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Abstract. In this paper linear stochastic evolution equations driven by infinite-dimensional
fractional Brownian motion are studied. A necessary and sufficient condition for the exis-
tence and uniqueness of the solution is established and the spatial regularity of the solution
is analyzed; separate proofs are required for the cases of Hurst parameter above and below
1/2. The particular case of the Laplacian on the circle is discussed in detail.

1. Introduction

The recent development of stochastic calculus with respect to fractional Brownian
motion (fBm) has led to various interesting mathematical applications, and in par-
ticular, several types of stochastic differential equations driven by fBm have been
considered in finite dimensions (see among others [8], [7] or [2]). The question of
infinite dimensional equations has emerged very recently (see [5], [6]). The purpose
of this article is to provide a detailed study of the existence and regularity properties
of the stochastic evolution equations with linear additive fractional Brownian noise.
Before providing a complete summary of the contents of this article, we comment
on the fact that, as in the few published works ([5], [6]) on infinite-dimensional
fBm-driven equations, we study only equations in which noise enters linearly. The
difficulty with non-linear fBm-driven equations is notorious: the Picard iteration
technique involves Malliavin derivatives in such a way that the equations for esti-
mating these derivatives cannot be closed. The preprint [10] treats an equation with
fBm multiplied by a nonlinear term; however the noise term has a trace-class cor-
relation, and moreover they treat only the caseH > 1/2, which allows one to solve
the equation using stochastic integrals understood in a pathwise way, not in the
Skorohod sense. The general non-linearity issue remains unsolved.
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Let BH = (BHt )t∈[0,1] be a fractional Brownian motion on a real and separable
Hilbert space U . That is, BH is a U -valued centered Gaussian process, starting
from zero, defined by its covariance

E(BH (t)BH (s)) = R(s, t)Q, for every s, t ∈ [0, 1]

where Q is a self-adjoint and positive operator from U to U and R is the standard
covariance structure of one-dimensional fractional Brownian motion (as in (2)). We
consider the following stochastic differential equation

X(dt) = AX(t)dt + F(X(t))�dBH (t) (1)

and we study the existence, uniqueness, and regularity properties of the solution in
several particular cases. The goal is to formulate necessary and sufficient conditions
for these properties as conditions on the equations’ input parameters A, �, and Q.
It is always possible, and usually convenient, to assume that BH is cylindrical, i.e.
that Q is the identity operator. We will also translate the conditions for regularity
as necessary and sufficient conditions on the almost-sure regularity of BH itself.

In Section 3 we let F(u) ≡ 1 and A a linear operator from another Hilbert
space V to V with � ∈ L(U ;V ) a deterministic linear operator not depending on
t . We give a necessary and sufficient condition for the existence of the solution. The
stochastic integral appearing in (1) is a Wiener integral over Hilbert spaces. Our
context is more general than the one studied in [6], or in [5], since we consider both
casesH > 1

2 andH < 1
2 . Our study goes further since we prove the sufficiency and

the necessity of the condition for the existence of the solution. Section 4 contains a
study of the space-time regularity of the solution using the so-called factorization
method.

2. Preliminaries

2.1. The Wiener integral with respect to fractional Brownian motion

Consider T = [0, τ ] a time interval with arbitrary fixed horizon τ , and let (BHt )t∈T
be the one-dimensional fractional Brownian motion with Hurst parameter H ∈
(0, 1). This means by definition thatBH is a centered Gaussian process with covari-
ance

R(t, s) = E(BHs B
H
t ) = 1

2
(t2H + s2H − |t − s|2H ). (2)

Note that B1/2 is standard Brownian motion. Moreover BH has the following Wie-
ner integral representation:

BHt =
∫ t

0
KH(t, s)dWs, (3)

where W = {Wt : t ∈ T } is a Wiener process, and KH(t, s) is the kernel given by

KH(t, s) = cH

(
t

s

)H−1/2

(t − s)H− 1
2 + s

1
2 −HF

(
t

s

)
(4)
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cH being a constant and

F(z) = cH

(
1

2
−H

) ∫ z−1

0
rH− 3

2

(
1 − (1 + r)H− 1

2

)
dr. (5)

From (4) we obtain

∂KH

∂t
(t, s) = cH (H − 1

2
)(t − s)H− 3

2

( s
t

) 1
2 −H

. (6)

We will denote by EH the linear space of step functions on T of the form

ϕ(t) =
n∑
i=1

ai1(ti ,ti+1](t) (7)

where t1, . . . , tn ∈ T , n ∈ N, ai ∈ R and by H the closure of EH with respect to
the scalar product

〈1[0,t], 1[0,s]〉H = R(t, s).

For ϕ ∈ EH of the form (7) we define its Wiener integral with respect to the
fractional Brownian motion as

∫
T

ϕsdB
H (s) =

n∑
i=1

ai

(
BHti+1

− BHti

)
. (8)

Obviously, the mapping

ϕ =
n∑
i=1

ai1(ti ,ti+1] →
∫
T

ϕsdB
H (s) (9)

is an isometry between EH and the the linear space span{BHt , t ∈ T } viewed as
a subspace of L2(�) and it can be extended to an isometry between H and the
first Wiener chaos of the fractional Brownian motion spanL

2(�){BHt , t ∈ T }. The
image on an element � ∈ H by this isometry is called the Wiener integral of �
with respect to BH .

For every s < τ , let us consider the operator K∗ in L2(T )

(K∗
τ ϕ)(s) = K(τ, s)ϕ(s)+

∫ τ

s

(ϕ(r)− ϕ(s))
∂K

∂r
(r, s)dr. (10)

When H > 1
2 , the operator K∗

τ has the simpler expression

(K∗
τ ϕ)(s) =

∫ τ

s

ϕ(r)
∂K

∂r
(r, s)dr.

For any t ∈ T we can define K∗
t similarly. We refer to [1] for the proof of the

fact that K∗
τ is a isometry between H and L2(T ). As a consequence, we have

the following relationship between the Wiener integral with respect to fBm and
the Wiener integral with respect to the Wiener process W :

∫
T
ϕ(s)dBH (s) =
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∫
T
(K∗

τ ϕ)(s)dW(s), which holds for every ϕ ∈ H if and only if K∗
τ ϕ ∈ L2 (T ).

For any s, t ∈ T , one can check the relationK∗
τ

[
ϕ1[0,t]

]
(s) = K∗

t [ϕ] (s) 1[0,t] (s).
Then if one defines the definite stochastic integral

∫ t
0 ϕ(s)dB

H (s), as it should be,
by

∫ τ
0 ϕ(s)1[0,t] (s) dB

H (s), we obtain
∫ t

0
ϕ(s)dBH (s) =

∫ t

0
(K∗

t ϕ)(s)dW(s) (11)

for every t ∈ T and ϕ1[0,t] ∈ H if and only if K∗
t ϕ ∈ L2(T ). We also recall that

whenH > 1/2, if φ, χ ∈ H are such that
∫
T

∫
T

|φ(s)||χ(t)|t− s|2H−2dsdt < ∞,
their scalar product in H is given by

〈φ, χ〉H = H(2H − 1)
∫ τ

0

∫ τ

0
φ(s)χ(t)|t − s|2H−2dsdt. (12)

Note that in the general theory of Skorohod integration with respect to fBm with
values in a Hilbert space V , a relation such as (11) requires careful justification of
the existence of its right-hand side (see [11], Section 5.1). But we will work only
with Wiener integrals over Hilbert spaces; in this case we note that, if u ∈ L2(T ;V )
is a deterministic function, then relation (11) holds, the Wiener integral on the right-
hand side being well defined in L2(�;V ) if K∗u belongs to L2(T × V ).

2.2. Infinite dimensional fractional Brownian motion and stochastic integration

Let U be a real and separable Hilbert space and letQ be a self-adjoint and positive
operator onU (Q = Q∗ > 0). It is typical and usually convenient to assume more-
over that Q is nuclear (Q ∈ L1(U)). In this case it is well-known that Q admits a
sequence (λn)n≥0 of eigenvalues with 0 < λn ↘ 0 and

∑
n≥0 λn < ∞. Moreover,

the corresponding eigenvectors (en)n≥0 form an orthonormal basis inU . We define
the infinite dimensional fBm on U with covariance Q as

BH (t) = BHQ (t) =
∞∑
n=0

√
λnenβ

H
n (t) (13)

where βHn are real, independent fBm’s. This process is a U -valued Gaussian pro-
cess, it starts from 0, has zero mean and covariance

E(BHQ (t)B
H
Q (s)) = R(s, t)Q, for every s, t ∈ T (14)

(see [5], [16], [6]). We will encounter below cases in which the assumption that Q
is nuclear is not convenient. For example one may wish to consider the case of a
genuine cylindrical fractional Brownian motion on U by setting λn ≡ 1, i.e.

BH (t) =
∞∑
n=0

enβ
H
n (t).

More generally we state the following.

Remark 1. Following the standard approach as in [3] for H = 1/2, it is possible
to define a generalized fractional Brownian motion on U (e.g. in the sense of
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generalized functions if U is a space of functions) by the right-hand side of
formula (13) for any fixed complete orthonormal system (en)n in U , and any fixed
sequence of positive numbers (λn)n, even if

∑
n≥0 λn = ∞. Although for any

fixed t the series (13) is not convergent in L2(� × U), we can always consider a
Hilbert spaceU1 such thatU ⊂ U1 and such that this inclusion is a Hilbert-Schmidt
operator. In this way, BH (t) given by (13) is a well-defined U1-valued Gaussian
stochastic process.

Let now V be another real separable Hilbert space, BH the process defined
above, defined as a U1-valued process if necessary (see Remark 1), and (�s)s∈T
a deterministic function with values in L2(U ;V ), the space of Hilbert-Schmidt
operators from U to V . The stochastic integral of � with respect to BH is defined
by

∫ t

0
�sdB

H (s) =
∞∑
n=0

∫ t

0
�sendβ

H
n (s) =

∞∑
n=0

∫ t

0
(K∗(�en))sdβn (s) (15)

where βn is the standard Brownian motion used to represent βHn as in (3), and the
above sum is finite when

∑
n

‖K∗(�en)‖2
L2(T ;V ) =

∑
n

|‖�en‖H|2V < ∞.

In this case the integral (15) is well defined as a V -valued Gaussian random vari-
able. However, as we are about to see, the linear additive equation in its evolution
form can have a solution even if

∫ t
0 �sdB

H (s) is not properly defined as aV -valued
Gaussian random variable. A remark similar to Remark 1 applies in order to define
this stochastic integral in a larger Hilbert space than V . In particular, there is no
reason to assume that � ∈ L2(U, V ).

3. Linear stochastic evolution equations with fractional Brownian motion

We will work in this section with a cylindrical fBm BH on a real separable Hilbert
space U , � a linear operator in L(U, V ) that is not necessarily Hilbert-Schmidt,
and A : Dom(A) ⊂ V → V the infinitesimal generator of the strongly continuous
semigroup (etA)t∈T . We study the equation

dX(t) = AX(t)dt +�dBH(t), X(0) = x ∈ V (16)

As previously noted, the stochastic integral
∫ t

0 �dB
H(s) is only well-defined as a

V -valued random variable if � ∈ L2(U, V ) since

E

∣∣∣∣
∫ t

0
�dBH(s)

∣∣∣∣
2

V

=
∑
n

E

∣∣∣∣
∫ t

0
�endβ

H
n (s)

∣∣∣∣
2

V
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=
∑
n

E

∣∣∣∣
∫ t

0
dβHn (s)

∣∣∣∣
2

|�en|2V
= t2H‖�‖2

HS

where here and in the sequel, ‖ · ‖HS denotes the Hilbert-Schmidt norm. However,
the operator A may be irregular enough that no strong solution to (16) exists even
if

∫ t
0 �dB

H(s) exists. We then consider the so-called mild form (a.k.a. evolution
form) of the equation, whose unique solution, if it exists, can be written in the
evolution form

X(t) = etAx +
∫ t

0
e(t−s)A�dBH (s), t ∈ T . (17)

Our aim is to find necessary and sufficient conditions on A and � for this solution
to exist in L2(�) for each t ≥ 0. For this goal, we will see that it is no longer
necessary to even assume that

∫ t
0 �dB

H(s) exists; in contrast, we only need to
guarantee the existence of the stochastic integral in (17). This is the reason for
dropping the hypothesis that � is Hilbert-Schmidt. Note that, in the case where
V is a space of functions, the so-called weak form of (16), using test functions, is
another alternative formulation which is morally equivalent to the mild form. We
will use this form below in Proposition 1 to formulate a slightly stronger existence
result than is possible with the mild form. Proposition 1 excluded, this article deals
only with the mild form. We assume throughout that A is a self-adjoint operator
on V . In this situation, it is well known that (see [13], Section 8.3 for a classical
account on this topic) there exists a uniquely defined projection-valued measure
dPλ on the real line such that, for every φ ∈ V , d〈φ, Pλφ〉 is a Borel measure on
R and for every φ ∈ Dom(A), we have

〈φ,Aφ〉 =
∫
R

λd〈φ, Pλφ〉.

Furthermore, for any real-valued Borel function g onR, we can define a self-adjoint
operator g (A) by setting

〈φ, g(A)φ〉 =
∫
R

g(λ)d〈φ, Pλφ〉 (18)

for φ ∈ Dg with

Dg = {x;
∫
R

|g(λ)|2 d〈x, Pλx〉 < ∞}.

The statement of our main existence and uniqueness theorem follows.

Theorem 1. Let BH be a cylindrical fBm in a Hilbert space U and let A :
Dom(A) ⊂ V → V be a self-adjoint operator on a Hilbert space V . Assume
that A is a negative operator, and more specifically that there exists some l > 0
such that dPλ is supported on (−∞,−l]. Then for any fixed� ∈ L2 (U, V ), there
exists a unique mild solution (X(t))t∈T of (16) belonging to L2(�;V ) if and only
if �∗GH(−A)� is a trace class operator, where

GH(λ) = (max (λ, 1))−2H . (19)
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This theorem is valid for both H < 1/2 and H > 1/2. However, separate
proofs are required in each case: Theorems 2 and 3. Several technical calculations,
although they be interesting in their own right as well as elementary, are given in
the Appendix in order to increase the article’s readability.

Remark 2. Theorem 1 holds for those operators A satisfying only a “spectral gap”
condition, i.e. such that dPλ is supported on (−∞,−l] except for an atom at {0},
as long as one assumes that the kernel ofA is finite-dimensional. To check this one
only needs to include the terms corresponding to λ = 0 in the proofs of Theorems
2 and 3.

Remark 3. When Supp(Pλ) ⊂ (−∞,−l), with l > 0, we can replace GH (−A)
in Theorem 1 by (−A)−2H . Seeing this is obvious, for example, in the proof of
the case H > 1/2 (see Lemma 1 below, and its usage). When A is non-positive
with a spectral gap, one can instead replace by GH (−A) by (−A+ I )−2H for
example. The spectral gap situation occurs for example in the case of the Laplace-
Beltrami operator on compact Lie groups; in this situation, withH = 1/2, the trace
condition with (−A+ I )−2H was proved to be optimal in [14]. This condition is
equivalent to conditions presented in work done in [12] for both the stochastic heat
and wave equations in Euclidean space Rd with d ≥ 2; therein, the authors even
treat non-linear equations under a non-degeneracy assumption on the nonlinearity
functionF (F bounded above and below by positive numbers). Proposition 1 below
shows that we can have existence of a weak solution to (16) even if Pλ charges all
of (−∞, a) for some a ≥ 0. In this case, using (−A)−2H , or even (−A+ I )−2H ,
instead ofGH (−A) for a trace condition for existence is too strong to be necessary.

3.1. A fundamental example: the Laplacian on the circle

Before proving the theorem we discuss its consequences for the fundamental exam-
ple in which the operator A is the Laplacian 
 on the circle. This means that with
en (x) = (2π)−1 cos nx and fn (x) = (2π)−1 sin nx for each n ∈ N , the set of
functions

{en, fn : n ∈ N}
is not only an orthogonal basis for U = L2

(
S1, dx

)
where dx is the normalized

Lebesgue measure on [−π, π), this set is exactly the set of eigenfunctions of 
.
An infinite-dimensional fractional Brownian motion BH in L2(S1) can be defined
by

BH (t, x) =
∞∑
n=0

√
qnen (x) β

H
n (t)+

∞∑
n=1

√
qnfn (x) β̄

H
n (t) .

where
{
βHn , β̄

H
n : n ∈ N}

is a family of IID standard fractional Brownian motions
with common parameter H . If

∑
qn < ∞ then BH is a bonafide L2(S1)-valued

process. Otherwise we can consider that it is a generalized-function-valued process
in L2(S1), as in remark 1. Note that BH defined in this way is a Gaussian field on
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T × S1 that is fBm in time for fixed x and that is homogeneous in space for fixed
t . The spatial covariance function calculates to

Q(x − y) = E
[
BH (1, x) BH (1, y)

]
=

∞∑
n=0

qn cos (n (x − y)) .

To apply Theorem 1, we only need to represent BH as �B̃H where B̃H is cylin-
drical on L2

(
S1

)
. This is obviously achieved using �en = √

qnen, yielding the
following immediate Corollary.

Corollary 1. Let BH be the fBm on L2(S1) with H ∈ (0, 1) and the assumptions
above. Then there exists a square integrable solution of (17) if and only if

∞∑
n=1

qnn
−4H < ∞. (20)

This corollary clearly shows that many generalized-function-valued fBm’s based
on L2

(
S1

)
yield a solution. More precisely, if we define a fractional “antideriva-

tive” of order 2H of BH by Y = (I −
)−Hx B, we have existence if and only if Y
is a bonafideL2

(
S1

)
-valued process. The following examples may be enlightening,

in view of the well-known results for standard Brownian motion.

• Let BH be fBm in time and white-noise in space, i.e. let qn ≡ 1. Then equation
(16) has a unique mild solution in L2

(
S1

)
if and only if H > 1/4.

• More generally consider the equation (16) with space-time fractional noise as a
generalization of the well-known space-time white noise. This would mean that
BH is the space derivative of a field Z that is fBm in time and in space. Call
H ′ the Hurst parameter of Z in space. To translate this on the behavior of the
qn’s we can say that, by analogy with the standard white-noise, and at least up to
universal multiplicative constants, we can take

√
qn = n1/2−H ′

. Then equation
(16) has a unique mild solution in L2

(
S1

)
if and only if H ′ > 1 − 2H . Thus

if BH is fractional Brownian in time with H ≥ 1/2, existence holds for any
fractional noise behavior in space, while if BH is fractional Brownian in time
with H < 1/2, existence holds if and only if the fractional noise behavior in
space exceeds 1 − 2H .

• In particular, for dBH that is space-time fractional noise with the same parameter
H in time and space, existence holds if and only if H > 1/3.

Remark 4. The thresholds obtained in the three situations above for the circle
should also hold in any non-degenerate one-dimensional situation. This can be
easily established for the Laplace-Beltrami on a smooth compact one-dimensional
manifold. We also believe it should hold in non-compact situations such as for the
Laplacian on R.

3.2. The case H > 1
2

Theorem 2. Assume H ∈ (1/2, 1). Then the result of Theorem 1 holds.

Proof. Let us estimate the mean square of the Wiener integral of ( 17). For every
t ∈ T , it holds (C(H) denoting a generic constant throughout this proof)
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It = E

∣∣∣∣
∫ t

0
e(t−s)A�dBH (s)

∣∣∣∣
2

V

= E

∣∣∣∣∣
∑
n

∫ t

0
e(t−s)A�endβHn (s)

∣∣∣∣∣
2

V

=
∑
n

C(H)

∫ t

0

∫ t

0
〈e(t−u)A�en, e(t−v)A�en〉V |u− v|2H−2dudv

= C(H)
∑
n

∫ t

0

∫ t

0
〈e(2t−u−v)A�en,�en〉V |u− v|2H−2dudv

= 2C(H)
∑
n

∫ t

0

(∫ u

0
〈e(2t−2u+v)A�en,�en〉V v2H−2dv

)
du. (21)

Consider now the measure dµn(λ) defined as

dµn(λ) = d〈�en, Pλ�en〉V (22)

where Pλ is the spectral measure of the operator −A. We have

〈e(2t−2u+v)A�en,�en〉V =
∫
R

e(2t−2u+v)λdµn(λ) =
∫ ∞

0
e−(2t−2u+v)λdµn(λ)

because, since A ≤ 0, Pλ vanishes for λ > 0. The expression (21) becomes, using
Fubini theorem

It = C(H)
∑
n

∫ t

0

∫ u

0
v2H−2

(∫ ∞

0
e−(2t−2u+v)λdµn(λ)

)
dvdu

= C(H)
∑
n

∫ ∞

0
e−2tλ

∫ t

0
e2uλ

(∫ u

0
v2H−2e−vλdv

)
dudµn(λ)

and doing the change of variables vλ = v′ in the integral with respect to dv, and
integrating by parts with respect to u, we get

It = C(H)
∑
n

∫ ∞

0
e−2tλλ1−2H

∫ t

0
e2uλ

(∫ λu

0
v2H−2e−vdv

)
dudµn(λ)

= C(H)
∑
n

∫ ∞

0
λ−2H

(∫ λt

0
v2H−2e−v

[
e2λt − e2v

e2λt

]
dv

)
dµn(λ) (23)

Denote by

A (λ, t) =
∫ λt

0
v2H−2e−v

[
e2λt − e2v

e2λt

]
dv. (24)

At this point we need the following technical lemma whose proof is given in the
Appendix.

Lemma 1. For every t ∈ T , there exist positive constants c(H, t) and C(H, t)
depending only on H and t such that
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(i) If λ > 1, c (H, t) ≤ A (λ, t) ≤ C(H, t), and
(ii) if λ ≤ 1 , c (H, t) ≤ A (λ, t) λ−2H ≤ C(H, t).

Using the notation A � B for two quantities whose ratio is bounded above and
below by positive constants (in which case we say the quantities are commensurate),
putting the two estimations of A (λ) together we obtain

It �
∑
n

∫ 1

0
dµn(λ)+

∫ ∞

1
λ−2Hdµn(λ)

�
∑
n

∫ ∞

0
(max (λ; 1))−2H dµn(λ),

where the constants needed in the � relations depend only onH and t . This yields
the theorem. ��

3.3. The case H < 1
2

Theorem 3. Let H ∈ (0, 1
2 ), and let Pλ denote the spectral measure of −A. If

there exists a positive constant l such that

Supp (Pλ) ⊂ (l; ∞), (25)

then Theorem 1 holds.

Proof. We let Pλ denote the spectral measure of −A, and µn the corresponding

scalar measures as before. Denoting It = E
∣∣X (t)− etAx

∣∣2
V

, it is sufficient to
estimate It optimally from above and below. We have

It = E

∣∣∣∣
∫ t

0
e(t−s)A�dBH (s)

∣∣∣∣
2

V

= E

∣∣∣∣∣
∑
n

∫ t

0
e(t−s)A�endβHn (s)

∣∣∣∣∣
2

V

Step 1 (Upper bound). We prove first the sufficient condition for the existence
of a square integrable mild solution of equation (16). We start with the following
technical Lemma (its proof is given in the Appendix).

Lemma 2. Let

B(a,A) =
∫ 1

0
ds exp (−2as)

[∫ s

0
(exp ar − 1) rA−1dr

]2

where a ≥ 0 and A ∈ (−1/2, 0]. Then it holds

B(a,A) ≤ KAa
−2A−1

with KA a positive constant depending only on A.
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Using (10) and the representation (11), we have

It ≤ 2
∑
n

∫ t

0

∣∣∣e(t−s)A�en
∣∣∣2

V
K2(t, s)ds

+ 2
∑
n

∫ t

0

∣∣∣∣
∫ t

s

(
e(t−r)A�en − e(t−s)A�en

) ∂K
∂r
(r, s)dr

∣∣∣∣
2

V

ds

=
∑
n

(I1(n)+ I2(n))

Using the following inequality (see [4], Th. 3.2),

K(t, s) ≤ c(H)(t − s)H− 1
2 sH− 1

2

the first sum above can be majorized in the following way

∑
n

I1(n) ≤ c(H)
∑
n

∫ t

0
〈e2(t−s)A�en,�en〉V (t − s)2H−1s2H−1ds

= c(H)
∑
n

∫ ∞

0
λ−2H

(∫ 2λt

0
e−vv2H−1(t − v

2λ
)2H−1dv

)
dµn(λ)

≤ c(H)
∑
n

∫ ∞

0
λ−2HC (t,H) dµn(λ)

= C (t,H) T r(�∗(−A)−2H�) (26)

where C (t,H) depends only on t and H . Here we used the fact that

∫ 2λt

0
e−vv2H−1(t − v

2λ
)2H−1dv

≤ (t/2)2H−1
∫ ∞

0
e−vv2H−1dv + (λt)2H−1

∫ 2λt

λt

e−v(t − v

2λ
)2H−1dv

≤ C(t,H)+ (λt)2H−1
∫ λt

0
e−(2λt−v

′) (v′/(2λ)
)2H−1

dv′

≤ C (t,H)+ C (t,H) e−λt (λt)2H = C (t,H) .

For the second sum from above, we can write

∑
n

I2(n) =
∑
n

∫ t

0
ds

∫ t

s

dr1

∫ t

s

dr2
∂K

∂r1
(r1, s)

∂K

∂r2
(r2, s)

× 〈
(
e(t−r1)A − e(t−s)A

)
�en,

(
e(t−r2)A − e(t−s)A

)
�en〉V

=
∑
n

∫ t

0
ds

∫ t

s

dr1

∫ t

s

dr2
∂K

∂r1
(r1, s)

∂K

∂r2
(r2, s)

× 〈
(
e(t−r1)A − e(t−s)A

) (
e(t−r2)A − e(t−s)A

)
�en,�en〉V
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and, by the fact that ∂K
∂r
(r, s) ≤ 0 for every r, s ∈ T and | ∂K

∂r
(r, s)| ≤ C(H)(r −

s)H− 3
2 , we get

∑
n

I2(n) =
∑
n

∫ t

0
ds

∫ t

s

dr1

∫ t

s

dr2
∂K

∂r1
(r1, s)

∂K

∂r2
(r2, s)

×
∫ +∞

0

(
e−λ(t−r1) − e−λ(t−s)

) (
e−λ(t−r2) − e−λ(t−s)

)
dµn

≤ C(H)
∑
n

∫ t

0
du

∫ u

0
dv1

∫ u

0
dv2(u− v1)

H− 3
2 (u− v2)

H− 3
2

×
∫ ∞

0

(
e−λ(v1+v2) − e−λ(u+v2) − e−λ(v1+u) + e−2λu

)
dµn

where we used the change of variables t − s = u, t − r1 = v1, t − r2 = v2 and the
symmetry of A. Let us note that the above quantities are positive and therefore we
can apply Fubini theorem, obtaining

∑
n

I2(n) ≤ C(H)
∑
n

∫ ∞

0
dµn

∫ t

0
du

∫ u

0
dv1

∫ u

0
dv2(u− v1)

H− 3
2 (u− v2)

H− 3
2

×
(
e−λ(v1+v2) − e−λ(u+v2) − e−λ(v1+u) + e−2λu

)

=
∑
n

∫ ∞

0
dµn

∫ t

0
du

(∫ u

0
(u− v)H− 3

2 (e−λu − e−λv)dv
)2

=
∑
n

∫ ∞

0
dµn

∫ t

0
e−2λs

(∫ s

0
(eλr − 1)rH− 3

2 dr

)2

ds

=
∑
n

∫ ∞

0
I2(λ, t)dµn(λ) (27)

where on the last line we came back to the initial variables. Now, applying (27) and
Lemma 2 to

I2(λ, t) =
∫ t

0
e−2λs

(∫ s

0
(eλr − 1)rH− 3

2 dr

)2

ds,

with (26), we have the upper bound

It ≤ C (t,H)
∑
n

∫ ∞

0
λ−2Hdµn(λ) = C (t,H) T r(�∗(−A)−2H�).

Step 2 (Lower bound). To prove the necessity, note that

It =E
[∣∣∣∣∣

∑
n

∫ t

0

(
e(t−s)A�en

)
K(t, s)dβn(s)

+
∫ t

0

(∫ t

s

∂K

∂r
(r, s)

(
e(t−r)A − e(t−s)A

)
�endr

)
dβn(s)

∣∣∣∣
2

V

]
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and this equals

It =
∑
n

∫ t

0

∣∣∣e(t−s)A�en
∣∣∣2

V
K2(t, s)ds

+ 2
∑
n

∫ t

0
K(t, s)

∫ t

s

∂K

∂r
(r, s)〈e(t−s)A�en,

×
(
e(t−r)A − e(t−s)A

)
�en〉V drds

+
∑
n

∫ t

0

∣∣∣∣
∫ t

s

∂K

∂r
(r, s)

(
e(t−r)A − e(t−s)A

)
�endr

∣∣∣∣
2

V

ds.

We let t = 1 for simplicity and we use the measure dµn(λ) = d〈�en, Pλ�en〉V .
Taking account that Pλ = 0 outside (−∞,−l), we get

It =
∑
n

∫ ∞

l

(∫ 1

0
exp(−2λ(1 − s))K2(1, s)ds

)
dµn(λ)

+ 2
∑
n

∫ ∞

l

∫ 1

0
ds exp(−2λ(1 − s))K(1, s)

×
(∫ 1

s

(exp((r − s)λ)− 1)
∂K

∂r
(r, s)dr

)
dµn(λ)

+
∑
n

∫ ∞

l

(∫ 1

0
exp(−2λ(1 − s))

×
(∫ 1

s

(exp((r − s)λ)− 1)
∂K

∂r
(r, s)dr

)2

ds

)
dµn(λ)

=
∫ ∞

l

J (λ)dµn(λ).

The conclusion of the theorem follows from the next lemma. ��
Lemma 3. Let

J (λ) =
∫ 1

0
exp(−2λ(1 − s))K2(1, s)ds

+ 2
∫ 1

0
exp(−2λ(1 − s))K(1, s)

×
(∫ 1

s

(exp((r − s)λ)− 1)
∂K

∂r
(r, s)dr

)
ds

+
∫ 1

0
exp(−2λ(1 − s))

(∫ 1

s

(exp((r − s)λ)− 1)
∂K

∂r
(r, s)dr

)2

ds.

Then J (λ) ≥ c(H)λ−2H for every λ > l > 0 with l arbitrary small.

Proof. See the Appendix. ��
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3.4. Extended existence for the weak equation

Assume now that V is a Hilbert space of functions on finite-dimensional Euclidean
space E, and assume A is a self-adjoint operator on V . One can interpret the noise
term�BH (t) directly as a Gaussian field on T ×E that is fBm in time and possibly
a generalized function in space. For the formulation of an existence result, we keep
using representation of this field via the operator � ∈ L (V , V ) operating on a
cylindrical BH (t) in V . Equation (16) now reads,

X(dt, x) = [AX(t, ·)] (x) dt +
[
�BH

]
(dt, x), X(0) = X0 ∈ V, t ≥ 0, x ∈ E

and its weak version is∫
E

φ (x)X (t, x) dx =
∫
E

φ (x)X0 (x) dx +
∫
E

∫ t

0
X (t, x)Aφ (x) dxdt

+
∫
E

[
�BH

]
(t, x)φ (x) dx, (28)

for all t ≥ 0, x ∈ E, φ ∈ Dom (A). If it happens that the Gaussian field �BH on
T ×E is generalized-function-valued in the parameter x, the last term in (28) must
be interpreted as

[
�BH

]
(t, φ)

for all test functions φ in Dom (A) ∩ dom
[
�BH (1)

]
. More generally, we can

formulate a weak equation in an abstract separable Hilbert space V . We assume
that A is a self-adjoint operator on V , that BH is a cylindrical fBm in V , and that
� ∈ L (V , V ). The generalization of (28) is

〈X(t), φ〉 = 〈X(0), φ〉 +
∫ t

0
〈X(s), Aφ〉ds +

∫ t

0
〈�∗φ, dBH (s)〉, (29)

for all t ≥ 0 and all test functions φ in Dom (A), where 〈 , 〉 denotes the scalar
product in V . The following proposition shows that the spectral gap condition for
existence can be eliminated when dealing only with the weak equation.

Proposition 1. Let H ∈ (0, 1). Let BH be a cylindrical fBm in V , a separable
Hilbert space, and let A : Dom(A) ⊂ V → V be a self-adjoint operator on V
such that for some λ0 > 0, A − λ0I is a negative operator. Then for any fixed
� ∈ L (V , V ), there exists a solution (X(t, ·))t∈T of (28) belonging to L2(�;V )
as long as �∗GH(−A)� is a trace class operator.

Proof. By hypothesis we can find positive numbers µ and ε such that A − µI <

−εI , that is to say, the operator Ā = A − µI satisfies the hypotheses of both
Theorem 2 and Theorem 3. Therefore, in both the cases H < 1/2 and H > 1/2,
we have existence and uniqueness of a mild solution in L2(�;V ) to the following
equation:

dYt = (A− µI) Ytdt +�dBHt
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if and only if�(µI − A)−2H �∗ is trace class. Indeed, one should require, rather,
that �GH (µI − A)�∗ be trace class, but here the strict negativity of Ā allowed
us to replace the function GH by the function FH (λ) = λ−2H . Now a simple rep-
etition of arguments of Da Prato and Zabczyk in [3] shows that for any Lipschitz
function F on V , the equation

dZt = (A− µI)Ztdt + F (Zt ) dt +�dBHt

also has a unique mild solution formed by considering the semigroup of the oper-
ator A− µI . By taking F (z) = µz we see that the following mild equation has a
unique solution Z:

Z (t) = et(A−µI)x +
∫ t

0
e(t−s)(A−µI)�dBH (s)+ µ

∫ t

0
e(t−s)(A−µI)Z (s) ds.

(30)

The next step in the proof is to show that Z defined by (30) also satisfies (28). This
can be checked by a classical calculation for all test functions φ ∈ Dom (A− µI).
However this domain is defined as the set of all functions φ ∈ V such that
(A− µI) φ ∈ V . Thus it coincides with Dom (A), and the weak equation (28)
is satisfied by Z. The last step in the proof is to show that the trace condition
on �(µI − A)−2H �∗ is equivalent to the condition that �GH (−A)�∗ be trace
class. Recall that for any function F we have

tr
[
�F (−A)�∗] =

∑
n

∫ ∞

−∞
F (λ) dµn (λ)

where µn, defined in (22), is a positive measure for any n. Therefore it is sufficient
to show that the function GH (λ) = (max (1, λ))−2H is commensurable with the
function ḠH (λ) = (λ+ µ)−2H . For λ > 1 this is clear. For λ < 1, we use the fact
that the support of all measures dµn is in [−λ0; +∞). Since it is no restriction to
require that µ > λ0 + ε, we have that for λ ∈ [−λ0; 1], ḠH (λ) is bounded above
by ε−2H and below by (1 + µ)−2H ; in this sense it is commensurable withGH (λ)
since the latter is equal to 1 in that interval. ��

4. Space-time regularity of the solution

In this section, we give some general results on the spatial regularity of the solution
to our linear additive equation. As in Theorem 1, we assume that:

(R) the operator A is self adjoint and there exist ε > 0 such that A ≤ −εI .

As in Remark 2 we could also allow A to have 0 as an eigenvalue, with a finite
dimensional eigenspace, and then a spectral gap up to −ε. We omit these details.
Our regularity result is based on a proposition taken from [3], which we enunciate
here for sake of completeness: letA be an unbounded operator satisfying condition
(R). For α, γ ∈ (0, 1), p > 1 and ψ ∈ Lp([0, T ];V ), set

Rα,γ ψ(t) = sin(απ)

π

∫ t

0
(t − σ)α−1(−A)γ e(t−σ)Aψ(σ)dσ,
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where Aγ has to be interpreted as in (18). It is a known fact (see [3, Proposition
A.1.1]) that, if α > γ + 1

p
, then

Rα,γ ∈ L
(
Lp([0, T ];V );Cα−γ− 1

p
(
[0, T ];D((−A)γ ))) . (31)

Let now X be the process defined by relation (17) with x = 0, that is the usual
stochastic convolution ofBH byA. The main result of this section is the following:

Theorem 4. Let H ∈ (0, 1), and suppose that for α ∈ (0, H), the operator

�∗(−A)−2(H−α)�

is trace class. Then, for any γ < α and any ε < (α − γ ), almost surely,

X ∈ Cα−γ−ε (
[0, T ];D (

(−A)γ ))
.

In particular, for any fixed t > 0, X(t) ∈ D((−A)γ ).
Proof. Under our assumptions, it can be shown by the usual factorization method
(see e.g. [3, Theorem 5.2.6]) that the process (−A)γX can be written as

(−A)γX(t) = [
Rα,γ Yα

]
(t),

where the process Yα is defined by

Yα(s) =
∫ s

0
(s − σ)−αe(s−σ)AφdBH (σ).

Then, using relation (31), we are reduced to showing that Yα ∈ Lp([0, T ];V ), and
since Yα is a Gaussian process, it is sufficient to prove that Yα ∈ L2([0, T ];V ).
We first treat the case of H > 1

2 : along the same lines as in the proof of Theorem
2, and taking up the notations introduced therein, it can be seen that

E
[
|Yα(t)|2V

]
= C(H)

∑
n

∫ ∞

0
λ−2(H−α)Mα(λ, t)dµn(λ),

where

Mα(λ, t) =
∫ λt

0
x−αe−x

(∫ x

0
y−α(x − y)2H−2e−ydy

)
dx.

Since Mα is obviously bounded by a constant for all t, λ > 0, whenever α < H ,
we get the desired result. Let us now turn to the case H < 1

2 . Following again the
proof of Theorem 3, we can decompose E[|Yα(t)|2V ] as

E
[
|Yα(t)|2V

]
=

∑
n

I1(n)+ I2(n),

where I2(n), that contains the main part of the contribution to the norm of Yα(t),
is defined by

I2(n) =
∫ t

0

∣∣∣∣
∫ t

s

(
(t − r)−αe(t−r)Aφen − (t − s)−αe(t−s)Aφen

) ∂K
∂r
(r, s)

∣∣∣∣
2

V

ds.
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Now, the same computations as in the proof of Theorem 3 yield

I2(n) ≤ C(H)

∫ ∞

0
dµn(λ)

∫ t

0
du

∫ u

0
dv1

∫ u

0
dv2(u− v1)

H−3/2(u− v2)
H−3/2

×
(
(v1v2)

−αe−λ(v1+v2) − (v1u)
−αe−λ(v1+u) − (uv2)

−αe−λ(u+v2)

+u−2αe−2λu
)

=C(H)

∫ ∞

0
dµn(λ)

∫ t

0

(∫ u

0
(u− v)H−3/2 (

u−αe−λu − v−αe−λv
)
dv

)2

du

= C(H)

∫ ∞

0
λ−2(H−α)N(λt)dµn(λ),

where N(τ) is given by

N(τ) =
∫ τ

0

(∫ x

0
(x − y)H−3/2 (

y−αe−y − x−αe−x
)
dy

)2

dx.

The following lemma ends the proof. ��

Lemma 4. If a < H , then supτ≥0N (τ) < ∞

Proof. Left to the reader. ��

5. Appendix: Proofs of Lemmas 1, 2 and 3

Proof of Lemma 1. If λ ≥ 1, note that, by (24),

A (λ, t) ≤
(∫ ∞

0
v2H−2e−vdv

)
= C(H)

and also

A (λ, t) ≥ (
1 − e−λt

) ∫ λt
2

0
v2H−2dv

≥ (
1 − e−λt

) ∫ t
2

0
v2H−2e−vdv

and this a positive constant denoted generically by c(H, t). The assertion (i) is
proved. Suppose now that λ ≤ 1. We let t = 1 for simplicity and we use the
following facts: for 0 ≤ x ≤ 1,

2x ≥ 1 − e−2x ≥ 2x/3

1 ≥ e−x ≥ 1/3.
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We use the notation A � [c, C]B to mean c < A/B < C. We obtain

A (λ, 1) � [1/3, 1]
∫ λ

0
v2H−2e−v2 (λ− v) dv

� [2/9, 2] ·
∫ λ

0
v2H−2 (λ− v) dv

= λ2H · [c (H) ;C (H)]. ��

Proof of Lemma 2. Doing the changes of variables ar = y and as = x we get

B(a,A) = a−2a−1
∫ a

0

(∫ x

0
(ey − 1)yA−1dy

)2

dx

and it suffices to observe that the quantity KA = ∫ ∞
0

(∫ x
0 (e

y − 1)yA−1dy
)2
dx is

finite. ��

Proof of Lemma 3. First, let us replace the kernel K by its singular part cH (t −
s)H− 1

2 . In this case, with the notation e(λ, s) = exp (−2λ(1 − s)), it holds that

J (λ) = c2
H

∫ 1

0
e(λ, s)

(
(1 − s)H− 1

2 +
(
H − 1

2

)

×
∫ 1

s

(
e(r−s)λ − 1

)
(r − s)H− 3

2 dr

)2

ds

= c2
H

∫ 1

0
e(λ, s)

(
(1 − s)H− 1

2 +
(
H − 1

2

)
λ

1
2 −H

×
∫ λ(1−s)

0
(ev − 1)vH− 3

2 dv

)2

ds

= c2
H

∫ 1

0
e−2λx

(
xH− 1

2 +
(
H − 1

2

)
λ

1
2 −H

∫ λx

0
(ev − 1)vH− 3

2 dv

)2

dx

= c2
Hλ

−2H
∫ λ

0
e−2y

(
yH− 1

2 +
(
H − 1

2

) ∫ y

0
(ev − 1)vH− 3

2 dv

)2

dy

≥ c2
Hλ

−2H
∫ l

0
e−2y

(
yH− 1

2 +
(
H − 1

2

) ∫ y

0
(ev − 1)vH− 3

2 dv

)2

dy

= λ−2Hc(l,H)

where for everyH ∈ (0, 1/2) and every l > 0 the constant c(H, l) is also positive.
Note that c(H, l) → 0 when l → 0, which indicates that our bound is of decaying
quality for decreasing spectral gap... To finish, we recall that by (4), the kernel

K(t, s) can be written as cH (t − s)H− 1
2 plus a function without singularities. Add-

ing the second part does change the final estimation. But the proof is much longer
and we prefer to omit it. ��
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