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Abstract. The basic object we consider is a certain model of continuum random tree, called
the stable tree. We construct a fragmentation process (F−(t), t ≥ 0) out of this tree by
removing the vertices located under height t . Thanks to a self-similarity property of the
stable tree, we show that the fragmentation process is also self-similar. The semigroup and
other features of the fragmentation are given explicitly. Asymptotic results are given, as well
as a couple of related results on continuous-state branching processes.

1. Introduction

The recent advances in the study of coalescence and fragmentation processes
pointed at the key role played by tree structures in this topic, both at the discrete
and continuous level [15, 3, 4]. Our goal here is to push further the investiga-
tion, begun in [3, 9], of a category of fragmentations obtained by cutting a certain
continuum random tree. The tree that was fragmented in the latter articles is the
Brownian Continuum Random Tree of Aldous, and the fragmentation is related
to the so-called standard additive coalescent. The family of trees we consider is
a natural but technically involved “Lévy generalization” of the Brownian tree. It
has been introduced in Duquesne and Le Gall [14], and implicitly considered in
the previous work of Kersting [18]. Some of these trees, which we call the stable
trees, enjoy certain self-similar properties as their Brownian companion. In the
present work the crucial property is that when removing the vertices of the stable
tree located under a fixed height (or distance to the root), the remaining object is a
forest of smaller trees that have the same law as the original one up to rescaling.
This is formalized in Lemma 3 below. This way of logging the stable tree induces
a fragmentation process which by the property explained above turns out to be a
self-similar fragmentation, the theory of such processes being extensively studied
by Bertoin [8–10]. The goal of this paper is to describe the characteristics and
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give some properties of this fragmentation process. We will have to use stochastic
processes and combinatorial approaches in the same time; in particular, we will
encounter σ -finite generalizations of the (α, θ)-partitions of [26], which are dis-
tributions on the set of partitions of N = {1, 2, . . . }, as well as we will need the
construction of the stable tree out of stable Lévy processes and its connection to
continuous-state branching processes (CSBP) explained in [14].

In a companion paper [23] we will consider another way of obtaining a self-sim-
ilar fragmentation by another cutting device on the stable tree, using the heuristic
fact that when cutting at random one node (or “hub”) in the the stable tree, the trunk
and branches that have been separated are scaled versions of the initial tree. Surpris-
ingly, although this other device looks quite different from the first (no mass is lost
when cutting hubs, whereas there is a loss of mass when we throw everything that
is located under the height h), it turns out that the only difference between these
two fragmentations is the speed at which fragments decay, hence generalizing a
“duality” relation stressed by Bertoin in [9] between two different fragmentations
of the Brownian tree (one of these fragmentations being a direct analog of the
fragmentation F− considered here).

To state our main results, let us introduce quickly the already mentioned tree
structures and fragmentation processes, postponing the details to a further section.

Let S = {s = (s1, s2, . . . ) : s1 ≥ s2 ≥ . . . ≥ 0,
∑
i≥1 si ≤ 1}, endowed

with the topology of pointwise convergence. A ranked self-similar fragmentation
process (F (t), t ≥ 0) with index β ∈ R is a S-valued Markov process that is con-
tinuous in probability, such that F(0) = (1, 0, 0, . . . ) and such that conditionally
on F(t) = (x1, x2, . . . ), F(t + t ′) has the law of the decreasing arrangement of the
sequences xiF (i)(x

β
i t

′), where the F (i) are independent with the same law as F .
That is, after time t , the different fragments evolve independently with a speed that
depends on their size. It has been shown in [9] that such fragmentations are charac-
terized by a 3-tuple (β, c, ν), whereβ is the index, c ≥ 0 is an “erosion” real constant
saying that the fragments may melt continuously at some rate depending on c, and
ν is a σ -finite measure on S that attributes mass 0 to (1, 0, . . . ) and that integrates
s �→ (1 − s1). This measure governs the sudden dislocations in the fragmenta-
tion process, and the integrability assumption ensures that these dislocations do not
occur too quickly, although the fragmentation epochs may form a dense subset of R+
as soon as ν(S) = +∞. When β < 0, a positive fraction of the mass can disappear
within a finite time, even though there is no loss of mass due to erosion nor to sudden
dislocations. This phenomenon will be crucial in the fragmentation F− below.

The trees we are considering are continuum random trees. Intuitively, they are
metric spaces with an “infinitely ramified” tree structure, which can be considered
as genealogical structures combined with two measures: a σ -finite length measure
supported by the “skeleton” of the tree and a finite mass measure supported by its
leaves, which are everywhere dense in the tree. These trees can be defined in several
equivalent ways:

– as a weak limit of Galton-Watson trees
– through its height process H , which is a positive continuous process on [0, 1].

To a point u ∈ [0, 1] corresponds a vertex of the tree with height (distance to the
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root) equal toHu, and the mass measure on the tree is represented by Lebesgue’s
measure on [0, 1]

– through its explicit “marginals”, that is, the laws of subtrees spanned by a random
sample of leaves.

We will have to use the second (stochastic process) and third (combinatorial) points
of view. We know from the works of Duquesne and Le Gall [14] and Duquesne [13]
that one may define a particular instance of tree, called the stable tree with index α
(for some α ∈ (1, 2]). When α = 2, the stable tree is equal to the Brownian CRT of
Aldous [2], in which case the height process is a Brownian excursion conditioned
to have duration 1. We will recall the rigorous construction of the height process
of the stable tree in Sect. 2.2, but let us state our results now. Fix α ∈ (1, 2) and let
(Hs, 0 ≤ s ≤ 1) be the height process of the stable tree with index α.

The fragmentation process, that we call F−, is defined as follows. For each
t ≥ 0, let I−(t) be the open subset of (0, 1) defined by

I−(t) = {s ∈ (0, 1) : Hs > t}.

With our intuitive interpretation of the height process, I−(t) is the set of vertices of
the tree with height> t . We denote byF−(t) the decreasing sequence of the lengths
of the connected components of I−(t). Hence, F−(t) is the sequence of the masses
of the tree components obtained by cutting the stable tree below height t . The
boundedness of H implies that F−(t) = (0, 0, . . . ) as soon as t ≥ max0≤s≤1Hs .
As mentioned above, F− is a direct generalization of the fragmentation F in [9,
Section 4]. However, the nature of F− strongly differs from that of F , because
the latter is binary (a fragment breaks into exactly two fragments when a sudden
dislocation occurs, which one expresses by ν{s : s1 + s2 < 1} = 0 where ν is
the dislocation measure of F ), while F− is infinitary (the dislocation measure ν−
satisfies ν−{s : sN = 0} = 0 for everyN ≥ 1). This difference is due to the fact that
the Brownian tree is itself binary, a property one can deduce from the well-known
fact that local infima of the Brownian motion are pairwise distinct. By contrast, as
explained below, the local infima of the height process of (non-Brownian) stable
trees are attained at an infinite number of locations, so the stable trees are infinitary
(see the construction of the tree out of its height process in Sect. 2.2).

Proposition 1. The process F− is a ranked self-similar fragmentation with index
1/α − 1 ∈ (−1/2, 0) and erosion coefficient 0.

Notice that, as mentioned before, F− loses some mass, and eventually disap-
pears completely in finite time even though the erosion is 0. This is due, of course,
to the fact that the self-similarity index is negative.

Our main result is a description of the dislocation measure ν−(ds) of F−.
Let us introduce some notation. For α ∈ (1, 2), let (Tx, x ≥ 0) be a stable sub-
ordinator with Laplace exponent λ1/α , that is, (Tx, x ≥ 0) has the same law as
(
∑
yi≤x ri, x ≥ 0), where (yi, ri , i ≥ 1) are the atoms of a Poisson point measure

on R+ × (0,∞) with intensity cαdydr/r1+1/α , where cα = (α�(1 − 1/α))−1. We
denote by�Tx = Tx − Tx− the jump at level x and by�T[0,x] the sequence of the
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jumps of T before time x, and ranked in decreasing order. Define the measure να
on S by

να(ds) = E

[

T1 ; �T[0,1]

T1
∈ ds

]

(1)

where the last expression means that for any positive measurable function G, the
quantity να(G) is equal to E[T1G(T

−1
1 �T[0,1])].

Theorem 1. The dislocation measure of F− is ν− = Dανα , where

Dα = α(α − 1)�
(
1 − 1

α

)

�(2 − α)
= α2�

(
2 − 1

α

)

�(2 − α)
.

Some comments about this. First, the dislocation measure charges only the
sequences s for which

∑
i≥1 si = 1, that is, no mass can be lost within a sudden

dislocation. Second, we recognize an expression close to [27], of a Poisson-Dirichlet
type distribution. Recall from [29, 27] that the (β, θ) Poisson-Dirichlet distribution
is the law on S given by

PD(β, θ)(ds) = �(θ + 1)

�(θ/β + 1)
E

[

(T
β
1 )

−θ ; �T
β

[0,1]

T
β

1

∈ ds

]

, (2)

where T β is a β-stable subordinator with Laplace exponent λβ , and the defini-
tion makes sense if β ∈ (0, 1) and θ > −β. With this notation, να(ds) looks like
a “renormalized Poisson-Dirichlet (1/α,−1) distribution”. However, it has to be
noticed that this corresponds to a forbidden parametrization θ = −1, and indeed,
the measure that we obtain is infinite since E[T1] = ∞. This measure integrates
s �→ 1 − s1 though, just as it has to. Indeed, E[T1 −�1] is finite if�1 denotes the
largest jump of T before time 1. To see this, notice that �1 ≥ �∗

1 where �∗
1 is a

size-biased pick from the jumps of T before time 1, and it follows from Lemma 1
in Sect. 2.1 below and scaling arguments that T1 −�∗

1 has finite expectation.
The rest of the paper is organized as follows. In Sect. 2 we first recall some facts

about Lévy processes, excursions, and conditioned subordinators. Then we give the
rigorous description of the stable tree, and state some properties of the height pro-
cess that we will need. Last we recall some facts about self-similar fragmentations.
We then obtain the characteristics of F− in Sect. 3 and derive its semigroup. We
insist on the fact that knowing explicitly the semigroup of a fragmentation process
is in general a very complicated problem, see [24] for somehow surprising negative
results in this vein. However, most of the fragmentation processes that have been
extensively studied in recent years [3, 7, 22, 9] do have known, and sometimes
strange-looking semigroups involving conditioned Poisson clouds. And as a matter
of fact, the fragmentation F+ considered in the companion paper [23] has also an
explicit semigroup. We end the study of F− by giving asymptotic results for small
times in Sect. 4. These results need some properties of conditioned continuous-
state branching processes, which are in the vein of Jeulin’s results for the rescaled
Brownian excursion and its local times. We prove these properties in Sect. 5, where
we give the rigorous definition of some processes that are used heuristically in Sect.
3 to conjecture the form of the dislocation measure.
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2. Preliminaries

2.1. Stable processes, excursions, conditioned inverse subordinator

Throughout the paper, we let (Xs, s ≥ 0) be the canonical process in the Sko-
rokhod space D([0,∞)) of càdlàg paths on [0,∞). Recall that a Lévy process is
a real-valued càdlàg process with independent and stationary increments. We fix
α ∈ (1, 2). Let P be the law that makes X a stable Lévy process with no negative
jumps and Laplace exponent E[exp(−λXs)] = exp(λα) for s, λ ≥ 0, where E is
the expectation associated withP . Such a process has infinite variation and satisfies
E[X1] = 0. When there is no ambiguity, we may sometimes speak of X as being
itself the Lévy process with law P . Writing this in the form of the Lévy-Khintchine
formula, we have :

E[exp(−λXs)] = exp

(

s

∫ ∞

0

Cαdx

x1+α (e
−λx − 1 + λx)

)

, s, λ ≥ 0, (3)

where Cα = α(α − 1)/�(2 − α). That is, the Lévy measure of X under P is
Cαx

−1−αdx1{x>0}. An important property of X is then the scaling property: under
P , (

1

λ1/α Xλs, s ≥ 0

)
d= (Xs, s ≥ 0) for all λ > 0.

It is known [31] that under P , Xs has a density (ps(x), x ∈ R) for every s > 0,
such that ps(x) is jointly continuous in x and s.

Excursions Let X be the infimum process of X, defined for s ≥ 0 by

Xs = inf{Xu, 0 ≤ u ≤ s}.
By Itô’s excursion theory for Markov processes, the excursions away from 0 of the
process X − X under P are distributed according to a Poisson point process that
can be described by the Itô excursion measure, which we call N . We now either
consider the process X under the law P that makes it a Lévy process starting at
0, or under the σ -finite measure N under which the sample paths are excursions
with finite lifetime ζ (since E[X1] = 0). Let N(v) be a regular version of the prob-
ability law N(·|ζ = v), which is weakly continuous in v. That is, for any positive
continuous functional G,

N(G) =
∫

(0,∞)

N(ζ ∈ dv)N(v)(G)

and limN(w)(G) = N(v)(G) asw → v. Such a version can be obtained by scaling:
for any fixed η > 0, the process

(
(v/ζ )1/αXζs/v, 0 ≤ s ≤ v

)
under N(·|ζ > η) = N(·, ζ > η)

N(ζ > η)

is N(v). See [12] for this and other interesting ways to obtain processes with law
N(v) by path transformations. In particular, one has the scaling property at the level
of conditioned excursions: under N(v),

(
v−1/αXvs, 0 ≤ s ≤ 1

)
has law N(1).



428 G. Miermont

First-passage subordinator Let T be the right-continuous inverse of the increas-
ing process −X, that is,

Tx = inf{s ≥ 0 : Xs < −x}.
Then it is known that under P , T is a subordinator, that is, an increasing Lévy
process. According to [6, Theorem VII.1.1], its Laplace exponent φ is the inverse
function of the restriction of the Laplace exponent of X to R+. Thus φ(λ) = λ1/α ,
and T is a stable subordinator with index 1/α, as defined above. The Lévy-Khint-
chine formula gives, for λ, x ≥ 0,

E[exp(−λTx)] = exp(−xλ1/α) = exp

(

−x
∫ ∞

0

cαdy

y1+1/α (1 − e−λy)
)

.

where cα has been defined in the introduction. Recall thatX has a marginal density
ps(·) at time s under P . Then under P , the inverse subordinator T has also jointly
continuous densities, given by (see e.g. [6, Corollary VII.1.3])

qx(s) = P(Tx ∈ ds)

ds
= x

s
ps(x). (4)

This equation can be derived from the ballot theorem of Takács [32].
Let us now discuss the conditioned forms of distributions of the sequence

�T[0,x] given Tx . An easy way to obtain nice regular versions for these condi-
tional laws is developed in [25, 27], and uses the notion of size-biased fragment.
Precisely, the range of any subordinator, with drift 0 say (which we will assume in
the sequel), between times 0 and x, induces a partition of [0, Tx] into subintervals
with sum Tx . Consider a sequence (Ui, i ≥ 1) of independent uniform (0, 1) vari-
ables, independent of T , and let �∗

1(x),�
∗
2(x), . . . be the sequence of the lengths

of these intervals in the order in which they are discovered by the Ui’s. That is,
�∗

1(x) is the length of the interval in which TxU1 falls, �∗
2(x) is the length of the

first interval different from the one containing TxU1 in which TxUi falls, and so on.
Then Palm measure results for Poisson clouds give the following result (specialized
to the case of stable subordinators).

Lemma 1. The joint law under P of (�∗
1(x), Tx) is

P(�∗
1(x) ∈ dy, Tx ∈ ds) = cαxqx(s − y)

sy1/α dyds, (5)

and more generally for j ≥ 1,

P
(
�∗
j (x) ∈ dy

∣
∣Tx = s0,�

∗
k(x) = sk, 1 ≤ k ≤ j − 1

)
= cαxqx(s − y)

sy1/αqx(s)
dy,

where s = s0 − s1 − . . .− sj−1.

This gives a nice regular conditional version for (�∗
i (x), i ≥ 1) given Tx , and

thus induces a conditional version for�T[0,x] given Tx , by ranking, where�T[0,x]
is the sequence of jumps of T before x, ranked in decreasing order of magnitude.
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2.2. The stable tree

We now introduce the models of trees we will consider. This section is mainly
inspired by [14, 13]. With the notations of Sect. 2.1, for u ≥ 0, let R(u) be the
time-reversed process of X at time u:

R(u)s = Xu −X(u−s)− , 0 ≤ s ≤ u.

It is standard that this process has the same law as X killed at time u under P . Let
also

R
(u)

s = sup
0≤v≤s

R(u)v , 0 ≤ s ≤ u

be its supremum process. We let Hu be the local time at 0 of the process R(u)

reflected under its supremum R
(u)

up to time u. The normalization can be chosen
so that we have the limit in probability

Hu = lim
ε↓0

1

ε

∫ u

0
1{R(u)s −R(u)s ≤ε}ds.

It is known by [14, Theorem 1.4.3] thatH admits a continuous version, with which
we shall work in the sequel. It has to be noticed thatH is not a Markov process (the
only exception in the theory of Lévy trees is the Brownian tree obtained when P is
the law of Brownian motion with drift, which has been excluded in our discussion).
As a matter of fact, it can be checked that under P ,H admits local minima that are
attained an infinite number of times, a property that strongly contrasts with Brown-
ian motion or Lévy processes with infinite variation. To see this, consider a jump
time t of X, and let t1, t2 > t so that inf t≤u≤ti Xu = Xti and Xt− < Xti < Xt ,
i ∈ {1, 2}. Then it is easy to see that Ht = Ht1 = Ht2 and that one may in fact find
an infinite number of distinct ti’s satisfying the properties of t1, t2. On the other
hand, it is not difficult to see that Ht is a local minimum of H . One can in fact
deduce from the fact that F− is infinitary that every local minimum is attained an
infinite number of times, as mentioned in the introduction.

It is shown in [14] that the definition of H still makes sense under the σ -finite
measure N rather than the probability law P . The process H is then defined only
on [0, ζ ], and we call it the excursion of the height process. One can define without
difficulty, using the scaling property, the height process under the laws N(v): this
is simply the law of

(
(v/ζ )1−1/αHζt/v, 0 ≤ t ≤ v

)
under N(·|ζ > η).

Call it the law of the excursion of the height process with duration v. The following
scaling property is the key for the self-similarity of F−: for every x > 0,

(v1/α−1Hsv, 0 ≤ s ≤ 1) under N(v) d= (Hs, 0 ≤ s ≤ 1) under N(1). (6)

This property is inherited from the scaling property of X, and it is easily obtained
e.g. by the above definition of H as an approximation.
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An important tool for studying the height process is its local time process, or
width process, which we will denote by (Lts, t ≥ 0, s ≥ 0). It can be obtained for
every fixed s, t by the limit in probability

Lts = lim
ε↓0

1

ε

∫ s

0
1{t<Hu≤t+ε}du.

Lts is then the density of the occupation measure of H at level t and time s. For
t = 0, one has that (L0

s , s ≥ 0) is the inverse of the subordinator T , which is a
reminiscent of the fact that the excursions of the height process are in one-to-one
correspondence with excursions ofX with the same lengths. According to the Ray-
Knight theorem [14, Theorem 1.4.1], for every x > 0, the process (LtTx , t ≥ 0)
is a continuous-time branching process with branching mechanism λα , in short
α-CSBP. We will recall basic and less basic features about this processes in Sect.
5, where in particular an interpretation for the law of the process (Lt1, t ≥ 0) under
N(1) will be given. For now we just note that for every x the process (LtTx , t ≥ 0) is
a process with no negative jumps, and a jump of this process at time t corresponds
precisely to one of the infinitely often attained local infima of the height process.
With the forthcoming interpretation of the tree encoded within excursions of the
height process, this means that there is a branchpoint with infinite degree at level
t . It is again possible to define the local time process under the excursion measure
N , and by scaling it is also possible to define the local time process under N(v).

Let us now motivate the term of “height process” for H . Under the σ -finite
“law” N , we define a tree structure following [2, 21].

First we introduce some extra vocabulary. Let T be the set of finite rooted plane
trees, that is, for any T ∈ T, each set of children of a vertex v ∈ T is ordered
as first, second, ..., last child. Let T∗ ⊂ T be those rooted plane trees for which
the out-degree (number of children) of vertices is never 1. Let Tn and T∗

n be the
corresponding sets of trees that have exactly n leaves (vertices with out-degree 0).
A marked tree ϑ is a pair (T , {hv, v ∈ T }) where T ∈ T and hv ≥ 0 for every
vertex v of T (which we denote by v ∈ T ). The tree T is called the skeleton of
ϑ , and the hv’s are the marks. These marks induce a distance on the tree, given by
dϑ(v, v

′) =∑w∈[[v,v′]] hw if v, v′ ∈ T are two vertices of the marked tree, where
[[v, v′]] is the set of vertices of the path from v to v′ in the skeleton. The distance
of a vertex to the root will be called its height. Let T

∗
n be the set of marked trees

with n leaves and no out-degree equal to 1.
Let (Ui, i ≥ 1) be independent random variables with uniform law on (0, 1)

and independent of the excursionH of the height process. One may define a random
marked tree ϑ(U1, . . . , Uk) = ϑk ∈ T

∗
k , as follows. For u, v ∈ [0, ζ ] letm(u, v) =

infs∈[u,v]Hs . Roughly, the key fact about ϑk is that the height of the i-th leaf to
the root is HU(i) , where (U(i), 1 ≤ i ≤ k) are the order statistics of (Ui, 1 ≤
i ≤ k), and the ancestor of the i-th and j -th leaves has height m(ζU(i), ζU(j))
for every i, j . This allows to build recursively a tree by first putting the mark
hroot = inf1≤i≤j≤k m(Ui, Uj ) on a root vertex. Let croot be the number of excur-
sions of H above level hroot in which at least one ζUi falls. Attach croot vertices to
the root, and let the i-th of these vertices be the root of the tree embedded in the
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i-th of these excursions above level hroot. Go on until the excursions separate the
variables Ui . By construction ϑk ∈ T

∗
k . Adding a (k + 1)-th variable Uk+1 to the

first k just adds a new branch to the tree in a consistent way as k varies.
As noted above, we may as well define the trees (ϑk, k ≥ 0) under the lawN(1)

by means of scaling.

Definition 1. The family of marked trees (ϑk, k ≥ 1) associated with the height
process under the law N(1) is called the stable tree.

Remark 1. The previous definition is not the only way to characterize the same
object. Alternatively, one easily sees that the marked tree ϑk can be interpreted as
a subset of l1, each new branch going in a direction orthogonal to the preceding
branches, in a consistent way as k varies. Then it makes sense to take the metric
completion of ∪k≥1ϑk , which we could also call the stable tree, and one can check
that the branchpoints of this tree all have infinite degree because the local minima
of H are attained an infinite number of times. This object is also isometric to the
space obtained by taking the quotient of [0, 1] endowed with the pseudo-metric

d(u, v) = Hu +Hv − 2m(u, v), u, v ∈ [0, 1],

with respect to the equivalence relation u ≡ v ⇐⇒ d(u, v) = 0. With this way
of looking at things, the leaves of the tree are uncountable and everywhere dense
in the tree, and the empirical distribution on the leaves of ϑk converges weakly to
a probability measure on the stable tree, called the mass measure. Then it turns out
that ϑk is equal in law to the subtree of the stable tree that is spanned by the root and
k independent leaves distributed according to the mass measure. Hence, the mass
measure is represented by Lebesgue measure on [0, 1] in the coding of the stable
tree through its height process. This is coherent with the definition of F−(t) as the
“masses of the tree components located above height t”. The equivalence between
these possible definitions is discussed in [2].

The key property for obtaining the dislocation measure of F− is the following
description of the law of the skeleton of ϑn, and the mark of the root of ϑ1. For
T ∈ T let NT be the set of non-leaf vertices of T and for v ∈ NT let cv(T ) be the
number of children of v. From the more complete description of the marked trees
in [14, Theorem 3.3.3], we recall that

Proposition 2. The probability that the skeleton of ϑn is T ∈ T∗
k is

n!

(α − 1)(2α − 1) . . . ((n− 1)α − 1)

∏

v∈NT

|(α − 1)(α − 2) . . . (α − cv(T )+ 1)|
cv(T )!

.

Moreover, the law of the mark of the root in ϑ1 is

N(1)(HU1 ∈ dh) = α�

(

1 − 1

α

)

χαh(1)dh,

where (χx(s), s ≥ 0) is the density of the stable 1−1/α subordinator (with Laplace
exponent equal to λ1−1/α) at time x.
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2.3. Some results on self-similar fragmentations

In this section we are going to recall some basic facts about the theory of self-similar
fragmentations, and also introduce some useful ways to recover the characteristics
of these fragmentations. We will suppose that the fragmentations we consider are
not trivial, that is, they are not equal to their initial state for every time. It will be
useful to consider not only S-valued (or ranked) fragmentations, but also fragmen-
tations with values in the set of open subsets of (0, 1) and in the set of partitions of
N = {1, 2, . . . }, respectively called interval and partition-valued fragmentations.
As established in [9, 5], there is a one-to-one mapping between the laws of the three
kinds of fragmentation when they satisfy a self-similarity property that is similar
to that of the ranked fragmentations. That is, each of them is characterized by the
same 3-tuple (β, c, ν) introduced above. To be completely accurate, we should
stress that there actually exist several versions of interval partitions that give the
same ranked or partition-valued fragmentation, but all these versions have the same
characteristics (β, c, ν). Let us make the terms precise.

Let P be the set of unordered partitions of N. An exchangeable partition �
is a P-valued random variable whose restriction �n to [n] = {1, . . . , n} has an
invariant law under the action of the permutations of [n], for every n. By Kingman’s
representation theorem [19, 1], the blocks of exchangeable partitions of N admit
almost-sure asymptotic frequencies, that is, if � = {B1, B2, . . . } where the Bi’s
are listed by order of their least element, then

�(Bi) = lim
n→∞

Card (Bi ∩ [n])

n

exists a.s. for every i ≥ 0. Denoting by�(�) the ranked sequence of these asymp-
totic frequencies,�(�) is then aS-valued random variable, whose law characterizes
that of �.

A self-similar partition-valued fragmentation (�(t), t ≥ 0) with index β is a
P-valued càdlàg process that is continuous in probability, exchangeable, meaning
that for every permutation σ of N, (σ�(t), t ≥ 0) and (�(t), t ≥ 0) have the same
law, and such that given �(t) = {B1, B2, . . . }, the variable �(t + t ′) has the law
of the partition with blocks �(i)(�(Bi)β t ′) ◦ Bi where the �(i) are independent
copies of�. Here, the operation ◦ is the natural “fragmentation” operation of a set
by a partition: if � = {B1, B2, . . . } and C ⊂ N, then � ◦ C is the partition of C
with blocks Bi ∩ C.

A self-similar interval partition (I (t), t ≥ 0) with index β is a process with
values in the open subsets O of (0, 1) which is right-continuous and continuous
in probability for the usual Hausdorff distance between the complementary sets
[0, 1]\O, with the property that given I (t) = ∪i≥1Ii say, where the Ii are the disjoint
connected components of I (t), the set I (t+ t ′) has the law of ∪i≥1gi(I

(i)(t ′|Ii |β)),
where |Ii | is the length of Ii , gi is the affine transformation that maps (0, 1) to Ii
and conserves orientation and the I (i) are independent copies of I .

Consider an interval self-similar fragmentation (I (t), t ≥ 0), with characteris-
tics (β, 0, ν) (the case when c > 0 would be similar, but we do not need it in the
sequel). Let Ui, i ≥ 1 be independent uniform random variables on (0, 1). These
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induce a partition-valued fragmentation (�(t), t ≥ 0) by letting i
�(t)∼ j iff Ui and

Uj are in the same connected component of I (t). It is known [9] that � is a self-
similar fragmentation with values in the set of partitions of N and characteristics
(β, 0, ν). For n ≥ 2 let P∗

n be the set of partitions of N whose restriction to [n] is
non-trivial, i.e. different from {[n]}. Then there is some random time tn > 0 such
that the restriction of�(t) to [n] jumps from the trivial state {[n]} to some non-triv-
ial state at time tn. Let ρ(n) be the law of the restriction of �(tn) to [n]. The next
lemma states that the knowledge of the family (ρ(n), n ≥ 2) almost determines
the dislocation measure ν of the fragmentation. Precisely, we introduce from [8]
the notion of characteristic measure of the fragmentation. This measure, denoted
by κ , is a σ -finite measure supported by the non-trivial partitions of N, which is
determined by the dislocation measure of the fragmentation. This measure may be
written as

κ(dπ) =
∫

S

ν(ds)κs(dπ),

where κs is the law of the exchangeable partition of N with ranked asymptotic fre-
quencies given by s. Conversely, this measure characterizes the dislocation measure
ν (simply by taking the asymptotic frequencies of the generic partition under κ).

Lemma 2. The restriction of κ to the non-trivial partitions of [n], for n ≥ 2, equals
q(n)ρ(n), for some sequence (q(n), n ≥ 2) of strictly positive numbers. As a con-
sequence, the dislocation measure of the fragmentation I is characterized by the
sequence of laws (ρ(n), n ≥ 2), up to a multiplicative constant.

Otherwise said, and using the correspondence between self-similar fragmenta-
tions with same dislocation measure and different indices established by Bertoin
[9] by introducing the appropriate time-changes, if we have two interval-valued
self-similar fragmentations I and I ′ with the same index and no erosion, and with
the same associated probabilities ρ(n) and ρ′(n), n ≥ 1, then there exists K > 0
such that (I (Kt), t ≥ 0) has the same dislocation measure as I ′.

Proof. Suppose β = 0, then the result is almost immediate by the results of [8]
on homogeneous fragmentation processes. In this case q(n) is the inverse of the
expected jump time of� in P∗

n , and the restriction of the measure q(n+1)ρ(n+1) to
the set of non-trivial partitions of [n] is q(n)ρ(n), for every n ≥ 1. Hence, it is easy
to see that the knowledge on ρ(n) determines uniquely the sequence (q(n), n ≥ 1),
up to a multiplicative positive constant: one simply has q(n)/q(n + 1) = ρ(n +
1)(π |[n] : π ∈ P∗

n), where π |[n] denotes the restriction of π to [n]. It remains to
notice that the sequence of restrictions (q(n)ρ(n), n ≥ 2) characterizes κ .

When β �= 0, we obtain the same results by noticing that the law ρ(n) still
equals the law of the restriction to [n] of the exchangeable partition with limiting
frequencies having the “law” ν and restricted to P∗

n , up to a multiplicative constant.
Indeed, let I ∗(t) be the subinterval of I (t) containing U1 at time t , and recall [9]
that if

a(t) = inf

{

u ≥ 0 :
∫ u

0
|I ∗(v)|βdv > t

}

,
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then (|I ∗(a(t))|, t ≥ 0) evolves as the fragment containing U1 in an interval frag-
mentation with characteristics (0, 0, ν). Now, before time tn, the fragment contain-
ingU1 is the same as that containing all the (Ui, 1 ≤ i ≤ n). Hence, a(tn) is the first
time when �′ jumps in P∗

n for some homogeneous partition-valued fragmentation
process �′ with characteristics (0, 0, ν), and the law of �′(a(tn)) restricted to [n]
is ρ(n). Hence the result. ��

We also cite the following result [24, Proposition 3] which allows to recover
the dislocation measure of a self-similar fragmentation with positive index out of
its semigroup. We will not use this proposition in a proof, but it is useful to keep it
in mind to conjecture the form of the dislocation measure of F−, as it will be done
below.

Proposition 3. Let (F (t), t ≥ 0) be a ranked self-similar fragmentation with char-
acteristics (β, 0, ν), β ≥ 0. Then for every continuous bounded function G on S
which is null on an open neighborhood of (1, 0, . . . ), one has

1

t
E[G(F(t))] →

t↓0
ν(G).

3. Study of F−

We now specifically turn to the study of F− defined in the introduction. Although
some of the results below may be easily generalized to a broader “Lévy context”, we
will suppose in this section thatX is a stable process with indexα ∈ (1, 2), with first-
passage subordinator T . The references to height processes, excursion measures
and so on, will always be with respect to this process, unless otherwise specified.
Also, for the needs of the proofs below, we define the process (F−(t), t ≥ 0) not
only under the law N(1) used to define the stable tree, but also for all the excursion
measuresN(v) andN . UnderN(v), let F−(t) be the decreasing sequence of lengths
of the constancy intervals of I−(t) = {s ∈ (0, v) : Hs > t} (v is replaced by ζ
underN ). To avoid confusions, we will always mention in Sect. 3.1 the measure we
are working with, but this formalism will be abandoned in the following sections
where no more use of N(v) is made with v �= 1.

The study contains four steps. First we prove the self-similarity property for
F− and make its semigroup explicit. Heuristic arguments based on generators of
conditioned CSBP’s allow us to conjecture the rough shape of the dislocation mea-
sure. Then we prove that the erosion coefficient is 0 by studying the evolution of a
tagged fragment. We then apply Lemma 2, giving us the dislocation measure up to
a constant, and we finally recover the constant by re-obtaining the results needed
in the second step by another computation.

3.1. Self-similarity and semigroup

The self-similarity and the description of the semigroup rely strongly on the fol-
lowing result, which is a variant of [14, Proposition 1.3.1]. For t, s ≥ 0 let

γ ts = inf

{

u ≥ 0 :
∫ u

0
1{Hv>t}dv > s

}
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and

γ̃ ts = inf{u ≥ 0 :
∫ u

0
1{Hv≤t}dv > s}.

Denote by Ht the sigma-field generated by the process (Hγ̃ ts , s ≥ 0) and the P -
negligible sets. Let also (H t

s , s ≥ 0) be the process (Hγ ts − t, s ≥ 0). Then under
P , Ht is independent of Ht , and its law is the same as that of H under P .

As a first consequence, we obtain that the excursions of H above level t , that
is, the excursions of Ht above level 0, are, conditionally on their durations, inde-
pendent excursions ofH . This simple result allows us to state the Markov property
and self-similarity of F−. In the following statement, it has to be understood that
we work under the probabilityN(1) and that the processH that is considered is the
same that is used to construct F−.

Lemma 3. Conditionally on F−(t) = (x1, x2, . . . ), the excursions of H above
level t , that is, ofHt away from 0, are independent excursions with respective laws
N(x1), N(x2), . . . .

As a consequence, the process F− is a self-similar fragmentation process with
index 1/α − 1.

Proof. By the previous considerations on Ht , we have that under P , given that
the lengths of interval components of the set {s ∈ [0, T1] : Hs > t} ranked in
decreasing order are equal to (x1, x2, . . . ), the excursions of the killed process
(H(t), 0 ≤ t ≤ T1) above level t are independent excursions of H with durations
x1, x2, . . . . The first part of the statement follows by considering the first excursion
of H (or of X) that has duration greater than some v > 0, which gives the result
under the measure N(·, ζ > v), hence for N , hence for N(v) for almost all v, and
then for v = 1 by continuity of the measures N(v).

Thus, conditionally on F−(t) = (x1, x2, . . . ), the process (F−(t + t ′), t ≥ 0)
has the same law as the random sequence obtained by taking independent excur-
sions H(x1), H (x2), . . . with durations x1, x2, . . . of the height process, and then
arranging in decreasing order the lengths of constancy intervals of the sets

{s ∈ [0, xi] : H(xi)
s > t ′}.

It thus follows from the scaling property (6) of the excursions of H that given
F−(t) = (x1, x2, . . . ), the process (F−(t + t ′), t ′ ≥ 0) has the same law as the
decreasing rearrangement of the processes (xiF

−
(i)(x

1/α−1
i t ′), t ′ ≥ 0), where the

F−
(i)’s are independent copies of F−. The fact that F− is a Markov process that

is continuous in probability easily follows, as does the self-similar fragmentation
property with the index 1/α − 1. ��

We now turn our attention to the semigroup of F−.

Proposition 4. For every t ≥ 0 one has

N(1)(F−(t) ∈ ds)

=
∫

R+×[0,1]
N(1)

(

Lt1 ∈ d�,
∫ ∞

t

db Lb1 ∈ dz

)

P
(
�T[0,�] ∈ ds |T� = z

)
, (7)
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with the convention that the law P(�T[0,0] ∈ ds|T0 = z) is the Dirac mass at the
sequence (z, 0, 0 . . . ) for every z ≥ 0.

Proof. It suffices to prove the result for some fixed t > 0. Let ω(t) = inf{s ≥ 0 :
Hs > t}, dω(t) = inf{s ≥ ω(t) : Xs = Xs} and gω(t) = sup{s ≤ ω(t) : Xs = Xs}.
Call F−(t) the ranked sequence of the lengths of the interval components of the
set {s ∈ [ω(t), dω(t)] : Hs > t}. Notice that under the law N(1), F− would be F−,
but we will first define F− under P . By the definition of H , ω(t) and dω(t) are
stopping times with respect to the natural filtration generated by X. In fact, it also
holds that ω(t) is a terminal time, that is,

ω(t) = s + inf{u ≥ 0 : Hs+u > t} on {ω(t) > s}.
Moreover, 0 < ω(t) < ∞ P -a.s., because of the continuity of H and the fact
that excursions of H have a positive probability to hit level t (which follows e.g.
by scaling). Recall the notations at the beginning of the section, and denote by
At and Ãt the right-continuous inverses of γ t and γ̃ t . Then the local time Ltdω(t)
is the local time at level 0 and time Atdω(t) of the process Ht . This is also equal

to the local time of (Hγ̃ ts , s ≥ 0) at level t and time Ãtdω(t) . This last time is Ht -
measurable, as it is the first time the process (Hγ̃ ts , s ≥ 0) hits back 0 after first
hitting t . Hence Ltdω(t) is Ht -measurable, hence independent of Ht . Let T t be

the inverse local time of Ht at level 0, which is σ(H t )-measurable, hence inde-
pendent of Ht , and has same law as T since Ht has same law as H under P .
Notice that F−(t) equals the sequence�T t

[0,Ltdω(t)
]
, and that the σ(H t )-measurable

random variable
∫∞
t

db Lbdω(t) = T t (Ltdω(t)
). Thus, conditionally on Ltdω(t) = � and

∫∞
t

db Lbdω(t) = z, F−(t) has law P(�T[0,�] ∈ ds|T� = z). Hence

P(F−(t) ∈ ds) =
∫

R+×R+
P

(

Ltdω(t) ∈ d� ,
∫ ∞

t

db Lbdω(t) ∈ dz

)

×P(�T[0,�] ∈ ds|T� = z),

and also, since dω(t) − gω(t) = ∫∞
0 db (Lbdω(t) − Lbgω(t) ) and since

∫ t
0 db (Lbdω(t) −

Lbgω(t) ) is independent of σ(H t ), the result also holds conditionally on dω(t)−gω(t),
namely

P(F−(t) ∈ ds|dω(t) − gω(t))

=
∫

R+×R+
P

(

Ltdω(t) ∈ d� ,
∫ ∞

t

db Lbdω(t) ∈ dz

∣
∣
∣
∣dω(t) − gω(t)

)

×P(�T[0,�] ∈ ds|T� = z).

Now notice that the excursion ofH straddling time ω(t) is the first excursion ofH
that attains level t , and apply [30, Proposition XII.3.5] to obtain that

P(F−(t) ∈ ds|dω(t) − gω(t) = v)

= N(v)(ζ > ω(t))−1N(v)(F−
1 (t) ∈ ds, v > ω(t)),
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and similarly

P

(

Ltdω(t) ∈ d� ,
∫ ∞

t

db Lbdω(t) ∈ dz

∣
∣
∣
∣dω(t) − gω(t) = v

)

= N(v)(ζ > ω(t))−1N(v)

(

Ltv ∈ d� ,
∫ ∞

t

db Lbv ∈ dz , v > ω(t)

)

,

for almost every v. Finally, notice that F−(t) = F−(t) underN and theN(v)’s and
that we may remove the indicator of v > ω(t) since a.s. under N(v), Ltv = 0 if and
only if maxH ≤ t , to obtain

N(v)(F−(t) ∈ ds)

=
∫

R+×R+
N(v)

(

Ltv ∈ d�,
∫ ∞

t

db Lbv ∈ dz

)

P(�T[0,�] ∈ ds|T� = z).

Using scaling allows to take v = 1, entailing the claim. ��
As a consequence of this result we may conjecture the shape of the dislocation

measure of F−. The next subsections will give essentially the rigorous proof of
this conjecture, but finding ν− directly from the forthcoming computations would
certainly have been tricky without any former intuition. Roughly, suppose that the
statement of Proposition 3 remains true for negative self-similarity indices (which
is probably true, but we will not need it anyway). Then takeG a bounded continuous
function that is null on a neighborhood of (1, 0, . . . ) and write

N(1)(G(F−(t))) =
∫

R+×[0,1]
N(1)

(

Lt1 ∈ dx,
∫ ∞

t

db Lb1 ∈ dz

)

×E[G(�T[0,x])|Tx = z].

Call J (x, z) the expectation in the integral on the right hand side. Dividing by t and
letting t ↓ 0 should yield the generator of the R

2+-valued process ((Lt1,
∫∞
t

dbLb1),
t ≥ 0), evaluated at the function J and at the starting point (0, 1). Now, we inter-
pret (see Sect. 5 for definitions) the process (Lt1, t ≥ 0) under N(1) as the α-CSBP
conditioned both to start at 0 and stay positive, and to have a total progeny equal
to 1. It is thus heuristically a Doob h-transform of the initial CSBP with harmonic
function h(x) = x, and conditioned to come back near 0 when its integral comes
near 1. Now as a consequence of Lamperti’s time-change between CSBP’s and
Lévy processes, the generator of the CSBP started at x is xL(x, dy) where L is the
generator of the stable Lévy process with index α:

Lf (x) =
∫ ∞

0

Cαdy

yα+1 (f (x + y)− f (x)− yf ′(x)),

where f stands for a generic function in the Schwartz space. This, together with
well-known properties for generators of h-transforms allows to conjecture that the
generator L′ of the CSBP conditioned to stay positive and started at 0 is given by

L′f (0) =
∫ ∞

0

Cαdy

yα
(f (y)− f (0)),



438 G. Miermont

for a certain class of nice functions f , so roughly, the conditioned CSBP jumps at
time 0+ to level y at rate Cαy−αdy. On the other hand, conditioning to come back
to 0 when the progeny reaches 1 should introduce the extra term qy(1) (recall its
definition (4)) in the integral with a certain coefficient, since the total progeny of a
CSBP started at y is equal in law to Ty , as a consequence of Ray-Knight’s theorem.
To be a bit more accurate, the CSBP starting at y and conditioned to stay positive
should be in [0, ε] when its integral equals 1 with probability close to g(ε)y−1qy(1)
for some positive g with g(ε) → 0 as ε ↓ 0. Indeed, by the conditioned form of
Lamperti’s theorem of [20] to be recalled in Sect. 5, this is the same as the proba-
bility that the Lévy process started at y and conditioned to stay positive is in [0, ε]
at time 1. With the notations of Sect. 5, this is

P ↑
y (X1 ≤ ε) =

∫ ε

0
xy−1Py(X1 ∈ dx, T0 > 1).

We may expect that the quantity Py(X1 ∈ dx, T0 > 1) can be expressed as
r(y, x)dx with r(y, x) ∼ g′(x)qy(1) as x ↓ 0 for some g′ vanishing at 0. Conse-
quently, we expect that under N(1), the process (Lt1, t ≥ 0) jumps at time 0+ to
level y > 0 at rate Cy−α−1qy(1)dy for some C > 0. This, thanks to Lemma 3,
allows to conjecture the form of the dislocation measure as

ν−(G) = C

∫ ∞

0

dy qy(1)

yα+1 E[G(�T[0,y])|Ty = 1]

for some C > 0, that can be shown to be equal to αDα with some extra care, but
we do not need it at this point. It is then easy to reduce this to the form of Theorem
1: by using the scaling identities and changing variables u = y−α , we have

∫ ∞

0

dy qy(1)

yα+1 E[G(�T[0,y])|Ty = 1]

=
∫ ∞

0

dy q1(y
−α)

y2α−1 E[G(yα�T[0,1])|yαT1 = 1]

=
∫ ∞

0
α−1du u q1(u)E[G(u−1�T[0,1])|T1 = u]

= α−1E[T1G(T
−1
1 �T[0,1])],

as wanted.
This very rough program of proof could probably be “upgraded” to a real rigor-

ous proof, but the technical difficulties on generators of processes would undoubt-
edly make it quite involved. We are going to use a path that uses more the structure
of the stable tree.

3.2. Erosion and first properties of the dislocation measure

From this section on, F− is exclusively defined underN(1), so that we may use the
nicer notations P(F−(t) ∈ ds) or E[G(F−(t))] instead of N(1)(F−(t) ∈ ds) or
N(1)(G(F−(t))) if there is no ambiguity.
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Lemma 4. The erosion coefficient c ofF− is 0, and the dislocation measure ν−(ds)
charges only {s ∈ S :

∑+∞
i=1 si = 1}.

Proof. We will follow the analysis of Bertoin [9], using the law of the time at
which a tagged fragment vanishes. Let U be uniform on (0, 1) and independent
of the height process of the stable tree. Recall the definition of F−(t) out of the
open set I−(t) and let λ(t) = |I ∗(t)| be the size of the interval I ∗−(t) of I−(t) that
contains U . As in Sect. 2.3, if we define

a(t) = inf

{

u ≥ 0 :
∫ u

0
λ(v)1/α−1dv > t

}

, t ≥ 0,

then (− log(λ(a(t))), t ≥ 0) is a subordinator with Laplace exponent

�(r) = − logE[λ(a(t))r ] = c(r + 1)+
∫

S

(

1 −
+∞∑

n=1

sr+1
n

)

ν−(ds). (8)

Moreover, if ξ = HU is the lifetime of the tagged fragment, then

E[ξk] = k!
∏k
i=1�

(
i
(
1 − 1

α

)) . (9)

For the computation, recall that the density (χx(s), s ≥ 0) introduced in Proposition
2 is characterized by its Laplace transform

∫ +∞

0
e−µsχx(s)ds = exp(−xµ1−1/α). (10)

We may now compute the moments of ξ . By Proposition 2,

E[ξk] =
∫ +∞

0
hkα�

(

1 − 1

α

)

χαh(1)dh = �
(
1 − 1

α

)

αk

∫ +∞

0
xkχx(1)dx.

To compute this we use (10) and Fubini’s theorem to get
∫ +∞

0
ds e−µs

∫ +∞

0
dx χx(s)x

k =
∫ +∞

0
xk exp(−xµ1−1/α)dx = k!

µ(k+1)(1−1/α)
,

and then the last term above is equal to

k!

�
(
(k + 1)

(
1 − 1

α

))

∫ +∞

0
du e−µuu(k+1)(1−1/α)−1.

Inverting Laplace transforms and taking u = 1 thus give
∫ +∞

0
xkχx(1)dx = k!

�
(
(k + 1)

(
1 − 1

α

)) ,

hence we finally get

E[ξk] = k!�
(
1 − 1

α

)

αk�
(
(k + 1)

(
1 − 1

α

)) .
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Using (9) we now obtain that

�

(

k

(

1 − 1

α

))

= α
�
(
(k + 1)

(
1 − 1

α

))

�
(
k
(
1 − 1

α

)) , k = 1, 2, . . .

Thus, for r of the form k(1 − 1/α),

�(r) = α
�
(
r + 1 − 1

α

)

�(r)
= r

�
(
1 + 1

α

)B

(

r + 1 − 1

α
,

1

α

)

. (11)

It is not difficult, using the integral representation of the function B, then changing
variables and integrating by parts, to write this in Lévy-Khintchine form, that is,
for every r ≥ 0,

r

�
(
1 + 1

α

)B

(

r + 1 − 1

α
,

1

α

)

=
∫ ∞

0
dx

(
1 − 1

α

)
ex

�
(
1 + 1

α

)
(ex − 1)2−1/α

(
1 − e−xr

)
,

(12)

and it follows that (11) remains true for every r ≥ 0, because λ(a(t))1−1/α is char-
acterized by its moments, hence generalizing Equation (12) in [9] in the Brownian
case. It also gives the formula

L(dx) =
(
1 − 1

α

)
exdx

�
(
1 + 1

α

)
(ex − 1)2−1/α

for the Lévy measure L(dx) of �, hence generalizing Equation (11) in [9].
To conclude, we just notice that �(0) = 0, which by (8) gives both c = 0 and∫

S
ν−(ds)(1 −∑∞

i=1 si) = 0, implying the result. ��

3.3. Dislocation measure

The dislocation measure of F− will now be obtained by explicitly computing the
law of the first fragmentation of the fragments marked by n independent uniform
variablesU1, . . . , Un on (0, 1), as explained in Sect. 2.3. This is going to be a purely
combinatorial computation based on the first formula of Proposition 2. What we
want to compute is the law of the partition of [n] induced by the partition I−(tn)
and the variables U1, . . . , Un at the time tn when they are first separated. We want
to evaluate the probability ρ−(n)({πn}) that the partition induced by I−(tn) and
the variables (U1, . . . , Un) equals some non-trivial partition πn of [n] with blocks
A1, . . . , Ak having sizes n1, . . . , nk with sum n (n, k ≥ 2). In terms of the sta-
ble tree described in Sect. 2.2, this is simply the probability that the skeleton of
the marked tree ϑn is such that the root has out-degree k, and the k trees that are
rooted at the children of the root have n1, n2, . . . , nk leaves, times n1! . . . nk!/n!,
which is the probability that labeling by i the leaf associated to the variable Ui ,
for 1 ≤ i ≤ n, induces the partition πn (where i and j are in the same block if
the leaves labeled i, j share the same child of the root as a common ancestor). Let
T∗
n1,... ,nk

be the set of trees of T∗
n that have this last property. For x ≥ 0 and n ≥ 0

we denote by [x]n the quantity
∏n−1
i=0 (x + i) = �(x + n)/�(x).
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Lemma 5. Let πn be a partition of [n] with k ≥ 2 blocks having sizes n1, n2, . . . ,

nk . Then

ρ−(n)({πn}) = Dα�(k − α)

αk�
(
n− 1

α

)

k∏

i=1

[

1 − 1

α

]

ni−1
.

Proof. Recall that we want to compute the probability that the skeleton of the
marked tree ϑn has a root with k children, and the fringe subtrees spanned by these
children are trees of T∗

ni
for 1 ≤ i ≤ k. The fact that the first displayed quantity in

Proposition 2 defines a probability on T∗
n implies

∑

T ∈T∗
n

∏

v∈NT

|(α − 1)(α − 2) . . . (α − cv(T )+ 1)|
cv(T )!

= (α − 1)(2α − 1) . . . ((n− 1)α − 1)

n!

= αn−1

n!

[

1 − 1

α

]

n−1
.

Now we compute, using Proposition 2,

ρ−(n)({πn})
=

∑

T ∈T∗
n1,... ,nk

n!n1! . . . nk!

αn−1
[
1 − 1

α

]
n−1 n!

∏

v∈NT

|(α − 1)(α − 2) . . . (α − cv(T )+ 1)|
cv(T )!

= n1! . . . nk!|(α − 1)(α − 2) . . . (α − k + 1)|
αn−1k!

[
1 − 1

α

]
n−1

×
∑

T ∈T∗
n1,... ,nk

∏

v∈NT \{root}

|(α − 1)(α − 2) . . . (α − cv(T )+ 1)|
cv(T )!

= (α − 1)�(k − α)�
(
1 − 1

α

)

k!αn−1�(2 − α)�
(
n− 1

α

)

×k!n1! . . . nk!
k∏

i=1

∑

T ∈T∗
ni

∏

v∈NT

|(α − 1)(α − 2) . . . (α − cv(T )+ 1)|
cv(T )!

,

where the last equality stems from the definition of T∗
n1,... ,nk

, and where the factor
k! appears because the k fringe subtrees spanned by the sons of the root may appear
in any order. By the first formula of the proof this now reduces to

ρ−(n)({πn}) = Dα�(k − α)
∏k
i=1 ni!

αn�
(
n− 1

α

)

k∏

i=1

αni−1

ni!

[

1 − 1

α

]

ni−1
,

giving the result. ��
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Comparing with Lemma 2 implies, since c = 0, that the dislocation measure
ν− of F− is thus determined up to a multiplicative constant. Since we have a con-
jectured formDανα for the dislocation measure ν− of F−, we just have to compute
the quantity κ−(π) for κ− the exchangeable measure on P with frequencies given
by the conjectured ν−. Precisely, we have

Lemma 6. Let πn be a partition of [n] with k ≥ 2 blocks and block sizes n1, . . . ,

nk . Then

κn−({πn}) := κ−({π ∈ P : π |[n] = πn}) = Dα�(k − α)

αk−1�(n− 1)

k∏

i=1

[

1 − 1

α

]

ni−1

Before proving this we state from (74) in section 6 of [27] (notice that the α
there is our 1/α):

Proposition 5. Let θ > −1/α and recall (2) the definition of the Poisson-Dirich-
let PD(1/α, θ) distribution. Let πn be a partition of [n] with non-void block sizes
n1, . . . , nk . Then the probability that the restriction to [n] of the exchangeable
partition of P with frequencies having law PD(1/α, θ)(ds) is πn is given by

pθ(n1, . . . , nk) = [αθ + 1]k−1

αk−1[θ + 1]n−1

k∏

i=1

[

1 − 1

α

]

ni−1

Proof of Lemma 6. The computation of the κn− associated with the conjectured dis-
location measure ν− can go through the same lines as the proof of Proposition 5
given in [27], using the explicit densities for size-biased picks among the jumps of
the subordinator T . However, we use the following more direct proof. For θ ≥ −1
write

νθ = DαE

[

T −θ
1 ; �T[0,1]

T1
∈ ds

]

,

so νθ = Dα(�(αθ + 1)/�(θ + 1))PD(1/α, θ) for θ > −1/α. Recall from the
above the notation κs(dπ) for the law of the exchangeable partition of N with
ranked asymptotic frequencies given by s. Define

κθ (dπ) =
∫

S

νθ (ds)κs(dπ) = DαE
[
T −θ

1 κ�T[0,1]/T1(dπ)
]
, (13)

and for πn a partition of [n] with block sizes n1, . . . , nk write κnθ ({πn}) = κθ ({π ∈
P : π |[n] = πn}). Notice that when n, k ≥ 2 and s ∈ S, we have κs({π ∈ P :
π |[n] = πn}) ≤ n(1 − s1) (this is easy by Kingman’s exchangeable partitions
representation theorem, see e.g. [8, p. 310]). Moreover, the fact that ν− integrates
s �→ 1 − s1 is easily generalized to νθ for θ > −1. We deduce that the map
θ �→ κnθ ({πn}) is analytic on {θ ∈ C : Re(θ) > −1}. The same holds for

Dα
�(αθ + 1)

�(θ + 1)
pθ (n1, . . . , nk) = Dα�(αθ + k)

αk−1�(θ + n)

k∏

i=1

[

1 − 1

α

]

ni−1
(14)
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provided k ≥ 2, and by Proposition 5 they are equal on θ ∈ (−1/α,∞). Thus they
are equal on {θ ∈ C : Re(θ) > −1}, so the limits as θ ∈ R ↓ −1 of κnθ ({πn})
and of (14) coincide. Using (13) and a dominated convergence argument we have
κnθ ({πn}) → κn−({πn}) as θ ↓ −1, so

κn−({πn}) = Dα�(k − α)

αk−1�(n− 1)

k∏

i=1

[

1 − 1

α

]

ni−1
,

as wanted. ��
Remark 2. By analogy with the EPPF (exchangeable partition probability function)
that allows to characterize the law of exchangeable partitions, expressions such as
in Lemma 6 could be called “exchangeable partition distribution functions”, as
they characterize σ -finite exchangeable measures on the set of partitions of N.
The expression in Lemma 6 should be interpreted as an EPDF for a generalized
(1/α, θ) partition (see [26]), for θ = −1. One certainly could imagine more general
exchangeable partitions as θ goes further in the negative axis: this would impose
more and more stringent constraints on the number of blocks of the partitions.

Therefore, we obtain that

κn− = α(�(n− 1/α)/�(n− 1))ρ−(n)

on the set of non-trivial partitions of [n]. Lemma 2 implies that the dislocation
measure of F− is equal to the conjectured ν− up to a multiplicative constant. We
are going to recover the missing information with the help of the computation of
� above.

3.4. The missing constant

In this section, we compute the Laplace exponent � of the subordinator
− log(λ(a(·))) of Sect. 3.2, whose value is indicated in (11), directly from for-
mulas (8) and (1). Let

�0(r) =
∫

S

(

1 −
∞∑

n=1

sr+1
n

)

ν−(ds),

where ν− is the measure given in Theorem 1. If we can prove that �0(r) = �(r)

for every r ≥ 0, we will therefore have established that the normalization of ν− is
the appropriate one. By (1),

�0(r) = DαE



T1



1 −
∑

0≤x≤1

(
�Tx

T1

)r+1








= Dα

∫ ∞

0
du u q1(u)E



1 −
∑

0≤x≤1

(
�Tx

u

)r+1 ∣∣
∣
∣T1 = u





= Dα

∫ ∞

0
du u q1(u)E

[

1 −
(
�∗

1

u

)r]
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where �∗
1 is a size-biased pick from the jumps of Tx , for 0 ≤ x ≤ 1, conditionally

on T1 = u. Using formula (5) and recalling that T has Lévy measure cαx−1−1/αdx,
we can write

�0(r) = Dα

∫ ∞

0
du u q1(u)

∫ u

0
dx(1 − (x/u)r)

cαq1(u− x)

ux1/αq1(u)

= Dα

∫ ∞

0
du
∫ 1

0
dy cαu

1−1/αq1(u(1 − y))
1 − yr

y1/α

= Dα

∫ 1

0
dy

cα(1 − yr)

y1/α(1 − y)2−1/α

∫ ∞

0
du u1−1/αq1(u)

as obtained by Fubini’s theorem, and linear changes of variables. The integral in
du equals E[T 1−1/α

1 ], which is �(2 − α)/�(1/α) (see e.g. (43) in [26]). Using the
expressions for Dα , cα and the identity α−1�(1/α) = �(1 + 1/α), it remains to
compute the quantity

1 − 1
α

�
(
1 + 1

α

)

∫ 1

0
dy
y−1/α(1 − yr)

(1 − y)2−1/α .

But this is exactly the expression (12) after changing variables y = e−x , and it is
thus equal to rB(r + 1 − 1/α, 1/α)/�(1 + 1/α), which is (11) as wanted, thus
completing the proof of Theorem 1.

4. Small-time asymptotics

In this section we study the asymptotic behavior of F− for small times. Precisely,
let M(t) = ∑

i≥1 F
−
i (t) denote the total mass of F− at time t . Let (Yx, x ≥ 0)

denote an α-CSBP, started at 0 and conditioned to stay positive. See the following
section for definitions. We have the following result, that generalizes and mim-
ics somehow results from [3, 5, 24]. However, these results dealt with self-similar
fragmentations with positive indices, and also, the occurrence of the randomization
introduced by Y1 below is somehow unusual.

Proposition 6. The following convergence in law holds:

tα/(1−α)(M(t)− F−
1 (t), F

−
2 (t), F

−
3 (t), . . . )

d→
t↓0

(TY1 ,�1,�2, . . . )

whereT is the stable 1/α subordinator as above, independent of Y , and�1,�2, . . .

are the jumps of (Tx, 0 ≤ x ≤ Y1) ranked in decreasing order of magnitude.

For this we are going to use the following lemma, which resembles the result
of Jeulin in [16] relating a scaled normalized Brownian excursion and a 3-dimen-
sional Bessel process. The proof is postponed to the following section. Recall that
(Lt1, t ≥ 0) stands for the local time of the height process up to time 1.
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Lemma 7. The following convergence in law holds:

Under N(1), (t1/(1−α)Ltx1 , x ≥ 0)
d→
t↓0

(Yx, x ≥ 0),

and this last limit is independent of the initial process (Lt1, t ≥ 0). In particular,
t1/(1−α)Lt1 converges in distribution to Y1 as t ↓ 0.

In the sequel let (yt , yt ) have the law of (Lt1,
∫∞
t

dbLb1) under N(1).

Proof of Proposition 6. Following the method of Aldous and Pitman [3], we are
actually going to prove that for every k,

tα/(1−α)(M(t)−F ∗
1 (t), F

∗
2 (t), F

∗
3 (t), . . ., F

∗
k (t))

d→
t↓0

(TY1 ,�
∗
1,�

∗
2, . . . , �

∗
k−1),

(15)

for every k ≥ 1, where the quantities with the stars are the size-biased quantities
associated with the ones of the statement, and this is sufficient. We are going to
proceed by induction on k. To start the induction, let g be a continuous function with
compact support and write, using Lemma 1, Proposition 4, then changing variables
and using scaling identities,

E[g(tα/(1−α)(M(t)− F ∗
1 (t)))]

= E

(∫ yt

0
du
cα yt qyt (yt − u)

yt u
1/α qyt (yt )

g(tα/(1−α)(yt − u))

)

= E




∫ tα/(1−α)yt

0
dv

tα/(α−1) cα yt q1

(
v

tα/(1−α)yαt

)

(yt − tα/(α−1)v)1/α yt q1

(
yt
yαt

)g(v)



 . (16)

By making use of Skorokhod’s representation theorem, we may suppose that the
convergence of (t1/(1−α)yt , tα/(1−α)yt ) to (Y1,∞) is almost-sure. Now the inte-
gral inside the expectation is the integral according to a probability law, hence it is
dominated by the supremum of |g|, so it suffices to show that the integral converges
a.s. to apply dominated convergence. For almost every ω, there exists ε such that
if t < ε, tα/(1−α)yt (ω) > K whereK is the right-end of the support of g. For such
an ω and t , the integral is thus

∫ K

0
dv g(v)

cαt
α/(α−1)ytq1(v(t

1/(1−α)yt )−α)
y

1+1/α
t (1 − tα/(α−1)v/yt )

1/αq1(yty
−α
t )

≤ M
tα/(α−1)yt

y
1+1/α
t q1(yty

−α
t )

∫ K

0
dv q1

(
v

tα/(1−α)yαt

)

for some constant M not depending on t . Now we use the fact from [31] that q1 is
bounded and

q1(x) =
x→∞ cαx

−1−1/α +O(x−1−2/α).
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This allows to conclude by dominated convergence that the integral in (16) a.s.
goes to

∫ K

0
dv g(v)

q1(v/Y
α
1 )

Y α1
=
∫ K

0
dv g(v)qY1(v),

and by dominated convergence its expectation converges to the expectation of the
above limit, that is E[g(TY1)].

To implement the recursive argument, suppose that (15) holds for some k ≥ 1.
Let g and h be continuous bounded functions on R+ and R

k+ respectively. Write
(yt , yt ,�1(t),�2(t) . . . ) for a sequence with the same law as (Lt1,

∫∞
t

dsLs1,
�T ′

[0,Lt1]
) given T ′

Lt1
= ∫∞

t
dsLs1, where L1 is taken under N(1) and T ′ is a sta-

ble 1/α subordinator, taken independent of L. Last, let �∗
1(t),�

∗
2(t), . . . be the

size-biased permutation associated with �1(t),�2(t), . . . . By Proposition 4, con-
ditioning, and using Lemma 1, we have

E[g(tα/(1−α)F ∗
k+1(t))h(t

α/(1−α)(M(t)− F ∗
1 (t), F

∗
2 (t), . . . , F

∗
k (t)))]

= E

[

h(tα/(1−α)(yt −�∗
1(t),�

∗
2(t), . . . , �

∗
k(t)))

∫ yt−
∑k
i=1 �

∗
i (t)

0
du g(tα/(1−α)u)

×
cα yt qyt

(
yt −∑k

i=1�
∗
i (t)− u

)

u1/α
(
yt −∑k

i=1�
∗
i (t)
)
qyt

(
yt −∑k

i=1�
∗
i (t)
)

]

Similarly as above, we show by changing variables and then using the scaling
identities and the asymptotic behavior of q1 that this converges to

E
[
h(TY1 ,�

∗
1, . . . , �

∗
k−1)

∫ TY1−∑k
i=1 �

∗
i

0
dv g(v)

×
cα Y1 qY1

(
TY1 −∑k−1

i=1 �
∗
i − v

)

v1/α(TY1 −∑k−1
i=1 �

∗
i )qY1

(
TY1 −∑k−1

i=1 �
∗
i

)
]

and by Lemma 1 this is E[h(TY1 ,�
∗
1, . . . , �

∗
k−1)g(�

∗
k)]. This finishes the proof.

��
The method used in this proof can also show that the rescaled remaining mass

tα/(1−α)(1 −M(t)) converges in distribution to
∫ 1

0 Yv dv jointly with the vector of
the proposition.

5. Some results on continuous-state branching processes

In this section we develop the material needed to prove Lemma 7. In the course,
we will give an analog of Jeulin’s theorem [17] linking the local time process of a
Brownian excursion to another time-changed Brownian excursion. To stay in the
line of the present paper, we will suppose that the laws we consider are associated to
stable processes, but all of the results (except the proof of Lemma 7 which strongly
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uses scaling) can be extended to more general Lévy processes and their associated
CSBP’s. To avoid confusions, we will denote by (Zt , t ≥ 0) the different CSBP’s
we will consider, or to be more precise, we let (Zt , t ≥ 0) instead of (Xs, s ≥ 0)
be the canonical process on D([0,∞)) when dealing with the laws Px,P

↑
x , . . .

associated to CSBP’s.

Definition 2. For any x > 0, let Px be the unique law on D([0,∞)) that makes
the canonical process (Zt , t ≥ 0) a right-continuous Markov process starting at x
with transition probabilities characterized by

E[exp(−λZt+r )|Zt = y] = exp(−yur(λ)),

where ur(λ) = (λ1−α + (α − 1)r)1/(1−α) is determined by the equation

∫ λ

ur (λ)

dv

vα
= r.

Then Px is called the law of of the α-CSBP started at x.

Remark 3. For more general branching mechanisms, the definition of ur(λ) is
modified by replacing vα by ψ(v), where ψ is the Laplace exponent of a spectrally
positive Lévy process with infinite variation that oscillates or drifts to −∞.

Recall the setting of Sect. 2.1, and let Px be law under whichX is the spectrally
positive stable process with Laplace exponent λα and started at x > 0, that is,
the law of x + X under P . Let Ex be the corresponding expectation. Define the
time-change (τt , t ≥ 0) by

τt = inf

{

u ≥ 0 :
∫ u

0

dv

Xv∧h0

> t

}

,

where h0 = inf{s > 0 : Xs = 0} is the first hitting time of 0. This definition makes
sense either under the law Px , for x > 0, or the σ -finite excursion measure N (we
will see below that under N , τ is not the trivial process identical to 0).

Theorem 2. We have the following identities in law: for every x > 0,

(LtTx , t ≥ 0) under P
d= (Xτt , t ≥ 0) under Px,

and both have law Px . Moreover,

(Ltζ , t ≥ 0) under N
d= (Xτt , t ≥ 0) under N.

The first part is already known and is a conjunction of Lamperti’s theorem
(stating that (Xτt , t ≥ 0) under Px has law Px) and the Ray-Knight theorem men-
tioned in Sect. 2.2. We will use it to prove the second part. First we introduce some
notations, which were already used in a heuristic way above.
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For x > 0 one can define the law P
↑
x of the stable process started at x and

conditioned to stay positive by means of Doob’s theory of harmonic h-transforms.
It is characterized by the property

E↑
x [F(Xs, 0 ≤ s ≤ K)] = Ex

[
XK

x
F(Xs, 0 ≤ s ≤ K),K < T0

]

for any positive measurable functional F . Here T0 denotes as above the first hitting
time of 0 by X. It can be shown (see e.g. [12]) that P ↑

x has a weak limit as x → 0,
which we call P ↑, the law of the stable process conditioned to stay positive.

Similarly, we define the CSBP conditioned to stay positive according to [20],
by letting Px be the law of the CSBP started at x > 0, then setting

E
↑
x [F(Zt , 0 ≤ t ≤ K)] = Ex

[
ZK

x
F(Zs, 0 ≤ s ≤ K)

]

.

We want to show that a x ↓ 0 limit also exists in this case. This is made possible
by the interpretation of [20] of the law P

↑
x in terms of a CSBP with immigration.

To be concise, we have

Lemma 8. For x > 0, the law P
↑
x is the law of the α-CSBP with immigration

function αλα−1 and started at x. That is, under P
↑
x , (Zt , t ≥ 0) is a Markov process

starting at x and with transition probabilities

E
↑
x [exp(−λZt+r )|Zt = y] = exp

(

−yur(λ)−
∫ r

0
αuv(λ)

α−1dv

)

.

As a consequence, the laws P
↑
x converge weakly as x ↓ 0 to a law P

↑
0 = P

↑,
which is the law of a Markov process with same transition probabilities and whose
entrance law is given by the above formula, taking t = y = x = 0. It is also easy
that the law P

↑ is that of a Feller process according to the definition for ur(λ).
It is shown in [20] that Lamperti’s correspondence is still valid between condi-

tioned processes started at x > 0: the process (Xτt , t ≥ 0) under the law P
↑
x has

law P
↑
x . To be more accurate, the exact statement is that if the process (Zt , t ≥ 0)

has law P
↑
x , then the process (ZCs , s ≥ 0) has law P

↑
x where

Cs = inf

{

u ≥ 0 :
∫ u

0
dvZv > s

}

,

but this is the second part of Lamperti’s transformation, which is easily inverted
(see also the comment at the end of the section). We generalize this to

Lemma 9. The process (Xτt , t ≥ 0) under the law P ↑ has law P
↑.

Part of this lemma is that τt > 0 for every t .

Proof. For fixed η > 0, let

τ
η
t = inf

{

u :
∫ u∨η

η

dv

Xv
> t

}

.
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This is well defined under P ↑ since Xt > 0 for all t > 0 a.s. under this law. Then
since

∫ u∨η
η

dv/Xv = ∫ u−η0 dv/Xη+v whenever u ≥ η and is null else, we have that

τ
η
t = η + inf

{

u ≥ 0 :
∫ u

0

dv

Xη+v
> t

}

.

That is, τη − η equals the time-change τ defined above, but associated to the pro-
cess (Xη+t , t ≥ 0) (notice that h0 plays no role here since we are dealing with
processes that are strictly positive on (0,∞)). Under P ↑, this process is indepen-
dent of (Xs, 0 ≤ s ≤ η) conditionally onXη and has lawP ↑

Xη
. Hence, by Lamperti’s

identity, conditionally on (Xs, 0 ≤ s ≤ η) under P ↑, the process (Xτηt , t ≥ 0) has

law P
↑
Xη

. Hence, for any continuous bounded functionalG on the paths defined on
[0,K] for some K > 0,

E↑[G(Xτηt , 0 ≤ t ≤ K)] = E↑[E↑
Xη

[G(Zt , 0 ≤ t ≤ K)]].

Now, it is not difficult to see that τη decreases to the limit τ uniformly on compact
sets. Thus, using the right-continuity ofX on the one hand, and the Feller property
on the other (in fact, less than the Feller property is needed here), we obtain by
letting η ↓ 0 in the above identity

E↑[G(Xτt , 0 ≤ t ≤ K)] = E
↑[G(Zt , 0 ≤ t ≤ K)],

which is the desired identity. In particular, τ cannot be identically 0. ��
Remark 4. Notice that the fact that the time-change τt is still well-defined under
the law P ↑ can be double-checked by a law of the iterated logarithm for the law
P ↑. See also the end of the section.

Motivated by the definition in Pitman-Yor [28] for the excursion measure away
from 0 of continuous diffusions for which 0 is an exit point (and initially by Itô’s
description of the Brownian excursion measure linking the three-dimensional Bes-
sel process semigroup to the entrance law of Brownian excursions), we now state
the following

Proposition 7. The process (Ltζ , t ≥ 0) under the measure N is governed by the
excursion measure of the CSBP with characteristic λα . That is, its entrance law
N(Ltζ ∈ dy) for t > 0 is equal to y−1

P
↑(Zt ∈ dy) for y > 0 (and it puts mass ∞

on {0}), and given (Luζ , 0 ≤ u ≤ t), the process (Lt+t
′

ζ , t ′ ≥ 0) has law PLtζ
.

The use of the height process and its local time under N , and hence of an
“excursion measure” associated to the genealogy of CSBP’s, snakes and superpro-
cesses, is a very natural tool, however it does not seem that the above proposition,
which states that this notion of “excursion measure” is the most natural one, has
been checked somewhere. However, as noticed in [28], since the point 0 is not
an entrance point for the initial CSBP, one cannot define a reentering diffusion
by sticking the atoms of a Poisson measure with intensity given by this excursion
measure, because the durations are almost never summable.
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Proof. The law P
↑(Zt ∈ dy) is the weak limit of P

↑
x (Zt ∈ dy) = x−1yP(Zt ∈ dy)

as x → 0. Since by the properties of the CSBP mentioned in Sect. 2.2, we have
Ex[exp(−λZt )] = exp(−xut (λ)), we obtain

∫ ∞

0

P
↑
x (Zt ∈ dy)

y
(1 − e−λy) =

∫ ∞

0

Px(Zt ∈ dy)

x
(1 − e−λy) = 1 − e−xut (λ)

x
.

This converges to ut (λ) as x → 0, and thanks to the proof of [14, Theorem 1.4.1],
this equals N(1 − exp(−λLtζ )). This gives the identity of the entrance laws. For
the Markov property we use excursion theory and Ray-Knight’s theorem. Let 0 <
t1 < . . . < tn < t , then Markov’s property for (LtT1

, t ≥ 0) entails that for every
λ1, . . . , λn, λ ≥ 0,

E

[

exp

(

−
n∑

i=1

λiL
ti
T1

− λLtT1

)]

= E

[

exp

(

−
n−1∑

i=1

λiL
ti
T1

− (λn + ut−tn (λ))L
tn
T1

)]

.

On the other hand, we may write LtT1
=∑0<s≤1(L

t
Ts

−LtTs−) so that the Laplace
exponent identity for Poisson point processes applied to both sides of the above
displayed expression gives after taking logarithms:

N

(

1 − exp

(

−
n∑

i=1

λiL
ti
ζ − λLtζ

))

= N

(

1 − exp

(

−
n−1∑

i=1

λiL
ti
ζ − (λn + ut−tn (λ))L

tn
ζ

))

,

so that a substraction gives

N

(

exp

(

−
n∑

i=1

λiL
ti
ζ

)

(1 − exp(−λLtζ ))
)

= N

(

exp

(

−
n∑

i=1

λiL
ti
ζ

)

(1 − exp(−ut−tn (λ)Ltnζ ))
)

= N

(

exp

(

−
n∑

i=1

λiL
ti
ζ

)

E
L
tn
ζ

[1 − exp(−λZt−tn )]
)

.

Hence the Markov property. ��
Proof of Theorem 2. It just remains to prove the second statement. For this we let
η > 0 and we define as above the time change τηt . Using the Markov property
under the measure N , we again have that under N , (Xη+s , s ≥ 0) is independent
of (Xs, 0 ≤ s ≤ η) conditionally on Xη and has the law P

h0
Xη

of the stable process
started at Xη and killed at time h0. Hence, by Lamperti’s identity, under N and
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conditionally on (Xs, 0 ≤ s ≤ η), the process (Xτηt , t ≥ 0) has law PXη . Thus if
η < t1 < . . . < tn < t and if g1, . . . , gn, g are positive continuous functions with
compact support that does not contain 0, then

N

(
n∏

i=1

gi(Xτηti
) g(Xτηt

)

)

=
∫ ∞

0
N(Xη ∈ dx)Ex

[
n∏

i=1

gi(Zti−η) g(Zt−η)

]

=
∫ ∞

0
N(Xη ∈ dx)Ex

[
n∏

i=1

gi(Zti−η) EZtn−η [g(Zt−tn )]

]

.

As for the CSBP, the entrance lawN(Xη ∈ dx) equals x−1P ↑(Xη ∈ dx) for x > 0.
So we recast the last expression as

∫ ∞

0
P ↑(Xη ∈ dx)Ex

[∏n
i=1 gi(Zti−η)

x
EZtn−η [g(Zt−tn )]

]

=
∫ ∞

0
P ↑(Xη ∈ dx)E↑

x

[∏n
i=1 gi(Zti−η)
Ztn−η

EZtn−η [g(Zt−tn )]
]

.

Now we let η ↓ 0, using the right continuity and the Feller property of the CSBP,
to obtain

N

(
n∏

i=1

gi(Xτti ) g(Xτt )

)

= E
↑
[∏n

i=1 gi(Zti )

Ztn
EZtn

[g(Zt−tn )]
]

.

Hence, thanks to Proposition 7 we obtain that underN the process (Xτt , t ≥ 0) has
the same entrance law and Markov property as (Ltζ , t ≥ 0), hence the same law. ��
Proof of Lemma 7. Let G be a continuous bounded functional on the paths with
lifetime K . We want to show that N(1)[G(t1/(1−α)Ltx1 , 0 ≤ x ≤ K)] goes to
E↑[G(Xτx , 0 ≤ x ≤ K)]. By Theorem 2, the process (Lxv, x ≥ 0) under N(v) is
equal to the process (Xτx , x ≥ 0) under the lawN(v) for almost every v, and we can
take v = 1 by the usual scaling argument. By [12], the law N(1) can be obtained
as the bridge with length 1 of the stable process conditioned to stay positive, and
there exists a positive measurable space-time harmonic function (hr(x), 0 < r <

1, x ≥ 0) such that for every functional J and every r < 1,

N(1)[J (Xs, 0 ≤ s ≤ r)] = E↑[hr(Xr)J (Xs, 0 ≤ s ≤ r)].

We now use essentially the same proof as in [11, Lemma 6]. Let ε > 0. Since
τtK ∧ ε is a stopping time for the natural filtration of X,

N(1)[G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)]

= E↑[hε(Xε)G(t
1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)]

= E↑[E↑[hε(Xε)|XτtK∧ε]G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)].
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Since τtK → 0 a.s. as t ↓ 0, we obtain the same limit if we remove the ε in
the left-hand side, hence giving limN(1)[G(t1/(1−α)Ltx1 , 0 ≤ x ≤ K)] by Theo-
rem 2. Using the backwards martingale convergence theorem we obtain that the
conditional expectation on the right-hand side converges to E↑[hε(Xε)] = 1. So

lim
t↓0

N(1)[G(t1/(1−α)Ltx1 , 0 ≤ x ≤ K)] = lim
t↓0

E↑[G(t1/(1−α)Xτtx , 0 ≤ x ≤ K)]

and the last expression is constant, equal to E↑[G(Xτx , 0 ≤ x ≤ K)] by scaling,
hence the result by Lamperti’s transform. The independence with the initial pro-
cess is a refinement of the argument above, using the Markov property at the time
τtK ∧ ε. ��

One final comment. It may look quite strange in the proofs above that the a priori
ill-defined time τt under the laws P ↑ or N somehow has to be non-degenerate by
the proofs we used, even though no argument on the path behavior near 0 has been
given for these laws. As a matter of fact, things are maybe clearer when considering
also the inverse Lamperti transform. As above, for some process Z that is strictly
positive on a set of the form (0,K), K > 0, we let

Cs = inf

{

u ≥ 0 :
∫ u

0
dv Zv > s

}

.

Define the processX byXs = ZCs . Then we claim that the map s �→ 1/Xs is inte-
grable on a neighborhood of 0 and that Xτt = Zt . Indeed, by a change of variables
w = Cv , one has:

∫ u

0

dv

Xv
=
∫ u

0

dv

ZCv
=
∫ Cu

0

Zwdw

Zw
= Cu < ∞,

as long as u < C−1(∞) = inf{s : Xs = 0}, which is strictly positive by the
hypothesis made on Z. This kind of arguments also shows that as soon as we have
one side of Lamperti’s theorem, i.e. Xs = ZCs or Zt = Xτt , with non-degenerate
C or τ , then the other side is true. In particular, Theorem 2 and Lemma 9 could be
restated with the inverse statement giving the Lévy process by time-changing the
CSBP with C.
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cesses. Astérisque 281, vi+147 (2002)

15. Evans, S.N., Pitman, J.: Construction of Markovian coalescents. Ann. Inst. Henri Poin-
care Probab. Stat. 34, 339–383 (1998)

16. Jeulin, T.: Semi-martingales et grossissement d’une filtration, Volume 833 of Lecture
Notes in Mathematics. Springer, Berlin, 1980
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