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Abstract. It is proved that there is a function p(c) ≥ 0 such that p(c) > 0 if c is large
enough, and (a.s.) for any t ∈ [0, 1], the trajectory of Brownian motion after time t is con-
tained in a parallel shift of the box [0, 2−k] × [0, c2−k/2] for all k belonging to a set with
lower density ≥ p(c). This law of square root helps show that solutions of one-dimensional
SPDEs are Hölder continuous up to the boundary.

1. Introduction

There is a generic saying dating back some 20 years ago that any statement about
properties of one-dimensional Brownian motion is either wrong or already known.
As far as we understand, the law presented below is true, was not known before, and
even more than that, has important applications in the theory of stochastic partial
differential equations.

This new law can be described in the following way. Letwt, t ≥ 0, be a standard
one-dimensional Wiener process and let c ∈ (0,∞) be a constant. For any t ≥ 0
and k = 0, 1, 2, ..., we say that w· after time t is contained in a (parabolic) c-box
of size 2−k if there is a number a such that

a ≤ wt+s ≤ a + c2−k/2 for 0 ≤ s ≤ 2−k. (1.1)

The law of iterated logarithm applied to wt+2−k implies that for each t (a.s.) there
are infinitely many k’s such that w· after time t is not contained in c-boxes of size
2−k . Actually, the law of large numbers for stationary sequences shows that an even
stronger statement is true and this violation of containment has a pattern described
in terms of the density of setsA ⊂ {0, 1, 2, ...} defined as limn→∞ #(A∩ [0, n])/n,
where #B is the number of elements inB. Namely, for each c and t , with probability
one the density of k’s, for which w· after time t is not contained in c-boxes of size
2−k , is strictly bigger than zero (see Remark 2.2).
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Furthermore, one can show (see Remark 2.3) that if c < 1, then with probability
one there is a t = t (ω) ∈ [0, 1] such thatw· after time t is not contained in c-boxes
of size 2−k if k is large enough.

If c is large enough the situation is different. Our square root law says, in par-
ticular, that there is a function p(c) ≥ 0 such that p(c) > 0 if c is large enough,
and (a.s.) for any t ∈ [0, 1], w· after time t is contained in a c-box of size 2−k for
k’s in a set with lower density ≥ p(c). The precise statement of the law is to be
found in Theorem 2.1.

It is worth noting again that if we are only interested in one particular value of
t , then the result is a straightforward consequence of the above mentioned law of
large numbers for stationary sequences. One need not even have c large enough,
since (a.s.) the density of k’s for which w· after time t is contained in a c-box of
size 2−k equals the probability p0(c) that w· after time 0 is contained in a c-box of
size 1 and this probability is strictly bigger than zero for any c > 0. However, the
exceptional set of ω depends on t and for c < 1 the union of exceptional sets has
probability one, as has been mentioned above. Therefore, the main emphasis of the
law is on the fact that for large c the lower density is bounded away from zero by
a strictly positive constant depending only on c.

The origin of the name “square root law” lies in the fact that (1.1) is equivalent
to

osc
[t,t+r]

w· ≤ c
√
r (1.2)

with r = 2−k . No logarithms or iterated logarithms are involved and this makes
such statements quite valuable in connection with second-order elliptic and par-
abolic partial differential equations where one uses self similarity to a very large
extent. We show one of applications of the square root law in Section 4.

Before, one of the square root laws was proved by B. Davis [1]. It says that
(a.s.) if c < 1, then

(a) there exists a t ∈ [0, 1] and an ε > 0 such that

wt+r − wt ≥ c
√
r for all r ∈ [0, ε]

but if c > 1, then the opposite is true, that is
(b) for any t ∈ [0, 1] and any ε > 0 there is r ∈ (0, ε] such that

wt+r − wt < c
√
r.

The author came across the necessity of the square root laws by trying to solve a
problem in SPDEs. This problem reduces almost immediately to a problem for the
heat equation in a random domain. To be more specific take constants T , δ ∈ (0,∞)

and consider the following boundary-value problem

Dtu(t, x)+ δD2
xu(t, x) = 0, t ∈ [0, T ), wt < x < wt + 1, (1.3)

u(t, wt ) = 0, u(t, wt + 1) = 1, for t ∈ [0, T ),

u(T , x) = x − wT for wT ≤ x ≤ wT + 1.
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For each trajectory w· this is a deterministic problem admitting a unique Perron
solution (coinciding with the probabilistic one). The solution is infinitely differ-
entiable inside the domain and the hardest issue is if and how the solution agrees
with the given values on the lateral boundary. If δ is large enough, then one can
use the theory of SPDEs itself to show that the solution is Hölder continuous in the
closure of the domain. However, at this moment there are no SPDEs tools to show
even the continuity of u up to the boundary if δ is small. We succeeded in doing
this in [4] by noticing that for w· being just a deterministic continuous function,
the Hölder continuity of the solution at the boundary is possible only if part (b) of
Davis’s law holds with a finite c (for our deterministic w·). Since we knew that for
large δ and for w· being a trajectory of the Wiener process the solution is Hölder
continuous at the boundary, we concluded that part (b) of Davis’s law holds and
then the continuity up to the boundary for small δ became a rather trivial exercise on
self similarity and Blumenthal’s zero-one law. The reader understands that, to get
the continuity, in this argument we could skip appealing to the result from SPDEs
for large δ. However, the point is that Davis’s law is not sufficient to proving any
estimate of the modulus of continuity.

In this article, we prove that the solutions are Hölder continuous up to the
boundary no matter how small δ > 0 is.

Notice that if in part (b) of Davis’s law we knew that r is comparable with ε,
then the Hölder continuity would follow in almost the same way as the continuity
is derived. The matter of fact is that then the boundary would possess a good kind
of self similarity. However, the best we could do trying to use Davis’s arguments
looks like r ∈ [ε2, ε] and this led only to a logarithmic modulus of continuity no
matter δ is large or small. Yet we knew that for large δ the solutions are Hölder
continuous up to the boundary. The only explanation of this we had was that (1.2)
with r = 2−k should occur for large k “on a regular basis” something like for k
taken from a kind of arithmetic progression. The main idea always was to rely on
self similarity. However, it is rather easy to see that (a.s.) for any a > 0

lim
k→∞

sup
t∈[0,1]

2ak/2 osc
[t,t+2−ak]

w· ≥ lim
k→∞

2ak/2 osc
[0,2−ak]

w· = ∞.

Therefore, no appropriate deterministic arithmetic progression can be found and
we decided to interpret “on a regular basis” in the sense of the denseness of the set
of k’s for which (1.2) holds with r = 2−k . This is how SPDEs inspired discovering
our square root law.

The article is organized as follows. The law of square root is proved in Section
2. A deterministic version of problem (1.3) is considered in Section 3. Its stochastic
version along with an application to SPDEs is given in Section 4.

The work was finished during the author’s visit to the Technische Universität
München under the auspices of the Alexander von Humboldt Foundation. The sup-
port of these organizations and of the author’s host Herbert Spohn is greatly appre-
ciated. The author is also sincerely grateful to the referee for valuable comments
and suggestions.



One more square root law for Brownian motion and its application to SPDEs 499

2. The law of square root

Let C be the set of real-valued continuous functions on [0,∞). For x· ∈ C set
xs = x0 for s ≤ 0 and for n = 0, 1, 2, ... and t ≥ 0 introduce

�±
n (x·, t) = 2n/2 osc

[t,t±2−n]
x· .

If c ∈ (0,∞), then define

N±
n (x·, c, t) = #{k = 0, ..., n : �±

k (x·, t) > c} =
n∑

k=0

I�±
k (x·,t)>c

.

Finally, introduce

�±
n (t) = �±

n (w·, t), N±
n (c, t) = N±

n (w·, c, t),

�n(t) = �+
n (t), Nn(c, t) = N+

n (c, t).

Theorem 2.1. For any c, T ∈ (0,∞)

lim
n→∞ sup

t∈[0,T ]

1

n+ 1
N±
n (c, t) = α(c) (2.1)

(a.s.), where α(c) is a deterministic function of c and α(c) → 0 as c → ∞.

The following is a version of a lower estimate of α(c) suggested by M. Safonov.
We use the notation Fw

t = σ(ws : s ≤ t), Fw
0+ = ⋂

t>0 Fw
t .

Remark 2.2. The sequence of processes ξt (n) := 2n/2wt2−n , t ∈ [0, 1], n =
0, 1, ..., is a stationaryC([0, 1])-valued sequence. Therefore, the sequence�n(0) is
stationary too. The latter sequence is also ergodic since its tail σ -field is contained
in Fw

0+, which consists only of sets having probability zero or one by Blumenthal’s
law. Hence, (a.s.)

α(c) ≥ lim
n→∞

1

n+ 1
Nn(c, 0) = lim

n→∞
1

n+ 1

n∑

k=0

I�k>c = P(osc
[0,1]

w· ≥ c).

Remark 2.3. It follows from Davis’s square root law (a) that if c ∈ (0, 1), then
(a.s.) there is a t ∈ [0, 1] and an m ≥ 1 such that �k(c, t) > c for all k ≥ m.
Hence,

lim
n→∞ sup

t∈[0,1]

1

n+ 1
Nn(c, t) = 1

and, in particular, α(c) = 1 for c ∈ (0, 1).

Remark 2.4. If T = ∞, then (2.1) is wrong, since supt≥0Nn(c, t) = n+ 1 (a.s.).

We derive Theorem 2.1 from the following estimate, which also plays a central
role in the future applications to SPDEs.
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Lemma 2.5. Take α ∈ (0, 1) and c ∈ (0,∞) and introduce

p = p(c) := P(sup
t≤1

wt − inf
t≤1
wt ≥ c(

√
2 − 1)/2), r = r(α, c) := α(1 − p)

p(1 − α)
,

β = β(α, c) := 2
(r − 1)p + 1

rα
= 2

1 − p

1 − α
r−α.

Assume that r ≥ 1 (or equivalently α ≥ p). Then, for any n = 1, 2, ..., we have

Pn(c, α) := P( sup
t∈[0,T ]

N±
n (c, t) ≥ (n+ 1)α) ≤ (T + 2−n)r1−αβn. (2.2)

Proof. First observe that I(c,∞)(x) is a lower semicontinuous function of x,�±
k (t)

are continuous in t , so thatN±
n (c, t) is lower semicontinuous, and supt∈[0,T ]N

±
n (c, t)

are random variables. Therefore, (2.2) makes sense.
Next, notice that ŵt := wT − wT−t is a Wiener process on [0, T ]. Continue it

arbitrarily for t ≥ T in such a way that ŵt becomes a Wiener process on [0,∞).
Then as is easy to see for t ∈ [0, T ] it holds that

N−
n (c, t) = N+

n (ŵ·∧T , c, T − t) ≤ N+
n (ŵ·, c, T − t). (2.3)

It follows that it suffices to prove (2.2) for the + sign.
Define κn(t) = 2−n[2nt] and notice that, for m ≤ n, we have κn(t) ≤ t ,

t + 2−m ≤ κn(t)+ 2−n + 2−m ≤ κn(t)+ 2−(m−1). Hence, for 1 ≤ m ≤ n,

�m(t) ≤ 2m/2 osc
[κn(t),κn(t)+2−(m−1)]

w =
√

2�m−1(κn(t)),

and for n ≥ 1 and t ∈ [0, T ],

Nn(c, t) ≤ 1 +Nn−1(2
−1/2c, κn(t)) ≤ 1 + max

k=0,...,[2nT ]
Nn−1(2

−1/2c, k2−n).

Adding to this that the distribution ofNn(c, t) is independent of t and [2nT ] + 1 ≤
2nT + 1, we conclude that

Pn(c, α) ≤ (T + 2−n)2nP (Nn−1(c
′, 0) ≥ α′), (2.4)

where

c′ = 2−1/2c, α′ = α(n+ 1)− 1.

Now it is the issue of large deviations for Nn−1(c
′, 0).

Let

τk = inf{t ≥ 0 : osc
[0,t]

w· ≥ 2−k/2c′}.

Then (osc [0,t]w· ≤ osc [0,s]w· + osc [s,t]w· for 0 ≤ s ≤ t)

{ω : �k(0) ≥ c′} = {ω : τk ≤ 2−k} ⊂ {ω : �k(τk+1) ≥ (1 − 2−1/2)c′}.
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Next we use Chebyshev’s inequality, the fact that τk are stopping times and thatwt
is a strong Markov process. We also notice that (a.s.)

E{exp(λI�k(τk+1)≥(1−2−1/2)c′)|Fw
τk+1

}
= E exp(λI�k(0)≥(1−2−1/2)c′) = eλp + 1 − p.

Then, for any λ ≥ 0, we find

P(Nn−1(c
′, 0) ≥ α′) ≤ e−λα

′
E exp(λ

n−1∑

k=0

Iτk≤2−k )

≤ e−λα
′
E exp(λ

n−1∑

k=1

Iτk≤2−k ) exp(λI�0(τ1)≥(1−2−1/2)c′)

= e−λα
′
(eλp + 1 − p)E exp(λ

n−1∑

k=1

Iτk≤2−k ) ≤ ... ≤ e−λα
′
(eλp + 1 − p)n.

By combining this with (2.4) and taking λ = ln r , we arrive at (2.2). The lemma is
proved. ��
Remark 2.6. For any α ∈ (0, 1), we have p(c) → 0, r(α, c) → ∞, and β(α, c) →
0 as c → ∞.

Proof of Theorem 2.1. First we prove that the left-hand side of (2.1) is a constant
(a.s.). The explanation in the beginning of the proof of Lemma 2.5 shows that
the left-hand side of (2.1) for the + sign, which we denote by ξ(T ), is a random
variables.

By using the self-similarity of the Wiener process one easily concludes that the
distribution of ξ(2k), k = 0,±1,±2, ..., is independent of k. In addition obviously,
ξ(T ) ≥ ξ(S) if S ∈ (0, T ]. It follows that, for any S, T > 0 we have ξ(S) = ξ(T )

(a.s.). Furthermore, it is easily seen that ξ(T ) is measurable with respect to Fw
2T .

Since ξ(S) = ξ(T ) (a.s.), ξ(T ) is also measurable with respect to the completion of
Fw

0+ = ⋃
S>0 Fw

2S . By Blumenthal’s zero-one law we finally get that ξ(T ) = const
(a.s.), where the constant is independent ofT . That the same constant suits the− sign
as well follows from (2.3) and the equalityN+

n (ŵ·∧T , c, T −t) = N+
n (ŵ·, c, T −t),

which is valid if T ≥ t ≥ 1.
It only remains to show that α(c) → 0 as c → ∞. However, for any α ∈ (0, 1)

and m ≥ 1,

P(ξ(1) > α) ≤ P(sup
n≥m

1

n+ 1
sup
t∈[0,1]

Nn(c, t) ≥ α)

≤
∞∑

n=m
P ( sup

t∈[0,1]
Nn(c, t) ≥ (n+ 1)α)

and the latter tends to zero asm → ∞, due to Lemma 2.5 if c is so large that β < 1.
The theorem is proved. ��
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3. The heat equation in curvilinear cylinders

Take a δ ∈ (0,∞) and an x· ∈ C. Introduce

Q := Q(x·) := {(s, y) : s ≥ 0, xs < y < xs + 1}

and let u(t, x) be the probabilistic solution of

Dtu(t, x)+ (1/2)δD2
xxu(t, x) = 0, (t, x) ∈ Q,

u(t, xt ) = 0, u(t, xt + 1) = 1, t ≥ 0.
(3.1)

Recall that the value of the probabilistic solution u at a point (t, x) ∈ Q is deter-
mined in the following way. Define

τ = inf{s > 0 : (t + s, x + ws
√
δ) ∈ Q}.

The following argument showing that τ < ∞ (a.s.) was suggested by the referee.
We have

P(τ > s) ≤ P(xt+s < x + ws
√
δ < xt+s + 1) ≤ sup

y
P (y < ws

√
δ < y + 1)

= sup
y
P (y/

√
sδ < w1 < (y + 1)/

√
sδ) ≤ 1√

2πsδ
sup
y
e−y

2/2 → 0

as s → ∞.
Finally, u(t, x) is determined as the probability that (t, x+wt

√
δ)meets (t, xt+

1) before (t, xt ), that is

u(t, x) = P(x + wτ
√
δ = xt+τ + 1). (3.2)

It is well known that u is infinitely differentiable in Q and satisfies (3.1). It is also
well known that u is continuous up to the boundary {(s, xs), (s, xs + 1) : s ≥ 0}
only at its regular points, that is at those (t, x) at which P(τ > 0) = 0. The follow-
ing theorem will allow us to give conditions under which u is Hölder continuous
up to the boundary.

Theorem 3.1. Take some constants c ≥ 0, d > 0 and for a ∈ R define

τd,a = inf{t ≥ 0 : d/
√

2 + wt = a},

γ (c, d, δ) = P(τd,d ∧ (δ/2) < τd,−c).

Then for x ∈ (0, 1) and t ≥ 0 we have

u(t, xt + x) ≤ [γ (c, d, δ)]Mn(x·,c,t)−k, (3.3)

where Mn(x·, c, t) = n+ 1 −Nn(x·, c, t), n = n(x/d), k = k(c + d), and

n(x) = [(−2 log2 x)+], k(d) = 2 + [(2 log2 d)+].
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Remark 3.2. The result is reasonable in the following sense. If xt ≡ 0 so that Q is
a straight cylinder, then u(t, x) = x and u(t, x) decays to the boundary value on
{x = 0} linearly. In this case for c = 0 we haveMn(x·, c, t) = n+ 1 and as x ↓ 0,
dropping obvious values of arguments, we have

γMn(t)−k � γ log2 x
−2 = xlog2 γ

−2
.

Furthermore, log2 γ
−2 → 1 as d ↓ 0 since γ (0, d, δ) → 1/

√
2 for any δ > 0.

Remark 3.3. The self-similarity of the Wiener process shows that γ (c, d, δ) =
γ (c/

√
δ, d/

√
δ, 1).

In Section 4 we use the following result concerning the probabilistic solution
of the equation

Dtu = (1/2)δD2
xxu

in Q \ ({0} × (0, 1)) with boundary condition u(t, xt + 1) = 1 for t ≥ 0 and zero
on the rest of ∂Q. The result is obtained from Theorem 3.1 by reversing time and
observing that the right-hand side of (3.2) becomes smaller if we takeQ∩ {t < T }
in place of Q.

Corollary 3.4. For t > 0 and x ∈ (0, 1) we have

P(xt + x + wτ
√
δ = xt−τ + 1) ≤ [γ (c, d, δ)]n+1−N−

n (x·,c,t)−k,

where τ = inf{s > 0 : (t − s, xt + x + ws
√
δ) ∈ Q}.

One may also be interested in equations like (3.1) when δ is replaced with a
function a(t, x) ≥ δ. The following theorem addresses this issue and, in particular,
implies Theorem 3.1.

Theorem 3.5. Let wt be a Wiener process with respect to a filtration {Ft , t ≥ 0}
of complete σ -fields and let at be a bounded process predictable with respect to
{Ft , t ≥ 0} and such that a(t) ≥ δ. Assume that x0 = 0 and for x ∈ (0, 1) define

ξs =
∫ s

0

√
a(r) dwr, τ (x) = inf{s > 0 : (s, x + ξs) ∈ Q}.

Then Eτ(x) ≤ (2δ)−1 and

P(x + ξτ(x) = xτ(x) + 1) ≤ [γ (c, d, δ)]Mn(x·,c,0)−k. (3.4)

Remark 3.6. The function Mn(x·, c, 0) is a piecewise constant right-continuous
increasing function of c. Moreover, the left-hand side of (3.4) is independent of c
and γ and is a continuous function of c. It follows that the inequality

P(x + ξτ(x) = xτ(x) + 1) ≤ [γ (c, d, δ)]Mn(x·,c−,0)−k, (3.5)

which is formally weaker than (3.4) for each particular jump point c, actually is
equivalent to (3.4) in the range c ≥ 0.



504 N.V. Krylov

To prove Theorem 3.5 we need two lemmas.

Lemma 3.7. Assume that xt ≥ −c2−p/2 for t ∈ [0, 2−p], where p is an integer.
Introduce

Q(p) = {(t, x) : t ∈ [0, 2−p], xt < x < 2−p/2d}
assume thatQ(p+1) = ∅ and call {(t, x) ∈ Q̄(p) : x = xt } the curvilinear lateral
boundary ofQ(p). Then, for (t, x) ∈ Q(p+ 1), the probability that (t + s, x+ ξs)
as a function of s exits fromQ(p) before reaching its curvilinear lateral boundary
is less than γ (c, d, δ).

Proof. Bearing in mind the possibility of rescaling, we assume that p = 0 without
losing generality. Then denote by α(t, x) the probability in question. Observe that
by assumption Q(0) lies in the box [0, 1] × (−c, d). Therefore, if (t, x) ∈ Q(0)
and (t+ s, x+ ξs) exits fromQ(0) before reaching its curvilinear lateral boundary,
then the process (t + s, x + ξs) hits the right part of the lateral boundary or the
top of the box before reaching the left part of the lateral boundary. The same holds
if we change the time scale, that is, for any strictly increasing function φ(s), such
that φ(0) = 0 and φ(∞) = ∞, we have

α(t, x) ≤ P {θ(t, x, d) ∧ ψ(1 − t) < θ(t, x,−c)}, (3.6)

where ψ is the inverse of φ and

θ(t, x, a) = inf{s ≥ 0 : x + ξφ(s) = a}.
It is convenient to take φ so that

ψ(s) =
∫ s

0
a(r) dr

because then the quadratic variation of ξφ(s) equals

∫ φ(s)

0
a(r) dr = ψ(φ(s)) = s,

so that w̄s := ξφ(s) is a Wiener process. Also in this case we have ψ(s) ≥ δs and
hence (3.6) yields

α(t, x) ≤ P {τ(d, x) ∧ (δ − δt) < τ(−c, x)}, (3.7)

where
τ(a, x) = inf{r ≥ 0 : x + w̄r = a}.

It only remains to notice that, for (t, x) ∈ Q(1), the right-hand side of (3.7) is
obviously less than its value at x = d/

√
2 and t = 1/2 and this value is γ (c, d, δ).

The lemma is proved. ��
In the following lemma we prove the first assertion of Theorem 3.5. Its proof

differs from the original one owing to inspiring comments by the referee.

Lemma 3.8. We have Eτ(x) ≤ (2δ)−1.
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Proof. Fix an x ∈ (0, 1) and define τ0 = 0,

τn+1 = inf{t ≥ τn : |ξt − ξτn | ≥ 1/2}, n ≥ 0.

Observe that

(ξt − ξt∧τn)
2 −

∫ t

t∧τn
a(s) ds

is a martingale implying that

E(τn+1 − τn)Iτn<τ(x) ≤ δ−1EIτn<τ(x)

∫ τn+1

τn

a(s) ds

= δ−1EIτn<τ(x)(ξτn+1 − ξτn)
2 = 4−1δ−1P(τn < τ(x)).

Furthermore, both points (τn+1, x + ξτn ± 1/2) cannot be in Q and, since
E(ξτn+1 − ξτn) = 0 and ξτn+1 − ξτn equals 1/2 or −1/2 with probability 1/2, we
have

P(τn+1 < τ(x)|Fτn) ≤ (1/2)Iτn<τ(x)

It follows that P(τn < τ(x)) ≤ 2−n,

Eτn+1Iτn<τ(x) = EτnIτn<τ(x) + E(τn+1 − τn)Iτn<τ(x)

≤ EτnIτn<τ(x) + δ−12−n−2,

Eτn+1Iτn<τ(x)≤τn+1 = Eτn+1Iτn<τ(x) − Eτn+1Iτn+1<τ(x)

≤ EτnIτn<τ(x) − Eτn+1Iτn+1<τ(x) + δ−12−n−2.

Finally,

Eτ(x) =
∞∑

n=0

Eτ(x)Iτn<τ(x)≤τn+1 ≤
∞∑

n=0

Eτn+1Iτn<τ(x)≤τn+1

≤ δ−1
∞∑

n=0

2−n−2 − lim
n→∞Eτn+1Iτn+1<τ(x),

and the lemma is proved. ��
Proof of Theorem 3.5. Step 1. First we reduce the general situation to the one in
which x· is infinitely differentiable. We are going to deal with (3.5) which is equiv-
alent to (3.4) as is explained in Remark 3.6.

Observe that if x·(m) ∈ C, m = 1, 2, ..., and x·(m) → x· uniformly on each
bounded interval, then �n(x·(m), 0) → �n(x·, 0) and

Mn(x·, c−, 0) ≤ lim
m→∞

Mn(x·(m), c−, 0),

[γ (c, d, δ)]Mn(x·,c−,0) ≥ lim
m→∞[γ (c, d, δ)]Mn(x·(m),c−,0).

Then assume that xt (m) < xt for all t and define

τm(x) = inf{s > 0 : x + ξs = xs(m) or x + ξs = xs(m)+ 1}.
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Notice that starting from an x < 1 for the process (t, x + ξt ) to cross (t, xt + 1) it
has first to cross (t, xt (m)+ 1) for those m for which x < x0(m)+ 1. In addition,
if (t, x + ξt ) crosses (t, xt + 1) before crossing (t, xt ), then (t, x + ξt ) crosses
(t, xt (m)+ 1) before crossing (t, xt (m)) (always if x < x0(m)+ 1). It follows that

{ω : x + ξτ(x) = xτ(x) + 1} ⊂ lim
m→∞

{ω : x + ξτm(x) = xτm(x)(m)+ 1},
P (x + ξτ(x) = xτ(x) + 1) ≤ lim

m→∞
P(x + ξτm(x) = xτm(x)(m)+ 1).

The version of (3.5) for x·(m) in place of x· is the following inequality

P(x + ξτm(x) = xτm(x)(m)+ 1) ≤ [γ (c, d, δ)]Mp(m)(x·(m),c−,0)−k (3.8)

wherep(m) = n((x−x0(m))/d) is used in place ofn sincex0(m) = 0. Observe that
the function n(x) is piecewise constant, left continuous, and decreasing. Therefore,
for large m we have p(m) = n(x/d+). Hence, if (3.8) is proved, then by letting
m → ∞, we get (3.5) with n(x/d+) in place of n = n(x/d). After that, by using
the independence of the left-hand side of (3.5) of d and moving this parameter, we
get (3.5) in its original form.

Therefore indeed to prove (3.5) or (3.4), it suffices to concentrate on smooth x·.

Step 2. Below we assume that x· is smooth and in this step we reduce proving (3.4)
to estimating a solution to certain partial differential equation.

For fixed T ∈ (0,∞) and M := supt,ω a consider the following equation

Dtv(t, x)+ max
a∈[δ,M]

[(1/2)aD2
xxv(t, x)− x′

tDxv(t, x)] = 0 (3.9)

in GT := [0, T )× (0, 1) with boundary condition

v(t, x) = x

on ∂ ′GT , where ∂ ′GT is the parabolic boundary of GT .
It is known (see, for instance, [2]) that this problem admits a unique classical

solution, that is there exists a function vT (t, x)which is continuous in ḠT , satisfies
the boundary condition, has continuous bounded derivatives inGT and satisfies the
equation there.

By the maximum principle 0 ≤ vT ≤ 1. Also interior estimates show that for
each S ∈ (0,∞) the family of functions

{vT ,DxvT ,D2
xxvT ,DtvT ; T ≥ S + 1}

as functions on ḠS is uniformly bounded and uniformly continuous. It follows that
there is a sequence T (m) → ∞ along which vT , DxvT , D2

xxvT , DtvT converge
uniformly on any bounded subset of Ḡ∞ to a function v and its corresponding
derivatives. Actually, by using Lemma 3.8 it is not hard to show that vT , DxvT ,
D2
xxvT , DtvT converge as T → ∞. In any case we conclude that v is a classical

solution of (3.9) in G∞ such that v(t, 0) = 0 and v(t, 1) = 1 for t ≥ 0.
Obviously, the function

u(t, x) := v(t, x − xt )
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satisfies

Dtu(t, x)+ (1/2) max
a∈[δ,M]

[aD2
xxu(t, x)] = 0 (3.10)

in Q = Q(x·) with boundary conditions

u(t, xt ) = 0, u(t, xt + 1) = 1, t ≥ 0.

Observe that

Dtu(t, x + ξt )+ (1/2)a(t)D2
xxu(t, x + ξt ) ≤ 0

for t ≤ τ(x). Therefore, by Itô’s formula for any T > 0 we obtain

u(0, x) ≥ Eu(τ(x) ∧ T , x + ξτ(x)∧T )
= P(x + ξτ(x) = xτ(x) + 1, τ (x) ≤ T )+ Eu(T , x + ξT )Iτ(x)>T .

By letting T → ∞ and using Lemma 3.8, we get that u(0, x) ≥ P(x + ξτ(x) =
xτ(x) + 1) and to prove the theorem it suffices to prove that

u(0, x) ≤ [γ (c, d, δ)]Mn(x·,c,0)−k. (3.11)

It is not hard to see that, actually, (3.4) is equivalent to (3.11).

Step 3. Here we prove (3.11). Fix an x ∈ (0, 1) and observe that n ≥ 0, so that

m := Mn(x·, c, 0)

is well defined and estimate (3.3) is trivial if m ≤ k. Therefore, we assume that
m ≥ k + 1 and let 0 ≤ p1 < ... < pm ≤ n be the integers such that

�pi := �pi (x·, 0) ≤ c

for all i. By the way, obviously k ≥ 2 and n+ 1 ≥ m ≥ k + 1, so that n ≥ k ≥ 2
and owing to the definition of n, we have x ≤ 2−n/2d ≤ 2−pm/2d implying that

(0, x) ∈ Q(pm). (3.12)

Also clearly pi ≥ i − 1 and �pi ≤ c, so that, if s ∈ [0, 2−pi ], then

xs + 2−pi/2�pi ≥ 0, xs + 2−pi/2c ≥ 0,

2−pi/2d ≤ xs + 2−pi/2(c + d) ≤ xs + 2−(i−1)/2(c + d).

Since m ≥ k + 1, for some i = 1, 2, ..., m it holds that i ≥ k. By the choice of k,
for those i’s, we have 2−(i−1)/2(c+d) ≤ 1, 2−pi/2d ≤ xs +1, so thatQ(pi) ⊂ Q.
Therefore, the definition

ui = sup
Q(pi)

u, i = k, ..., m

makes sense.
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To relate ui and ui+1 we use the probabilistic representation of u. Denote by
a(s, y) a Borel function defined for all (s, y) taking only two values δ and M and
providing maximum in (3.10) for in Q, so that in Q

Dtu(s, y)+ (1/2)a(s, y)D2
xxu(s, y) = 0. (3.13)

Then for any (s, y) ∈ Q(pi) we can find a probability space carrying a Wiener
process wr such that the equation

ηt = y +
∫ t

0

√
a(s + r, ηr) dwr, t ≥ 0

has a solution. Owing to (3.13) and to the fact thatu = 0 on the curvilinear boundary
of Q(pi), by Itô’s formula for i ≥ k we obtain

u(s, y) = EIAiu(s + τi, ητi ),

where
τi = inf{t ≥ 0 : (s + t, ηt ) ∈ Q(pi)}

and Ai is the event that the process (s + t, ηt ) exits from Q(pi) without touching
its curvilinear boundary. It follows by Lemma 3.7 that

u(s, y) ≤ P(Ai)ui ≤ γ ui

if i ≥ k and (s, y) ∈ Q(pi + 1), where γ = γ (c, d, δ). In particular, if k ≤ i and
i + 1 ≤ m, then pi+1 exists and is bigger than pi + 1 implying that

ui+1 ≤ γ ui, k ≤ i < i + 1 ≤ m.

This means that the sequence γ−iui , i = k, ..., m, is decreasing and γ−mum ≤
γ−kuk ≤ γ−k . To finish proving the theorem it only remains to notice that, due to
(3.12), we have u(0, x) ≤ um. The theorem is proved. ��

4. An application to SPDEs

Let wt be a Wiener process with respect to a filtration {Ft , t ≥ 0} of complete
σ -fields and let at and σt be bounded real-valued processes predictable with respect
to {Ft , t ≥ 0} and such that at − σ 2

t ≥ εσ 2
t , where ε ∈ (0,∞) is a constant,

at − σ 2
t > 0 for all (ω, t) and for all ω

∫ ∞

0
[at − σ 2

t ] dt = ∞.

We will be dealing with the SPDE

dv(t, x) = (1/2)atD
2
xxv(t, x) dt + σtDxv(t, x) dwt

in B = (0,∞)× (0, 1) with boundary conditions

v(t, 0) = 0, v(t, 1) = 1, t > 0, (4.1)

v(0, x) = 0, 0 < x < 1. (4.2)



One more square root law for Brownian motion and its application to SPDEs 509

Theorem 4.1. There is a function v(t, x) = v(ω, t, x) defined on�× B̄ such that

(i) v(t, x) is Ft -measurable for each (t, x) ∈ B̄,
(ii) v(t, x) is bounded and continuous in B̄ \ {(0, 1)} for each ω,

(iii) derivatives of v(t, x) of any order with respect to x are continuous in B ∪
({0} × (0, 1)) for each ω,

(iv) equations (4.1) and (4.2) hold for each ω,
(v) almost surely, for any (t, x) ∈ B

v(t, x) =
∫ t

0
(1/2)asD

2
xxv(s, x) ds +

∫ t

0
σsDxv(s, x) dws,

(vi) for any T ∈ (0,∞), c, d > 0, such that α(c
√
ε) < 1, and ν satisfying

0 ≤ ν < ν0 := (1 − α(c
√
ε)) log2 γ

−2(c, d, 1)

we have that with probability one

sup
x∈(0,1)

sup
t∈[0,T ]

v(t, x)

xν
< ∞, (4.3)

(vii) there exist constants N, ν ∈ (0,∞) depending only on ε such that for any
T ∈ (0,∞)

E sup
x∈(0,1)

sup
t∈[0,T ]

v(t, x)

xν
≤ N(MT + 1), (4.4)

where M := supω,t (at − σ 2
t ).

Proof. On the space C with Wiener measure W introduce the coordinate process
xt (x·) := xt , which is a Wiener process. For t ≥ 0, x ∈ R, and x·, y· ∈ C define

τ(t, x, x·, y·) = inf{s ≥ 0 : x + xs = yt−s},
where yr := y0 for r ≤ 0. Then the function

u(y·, t, x) :=
∫

C

Iτ(t,x,x·,y·+1)<t∧τ(t,x,x·,y·) W(dx·).

is the probabilistic solution of the heat equation

Dtu = (1/2)D2
xxu

in Q(y·) \ ({0} × (0, 1)) with boundary conditions

u(t, yt ) = 0, u(t, yt + 1) = 1, t > 0,

u(0, x) = 0, y0 < x < y0 + 1.

Observe that τ(t, x, x·, y·) is a lower semicontinuous function of its arguments.
Therefore by Fubini’s theorem u(y·, t, x) is a Borel function of (y·, t, x). Further-
more, u(y·, t, x) will not change if we change yr for r > t . Therefore, u(y·, t, x)
is Nt -measurable, where Nt = σ(yr : r ≤ t, y· ∈ C).



510 N.V. Krylov

Next define

ψt =
∫ t

0
(as − σ 2

s ) ds, ξt =
∫ φt

0
σs dws, F̃t = Fφt ,

ũ(t, x) = ũ(ω, t, x) = u(ξ·, t, x), û(t, x) = û(ω, t, x) = ũ(ψt , x),

v(t, x) = v(ω, t, x) = û(t, x + ξψt ),

where φt = inf{s ≥ 0 : ψs ≥ t} is the inverse function to ψt . We are going to
prove that v is the function we are looking for.

We will use few well known facts (all of them can be found, for instance, in
[3]). Notice that φt is an Ft -stopping time so that F̃t is well defined. Also ξs is
F̃t -measurable for s ≤ t . Hence, ũ(t, x) is F̃t -measurable.

Furthermore, it is well known that

√
ε

∫ t

0
σs dws = w̃ψ̃(t),

where w̃t is a Wiener process and

ψ̃t = ε

∫ t

0
σ 2
s ds.

Hence ξt = ε−1/2w̃ψ̃(φt )
with

(ψ̃(φt ))
′ = εσ 2

s /(as − σ 2
s )|s=φt ≤ 1.

It follows that with c′ := c
√
ε for n = 0, 1, 2, ... we have

N−
n (ξ·, c, t) ≤ N−

n (w̃·, c′, ψ̃(φt )),
sup
t≤T

N−
n (ξ·, c, t) ≤ sup

t≤T
N−
n (w̃·, c′, t) =: N∗

n (T ).

By Corollary 3.4 for t ∈ [0, T ], x ∈ (0, 1), and any c, d > 0 we have

ũ(t, ξt + x) ≤ γ n+1−N∗
n (T )−k, (4.5)

where γ = γ (c, d, 1), n = n(x/d) and k = k(c + d) are taken from Theorem
3.1. If c is so large that α(c′) < 1, then the right-hand side of (4.5) tends to zero
as x ↓ 0 (a.s.) by Theorem 2.1. By using the possibility to change stochastic inte-
grals and Wiener processes on events of zero probability we may assume that this
property holds for all ω rather than only almost surely. Then for any ω all points
on {(t, ξt ) : t ≥ 0} are regular relative toQ(ξ·) \ ({0}× (0, 1)). Similarly all points
on {(t, ξt + 1) : t ≥ 0} are regular relative to Q(ξ·) \ ({0} × (0, 1)). It is obvious
that all points of {0}× (0, 1) are regular relative toQ(ξ·) \ ({0}× (0, 1)). It follows
that ũ is continuous in Q̄(ξ·) \ {(0, 1)}. Due to interior estimates of derivatives of
solutions to the heat equation, ũ is infinitely differentiable in Q(ξ·).

Next, the properties of random time change show that v possesses the prop-
erties (i)-(iv). Furthermore, û possesses similar properties and, for t > 0 and
ξψt < x < ξψt + 1

dû(t, x) = (1/2)(at − σ 2
t )D

2
xxû(t, x) dt.

After that the Itô-Wentzell formula shows that v possesses property (v).
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We now prove (vi). Owing to (4.5) we have

lim
x↓0

sup
t∈[0,T ]

v(t, x)

xν
≤ γ−k2κ , (4.6)

where κ = limx↓0 κ(x) with

κ(x) := (n+ 1){1 − sup
t∈[0,ψT ]

1

n+ 1
N−
n (w̃·, c′, t)} log2 γ − ν log2 x

and n = [(log2(x
−2d2))+]. By Theorem 2.1 with probability one, for any χ > 0,

if x is sufficiently small we have

κ(x) ≤ (n+ 1)(1 − α(c′)− χ) log2 γ − ν log2 x.

We take χ ≤ 1 − α(c′) and again use that log2 γ < 0, n+ 1 ≥ log2(x
−2d2). Then

we see that for small x > 0

κ(x) ≤ (−2 log2 x + 2 log2 d)(1 − α(c′)− χ) log2 γ − ν log2 x

= {(1 − α(c′)− χ) log2 γ
−2 − ν} log2 x + 2(log2 d)(1 − α(c′)− χ) log2 γ.

If χ is sufficiently close to zero, we see that κ(x) → −∞ as x ↓ 0. Thus κ = −∞
and (4.3) follows from (4.6).

To prove (vii), notice that for any α, x ∈ (0, 1) by (4.5) and Lemma 2.5

E sup
t∈[0,T ]

v(t, x) ≤ γ (1−α)(n+1)−k + P( sup
t∈[0,ψT ]

N−
n (w̃·, c′, t) ≥ (n+ 1)α)

≤ γ (1−α)(n+1)−k + P( sup
t∈[0,MT ]

N−
n (w̃·, c′, t) ≥ (n+ 1)α)

≤ γ (1−α)(n+1)−k + (MT + 1)r1−αβn,

where r = r(α, c′) and β = β(α, c′). One can take α and c so that β < 1 (see
Remark 2.6). Furthermore, for any choice of these parameters and d, we have
γ < 1. By recalling what n is, we conclude

E sup
t∈[0,T ]

v(t, x) ≤ N(MT + 1)x2ν,

where N and ν > 0 depend only on ε.
Next, τ(t, x, x·, y·) is obviously an increasing function of x if x + x0 ≥ yt and

a decreasing function of x if x+x0 ≤ yt . It follows, that u(y·, t, x) is an increasing
function of x ∈ (yt , yt + 1) and v(t, x) is an increasing function of x ∈ (0, 1).
Hence,

E sup
x∈(0,1)

sup
t∈[0,T ]

v(t, x)

xν
≤

∞∑

r=0

E sup
t∈[0,T ]

sup
2−r≥x≥2−r−1

v(t, x)

xν

≤ N

∞∑

r=0

2ν(r+1)E sup
t∈[0,1]

v(t, 2−r ) ≤ N(MT + 1)
∞∑

r=0

2ν(r+1)2−2rν

and the theorem is proved. ��
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Remark 4.2. The largest value of ν in (4.3) is not known. However, Theorem 5.1
and Lemma 4.1 of [4] show that if we take a µ > 0 and

ν = (1 + µ)(2πε)−1/2e−1/(2ε),

then for ε small enough the left-hand side of (4.3) equals infinity with probability
one. Therefore, the largest value of ν is extremely small if ε is small.

Remark 4.3. Since 0 ≤ v ≤ 1, for any p ≥ 1 we have

E sup
x∈(0,1)

sup
t∈[0,T ]

[v(t, x)
xµ

]p
< ∞, (4.7)

with µ = ν/p, where ν is taken from (4.4). Most likely, if we fix µ > 0 and take
sufficiently large p, the inequality (4.7) turns wrong even for constant a > 0 and
σ > 0.
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