = AV} J(€2) Do (my 0) — J(€X) De o (my ).

X
Notice that, for any b C Ay ,,
| ) 3 € e
VBV = VB =0, |VyBP| < cn—0sc(D,c—).
a a

Therefore, using proposition 4.5, it is enough to prove that for almost every disorder
configuration «, given y > 0,

limsup  sup supspecy2(,,){AV, ema
b10,al0,6100,e0 J ¢

i 1
x (BY)? + EyeH,cg} -0 Vj=1,23. (4.39)
Since D can be approximated by Lipschitz functions and J is smooth, (4.39) can

be derived from the Two Blocks estimate (see subsection A.7). For simplicity of
notation, let us consider the case j = 2 (the case j = 1 is simpler, while j = 3 is

a slight variation) and D Lipschitz continuous. Since (B)EZ)) <c|myg—myal,

. . '€
by introducing a scale parameter k such that k 1 oo aftera | 0,€ 1 oo and € | 0,
we can estimate

2))2 k .k
(Bx ) < CAVMSgAme% |mx+y,k —Myy k|l +c Z + Cﬂ.
At this point, by the sub-additivity (4.11) of “sup spec”, the thesis follows from the
Two Blocks estimate.

4.5. The term Q4

The proof of (4.35) for j = 4 is based on the Two Blocks estimate. Notice that,
thanks to (4.30), the function 1/5&4) entering in the definition of €24 is either iden-
tically equal to zero if n, ¢, f are odd integers such that - € N and g e N, orit
can be written as

Wfl) = Z De,e’ (mQx,%)

Mm_b,a—M__b
[ xteele x—ele  Mxiner ”lx—rge’,rli|
el

2b/e 2rp
(4.40)
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where r1, r» have been defined in subsection 4.2. By the Two Blocks estimate it is
simple to check that for any y > 0 and for almost any disorder configuration «

. d—2
a¢l(1)2]¢0 supspecLz(uE){AvxeTg|mx’% —mye | +ye LS =0 4.41)

lim  sup supspecsze){Avxer!mx,g—mx+w,g|+yed_zﬁg}:0 4.42)
a¢06¢0|w|<2a € € €

(hint: introduce the scale parameter k with a | 0,k 1 o0o0,e¢ | 0 and write
Mys = AVyen, My + O(k/s) fors = g r).

In (4.40) we can substitute 7| by g (thanks to (4.41)) and after that in the numer-
ators we can substitute r by 7 b (thanks to (4.42)). In order to conclude is enough

to observe that e 7! | ;- — —| < ¢ % which goes to 0.

b/e

4.6. The term Q25

The proof of (4.35) for j = 5 is based on the key results of section 5 and it is
one place where the restriction on the dimension d > 3 is crucial for us. We refer
the reader to the beginning of section 5 for an heuristic justification of the above
condition. Here it is enough to say that the main contribution to the term €25 comes
from the fluctuations in the density field induced by the fluctuations of the disorder
field.

By the sub-additivity of “sup spec” we only need to prove that for almost all ¢,
givene, e’ € Eand y > 0,

lim sup sup supspecy2(,.)
ntoo, bl0,al0,el0 J

el
x{e 'Av, J (ex) D, o (m,, g)Av” f”’” +yel™ L) 0. (4.43)

Recall the definition of Av;’f;/ and x, given in (4.29). Then, thanks again to the
sub-additivity of "sup spec", the "sup spec" in the L.h.s. of (4.43) is bounded from
above by

2 n,¢ o}
Av,_, sup specr2,, ){ AVXJ(ex)De,e/(mx’g)sz’;u1:Z 2

"t yedTL, ).
(4.44)

¢n 1

n

to localize on boxes of side length of order O ( e) in such a way that D, ¢/(m, 2)

Observe that AVZ X ‘L’Z

has support inside A‘ . We would like at this point

a
‘e

becomes a constant. To this aim, given u € {0, ..., 2a—b —1}and x € ’]Tf, we set

Ay, = Qx,lO% if Qx,% N Axu,Zg 75 @ .
O, a otherwise
‘e

and we observe that either Ay, is disjoint from or completely contains A, a.
. . e
Therefore, if in (4.44) we could replace the term D, ,(m, a) by the new term
‘e
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D, o (ma,,), thenit would be simple to check (by localizing on boxes A, ’2%) that
all what is needed is that for d > 3, for all T € N and for almost all «,

limsup Av,cpa sup sup sup specra
ntoo,al0,e}0 |ﬁ|<TveM(A 2a)

X {eflﬁAVZ:x; 7, 2’" + fizAVbeAx,za/g Eb} <0 (4.45)

Section 5 is devoted to the proof of (4.45) (see theorem 5.3 there).
Therefore, it remains to prove that for d > 3, for almost all « and forany y > 0

2b —1
limsup  sup Av, " supspec;2(,,,l€ " Av,cmaJ (x)
n100,640,al0,eL0 J ¢
e

& Dun
><[De,e,(mx,g)—De,e/(mAx_u)]AVZ,);‘rZ B yedT2L ) <0, (4.46)

2b -1
Notice that the only values of u which contribute to the Av,’ , above, in what
follows called “bad values”, are those for which Q, « # Ay, for some x € ']Td It
is easy to check that the cardinality of the bad values of u is of order O (1) for any
fixed x € Tf. Thus we only need to bound the "sup spec" appearing in (4.46) by
0(2), uniformly in u in the bad set. Thanks to (4.30) and (4.32) we can write

’
m ba—m b a a ¢
¢nn _ Xu+gsg Xu—=ecr e n,¢ n,n

AVZ x; T,— 3b/e £ —Av; 5T,

(4.47)

Then, the contribution in (4.46) coming from the first addendum in the r.h.s. of
(4.47) is not larger than O (%) and therefore negligible.

Let us consider the contribution of the second addendum. An integration by
parts shows that

e e
n,g n,n n,n
AVxeTng(ex)(De,e’ (my o) — De,e/(mA.\',u)AVZ,;u TZT = AVxeTgTXTBx,u

where the functions B, , satisfy || By ,|| < c together with

d
ne € ¢
[Vp By u| < c;Osc(De,e/, Ca_d) Vb € AS ,

Moreover, By, is aparticular spatial average (dual to AVZ ) of J(€z2) ( e (M a)—

D, o (m Aw). Therefore, by proposition 4.5 and the Two Blocks estimate (see sub-
section A.7), the contribution of the second addendum is also negligible (see also
the discussion at the end of subsection 4.4).
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4.7. Proof of the energy estimate

In this subsection we prove lemma 3.1. It is simple to check that

spatial-time average in (3.4) = sup Hj , . (4.48)
HeH,y o

where Hj, := {H smooth on [0, T] x T¢, ||H s < %} and

b a () —mx,gm]

T m_.,b
Hf e = AVxe’]I‘g’/O (2H(s,ex)[ ki 5 —H(s,ex)2>ds

In what follows let H belong to H,,. By the entropy inequality and the Feynman-Kac
formula (see (4.6) and (4.7) ), for any y > 0,

T
]EME(HZ*b,a,e)Sg AVxer/ dsH(s, ex)?
0
T
+y /(; ds su[;spec{ye_lAvxeTg 2H(s, €x)
L= (pe)
My o, als) —mya(s) B
[~ f“zb/e |+et2e). (4.49)

It is convenient to introduce a free scale parameter n, with n 1 oo after a | 0 and

€ | 0, and write the gradient of masses appearing in (4.49) as Av} | 7, ( W;’i’" + %T")
(see (4.30) and (4.32)).

By the definition of Av} _, the sub-additivity of sup spec and theorem 5.3,

Z,X°

T e
lim sup / ds sup spec{e_lyAVxer 2H (s, €x)AV] (T, =L el }
n1o0.al0.el0J0 L2, ‘ S

Let us consider, for fixed b, n, a,

e

LrelTL). (450

sup specya,, {G_l)/AVxeTg 2H (s, ex)Av;x T,

Thanks to the definition of the dual average Av}  we can write

e e
n,n n,n
Avyerad 2H (s, ex)Av;erT = AV,cTd dy Ty

where ay := Av] 2H (s, €z). Since Av} | is translationally invariant w.r.t. x and
H is smooth, we can proceed as at the Very beginning of this section and safely

n,n

v
replace 7, —

by a local average Av|y_y|<¢, Ty 102 £ > n, to get

e

Vin
(4.50) < supspecy2, .\ {€” )/AVxer axAV|y_x|<, Ty —— - 2L, }
+c(H)yel?. (4.51)
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By the usual trick of localizing on boxes A, ¢ and proposition 4.2, if € is small
enough then the first term in the r.h.s. of (4.51) is bounded from above by

¢

2 2 n,n
CY AVicrea;  sup Vx,g( ; v)
veM(Ay ) n

which in turn, thanks to (4.33), is bounded from above by
c yzAvxeTg a’ <c* yZAvXETg H(s, ex)?

for some suitable positive constant ¢*. Let us now choose y so small that ¢*y? —
y < 0. Then, by the previous estimates, if € is small enough,

T
limsup rh.s. of (4.49) < hd + (c*y — 1)/ / H(s, 9)2d0 ds
ntoo,al0,e)0 Y 0 JTd

L (4.52)
Y

IA

In order to conclude the proof it is enough to observe that there exists a finite set
H}; C Hjp depending on b such that

%)
o
o
=
Q
n
A

<1+ sup Hp,.

HeM, ' HeH;
so that
lim sup E“e( sup Hj, ) <14 limsup E“e( sup Hj,.)
nt00,al0,e0 HeHy n100,a}0,€0 HeH;
K
<1+-— (4.53)
4

thus allowing to conclude the proof of (3.4).

Let us now sketch the proof of (3.5). Since C L([0, T1 x T9) has a countable
base, by Beppo-Levi theorem it is enough to prove that there exists a constant cp
such that, given Hy, ..., H, in C'([0, T x T¢), then

/dQ(m) sup / / 2m(s, 9) H(s 0) — Hi(s,0) )d@ds] < ¢p.
(4.54)

By the Lebesgue density theorem and the dominated convergence theorem, the
Lh.s. of (4.54) is equal to lim, o Eo (©@) where, for any v € D([0, T], M),

W) = sup f /d (2v@s, 9)—H(s 0) — Hi (s, 0))d0 ds, (4.55)
T

with
v @ (s, 0) =

Ga ™ v (0 e T : _sup 6/ — 6;] < a}).

.....
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It is simple to prove (see [14], section 1.18) that

lim / dQ(m)(®“(m)) < limsup / dQ* " (1)(0@ (1)

al0,el0

T
= limsup IE“”LE( sup / AV,.c1a (2m, a (s, €x)
510,a10,e0 i=1,...nJ0 € ¢

[H,- (s, ex + be) — Hi(s, €x)
b

] — Hiz(s, €X) ) )

By integrating by parts and observing that

* *
sup Hb,a,e = sup Ha’bge,
HeHy HeCl([0,T]xT9)

the thesis follows from (4.53).

4.8. Hydrodynamic limit without regularity of the diffusion matrix.

In this last paragraph we shortly discuss the hydrodynamic limit when the regularity
condition on the diffusion matrix is replaced by the two conditions at the end of
theorem 2.4, in the sequel referred to as assumptions A(p). The main idea here is
to prove that one can safely introduce a density cutoff near the edges of the interval
(0, 1), and for this purpose the main technical tool is the following result.

Lemma 4.8. Assume that the sequence of initial probability measures € satisfy
A(p). Then there exists a constant 0 < p < p such that, for any T > 0 and any
disorder configuration «,

T
ylim B ( /0 ds AVt (]I{mx,e(ﬂ)<»5}+]I{mx‘e(s)>1—,5})):0' (4.56)

Proof. For simplicity, we consider in (4.56) only the contribution coming from
Tim, o(s)<p}> the other one being similar. Given two probability measures w1, w2
on 2, we will write 1 < wo if u1(f) < w2(f) for any function f which is
increasing w.r.t. the partial order in Q. givenbyn <’ & n(x) <n'(x) Vx € Tg.
It is then simple to check that our model is attractive [25] in the sense that | < o
implies that P! < P/*? for any ¢ > 0 and for any disorder configuration o. There-
fore, condition A(p) implies that there exists A < 0 such that Mé < u§ for any

€ and any «. Let now p = %min(%, ,o). Then, given 8 > 0 and thanks to
attractivity, the entropy inequality (4.6) and the identity H[u€|uS] = H[P* |PH],

T
E* ( /0 ds AVyeraln, ()< )

1 1 T
< SH[u V] + 5 (B (oo [ ds pavienyln, oa)) ). @57)
B B 0 ¢
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Thanks to the Jensen’s inequality and the reversibility of £, w.r.t. u? the second
addendum in the r.h.s. of (4.57) can be bounded by

1
3 In(uf (expiT B AV ealn,  <5}) )- (4.58)

. B
Let v* be the product measure on Q¢ with v*(1,) = lfew. Then v* < pu? and
therefore

(4.58) < % ln( v* (exp{T B AVxeTgme.Kﬁ}) ) Va.

At this point, let us recall a general result based on the Herbst’s argument and the
logarithmic Sobolev inequality (see [1] for a complete discussion): for any y > 0
and any function f on

V(erfy < eCr VY

wherecy :=c¢ ) cqa IV f ||(2)<> and ¢ = c¢(B, A) is a suitable constant independent

of € (c is related to the logarithmic Sobolev constant of the Bernoulli measure v*).
Thus

% In(v* (exp{T B AV crallm, ,<5})) < ¢ T? Bt + T AV, cpav* (T, , <5)-
(4.59)

Since 5 < v*(10), by choosing B2 1= H[u€|uSl/(T?ee?) the rh.s. of (4.59)
is negligible as £ 1 oo, € | 0. Since H[u®|us] = o(e~%), the thesis follows by
collecting all the above estimates. O

Using the above result we are in position to discuss our density cutoff. Let us
recall first that, given a generic continuous extensions D of D outside the inter-
val [p, 1 — p], any weak solution m(¢, ) of the Cauchy problem (2.7), where
D has been replaced by D and p <mg) <1—pforany 6 € T4, satisfies
p<m(t,0) <1l—pforany0) <t <T andany¥f € T4, Let D be defined as

D(p) if0<m=<p
D(m) := { D(m) ifp<m<1-—5
D(1-p) ifl—p<m<l.
Let us explain next how one should modify the proof of theorem 3.2 in order to
get the same result but with D replaced by D in the definition of Hp 4 (in what

follows this replacement will be understood without further notice). To this aim it
is convenient to introduce the following shorter notation

Xx, b = me_g<ﬁ + ]Imx,g>17,6~

Then, thanks to lemma 4.8, equation (4.5) can be substituted by
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T
inf inf  limsup E“€(|/ e VAV, cra VEH (5, €x)
8€Gr=0p10,a10,1100,6,0 0 €

. — mx+§e/,‘;’ T Tx-2e,2
x [A"y:|y—x|541 Uy,y+e +TyLg) + % Deor(my, o) 2b/e ]]
e

T
—r[ ds AV, crd Xx,eds |> =0
0 €

and the main issue is to prove proposition 4.1 with J, bg a.t.c replaced by

T
T = |ehs.of @10y with D — D} —e r/o ds AV e ot -

In turn the proof of the modified version of proposition 4.1 is splitted into several
steps, one for each term SZE.V), j=0,1,...5, where now

Qg = supspecya, [ AV T (@)Y — rAV,craxn e + vel LY.

and all the other 2; are unchanged. It thus remains to explain how the discussion

in subsection 4.3 has to be modified in order to apply to Q(()r). Because of the new
definition of €2¢, (4.36) has to be replaced by

inf inf limsup Av,.p¢ sup sup
gEG rZOnTOOl'TOO,E\LO € |}3|§T mel0.1]
x| supspec {6_1ﬂ AVyily—leﬁlfyl//r(nn’g) + Gd_zﬁe}
LZ(VAX_Z.m)

- V]Im<,5 - rI[m>1—[)] <0 (4.60)

where D — D in the definition of v\,

We observe that, provided €£972 « 1, the sup spec inside the square bracket
in (4.60) is bounded by ¢, T2, for a suitable constant ¢g depending on g. That
follows immediately from perturbation theory (see proposition 4.2) and the esti-
mate (4.33). Therefore, by choosing r large enough, we only need to prove (4.60)
with m € [p, 1 — p] where D(m) and D(m) coincide. Similarly one shows that
the two “sup,,c0.1)” appearing in (4.37) and (4.38) can be safely replaced by

“SUPpegp,1-5) -
5. Disorder induced fluctuations in the averaged gradient density field

In this section we analyze a key term that, as we have seen in section 4, arises
naturally when one tries to approximate spatial averages of the current with spatial
averages of gradients of the density profile. Since the currents jy .+, have, by con-
struction, zero canonical expectation with respect to any canonical measure on any
set A > x, x 4 e, in order to approximate Avy j y+. With suitable averages of gra-
dients of the density field, one is forced to subtract from these gradients appropriate
canonical expectations. Therefore, a key point in order to establish the hydrody-
namical limit, is to prove that these “counter terms” vanish as € | 0. These kind of
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terms arise also in the hydrodynamical limit of non—disordered lattice gases (see
[37], section 7) with short range interaction. In our context however their nature is
quite different and, as we will show next, they are basically produced by fluctuations
in the disorder field.

In order to be more precise recall first, for any given ¢ € &, the notation
AL A2 and AS = AL® U A2 described in section 2.1, together with the
associated densities m )¢ := myle, me = m 2, mé = mpe.

Using the above notation and given two integers n < s and a vector e € &, the
basic object of our investigation is defined as (see (4.32)):

G5 = pulm>¢ —mbe |m¢] (5.1)

Notice that if the disorder configuration o was identical in the two cubes A,l1’e and
A2€ then ¢n,n would be identically equal to zero. Moreover E(¢,,;) = 0 and
E([¢n,s1*) = O(n™) uniformly in s > n.

Remark 5.1. The fact that ¢, s is small (on some average sense) with n and not with
s is one of the main differences with non disordered lattice gases where, instead,
the analogous term goes very fast to zero as s 1 oo (see [37], section 10).

The main result of this section is the proof that the contribution to the hydrody-
Pn.n

namical limit of suitable spatial averages of =

dimension d > 3.
In order to be more precise let us introduce the following equivalence relation.

is negligible as € | 0O at least in

Definition 5.2. Given two families of functions fx n.a.c(ot,n) and gx n.a.c(0t, n)
with x € ']I‘f,n e N,a > 0,e > 0we will write fy ~ gy if, for any given T > 0
and for almost all disorder configurations «,

limsup Av,ca sup sup supspeciz,
nt00.a0.el0 “I1BI<T v

—1 -2
X {E ﬂ(fx _gx)+€ AVbEAsz,,/GEb} SO
where sup,, is the supremum over v in the set M(A, ,a) of all the canonical mea-
e
sures on A, pa.
e

We are now in a position to state our main result. Assume that a given direction
e has been fixed once and for all and, given two integers £ < s with € N and

X € Tf, recall the definition of the spatial average Avﬁjfc given in (2.2).
Theorem 5.3. Foranyd >3

~0.

szl:xg T, ¢n,n
n

Before discussing the plan of the proof of the theorem we would like to justify the

restriction d > 3. If we pretend that the particle density is constant everywhere,

say equal to m, then

¢n,n
n

— n,; —
sup specy2,, {€ IgAv; <, +e€ 2AV;,€AXW2“/€£;,}

_ n, ¢ (m)
<€ llgAVz,)cg sz



566 A. Faggionato, F. Martinelli

Since the typical fluctuations (in «) of the quantity

ne ¢nn(m)
n

E_lAVZ,x 7

are of the order of E#C (a, n), necessarily we must assume d > 3 since € | 0
before a | 0 and n 1 oo.

5.1. Plan of the proof of theorem 5.3.

The main difficulty in proving theorem 5.3 lies in the fact that first € | 0 and only
afterward n 1 oo. In particular there is no hope to beat the diverging factor ¢!

appearing in definition 5.2 with the typical smallness O(n’%) of qb’;l—" The main
idea is therefore first to try to prove that

,% (bn,n
n

n
Av i1,

¢s,x

5.4
~ ‘€
~ AV, 5T,

(5.2)

where the new mesoscopic scale s = s(¢) diverges sufficiently fast as € | 0.
By standard large deviations estimates (see lemma 6.7) it is simple to verify that,
given 0 < § <« 1and 0 < y < 1, for almost every disorder configuration o and
s=0("7)

SUP |7y o] < Cs™ 272 (5.3)

xeTd

for any € small enough. In particular, by a trivial L° estimate,

5,4 Ps.s . 2
AVZ,XTZ ;A ~0 if Y > m

The above simple reasoning suggests to define a first mesoscopic critical scale

54

Soo = e_diﬂ above which things become trivial. It is important to outline that we
will not be able to prove (5.2) with s > s, but only with s = 5 where § := 500
and 0 < § < 1 can be taken arbitrarily small.

Once we have reached scale § we cannot simply use L bounds but we need

to appeal to an improved version of the well known Two Blocks Estimate (see

s a
proposition 5.9 below) in order to conclude that AVZ: it % ~ 0.

We now explain the main steps in the proof of (5.2) with s = 5. As discussed
in subsection 4.1, a main tool for estimating eigenvalues is given by localization
together with perturbation theory. However, because of proposition 4.2, it turns out
that this technique can be applied to prove (5.2) only if
¢s,s

n,< 5,4
¢, P —Av; s IZTHOO < const,

esP2| AV S T,
n

that is if es?*2 < const. In particular we see immediately that this approach cannot

be used directly to prove (5.2) for s = s, but only up to a new critical mesoscopic
1

scale sg := €~ d+2.
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. n,4 . 50,2
Assuming that we have been able to replace Av; ¥ 7, ¢';1"' with Av; 1,

we face the problem to increase the mesoscopic scale from sg to 5.

(P.)'O,SO
50

E}

. . . . 50,4 y
The main observation now is that the L°° norm of the new quantity sz?xé 7, %g(’)so

d+2

2

is at least smaller than So_ (see (5.3)) almost surely (here and in what follows
we deliberately neglect the correction s® appearing in (5.3)). This means that the
limit scale beyond which perturbation theory cannot be applied, previously equal
to 59, is now pushed up to a new scale s given by

d
a2~

-
€S]8, <const = s1 =€ 20d+2)

The above remark clearly suggests an inductive scheme on a sequence of length
scales {sx}x>0 given by
1 J
S0 = € d+2; Sk+1 ‘= € dt2./sk
in which one proves recursively, by means of localization on scale sx41 combined
together with perturbation theory, that

a a
Sks ¢ (pxk,sk Sk+1:¢ ¢Sk+1 JSk4-1
AVz,x T,— — AVz,x T, = 0.

Sk Sk+1

2
Notice that limg_, o Sx = Sco Where s, = € @+2 represents the limiting scale
introduced at the beginning of this section.
A large but finite number of steps of the inductive scheme proves that

where, as before, § = €%54,. We remark that for this part of the proof we only need
d > 2, while we will assume d > 3 when proving the improved version of the Two
Blocks estimate (see proposition 5.9).

5.2. Preliminary tools.

In this section we collect some general techniques that are common to all the steps
of the proof of theorem 5.3. We recall that A} , denotes the translated by z of the
box Aj.

Lemma 5.4. Let £y < €1 < €y be odd integers such that 5—2 € N. Let v be an
arbitrary canonical measure on the cube Ay, and let f be a function with support
in AZ. Then

€.t
sup specy2 ) {AV 5 T f + AVpeny, Lo} <

Lo, L
AV sup sup specr2onf{t: f + CAV!’GA?.A =2
v

where V' varies in M* (Af ¢,) and c is a suitable constant.
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Proof. Tt is sufficient to observe that
Lo, €2
AviAzgz Ly <c AVz,O (AVbeA?el ﬁb)
and localize in the box Af , . ]

At this point, it is convenient to observe the factorization property of the average
Avﬁjfc defined in (2.2): given odd integers £, £’, L such that % % e N, then

AVEL fo = AV AV fu)- (55)
Proposition 5.5. Letd >2,0 <y <y’ <landy’ < ﬁ + L. If either £ = n
ands = O(e ) or £ = O(e™") and s = O(e™""), then
e Qus &s,2s

a
S, =
Av, i1, 7 ~ Av, i1, .

Proof. By the factorization property (5.5), we have

6L Py 5,2 ¢s,2& 5,2
AVZ,)E‘L'Z—E —Av it ; = Av,§ [AV“I

w,z "W
z £

s ¢ss,2s:| .

- TZ

Therefore, by lemma 5.4, it is enough to prove that for any 7 > 0 and for almost
all disorder configuration o

limsup Av,cpe sup sup Srv <0 (5.6)
ntoc,al0,e0 CIBIST veMe(AS,)

where

fxv = supspecya, {E_lﬂ [Avf”fC 7, QZ"Y Ty —¢‘YS’2‘Y

¢x,2s
\y

] + CE_zAVbEAi,zs Ly }

for a suitable constant ¢. Notice that 7, = U(Avfjfc T, %’S) v as..

Because of lemma 6.7, given 0 < § <{ 1, for almost all & and € small enough

LR I MO
reTd x ¢ oo — E—(d+2)/2+5 if ¢ = O(G_V)

Thanks to the above bound, to the choice ' < ﬁ + % and the fact that min,
gap([,A; V) =cs ~2 (see 4.13), for almost all o and € small enough we can apply
proposition 4.2 together with lemma A.5 to get

sup frv <c T20 25042 sup F(x, m) 6.7
veME (A ) m

x,2s

where m varies among all possible particle densities in A¢ ,  and
. L,s
F(x,m) = Var .o (AV;S o0 5)

and A, (m) := )‘Ai ” (m).
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We claim that for almost all « and € small enough

sup sup F(x,m) < cs72d+28 (5.8)
xeTd m

thus proving the proposition since d > 2. The proof of (5.8) follows exactly the
same lines of the proof of proposition 6.5 with the main difference that it is nec-
essary to use lemma 6.4 in order to control the empirical chemical potentials (see
also section 4.7 in [14]) O

Proposition 5.6. Let d > 2, ﬁ <y<y <landy < ﬁ + L. Sets =
O ")ands = O(e™""). Then
¢S,S

5,4 5,4
Av, i1, ~ AV, y T,

¢s,s’
.

Proof. By lemma 5.4 it is enough to prove that for any 7 > 0 and for almost every
disorder configuration «

limsup Av, e sup sup  fan <0
al0.el0 CIBIST veMe(AS )

where

o) Os.s' _
LR, ] + ce 2Avb€Ae Eb}
K s xs!

Jx.v = supspecya, [e*I,Brx[

for a suitable constant ¢. Notice that v(¢s,s) = ¢5 ¢ V a.s..
Because of lemma 6.7, given 0 < § < 1, for almost all « and € small enough

sup “Tx% [, < s @22,

xeT¢

Thanks to the above bound and to the choice y’ < dlﬁ + %, for almost every o
and € small enough, we can apply proposition 4.2 together with lemma A.5 to get

sup  frw < T2 2(s) 2 sup F(x, m), (5.9)
veM(AS ) m

where m varies among all possible particle densities in A ,

F(x,m) := Var . (Txhs.5)

and now Ay (m) = Ape (m).
We claim that for almost all  and € small enough

sup sup F(x,m) < ¢s— 24+ (5.10)
xeTd m

thus proving the proposition because of the constraint on y, ', d. The proof of
(5.8), requiring d > 2, follows exactly the same lines of the proof of proposition
6.5 with the main difference that it is necessary to use lemma 6.4 in order to control
the empirical chemical potentials (see also section 4.6 in [14]) |
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5.3. From scale n to scale s

Here we show how to replace the starting scale n with our first mesoscopic scale
1
increasing with €, sg = O(e—de)_

Proposition 5.7. Letd > 3. Then

Pnn _¢n_,s0] ~0.

Av’;jfrz[ ; ; (5.11)

Proof. Without loss of generality, we assume that ;—0 € N and similarly for anﬁ

By the definition of AVZ:XZ and setting B = Q4 N1 74, in order to prove
(5.11) it is enough to show that

limsup Av,ca sup sup supspecz(,
ntoo,al0,el0 CIBI<T v

X €T BAV e ia T fasy + €€ P AVben, 4 n Lo} SO (5.12)
— Pnn

where f 5, 1= 5 — ¢"n—‘° and v varies in M (A 34/2¢)- The proof is nothing more
a

than a careful writing of the spatial average AV’;:; together with the sub-additivity
property of sup spec.
Setting B’ = Q;, NnZ4, Y = Qase N s0Z4 we can write B = Uyer (B + )
so that
AVieixTifus = AVererAVzeB’erTzfn,so
and
AVbe, 300 Lb < CAVyey 4xAVben, 5, Lb -

By the sub-additivity property of sup spec, (5.12) is bounded from above by

limsup Av sup sup, supspecLz(,,){e_l,BAVg,ne)QY Taty Jn.so
ntoo,al0,e}0x€T¢ |g|<T 0

+ce *Avpen, 5, Lo)
where v varies among M (A 25,) and Av;"e)A = AVycannzd-

At this point we can apply perturbation theory (see proposition 4.2): since
lim; 400 SUP-. esg+2 | f,50 loo = 0, it is enough to prove that for almost all disor-
der o

) 1
lim sup — AV, ca SUP, e A4 (A, YO (T [nn — Puso]) =0 (5.13)
ntoo,el0 1 0
where

v (f) = sdv(Av?

—1 A,
Y€Qs Ty ‘f’ (_‘CAzSO) AVy€ Oso Tyf)-

In order to prove (5.13) it is clearly sufficient to prove it with ¢, , replaced by
¢y, n4, provided one is able to show that for almost every disorder o

. 1
hTm suﬁ) n—2Avx€Tg supveM(Aﬂso)\I/;‘;) (tx[@nn — buns]) =0. (5.14)
nToo,e
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We will concentrate only on the first step and refer the reader to section 4.5 in [14]
for the details of the proof of (5.14).

Given v € M(Asy,) we first estimate W (¢, .4 — dn.s) as follows (a similar
bound will then be applied to any translation by x).

Assume, without loss of generality, that so = N 4 for some N € N and set
;= k* for any k € N. Then, given 0 < p < 1, by Schwarz inequality,

N-1

U @yt = bnse) <o D KPP OD (D0 — buty)-
k=n

In order to estimate \IJS(:)(qb,,,/Zk — ®n,e,,) We divide Qg in cubes {Q; i }ier, With
side ¢, where, without loss of generality, we assume that so/¢x € N and similarly
for £x/n. Let Q; x be the cube of side 10£; concentric to Q; . Then by lemma 6.1
with

L=l A=Asg, A= 0igpn, fii= AV, Tlbne — $ne)

we obtain (thanks also to lemma A.5)

\Ijs(];) (¢n,€k - ¢n,£k+1) < CKZ_—:__]ZAViEIk+1V3rM (AV)(CE)Q k-HTX [¢n,lk - ¢n,fk+1]>
(5.15)

where 1 is the grand canonical measure corresponding to v.
Let now J be the set of possible densities on Ay, . Then, thanks to (5.15), it is
enough to prove that, for p small enough and for almost every disorder «,

lim AVxer p Z K'Pe8t2 Avicy, sup Var om
ntoo,€0 el melJ Ax 250

(n)
(Av),"eHQ kryczﬁn,zk) =0 (5.16)

and similarly with ¢, ¢, replaced by ¢, ¢, ;.
Given y > 0 we set Jy = {¢,7,2¢,7,...,1 — ¢, ”}. Then, using (A.1), the
variance in (5.16) can be bounded from above by

d7
Var i (AV;ne)x+Qi,kry¢”‘l") et

'¥+Qi,k

provided that m € Ji satisfies |m — m| < E_V

Therefore, by choosing y large enough, we can replace in (5.16) ,uk(m) by
A(m)

Ok and J by Jx. We can at this apply proposition 6.6 to get that

N

sup Var am (Avyex+Q kryqb,,,gk) < C]I‘Ai.i,k(a)gk_2d+28 + ]IAX,;,A @), (5.17)

meJi Qj j+x
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. . .. - . )
where A, ;  is a set of disorder configurations in x + Q; x WithP(Ay ; ) < e by,

5> 0.
Therefore

N
Lhs.of (5.16) = lim nr Y kU A e Avier T,
’ k=n+1

N

. -2 14+p p2—d+28
+nT1010r2wn > ke . (5.18)
’ k=n+1

The second addendum in the r.h.s. of (5.18) is zero because of the definition of £
and the condition d > 3.
Letus consider the first addendum in the r.h.s. of (5.18). By Chebyschev inequal-
ity, for any ¢ > 0 and any x, k
P(AVierda, , = 67) <P(Iiel 14, =47)
<sdef et (5.19)

Moreover, by setting ]_IA”.J( =14, — ]P’(.Ax,iyk), we have for any r € N and any
x, k

]P(AViEIkHAx,i,k z El:q) = crzl%rqE[(AViEIkﬁAx,i,k)2r] = C;eirqﬂlrsam (5.20)

By taking the geometric average of the two estimates (5.19) and (5.20) we finally

obtain R
IP’(AV,-GI,(HAM.J( > l,:q) <c(q.r)sy r=0/2,

It is enough at this point to choose ¢ and r large enough, define

O == {Ix € T¢: Avier L4, = €7 forsomek <N},
and apply Borel-Cantelli lemma to get that also the first addendum in the r.h.s. of
(5.18) is negligible. O

5.4. From scale sy to scale Si41.

Here we define precisely the sequence of length scales s; and discuss the details of
the inductive step sy — sx+1 described section 5.1.
Let {ax }x>0 be defined inductively by

1 1
ap=1 and arq :l+(§— W)ak

It is easy to verify that the sequence {ay}i>0 is increasing with limg_, o ax = 2.
A

Let also s; := €~ d+2,

Proposition 5.8. Letd > 2. Then

Sk»g ¢S 5 Sk lqg ¢S .S,
AVZ,.XE T, ks Sk %AVZ; ETz k-+15Sk+1 Vk > 0. (5.21)
Sk Sk+1
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Proof In order to prove (5.21) observe that, by construction, the two exponents

745 and %55 satisfy the conditions of propositions 5.5 and 5.6 with y := 7% and

y = Z‘:ﬁ . Therefore we have the following chain of equivalences:

a a a
Sky ¢ ¢S»,S Sky ¢ ¢sk,sk 1 Sk+1s7¢ ¢Sk 1:28k+1
Av, T, X Ay, T N Ay e
Sk Sk Sk+1

Finally, using again proposition 5.6 with s =s;11 and s’ =2s, we obtain (5.21). O

5.5. Analysis of =+ %5 yig an improved Two Blocks Estimate

Here we describe the final step in the proof of theorem 5.3, namely we show that

5.5

s

=ma

7; ~0

N by

Av

where 5 = €%55 and so0 = efdiﬁ (see section 5.1). The basic tool is represented by
the following improved version of the Two Blocks Estimate (see e.g. [22]), whose
proof mainly relies on the same techniques used for proving proposition A.9 (see
section 4.10 in [14]).

Proposition 5.9 (Improved Two Blocks Estimate). Letd > 3,0 <y <y’ < 1
and set s = €V, £ = €. Then, for any r such that 0 < r < min(z(:H__Z), 5

and for almost every disorder configuration o

lim sup Avxer sup supspecya,)
al0,el0

x e ’Avw AV ImE —mS |+ e_zAv;,eAX’Z% Ly} <0
where v varies among M(Ax,zg).
Corollary 5.10. Letd >3 and 0 < § < 1. Then
54 @55

Av, it —
s

~ 0. (5.22)

=

Proof. For simplicity of notation we omit the bar in § and we set Am := m>"* —m}**

and N = NAe

Let ¢A s(m) =

proposition A.4), it is enough to prove (5.22) with ¢y ¢ replaced by ¢“. Let m be
a particle density on A¢ that, without loss of generality, we can suppose in (0, %)
and set A := Apc¢(m) and Ao := Ag(m). Then, by Taylor expansion,

Mm ("))(Am) Then, by the equivalence of ensembles (see

@ (Am) = @ (Am) + (0 (Am; N)YO. — o) + i1 (Am; N3 N)(n — ho)?
(5.23)

where A is between A and Ag.
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Let us observe that |,u}‘/(Am; N; N)| < c, while by lemma A.3

A — Aol <cll — l.

wHoms)
m
Moreover, E[u*0(m¢)] = m and E[u**(Amy; N)] = 0. Therefore, thanks to the

L . . . Mo (0)
large deviations estimate of lemma A. 1 applied to the function f(«) := % -1,

for any B € (0, 1) and € small enough

d., B 1 _a.8
P — hol = 57577) < P(Avierety f1 = —s 2+7) < e,
: [

A similar reasoning applies to the term u*0(Am; N) if we consider instead the
function f () := ™ (no; no) — E(1* (10; no)). The above bounds together with
the fact that the number of possible choices of m is polynomially bounded in s
and together with Borel Cantelli lemma, implies in particular that for almost all
disorder configuration « and for € small enough

sup [z (bs,s — ™0 (Am))|loo < s
xeTg

Thanks to the above estimate it is enough to prove (5.22) with ¢, ¢ replaced by
w0 (Am), that is

le

2,e
4 e mg —m
Avi; M)\o(mz,s)(fz%> ~ 0. (5.24)

We assert that we only need to show that

l,e

a 2,e —
Lhus. of (5.24) ~ Ave ¢ 00 (rZW) (5.25)

where £ = ¢!~ is a new mesoscopic scale with 0 < p < 1 so small that s < ¢
d

and e~ 1¢— % J 0ase | 0. In fact, thanks to lemma A.1 applied with f(«) :=

/J,AO('";@) (no — nee), given 0 < B < 1 for almost every disorder configuration «

and for ¢ small enough the r.h.s. of (5.25) is bounded by ¢=*3*+_ Because of our
choice of £, the r.h.s. of (5.25) is equivalent to O.
Let us prove (5.25). To this aim, we observe that thanks to (5.5) and (4.27)
L sl homey (. Am
Lh.s. of (5.24) = Avy, & Avyy, w0 es (TzT>,
¢4 e Am
rhis. of (5.25) = Avy & AvSE (2000 (rzT>.

Therefore, we only need to prove that

M b 2 o 22) o



Hydrodynamic limit of a disordered lattice gas 575

Let us assume for the moment that, given 0 < 8 « 1, for almost all disorder
configuration o and € small enough

sup |uk0(’")(rxAm) — M’\O(’"/) (rxAm)|

xeTd
< cs_%+’5|m —m'| —I—cs_%_ﬂ Ym,m' € [0, 1]. (5.26)
Then it is simple to deduce (5.25) from (5.26) and proposition 5.9 with y = ﬁ -

8,y =1—pandr =-588+ d%zé + ﬁﬂ by choosing suitable 0 < 8 K § K
p <1

It remains to prove (5.26). For simplicity of notation, let us consider only the
case x = 0 (the general case is a simple variation). By continuity, we may assume
0 <m < m’ < 1 and by Taylor expansion,

[0 (Am) — o™ (Am)| = |20 (Am; NYA () (m' — m)|
M Am: N
<c |w [(m' — m)
wherem < m < m’.If we could restrict the possible values of iz to {s ¢, 2574, ...,
1 — s}, then, by means of large deviations estimate as in the first part of the proof,
we would obtain % |0 (Am; N)| < ¢ s_%"’ﬁ for almost every disorder « and for
€ small enough, thus implying (5.26). The complete proof requires some additional
straightforward computations (see also section 4.10 in [14]). O

6. Some technical results needed in section 5

In this section we collect some technical results, mostly based on estimates of large
deviations in the disorder field «, that are used in the proof of theorem 5.3. Our
bounds mainly concern canonical or grand canonical variances of suitable spatial
averages of local functions. Such variances arise naturally from eigenvalue esti-
mates via perturbation theory. We have seen in fact that, when perturbation theory
applies (see proposition 4.2), the maximal eigenvalue is bounded by an expression
containing an H_; norm that, in general, can be bounded from above by:

v(f, =Ly f) < c€Vary(f) < c*Var,(f) 6.1)

where v is a canonical measure on the cube A of side £ with disorder «, u is the cor-
responding grand canonical measure (with suitable empirical chemical potential)
and f is a (mean zero w.r.t. v) function. Above we used the spectral gap bound
gap(L£,) > c€2 together with lemma A.5.

When the function f is the spatial average of local functions { f;};c; each with
support much smaller than A it is possible to do better than (6.1). We have in fact:

Lemma 6.1. Ler A be a box in 74 and {Ai}icr be a family of cubes A; C A with
side R satisfying

[tiel:xeA}| <10 vxeA.
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Let f = Aviey fi where, for any i € I and for all o, f; has support in A; and has
zero mean w.r.t. any canonical measure on A;. Then, for any canonical measure v
on A with disorder configuration «,
v(f. =Ly f) < e RIIT Avierv(Vary (i | ) ).
Proof. Let F; := o (my,, nx with x & A;) and observe that
v(fi,9) =v(v(fis g1 F)) Vg
Thus, by Schwarz and Poincaré inequalities and the diffusive scaling of the spectral
gap
12
W(f, )| < ¢ R Avier vf [Var, (fi | F)Da, (g5 v(1FD)] )
1/2
<RI (Avier v(Var,(fi 1 7)) Patg: )72,

It is enough now to take g = —Exl f. O

6.1. Variance bounds.

One of the key issues is to provide sharp enough upper bounds (see proposition 6.5
below) on the variance

Var,;,l()(m) (AVxeAk Tx¢n,s) (6.2)

where n, s, k are positive integers satisfyingn < s < k and m € (0, %) and ¢, ¢
has been defined in (5.1). Actually the method developed below is very general and
it can be used to estimate also other similar variances, like for example (6.2) with
Ao(m) replaced by the empirical chemical potential A, (o, m).
Itis convenient to define first some additional convenient notation besides those

already defined at the beginning of section 5:

A A(m¢

On,s(n) 1= MA(smS)(m%e - m’11,e)

Som) := o (mp® —my®; Nag)

A 0
E(m) = wy" (my® — my©s Nae)

og (m) = ™" (m¢; Nae)
o (m) := e (m: Nag), (6.3)

where Npe, Npe denote the particle number respectively in the box Aj and Af.
Let us recall the definition of static compressibility x (m) = E(MAO(’”)( n0; Mo )).
Moreover, given 0 < § <« 1 and a site x, we define the events:

M (m) == {|m§ ((n) —m| = \/%s_%*‘% )
Ail)(m) = { l|m _ Mko(m)(m; S)| > S7%+
m ,

o (m)
X (m)

S
——

ADm) = { |z, —1| > 57878 (6.4)
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Remark 6.2. Notice that the first event is an event for the particles configuration
while all the others are events for the disorder field.

Lemma 6.3. There exists so(5) such that the following holds for any s > s5¢(3).
Assumen < s, 45790 <m < 1/2, n & My(m) and o & .A)(Cl)(m) u A;z)(m).
Then, for any site y,

(1—2ny)  &o(m) st
259 Txx(m) =cs {m +ﬂs

Proof. By Lagrange theorem we can write

Vy['cxén,s](n) - 7%+%}. (6.5)

. m3 ((n¥) /
VY[Tx¢n,s](n) Z/ w ' (6.6)

m$ () * Uz(m/)
Assume /'’ in the interval with end-points m¢ (1) and m¢ (). Then, by lemma
A2,

Eom') <cm', Emy <cm', og(m’y = cm', o*(m) = cm', x(m') =cm.

Moreover, since n € My(m), m’ > cm if s is large enough depending on §.
Therefore, by lemma A.3

E(m) &o(m')
X — Tx
O.Z(m/) 002(m/)
‘ &o(m') &o(m)
s —S "W

o) (m) g9 (m)
‘ fo(m)  Eo(m) o (m)

T T <c|t
Yogmy T x(m)

IA

C ’
—|m' — phom me )|, (6.7)

IA

C C Cc _
—lm' —m| < —|mS () = m|+ —s 468

, —1|. 6.9
x (m) ‘ (©6.9)

By lemma A.3 and the assumption o ¢ .A)(Cl) (m), the r.h.s. of (6.7) can be bounded
from above by

1
lm = 120 me ) =54 < e[ s7I 4 —s7]. (6.10)
m ’ m m

Similarly, the contribution of the r.h.s. of (6.8) together with (6.9) can be bounded
from above by

s—d 1 d. s
_7_}'_7
c[—m Vil z] 6.11)

The thesis follows immediately from (6.6) together with (6.10), (6.11). |

Lemma 6.4. There exists so(5) such that the following holds for any s > s0(3).
Letn <s,m e (0, %), and let M) be a bounded measurable function such that
for any disorder configuration o

(@) — Ag(m)| < s~ 4. (6.12)
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Then, for any s > so(8) and any finite set A C 7.9,

_$2

P (UseaMi(m) = 1Al ) < ce (6.13)

Proof. By the Chebyshev inequality and the translation invariance of P, the Lh.s.
of (6.13) can be bounded from above by exp(s®/2)E[u*® (Mq(m))].
Let us bound the term

)
eﬂE[/JL)‘(“) (mf —m > ﬁs_%+%)]. (6.14)

Thanks again to Chebyshev inequality, for any 0 < ¢t < 1 (6.14) can be bounded
from above by

ot 2t g T e e, (©19

xXeEAS

Using the basic assumption (6.12) and Lagrange theorem, it is not difficult to see
that

d
M)V(O‘)(et(ﬂx*m)) < (1 + Ctms*j‘l’z)uko(m) (et(nxfm))

so that (6.15) is bounded from above by

5 2f%+%+ §+4 A ( " 1254
S22 —=2t\/ms ctms ! —m
: B[ (e )

Since ¢ < 1+ x +2x2if [x] < 1, the above expression is bounded from above
by

s d, s d, s
exp(sf —2t/ms2tI fctms2ta +ct2msd).

—d+5/2

The thesis follows by choosing ¢ such that 12m = s O

We are finally in a position to state our main bound on the variance appearing in
(6.2).

Proposition 6.5. For d > 2 there exists so(8) such that the following holds for
any s > so(6). Let m € (0, %) and letn < s < k < 1000s. Then there exists a
measurable set A with P(A) < k*e~ s Such that

Var iom (AVxen, Txn.s) < clac(@)s > +T4(@). (6.16)

Proof. Let us consider first the case of “low density” m < 45413,

Since [txPu.s| < cmS 5, |AVxen, TxPn.s| < cma,, and therefore the Lh.s. of

(6.16) can be bounded from above by

M)»O(m)(m%\y{) < C(kidm—i-mz) < Cs72d+28.

Let us now consider the “high density” case m > 45419,
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By the equivalence of ensembles (see proposition A.4), in the L.h.s. of (6.16) ¢, ¢
can be substituted by qAbn s with an error of order s ~2¢. Therefore, by the Poincaré
inequality

Var g (f) < emp ™31V, f17), (6.17)
y

it is enough to estimate
1 A 2
empo ™[ (Y Vb)) (6.18)
YEA x€ARNAy s
To this aim we set (recall (6.4))
M := Uyep, M, (m) Ao = {pM0 (M) > k4 exp(—s°/?) },
Ap = Urea AP ) Ar i= Uren AP (m)
o(m)
A3 = U}'EAZk{ AVxeAkﬂAM |:7: E

Y x(m)
A:=AgUA U A U As.

1,8
] ‘ = |Ak N Ay,s|_§+ﬁ }»

We first estimate

]IAC(a)mMAo<m>[HMckld Z( Z vy[rxqé,,,s])z]. (6.19)

YEA xEARNAy s

By lemma 6.3, for s large enough (6.19) can be bounded from above by
—d+8

kd

so(m)]z tel (6.20)

c 1
W]I_Ac (CY)AVyeAk [ S_d Z X X(m)

XEANAy 5

By straightforward computations and the definition of A3 the first addendum in

(6.20) can be bounded by ¢ k—4s=+3 Moreover, because of the definition of Ay,

expression (6.19) with T4 replaced by Iy can be bounded by ¢ s e,

In conclusion

HAC (oz)m ,LL)LO(m) [k% Z ( Z V)'[Tx(z;n,s] )Z:I

YE€Ay x€ARNAy s

—d — _ /2
<c[k dg—d+s | 2d ,~s ]

It remains to prove that P(A) < k24 e=cs"? To this aim we set
file) =1 — @™ (g,

fala) :=1— "™ (ng; mo) fog (m),
f3(@) = (1 (05 ne) — w0 (03 m0)) / x (m).
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By lemma 6.4 P(Ag) < ce~"” while P(A" (m)) and P(A® (m)) can be bounded
from above by e=es’ by means of lemma A.1 with f = fjand f = f, respectively.
Therefore

P(A}) + P(A) < ke 6.21)

In order to bound P(A3) we observe that

AVieAinA,, Tx% = AV__\LeAVxeAnA, Teta f3 -
Thus
A3 CUyeny U cpte A3(y,2)
where

18
A3(y, 2) = {|AVxeAkﬂAy,STx+zf3| > [Ag N Ay,s| 2t }-
Using once more lemma A.1 we get
s
P(A3(y, 2)) < exp(—cs @°)
and the proof is complete. O

We conclude this part with a slight modification of proposition 6.5.

Proposition 6.6. Letn < s be positive integers andlet) < 6 < 1. Letalsoy > 0
and set J; = {1/sV,2/sY,...1 — 1/sV}. Then there exists a set A of disorder
configurations o in Ao satisfying

P(A) <s” e ¢*

and such that, for s large enough depending on §,

sup Var, s (Avxe T, ) < clge(@)s 2442 11 4(a) (6.22)
meJs
where AvxeA = AVyep,mnzd-

Proof. The proposition can be proved as proposition 6.5 with some slight modifi-
cations that we comment. For any m € J; itis convenient to define M (m), A;(m),
and A (m) as done respectively for M, A;, and A3 in the proof of proposition 6.5
and to set

Ao(m) = {i)" (M) = 59 exp(—s*/%) .
§o(m) >s,%+g}
x(m) |~ '

As(m) = { ‘A (n)

xEAS

Then one sets again A(m) := Ag(m)UA (m)UA(m)UA3(m), A := Upecj, A(m).
By the same arguments as in the proof of proposition 6.5 one obtains (6.22).
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Let us prove the estimate required for P(A) or, equivalently, that for any m € J;
P(A(m)) < ¢=" For this purpose, given m € Jy, it is convenient to define

B(m) := { [k, (m) — dgm)| = s~ 5% )
and write

P(A@m)) < P(B(m)) + P(B(m) N Ag(m)) + P(A; (m))
+ P(A2(m)) + P(A3(m)). (6.23)

Let us suppose 0 < m < % Then lemma A.3 implies that
A, (m) = Ro(m)| < ¢[1 = m ™' 00 ().

Thanks to the above estimate and to lemma A.. 1 applied with f:=1—m ! 20 (30),
the first term in the r.h.s. of (6.23) is smaller than e ~¢* "2 The second term is smaller
than e_“s/z by lemma 6.4. Moreover, P(A;(m)) and P(A,(m)) can be bounded
by 54 ¢=¢*" asin the proof of proposition 6.5.

Finally, let us consider P(A3(m)). For simplicity of notation we restrict to the
case d = 1 and we write

Y n £o(m) _( > tx+zf>+< 3 > rxﬂf)

x =
m
x€AsNnZ x(m) xeA;M2nZ zeAf , xeA;NQ2n+n)Z zeAS ,

(6.24)

where f = X(m)_l(,u)“)(’”)(no; 10) — 10U (e’ Npe) ) We remark that in both
the addenda in the r.h.s. of (6.24) the appearing functions have disjoint support
and form a set of cardinality O (k%), moreover E( f) = 0. Therefore, by the same

arguments used in the proof of lemma A.1, we obtain that P(A3(m)) < e’ O

6.2. An L bound

We conclude this section with a simple L> bound on |7, ¢; | when s scales as an
inverse power of €.

Lemma 6.7. Let0O <y < 1and0 < § < landsets = O(e™7). Then, for almost
all configuration disorder o and € small enough,

—d4s / -1
sup |txds /| <52 Vs' e[s, e '] (6.25)
xeTg

Proof. By the equivalence of ensembles it is enough to prove (6.25) with ¢ ¢
replaced by ¢A7s,s’- Using lemma A.3 we get

s — w00 (mle —m2€)| < clm () — o (m)| (6.26)

and similarly upon translation by x.
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Let us define
Dy(m) := {Im — /" (m¢ )| > (s)~5+8)
Dl (m) = {1 (23} = mP))| = 5737}
D:=Up Uyee (Dx(m) U D (m))

where, in the last formula, m varies among all possible values of m,.

P(Dy (m)) and P(D).(m)) can now be estimated from above by ¢~ thanks
to lemma A.1 applied to f () = u*" (59) —m and f(a) = u*" (no; no) —
E[u*0™ (19; no)] respectively. Therefore, P(D) < ¢~2d¢=5* and a simple use of
Borel-Cantelli lemma proves the thesis. O

7. Central Limit Theorem Variance

In this section we investigate the structure of the space G that we recall was defined
as (see (4.15))

G:={ge€G :3A cF suchthat, Va and Yv € M*(A), v(g) =0}

endowed with the non negative semi-inner product

Vin(f, &) := Km Vine(f, &) (7.1
where
Ve (f9) = COE[ (Y i fi(—LapT' Y wg)]. me @)
Ix|<¢ lxI=t

with €1 := £ — /€. Form = 0, 1 we simply define V,,(f, &) = Vim.e(f, g) =0

In all what follows we fix a density m € (0, 1), that most of the times will not
appear inside the notation, and we denote by P* the annealed probability measure
on § characterized by

P*(da, dn) = P(da)u®*™ (dp).

We remark that P* is translation invariant and we write E* for the corresponding
expectation.

7.1. The pre-Hilbert space G

In what follows we prove that the semi—inner product V is well defined and that
the subspace generated by the currents jo ., e € £, and by the fluctuations Lg,
g € G, is dense in G. To this aim we need to generalize the standard theory ([22]
and references therein), based on closed and exact forms, to the disordered case.
The main new feature in the disordered case is a richer structure of the space of
closed forms which requires a proper analysis.
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We begin with a fable of calculus that can be easily checked as in the non
disordered case. Forany f € G,u € Gande € & let

te(f) = Z (x, OF (nx, ), (fru)o = Z E*(to f, u).
xeZ4 xeZ4
Lemma 7.1. Forany f € G, u € Gande,e € &

1
V(S L) = =(frwo,  V(Lu, Lu) =Y SE (co.e(Vo.w?),
ecf

. . 1

V(]0,€7 f) - _t€(f)7 V(]O,e» ]O,e’) = EE*( Cove(vo,en0)2)56,6/7
. |

V(jo.es Lu) = _E]E (co.eVo,et - Vo,eno ).

The main result of this paragraph is the following.

Theorem 7.2. i) Forany f, g € G the limit V(f, g) := limgyoo Ve(f, g) exists,
it is finite and it defines a non negative semi—inner product on G. In particular
V(f) :=limgyoo Ve (f, f) is well defined.

ii) Forany f € G

V(f) = sup sup {2V(f, Y acjoe+Lu) = V(Y acjoe+ cu)}
aeR? ueG ec€ ee€

= sup sup {Z 2aete(f) + 2(f, u)o

acR4 ueG ecE

1
=Y 3E (el Voeno = Voow?) | (7.2)
e
iii) The subspace
{Zaejo,e-i-ﬁu caeR! ueG) (7.3)
ec€

is dense in G endowed with the semi—inner product V.

Notice that the second equality in (7.2) follows immediately from lemma 7.1 to-
gether with a trivial change of sign of a, u.

Before proving the theorem we need to introduce the notion of closed and
exact forms together with their generalization to the disordered case and prove few
preliminary results. We refer the reader to [14] for a complete treatment.

Definition 7.3. A formon Qis afamily & = {§p},ya of functions &y : Q — R. Itis
called closed if, givenn € Q and bonds by, . .., b, withn = Sp, 0+ -08p, 0Sp, (1),
then

n
Y & (ic1) =0 where ng:=mn, ni =Sy 008y 08, () Vi=1,...n

i=1
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The expression Y ;_,; &, (ni—1) can be thought of as the integral of the form & on
the closed path no = n, n1, ..., n, = n. It can be proved, see [14], that a form on
Q is closed if and only if it satisfies the following properties P.1, P.2 and P.3.

P.1. Leta,v, w € Z% with |[v] = jlw| = land v+ w # 0. Wesetc = a + v + w,
x=a+v,x' =a+w, by ={a,x}, by ={x,c},b] ={a,x'},b), = {x, c}.
Then

Eby © Sby © Sy + &by © Spy + &by = & © Spy 0 Sp + &py © Sy A&y
P.2. For any couple of bonds b1, by C 74 such that by N by = ¥,
&by © Sy + &by = &by © Sby + &by
P.3. For any bond b C 74,
&poSp+& =0.

The above characterization allows us to generalize the definition of closed forms
to the disorder case.

Definition 7.4. A form in L?(P*) is a family of functions & = (&b} pcga with &y, €
L2(P*).

A form & is called closed if it satisfies properties P.1, P.2 and P.3 where equal-
ities are in L*>(P*). A form & = {éb}pcpa is called exact if &, = Vpu for some
u € G. A form & is called translation covariant if T,&, = &4, for any x € Z4,
bCZ%

It is easy to check that exact forms are automatically closed and translation covari-
ant. Given a closed form & in L2 (P*) the form on  {& (e, )}pcza is a closed form
on €2 for almost any disorder configuration «.

In what follows by a form we will always mean a form in L2(P*).

Definition 7.5. A family of functions & = {£.}ece, & € L*(P*), is called the germ
of the form &' = {&;},cza if &, 1o = Txbe forany x € 7% and e € €.

It follows that &’ is automatically translation covariant as soon as it is generated by
agermé&.

Within the subset of closed and translation covariant forms we consider the
special family {4(°},c¢ defined by

U5 o () = 8o o (xte —1Mx), VX € 7, e e €€.

It is simple to check that the form 1° is not exact. Finally, we define E¢ as the set
of germs of closed forms and

B0 :=1{& = {E)ece : Ja e R, ueG with & =all°+ Vou VYeecE).

We remark that Eg C E¢ and that Ec is a closed subspace in L2(®d]P’*). A deeper
result is given by the following density theorem.
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Theorem 7.6. E¢ = E¢ in L2(Q4P*).

Proof. The proof follows closely the proof of theorem 4.14 in appendix 3 of [22]
with the exception of the last step. As in [22] it can be proved that for any £ € E¢
there exists a germ w € E¢ with the following properties:

) &§—weEp
ii) w can be written as @ = w_ + wy with w1 = {01 clecg, 01 (@, n) =
w4+ .(a, no, Ne) such that Ve € €

w_ (0, N0, N2e) — w— (0, N0, Ne) = W (0, Ne,y N2e), (7.4)
W4 (A, N—e, Ne) — Wy (0, N0, Ne) = W4 (0, N—e, NO) -

It remains to prove that w € . Because of (7.4), Ve € & there exists at,e € L%(P)
such that wt , = a+ .(o)(n, — o). Lemma 7.7 then completes the proof of the
theorem. O

Lemma 7.7. Let w € E¢ such tﬂat for any e € & there exists a, € Lz(]P’) with
we = de(@)(ne — o). Then w € Ey.

Proof. By subtracting ) ece E(ae) Y from the germ w, we can assume that E(a,) =
0 for any e € £. In what follows we denote the form generated by the germ w by
the same symbol w.

Given x € Z% let ™) e Q the configuration with just one particle at x and let
{b1, ..., Db} be a sequence of bonds such that n()‘) = Sp, 0+ 08ph 0Sp (7](0)).
Define

.
gx(a) = Za)bi (o, mi—1) where

i=1
ni=Sp 008,080 Vi=1,...,r (7.5)

Notice that, since {wp(a, -)},c7z¢ is a closed form on 2 for almost every o, the
definition of g, does not depend on the particular choice of the bonds by, ..., b,
and the family {gx} 7z« satisfies

Gxte — 8&x = —Txde VX E 7% ec€.
Therefore, by setting A, := — er A, 8x (0)ny, we get
Vyh, = wp VneN, be A, (7.6)

In order to conclude the proof it is enough to show that

1
lim 0 = w, Yee& where = )

ntoo

Vph, € Ep.

By translation covariance and (7.6) Vo (txh, = w, if —x, —x + e € A,. Thus, for
any e € £, we can write
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d—1
n _ 2n+1)
C()en - (2n)d_1 We (Zn)d Z T—x xx+ehn

xeN,
Xe=N
1
+ W E T xVixtehn . (7.7)
Ap—
xtE:—n—el

and we are left with the proof that the second and third term in the r.h.s.of (7.7)
tend to 0 in L2(P*). Let us consider the second term (the third one being similar).
By Schwarz inequality and the identity

Vixtehn = —8x(@)(Nxye — Nx) Vx € A, with x, = n,

it is enough to show that

21& 7 XA: E(g?) = 0. (7.8)
To this aim, given x = (x1, ..., x4), we choose the bonds by, ..., b, in the def-
inition (7.5) in such a way that n; = ) where yy is the origin of Z¢, y, := x
and in general yg, y1, ..., y, are the points encountered by moving in Z¢ first
from (0, ...,0) to (x1,0,...,0) in the first direction, then from (x{,0, ..., 0) to
(x1,x2,0,...,0) in the second direction and so on until arriving to x.

Given this choice, it is simple to verify that for any x € A, and e € £ there
exists z, € A, and an integer k, € [0, n] such that

ke 2
g)% =c Z(Z Tz +se ae) .

ecE s=0

Therefore, in order to prove (7.8), we need to show that

n1oo k=0, 1

.....

k
lim  sup iz ((ereae)2> Ve € €.
s=0

To this aim, for simplicity of notation, we fix e € £ and we write a4 in place of

Tyed,. Moreover, for any r € N we set a” := E[a; laa,,, ] Since a”’ = rsea(()r)

and E(a‘g )) =0,wehave forany0 <k <n
k
iE((ZaS)Z) < 2_1[4:( Z[aA _a(r)] ) 12 E( Za(r) )
s=0
< ZE((GO ) ) C(r)
and the thesis follows. |

The connection between the forms and the space G endowed with the semi—inner
product V (f, g) is clarified by next proposition, which can be proved, following
[22] and [37], as explained in section 5.5 of [14].
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Proposition 7.8. Given f € G and e € & there exists a function ¢, € G such that

sup Of(§) < hmmf Ve(f) <limsup Vo(f) < sup ©f(§) (7.9)

§€8o {100 §€Bc

where

1
O7®) =D 2E*(coepebe) = D JE (cetl).
ec€ ecE

Moreover, given a € R and u € G,

O (D (—acll + Vo) = Y 2acte(f) +2(f, u)o
ecE eek

—Z *(co.e(@eVo,.eno — Vo,ew)?).  (7.10)
265

We are finally in a position to prove theorem 7.2. We first observe that theorem
7.6 proves that the inequalities in (7.9) are actually equalities so that V(f) =
limgyoo Ve(f) exists and it is given by (7.2). Moreover, because of (4.23), V(f) <
o0 so that, by polarization, V (f, g) exists finite for any f, g € G and it defines a
semi—inner product. The density of the subspace (7.3) follows at once from the first
equality in (7.2). O

We conclude this section by proving the continuity of the map m +— V,,(g) for
any fixed g € G.

Lemma 7.9. Forany g € G, the map [0, 1] > m — V,,(g) is continuous.

Proof. Given ¢ € N large enough, we can write Av|y|<¢,Txg = La,h for some
local function 4 and the continuity in m of V; ,,(g) follows at once.
In order to prove the continuity of V,,(g) we only need to prove that

lim Vg, (8) = Vin () (7.11)
{100

for all m € [0, 1] and all sequence {my}¢cn such that limy_, oo m¢ = m.
We begin by proving that

liminf Ve 1, (8) = Vin(g) (7.12)
{100

To this aim we fix a local function u € G, a vector a € R and define

= Z Tell + Z(a,x)nx. (7.13)

lx|=£1 |x|<¢

By the variational characterization (4.20)

Vem(8) = QOTE(202") (Y e, he) = Dl 1))

[x[=<€y
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By recalling the notation f.(g) and (g, u)o (at fixed density m) introduced before
lemma 7.1 and using lemma A.3 we get

é1iTr<1>no(26)—”’]E;m(’"f)( > me Y ) = (g.wo

xl<ts Ix|<ty
and
lim (22)—0’&“(’”0( > e Y, xenx) =1(8)
too <t lx<t
Moreover

ﬁAg(Z xenx>= D e

|x|<¢ x:x,x+eely

Therefore, thanks to lemma A.3, to the integration by parts property of currents and
straightforward computations, we get

) 1 2
l}lTr;lo ]E(D(he; MM’(W))> = Z EEMAOW) <CO,e(aeV0,e770 - Vo,ez)z)
eek

In conclusion

liminf Ve, (8) > 2°)  acte(g) +2(g, u)o
{— 00 vee

1 2
— Z EEMAO(m) (CO,e(aeVO,eWO - VO,eﬂ)z)
ecE

and (7.12) follows at once from (7.2).
We now turn to the proof of

lim sup Ve, m,(8) < Vin(g) (7.14)
£1o00

We proceed as in the proof of lemma 4.6 (whose notation are not repeated here)
starting from (4.26) with v := p*00") We simply notice that, thanks to lemma
A3,

|, (hy, B0y — F (hy, Eu*™)| < c(g, k)|me — m|

Therefore

lim sup Vi ;,(g) < limsup lim sup(2£)_dIE(sup( Z F.(h., M/\o(m)))
{100 k1 oo {400 h NG
L€l

= lim Vk,m(g) = Vm(g)
k1 oo
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7.2. The method of long jumps revisited

In this paragraph we consider, for any e € £, a particular sequence {Wy /n},cN in
the space G which is asymptotically equivalent to the sequence

e
2m(1 — m)ry(m)—=, neN
n
where ¥, , has been defined in (4.32) as

2, 1, 2, 1,
]/fre;,n Zmne _mne _H'[mne _mne |m’e;]
The functions W,/ have been introduced in [28] in order to depress the extra fluc-
tuations produced by the disorder and are defined as

e .
Wy = AV, pLeAV) poewy )y where

Wy, y 1= (1 + e*(“x*"(v)(’?x*’?y))(ny _ nx)

We remark that, for any bond b = {x, y}, the quantities ¢y, := 1 e~ (@) t=my)
are a possible choice of transition rates compatible with our general assumptions
(see section 2.2). Therefore, for generic x, y € 74 ¢y,y can be thought of as the rate
of the (long) jump from x to y and vice versa. In a sense the rates ¢y y, X, y € 74,
define a new process with arbitrarily long jumps but still reversible w.r.t. the Gibbs
measure of the system.

Remark 7.10. The role of the function W here is very different from that indicated
in [28]. In our approach and for reasons that will appear clearly in the next sub-
section, we are interested in computing the asymptotic of the semi—inner product

nll

V(jo.e's L1 ”) asn 1 oo. Our strategy to compute V (jjo ./,

w” 2 with o and then to exploit some nice integration by parts properties pointed
out in [28] (see below).
In [28] instead, the main idea is first to approximate, as € |, 0, the microscopic

+) is to replace (in G)

. . . . L Wy
current jo . with a fluctuation term Lg plus a linear combination of the =, e eé,

on a scale k that must diverge as ¢ | 0 like efdiﬂ. The second step indicated in
[28] is to replace —* Wi L with

(my® —my©)

2m(1 — m)Ag(m) .

Such a step is very similar to the main result of this subsection described at the

beginning but, at the same time, very different. The first main difference is that our

mesoscopic scale n is not linked with €. The second difference is that our functions
».n Tepresent (discrete) gradient of the density minus their canonical average. Such

a counter term, discussed at length in section 5, is absent in the approach of [28].
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Our main result is given by the following theorem

Theorem 7.11. Foranye € £

we e
lim v(—" —2m(1 — m)A(m) ””) =0 (7.15)
ntoo n n

We will use the above result only to compute the limit of V (jj ., w#e'”) . Indeed,
as pointed in [28], the function wy , satisfies the following integration by parts
property: for any A € F with A > x, y and any v € M(A)

V(wx,yg) =v((nx — ny)vx,yg).
By the above property and lemma 7.1 it is simple to check that, for any e, ¢’ € &,

V(jo,e , %) = —2m(1l — m)$, .. Therefore, by theorem 7.11, we get

e

lim V(jo’e/, M) = —x(m)8, s, Ve & €E. (7.16)
ntoo n '

Proof. In order to prove theorem 7.11 it is convenient to introduce some notation.
First, we fix the vector e € £ which will be often omit in the notation and recall
that u = M%’}:O. Moreover we introduce the following equivalence relation.

Definition 7.12. Given two sequences of functions { f;,}neNn and {g, }neN such that
fu and g, have support in A{, we write f, ~ g, if

lim V(fn — ulfu |mn] _ &n — ulgn |mn]) _o.

ntoo n n

o Step 1: £, := W, — u[Wy|mi®, m>¢1 ~ 0.
For any x € 74, let Vx.n be the random canonical measure pul[- | Fx ,] where
Fy.n is the o—algebra generated by Tym )¢, Tym=¢ and ny withy & A% . Letus
observe that
i) phomM (g, £, g) = /ﬁo(’”)(vx,n(tx Wy g)) for any function g;
ii) W, can be written as sum of functions f of the following form

_ !/
f= AVZeArll,eTZh AVz’eAﬁ""TZ’h

where h and k' depend only on o and 7.
Because of i) and ii) and thanks to the the variational characterization (4.20) of
Ve (-, w*) it is enough to prove that, for a function f as in ii),

1
lim lim —— E D, (g: ™)1 =0 7.17
Jim lim > [slelg{mg)/ Ac(gs 10"} ] (7.17)

where

$©) =Y W (veu(rfs ) kii=k -V

|x|<ki
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By proposition A.6, for any § > 0 there exists €9 € N such that, if n > £ > £,
then

c(e) )
Ven(Te f; 8)% < —D(g, Vx.n) +o — Var,_,(g) +o Varvx,,(g)l‘/‘m (@)
(7.18)
where, for any given y > 0 and £ > £1(y) > £,
P(@ac, (@) = y) < e <00 (7.19)

for a suitable constant c(y, £). Using the spectral gap estimate (4.13), the r.h.s.
of (7.18) can be bounded by

D(g: ven)(c(@) + 80> + cn®Va, o(0))n ™
and therefore, by Schwarz inequality,

$(8) < Da(g: /") (c(Ok? + ckn® +cn® Y Dac, ).

[x|<k

By taking the limits § | 0, £ ? oo, n 1 o0, k 1 oo (from right to left), in
order to prove (7.17) the thesis follows since lim, 40 E(l? AC (oe)) = 0 because
of (7.19).

e Step 2: M[Wn|mn ,mn “1~2m(l — m)k m)yy ,
The proof is based on the following lemma which follows easily from the vari-
ational characterization of V, (-, u*00™) given in (4.20).

Lemma 7.13. Let, foranyn € N, f,, h, € G be such that
i) Ay, C A
ii) sup, lhnlloc < 00 and limupee n?E[u*0 (h2)] = 0;
iii) | ful < |hal.
Then f, ~ 0.

Thanks to the estimates given in the Appendix it can be proved (see [14]) that
condition ii) of the lemma is satisfied by any of the following sequences:

{n_d}nel\h { (m — mAn)z YneNs {H“m—mAnBC}}neN’ {(m - /LAO(m) (mi{e))z}neN
2.e

wherei = 1,2, ¢ > 0 and A, is either one of the sets A, A,ll’e, Ay©.
As in [28] we define the (random w.r.t. &) function Fj,(m1, my) as

Fy(my,mp) = M}L(Imel) ® M}L(mZ)(Wn)

It is not difficult to show that F;, (m, m3) has the explicit expression

Fu(my, my) = my — my + ™" =20 02 (1 — iy ymy

— 2 M) =MDy (1 — 5.
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The main reason to introduce F, (m, my) is that
W l,e 2,e ~ F l,e 2,6 720
ulWylm, ¢, myl ~ Fy(my©, myc). (7.20)

This equivalence follows at once from the equivalence of the ensembles together
with lemma 7.13 applied to f, = u[W,|my®, m>¢] — F,(my®, m>°) and h, =
cn~? for a large enough constant c.

Next, again by lemma 7.13 applied with z, = 1

cm = (m A (1 —m))/2, we get that

+1I

1, 2,
{Im=mpy*|zcm) {lm—my|=em)

Fu(my®,my®) ~ Fy(my®, my)ly (7.21)

I

Next, by Taylor expansion around the arithmetic mean of m,11’e and m%’e, we
write

where I, ;= H{I

m—my|<cp) {Im—my€|<cm)®

Fo(myy €, my)

n

Fy

e le e
= Fu(my, my) + - (my,, my) (m,© — my)

n 2, L, 2,
(my,, my)(my¢ —my) + Ry(m,, my°)

+ aml

Then, the zero order contribution F, (m¢,, m¢)l,, is negligible, F,, (m¢,, m¢)I,, ~ 0,
since F,(m;,, m¢) ~ 0 because of definition 7.12 and F, (m;,, m¢)(1 —I,,) =~ 0
again by lemma 7.13.

The second order error term, R, (m,ll’e, m%’e)]lm ,1s negligible because of lemma
7.13 applied with i, = c[(my* —m&)? + (my* —m&)?]. Notice that it is here that
the characteristic function I, plays an important role since the second derivatives
of F,,(m1, my) diverge as m; tends to 0 or to 1.

Let us now examine the relevant first order terms. We claim that fori =1, 2

d0F, . ; .
an' (m;, mo)(m;;¢ —m;)L, + (=)' 2mi(1 — mfl))ug’n(mfl)(m;’e —m)L, =0
1
(7.22)
and
2mi (1 — mZ)(Ag’n(mfl) - Af)(m))(mﬁl’e —mj)L, ~ 0. (7.23)

where A; , := )\.Ai.e.

Before provin’;g (7.22) and (7.23) let us summarize what we have obtained so far.
Thanks to (7.20), (7.21), the above discussion of the Taylor expansion and (7.22)
together with (7.23)

WIW, | mbe, m2e] & 2me (1 — mE)Ay(m) (m2® —my,

Using once more lemma 7.13 it is now rather simple to remove the factor I,,, and
to replace m;, with m, thus concluding the proof.
We are left with the proof of (7.22) and (7.23).
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Let us prove (7.22) for i = 1. By computing % it is simple to check that the
Lh.s. of (7.22) is equal to
(M1 M =h2a () — Dyme (] (mg) (1 — m&) — D (my® — m&)
+ (2Tl 1) (1 —mé) (A, (mEmG — D(my —m) L. (7.24)

It is enough to show that both addenda in (7.24) are equivalent to 0 and for sim-
plicity we deal with only with the first one. Since sup,, ||)L’1’n(mf,)]lm loo < ki, for

a suitable constant k,, depending on m, using the estimate |e* — 1| < ell|z| valid
for any z € R and thanks to lemma A.3 we obtain

| first term in (7.24) | < ks |A1.0(m%) — Aan(m€)] m D — m L,
<K (X = W) Gl )

i=1,2
(7.25)

The claim follows by applying lemma 7.13 with &, equal to the r.h.s. of (7.25).

Let us prove (7.23). By Schwarz inequality, it is enough to apply lemma 7.13
with 4, = (A;’n(mfl) — kf)(m))zlm + (mhe — m¢)?. In order to verify condition
ii) of lemma 7.13 for h,, thanks to the boundedness of (A;’n(mf;) - )\(’)(m))z]lm
uniformly in n, we only need to prove that

tim n9E[12% (3], (m8) — A (m)* L) ] = 0

ntoo
or equivalently

. . e 4
lim nB[1200 ({av, e [0 (1m0 = B im0y ] )] = 0
(7.26)

Let g, (1) := u”(ny; ny) and observe that Lh.s. of (7.26) is bounded from above
by

¢ lim ndE[MM("’)(Af}) +AD 4 Aff))] (7.27)

ntoo

where

4
A = {AV, il gx (i (m)) = gx (hin(m)) 1}
4
A = {AV, il gxChin(m)) = gxQo(m) 1}
4
AY = AV, el g2 (Go(m)) — E 0™ (ro; o) 1}
Bylemma A.3, A;,l) <c(mj— m)* and A,(lz) < c(m —prom (mf{e))4. At this point

(7.27) follows by simple considerations for sum of centered independent random
variables. O
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7.3. The subspace orthogonal to the fluctuations
Here we introduce a convenient Hilbert space H containing G and we describe the
orthogonal subspace in H of the space of fluctuations {Lg : g € G}.

Definition 7.14. Let N := {g € G : V(g) = 0} and let H be the completion of
the pre-Hilbert space G /N. With an abuse of notation, we write V for the scalar
product in 'H induced by the semi-inner product V in G.

The sets
LG :={Lg : g € G}, LG :={Lg : geg}

can be considered as subsets of 7 in a natural way. Our main result proves that for
any e € & the sequence {y; ,/n}ncn converges in H to some limit point v, and
that the set {/¢}.ce forms a basis of LG+. The Cauchy property of the sequence
{0/ n}nen follows by a telescopic estimate based on the variance bounds dis-
cussed in subsection 6.1. To this aim the following lemma is crucial.

Lemma 7.15. Givenk € N, let f € G be such that Ay C A. Then
V(f) < c k*TPE(Var oo (AVxen, T f)).-

Proof. We first estimate V(f) for £ > 1 by means of lemma 6.1. To this aim we
partition the cube Ay, into non overlapping cubes {A,; r}ies of side 2k 4 1 and
write

AVxeAgl o f = AVieI(AVxEAXi_k fxf)

Therefore, by applying lemma 6.1 with A = A¢ and A; = A, 2k, we obtain
Ve(f) < ek AvierVar oo (Avren,  Tof)-
It is enough now to take the expectation w.r.t. « and then the limit £ 1 oo. O

Lemma 7.15 and proposition 6.5 allow us to prove the key technical estimate of
this subsection:

Lemma 7.16. Letd > 2, n < s < k < 100s be positive integers and 0 < § < 1.
Then

Vgl — o) <cs™t Vee€ (7.28)
for any s large enough (s > so(5)).

Proof. Since ¢y,  — ¢, € G has support in A, by lemma 7.15 we obtain

V(g — ¢ 1) < kY E(Var oo (Avrea, gl ).
r=s.,k

The thesis now follows from proposition 6.5. O

We also need a density result.
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Lemma 7.17. £G and LG have the same closure in H.

Proof. We fix g € G and we prove that £Lg = limgqe0 £(g8 — &) Where g

Al

ulg | mgl, ie. that limgyeo V(L£gs) = 0. To this aim we define X := {x : 5 — 1
|x| < s + 1}. Then lemma 7.1 implies that
1
V(Lg) =) 5B (c0e( D Vooregs)?): (7.29)
ec€ xeXs
Let gs(a, ) := Mj‘\(:” s M) (g). By the equivalence of ensembles (see lemma A.4), in

(7.29) g, can be substituted by g, with an error bounded by ¢ s~2. By lemmaA.3,
[Vo,cTx8s| < ¢ s~¢ which, thanks to (7.29) with g, replaced with g, implies that
V(Lgs) <cs 2. O

We are ready for the first result about the structure of the space LG*.
Proposition 7.18. Let d > 3 and e € &. Then the sequence

Vi =nNe — N0 — ilne — no | mg]
converges to some element Y, € LG as s 1 oc.

Moreover,

e

lim 2% =, VneN. (7.30)

stoo n

Proof. We fix 0 < 8§ <« 1. By lemma 7.16, if i € N is large enough and i® < s <
(i +1)%,

V@ 5 — i) < i),

Since d > 3, it is enough to prove that the sequence {‘ﬂfis}ieN is Cauchy. This
follows by applying again lemma 7.16 to get 7

00 00

1 e . 30—d+s
> :Vz(wiﬁ ~ Vi) = D i < oo
i=1

i=1

Next we prove that 1, the limit point of {1//16’ ¢1seN, belongs to LG, To this aim,
by lemmas 7.1 and 7.17, we need to show that

li E[ 0 (5 . =0 Vgeg,
lim % [ W, ) ] g€
XE€

or similarly (by translation invariance of the random field «)

lim E[pu*™(¢¢ , 1:8)1=0 Vgeg,
xeZd
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where we recall q&f’s = w[ne — no | m¢]. To this aim we set
Ay i={xeZd: (x+A)NAS#Pand (x + Ag) N (A # ).

Since g € G,

> R (¢f 1) 1= BLu™M @6 > mg) ] (731)

xeZ4 XEANg

We estimate the r.h.s. of (7.31) by Schwarz inequality. Let us observe that

E[Var gm (Y | 7:8)1 < cgs 9. (7.32)

xeAg

for some finite constant c,. Therefore, in order to conclude the proof, it is enough
to show

E[ Var o (¢§ )1 < cs™% (7.33)

For this purpose recall the definition of q;]e s givenin (6.3) and the Poincaré inequal-
ity
Varff(m)(f) < cuko(m) ( Z(fo)2 ) 2
X

valid because *0™ is a product measure. Then, by the equivalence of ensemble
(see lemma A.5) we obtain

Var om (@7 ;) < ¢ s7 e Var iom (éis)
< cs M 4 o5 (Vg )?) . (7.34)
By lemma A.3 the last term in (7.34) is bounded by ¢s~¢ thus proving (7.33).
Finally we prove (7.30). To this aim, by writing
1 n—1
1//; = ZAVXEA,II'E (nx+(v+])e — Nx+ve — M[nx+(v+l)e — Nx+ve |mf] ),

s -
! n
v=0

and by the observation that 7, f = f forany f € H and x € Z, it is enough to
prove that for any given x € Z¢

V(plne —nolms 1 — ulne — no | mgl) (7.35)

goes to 0 as s 1 0o. As in the proof of lemma 7.16 (7.35) is bounded from above
by ¢(8)s2~4* forany 0 < § < 1. O

We are now able to exhibit a basis of LG~ related to the functions wi’” withn e N
ande € £.
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Theorem 7.19. Letd > 3. Then

e
lim =% =y, Veef& (7.36)

ntoo n
where V. is as in proposition 7.18. Moreover,
V(jo.ers Vo) = —x(m)éy . Ve,e €& (1.37)
and {Ve}ece forms a basis of LG

Proof. Foranyn € Nletk, € Nbesuch that (k, — 1)’ <n < kﬁ. Then, by lemma
7.16, V(Y ,/n— ¢ 5/n) | 0asn 1 oo. Therefore, thanks to (7.30),

n,k,%
e 1 e
Y = lim V2 (g — )
n ntoo n

lim V2 (¢ —
ntoo
R
S g v o
P

and the last series is converging by lemma 7.16. Thus (7.36) follows as well as
(7.37), as shown in (7.16).

Let us prove that {1, },c¢ forms a basis of LG*. Let P be the orthogonal projec-
tion of H on £LG~. Then, LG~ has dimension non larger than d since, by theorem
7.2,itis generated by { Pjo ¢ }ecg- By (7.37) {{c}cg is a set of d independent vectors
belonging to LG and therefore a basis of LG. O

Remark 7.20. Let us make an observation which will reveal useful in the proof of
the continuity of the diffusion matrix D(m) (see next subsection).

Since the constant ¢ appearing in (7.28) does not depend on the density m and
thanks to the estimate (7.38), the statement (7.36) in the above theorem can be
strengthen as

e
lim sup Vm( LU 1/&») =0 Veef.
n100 ;e (0,1) n

7.4. Decomposition of currents

In this subsection we prove the characterization and the regularity of the diffusion
matrix D(m) stated in theorem 2.1 and we prove also theorem 7.23, which is crucial
for the estimate of 2 (see subsection 4.3). In what follows, we assume d > 3.

Denoting by P the orthogonal projection of { on LG, thanks to theorem 7.19,
for a suitable d x d matrix D(m) we can write

Joe == Deomyes + (1 —P)joo) Veek. (7.39)
eel
By taking the scalar product of both sides of (7.39) with jp ., thanks to lemma 7.1
and (7.37), we obtain

1 . )
De,e’(m) = — m(PJO,e» P]O,e’)
x (m)
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thus proving that D(m) is a non-negative symmetric matrix. In particular, D (m)
can be characterized as the unique symmetric d x d matrix such that

(a, D(m)a) = ﬁvm(P(eeZg: aejo)) VaeR?. (7.40)

Since the r.h.s. of (7.40) can be written as

|
inf e —
inf oy (; dejo.c — Lg).

by lemma 7.1 the matrix D (m) corresponds to the one described in proposition 2.1.
In the following lemmas we describe some properties of the diffusion matrix
D(m).

Lemma 7.21. There exists ¢ > O such that cl < D(m) < c_l]Ifor anym € (0, 1).

Proof. Given a € R? we set w := Y ecg eV and v 1= )", cacPjo .. Then
(7.40) and lemma 7.1 imply the upper bound

1 1
(a, D(m)a) = m‘/m(va v) < %

V(Y _aejoe) < cllall®.

eef
In order to prove the lower bound we observe that, by theorem 7.19, V,, (v, w) =
—x(m)|la||* while, thanks to (4.33), Vip(w) < c¢m(l — m)|la||>. Therefore, by
Schwarz inequality,

1 Vv, w)?
(@ Dma) = — o P o2

thus proving the lemma. O
Lemma 7.22. D(m) is a continuous function on (0, 1).

Proof. Let0 < Band 0 < § < % We observe that the limit point ¥, of the

¢£,n depends on the closure of G/ and therefore on m. Therefore, it is

convenient to denote it by we(m). Moreover, thanks to remark 7.20 and lemma 7.21,
there exists ng € N such that

sequence

¢ 1
IDllsc sup V(¢ — “22)2 < B VYee& Vn=ng (7.41)
me(0,1) n

where, || Do := sup, ycg [ De,e’ lloo-
Together with (7.39), this implies that, for any given m € (0, 1), we can find
gm € G such that

e i
Vin(Jo.e + > De,emm)% + Lgm)? < 28. (7.42)

e'ef
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Since Ag(m) is a smooth function of m € (0, 1) and because of Lemma 7.1 and
7.9, (7.42) remains valid if V,, is replaced by V,,/, where m’ is arbitrary inside an
open interval I,,, containing m. In what follows we restrict to the density interval
[6, 1 — §]. Thanks to compactness and interpolation and thanks to (4.33), there

exists a continuous matrix D(ﬁ)(-) and a family of functions g,(nﬂ ), me[6,1—546],
such that ||D£Be)/||oo < || De.e lloo and

m(joe + Y DI (m) 100 Vig.no +£g<ﬁ>) <38 Vmels, 1—4]
e'ek

and therefore

Va(oe + 3 DO mypl” + Lg¥) <4p Wmels,1—5]  (743)
e'ef

From the above formula and (7.39), we have

Pjoe=— Y Deomyl” == DE,myy{" +&™ Vme[5.1-6]
e'ef eef

where V,, (Se(m))% < 48. By taking the scalar product with jp ,» we obtain (thanks
to theorem 7.19)

X () (De.er(m) = DE)(m))| < 4V (o) 2B ¥m € [5,1— 3],

that is | D, ./ (m) — D(’g) (m)| < c(8)B, thus proving that D, ./ (-) is continuous on
[6,1—34]. O

We are now able to prove our main result.

Theorem 7.23. Letd > 3. Then given § > 0

inf limsup sup V, <joe+£g+ZDee(m)‘/’nn>_O (7.44)
8€G ntroo mels,1-6] T

Moreover, if D has continuous extension to {0, 1}, (7.44) is valid with 6 = 0.

Proof. (7.44) is a simple consequence of the estimates exhibited in the proof of

B

lemma 7.22. Let us observe that, given 8 > 0, by defining g,;* as in the above

proof, then

e/
limsup sup Vi (oo + L8 + Y Deotm)==2) <. (743)
ntoo mels,1-68] o€ n

In order to define a function g independent of m, it is enough to proceed as in the
proof of corollary 5.9, chapter 7, [22]. If D has continuous extension to {0, 1} then
it is simple to extend (7.45) to all [0, 1]. O
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A. Appendix

In this final appendix we have collected several technical results used in the previous
sections.

A.l. Large deviations estimates

Lemma A.l. Let f = f(«) be a mean-zero local function and A € F be such that
(Ar+x)N(Af+y)=0foranyx,y € A. Then

32|A|

P[|AvienTc f| >8] <2e 471 V5§ > 0.

Proof. Givent > 0,since E(f) =0ande* —x < ex2 for any x > 0,

o
=3 ﬂ < Mo | fllot < M1,
n=0 ’

Therefore, thanks to the conditions on f and A,

Pl[Avieata f 2481 < e_taE(etAVXGATXf)
= e B[R INT]IAl < gt IRIAIT

The thesis follows by taking ¢ := 8|A|/Q2| f ||go) and by considering the above
estimates with f replaced by — f. O

A.2. Equilibrium bounds

LemmaA.2. Given A € F and . € R we define m := ur(my) and a, =
min(m, 1 — m). Then, for any A C A and any function f such that Ay C A,

a) c|Alm < u*(Na) < ¢ HAm,
by c|Al(1 —m) < u*(JAl = Na) < ¢ A1 —m),

c) c|Alapm < ' (Na; Na) < ¢! Alay,
&) 11 (f: Nl = el flloo min (1A slan, +/TA7Tan )-
Proof. In what follows we assume m < %
a) and b) can be easily derived from the boundedness of the random field .
Let us prove ¢). The upper bound follows by observing that u*(Na; Na) < u’(A)

and by applying a). In order to prove the lower bound, let us introduce the set
Wi={xeA:u* @ < %}. Since |W| > |A|/2 and thanks to a),

1
p*(Na; Na) = p*(Nw; Nw) > EMNW) > cm|A|
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thus proving the lower bound in ¢) with A replaced by A. In order to consider
the general case, we define m’ = pu”(ma). Then by the previous arguments,
w*(Na; Na) = cm’|A| which, by @), is bounded from below by cm|A].

Let us prove d). By Schwarz inequality and c)

P (fs NI i (f; P2 (Najs Nap)? < e i (f; )2 /mIAg]

Since u*(f; f) < | f1I%, it remains to prove that u*(f; f) < cm| fl|3|Af]. To
this aim let n* be the configuration with no particle. Then, thanks to a),

W D) <1 (f = FO)) < IF 1t (Nay) < el FIZ 1AL

O
LemmaA.3. Forany A, 1" € R, A € F and any function f with Ay C A,
X () = 1 (O] < el fllool A gl 1 (mp) — i (ma)l, (A1)
W (s ) — 1 (1s no)l < el ma) — @ ma)l Vx e A. (A2)
For any m, m’ € (0, 1) and any local function f,
1120 (pg) — 0 (o) < ¢ m — m], (A3)
12 (03 110) — 0™ (o3 o) < ¢ m’ — ml, (A4)
() — @MY < (A D I flloolm” — m] (A.S5)
for a suitable constant c(|A ¢|) depending on |Ag|.
Moreover, for any A € F and any m € (0, 1),
C
IAa(m) — ho(m)| < ————1|m — 0™ Gmy)|. (A.6)
m(l —m)

Proof. 1t is simple to derive (A.2), (A.4) and (A.5) from (A.1) and (A.3).
Let us prove (A.1). By setting A(s) = ta(s), m = ut(my) and m' =
wr (my), we have

/

: moy m
W= = [ SO gds = [ W N E s

By lemma A2, [u*®)(f1 Na, )X (s)| < ¢l fllool A ], thus concluding the proof of
(A.1).
In order to prove (A.3), we observe that

d m’ Ao (s) :
ds m B2 (o3 mo)

m’

@M () — P () = /

m

Thanks to the boundedness of the random field «, the last integrand is bounded,
thus proving (A.3).
Let us prove (A.6). By Lagrange theorem

m = 53" mp) = 0 (ma) + ph(ma; Na)(a(m) — ro(m))

for a suitable A between A (m) and Ag(m). In order to conclude the proof, it is
enough to apply lemma A.2. O
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A.3. Equivalence of ensembles

In this paragraph we compare multi-canonical and multi-grand canonical expecta-
tions. The following results can be proved by the same methods developed in [6]
with strong simplifications since here the grand canonical measures are product
(see [14] for a complete treatment).

In what follows we fix A € F and we partition it as A = Uﬁ.‘zl A;. Moreover,
chosen aset N = {N; }le of possible particle numbers in each atom A;, we define
the multi-grand canonical measure & and the multi-canonical measure v as

) N;i
=@ u" where m; = —|A' i
i

=u(|Na, =N; Vi=1,...,k).

<l

Then we have the following main results (for the latter see also proposition 3.3 in

[7D.

Lemma A.4. (Equivalence of ensembles) Let y, 8 € (0, 1) and f be a local func-
tion such that |A;| > §|A|, foranyi =1,...,k, Ay C Aand |Ay| < N

Then there exist constants c1, c2, depending respectively on y, 8,k and §, k,
such that

_ _ (Al
Alzc = W) —uHl=c IIfllmm-

LemmaA.5. Let § € (0,1) and f be a local function such that Ay C A and
[A;\ Ag| = 8|A| foranyi=1,--- k.

Then there exist constants c1, ¢a, depending respectively on k and k, §, such
that

[Ail>c1 Vi=1,....,k = v(fD) <c2u(f]) and Vary(f) < coVarp(f),

A.4. Some special equilibrium covariances

In this paragraph we estimate the canonical covariance between a generic function
and a function which can be written as the spatial average of local functions. We
observe that the bound we provide differs from the standard Lu-Yau’s Two Blocks
Estimate (see [26]) by an additional term depending on the random field « and
satisfying a large deviations estimate.

In what follows we fix functions %, i’ € G, depending only on g and 7, such
that ||2|co, |7 ]lco < 1. Moreover, for any positive integer L, we denote by Ry, the

set of boxes with sides of length in [L, 100L].

Proposition A.6. Given 0 < § < % there exists Lo € N having the following
property.
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Let £, L € N be suchthat o < ¢ < LandletV,W € Ry with VW = 0.
Then, for any v € M(V) and any function g € G,

c(f) cé c
V(AVyey Toh; ) < —D(g, v) + — Var, (g) + —Var, (&) pmer;)Pv o (@)

- |V V] V]
(A7)

where m := v(my) and Is := [8,1 — 8]. Moreover, for any y > 0 there exists
L1 = £1(y) > £y such that

GBSl = POye@zy)<e oL (A8)
Finally, for any v € M(V U W) and any function g € G,

V(AVyey Tyh-AVyew Twh's g)* <

cs
@D(g, V) + ——Var, (g) + — Var, (2)(Pv.¢(a) + Pw (@)

|Al |A] [A]
(A9)
Proof. We first prove (A.7) by referring, for many steps, to the proof of proposition
A.11in [7]. Let us fist introduce some useful notation.

We fix a partition V = U;¢; Q;, with Q; € Ry, and define N; := Ng,, m; :=
N /1Qils hi i=3 e, Teh, F :=0(m; |i € I) and for s € [0, 1]

15 (his N _ Ep20 (ho; o)

WA (N Ny B 200 (o3 o)
W(h,, N ™ i Ny
o (N N k" (N N

Ai(m) =

Bi(s) :=

As in [7], if m ¢ Is then it is enough to apply Schwarz inequality and lemma A.5
to obtain the thesis, otherwise it is convenient to bound the 1.h.s. of (A.7) as

2 2
V(AVyey Th; g)% < 20 (v(Avyey Toh; g1 F) )"+ 2v(v(Avyev Toh | F); g)
(A.10)

As in [7] we can bound the first addendum in the r.h.s. of (A.10) by c(£)D(g; v)
and the second one by

1 1
cVar,(g) (W + Td Z Varuéon) ($i?’)) (A.11)
iel

where, for an arbitrarily fixed y, Siy n) := ugni 2 (hi —y N;). Let us explain how

to proceed. Thanks to Poincaré inequality for Glauber dynamics we obtain

Var o (81) < ¢ 3y (VaED). (A.12)
x€Q;
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E 120%™ (ho:no)

By choosing y = E 0™ (50:10)

it is simple to check that

mi (")
Vxéiy = A; +(_1)WX/ Bi(s)ds.
m; (1)
By writing
) A(s") . .
B = A2 ([ Mo BiNiND,,
S NG N M el (Vi N
s iz N [ Ko, (Nis Nii o) )
—_— 7 s )
woy (Niz Ni) i any - i (N V)

by lemma A.2 and the condition m € Is we obtain that | B; (s)| < §|s — u,)“/(m)(mi)l

and therefore
c c _
IVag]] < Ai 5 min) = uy™ )| + <07 (A.13)
By (A.11), (A.12) and (A.13) it is simple to conclude the proof if ¢ is large enough

and

Dy e(e) := sup AvicsA (m)2 where M { ! 2 L }
v.ela) == iel Ai V=0 v T vl
memy V"IV V]

By standard arguments (as for lemma 3.9 in [7]) (A.9) can be derived from
(A.7).
Let us prove (A.8). By lemmas A.2 and A.3
i) = — (112 (i mi) = E % (o o)
m(1l —m)

IR N mi) = E 2 oz o) + [ — 0™ (my)| ).
Therefore it is enough to prove that given a function f = f(ag) with || fllec < 1
then for any y > 0 there exists £1 = £1(y) such that

zryzLd

P(Avier(Avyeg, T f —E(f)?* > y) <2¢” @ Ve > 0.

To this aim we define f; := (Avyep, o f — E(f))? and f; := f; — E(f;). Then by
lemma A.1, forany 0 < 6 < 1,

E(f) < P(1AVieq T f — E(f)] 2 8) +62 <277 4 82,
Therefore, by choosing § small enough and ¢ large enough, E(f;) < % for any
i € I and (by applying again lemma A.1)
> Y
-2
thus concluding the proof. O

P(Avie/ fi = v) <P(Avies fi = L) < 2¢7<71l] (A.14)
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A.5. Moving Particle Lemma
Givenx, y € 74 we define

Zi:=(}’l’yZ,--~7)’i,xi+la-~-»xd) Vl:ovad

and write yy , for the path connecting zop = x to z; by moving along the first
direction, then connecting z; to zo by moving along the second direction and so on
until arriving to zy = y. We denote by |y, | the length of the path y, .

Lemma A.7. (Moving Particles Lemma) Given a box A and v € M(A) then

v((Vey$)?) Sclyayl D v((Vpf)?)  Vx.yeA, feG.
beyy,y

The above lemma is well known for non disordered systems (see for example [35]).
We learned from J.Quastel the generalization to the disordered case. Its proof has
been given in [29, 30].

A.6. An application of Feynman-Kac formula

The following proposition can be derived from the Feynman-Kac formula as ex-
plained in [22]. We report only the statement.

Let X be a finite set on which it is defined a probability measure v and a Markov
generator £ reversible w.r.t. v. We denote by [E, the expectation w.r.t. the Markov
process having infinitesimal generator £ and initial distribution v and by x; the
configuration at time ¢.

Proposition A.8. Let V : Ry x X — R be a bounded measurable function and
let, for any t > 0,

T, = supspecLz(v){ﬁ + Vi, )}
Then

t

E,,[exp{/t V(s,xs)ds}] < exp{/ I ds} vt > 0.
0 0

A.7. Two Blocks Estimate

For a treatment of the Two Blocks estimate in non disordered systems see [22] and
reference therein. Let us state and prove a generalized version.

Proposition A.9. Given y > 0, for almost every disorder configuration o

lim sup sup supspecLz(#e){Avxerlmx k — Myyuwkl + ye ZEG} <0.
al0,kto0,e 0 w:lw|<$

(A.15)
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Proof. We extend to the disordered case the proof of the Two Blocks estimate of
[37] thanks to the ergodicity of the random field «. To this aim let us introduce the
scale parameter £ with £ 1 oo after kK 1 oo. Then, with a negligible error of order
O(L/k), for any x € Tf we can substitute m, x with Avyep, My ¢. Therefore,
thanks to the sub-additivity of sup spec, the Lh.s. of (A.15) can be bounded from
above (with an error O (§)) by

SUP  AVyep AVye A [wy' —y[>2¢
wilw|<¢

d-2
X sup SPeC{AVxeTg|mx+}',€ - mx+w+y’,€| + ye Le}
L2(e)

where the additional restriction |w + y’ — y| > 2¢ is painless. By renaming the
index variables, it is enough to show that given y > 0, for almost every disorder
configuration o,

lim sup sup  supspec{Av,qal|my e — My el + yel™2L) <0.
£100,a}0,e0 w:20<w|<%  L2(uc) ¢
(A.16)

For any u, v € Z4 let us define EAM,U =1+ e’(““’“")(”"’”"))vu,v. It is simple
to check that [,Au,v is self-adjoint w.r.t. Gibbs measures. Then, given w as above,
thanks to the Moving Particle lemma (see lemma A.7) and the properties of the
transition rates, it is simple to prove that

AV, ema AVuen, AVen,, (—Luw) < ca’et (L) (A.17)
Therefore, by localizing as in (4.12), the supspec in (A.16) is bounded by

2 N
AVxe']Tf sup sup speCLz(v){|mx,g —Mytye|tcya AVueAx,(AVveAH_w,( (—=Luw)}
v

where v varies in M (A, ¢ U Axyw ¢). Thanks to perturbation theory (see prop-
osition 4.2) we only need to prove that, for almost every disorder configuration
o,

lim sup sup  Av,cpa sup v(|my ¢ — Myt el). (A.18)
£100,a0,e0 w20 <|w|<4 MY

We observe that by lemma A.5 in the above expression we can
substitute v with the grand canonical measure p such that u(ma) = v(ma) where
A=Ayt UAiye.

Let us introduce the scale parameter s with s 1 oo after £ 1 oo. Then, by
approximating my ¢ with Avyea, ,my s and thanks to lemma A.3

M(|mx,(€ - mx+w,€|) = CAVyEAx_gMAO(m)Gmy,S - my+w,s|)
+ s |m — p Gnp)|+0(s/0).

where m = pu(mp) = v(mp) and A is defined as above. Therefore, it is enough to
prove that for almost all disorder configuration «
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lim sup Avxer supAvyeA w Ao(m )(|mx+} s —ml]) =0,
s100,£1 00,60

lim sup AV, eTd sup Im — 0 (m, 0l =0.
£100,e0

Since 00 (my,n) = m for any integer n and any site x, the above limits follow
by straightforward arguments from the ergodicity of the random field « and the
technical estimate (A.3). |
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