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Abstract. We explore the exact packing dimension of certain random recursive construc-
tions. In case of polynomial decay at 0 of the distribution function of random variable X,
associated with the construction, we prove that it does not exist, and in case of exponential
decay it is tα| log | log t ||β, where α is the fractal dimension of the limit set and 1/β is the
rate of exponential decay.

1. Introduction

Let n ∈ N, n ≥ 2, � = {1, 2, . . . , n}, �∗ =
∞⋃

j=0
�j is the set of all finite

sequences of numbers 1, . . . , n, and �N is the set of all infinite sequences of such
numbers. The result of concatenation of two finite sequences σ and τ from �∗ is
denoted by σ ∗ τ. For a finite sequence σ its length will be denoted by |σ |. For
k ∈ N and σ ∈ �∗ such that |σ | ≥ k, σ |k is a sequence consisting of first k numbers
in σ. There is a natural partial order on the n-ary tree �∗ : σ ≺ τ if and only if the
sequence τ starts with σ.

The random recursive construction was first defined by Mauldin and Williams
in [15] with n being not necessarily finite. Suppose that J is a compact subset of
R

d such that J = Cl(Int(J )), without loss of generality its diameter is 1. A random
recursive construction is a probability space (�, �, P ) and a collection of random
subsets of R

d {Jσ (w)|w ∈ �, σ ∈ �∗} such that

(i) J∅ = J a.s.,
(ii) The maps w → Jσ (w) are measurable with respect to �,

(iii) The sets Jσ , if not empty, are geometrically similar to J ,
(iv) Jσ∗i is a proper subset of Jσ for all σ ∈ �∗ and i ∈ � provided Jσ �= ∅,
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(v) The construction satisfies the random open set condition: if σ and τ are two
sequences of the same length, then Int(Jσ ) ∩ Int(Jτ ) = ∅, and finally

(vi) There is a collection of random i.i.d. vectors T̂σ = (Tσ∗1, . . . , Tσ∗n) : � →
[0, 1]n, σ ∈ �∗ such that diam(Jσ∗i ) = diam(Jσ )Tσ∗i provided Jσ �= ∅.

The object of study is the random limit set, or fractal, K(w) =
∞⋂

k=1

⋃

σ∈�k

Jσ (w).

Note that this setting does not account for placement of the sets Jσ∗i within
Jσ . Thus these constructions include as a special case the random self-similar sets
defined independently by Graf in [6] and by Mauldin and Williams in [15]. Random
self-similar sets can be obtained by choosing the similarity mappings according to
some probability distribution and thus may be regarded as random iterated function
systems.

If µ = E

[
n∑

i=1
T 0

i

]

≤ 1 (by convention, 00 = 0), then K(w) is almost surely an

empty set or a point, and we exclude that case from further consideration. Mauldin
and Williams in [15] have found the Hausdorff dimension, α, of the limit set K(w),

provided K(w) �= ∅, α = inf{β|E
[

n∑

i=1
T

β
i

]

≤ 1} a.s. In case n < ∞, α is the

solution of equation E

[
n∑

i=1
T α

i

]

= 1. Berlinkov and Mauldin in [3] proved that

the packing, upper and lower Minkowski (box-counting) dimensions of the limit
set almost surely equal the Hausdorff dimension. For the definitions of Hausdorff
and packing measures and dimensions, as well as definitions of upper and lower
Minkowski dimensions, the reader is referred to the book of Mattila ([14]).

Graf et al. in [7] have found under certain conditions the exact Hausdorff dimen-
sion of the limit set, that is a gauge function ϕ(t) (a non-decreasing function such
that ϕ(0+) = 0), so that the ϕ-Hausdorff measure of K(w) is positive and finite
almost surely given K(w) �= ∅.

In [3] Berlinkov and Mauldin have found an upper bound on exact packing
dimension. In this paper we prove that this upper bound is the best under the
random strong open set condition and certain other conditions. Let Kσ (w) =
⋃

η∈�N

η||σ |=σ

∞⋂

i=1
Jη|i (w) ⊂ Jσ (w) ∩ K(w).

Definition. The construction satisfies the random strong open set condition if there
exist ρ0, p̂0 > 0 and s0 ∈ N ∪ {0} such that for every σ ∈ �∗, there is an event
R̂σ in the σ -algebra generated by the maps w → Tσ∗τ (w) with 0 < |τ | ≤ s0,

P (R̂σ |Kσ �= ∅) ≥ p̂0, such that for every w ∈ R̂σ ∩{Kσ �= ∅} there exists x ∈ Kσ

with dist(x, ∂Jσ ) ≥ ρ0lσ .

This condition for random recursive constructions was introduced in [3].Though
it did not mention that the event of obtaining a point of the limit set far enough
from the boundary of a cell must be determined by the first few generations of
reduction ratios, this was silently assumed in the proof of theorem 5. The connec-
tion between random open set condition and random strong open set condition for
random self-similar sets was studied by Patzschke in [17].
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Before proceeding with the proofs, let us introduce more notation. For σ ∈ �∗,

let lσ (w) = diam(Jσ (w)) =
|σ |∏

i=1
Tσ |i , and consider the sequence

{
∑

τ∈�k

|τ |∏

i=1
T α

σ∗τ |i

}

,

k ∈ N. It has been proved in [6], [7], [15], that this sequence forms an Lp-bounded
martingale for all p ≥ 1, and if we denote the limit of this sequence by Xσ , or X

in case σ = ∅, then all Xσ ’s will have the same distribution with expectation 1,
finite moments of all orders and moreover, for σ and τ ∈ �∗ such that σ �≺ τ and
τ �≺ σ , Xσ and Xτ are independent. In [15] it has been proved that X(w) = 0 if
and only if K(w) = ∅ for a.e. w.

We call � ⊂ �∗ an antichain if for all τ, σ ∈ � σ �≺ τ and τ �≺ σ . An antichain
� is maximal, if for all η ∈ �N there exists a unique k ∈ N such that η|k ∈ �. By
equation (1.9) in [7], with probability 1, for every maximal antichain � and every

σ ∈ �∗, Xσ = ∑

τ∈�

|τ |∏

i=1
T α

σ∗τ |i Xσ∗τ = ∑

τ∈�

Xσ∗τ l
α
σ∗τ / lασ .

Graf et al. in [7] have demonstrated that with each construction one can associ-
ate 3 measures, denoted νw (the construction measure), µw and Q as follows. First,
νw is determined by setting for a compact set K ⊂ R

d

νw(K) = lim
k→∞

∑

σ∈�k

Jσ ∩K �=∅

lασ (w)Xσ (w).

Second, µw, a measure on �N, is determined from each set A(σ) = {η ∈ �N | σ ≺
η}, a clopen subset of �N, by

µw(A(σ)) = lασ (w)Xσ (w)

and µw is extended to a Borel measure on �N. Finally, Q is a measure on the
product space �N × �. If for a Borel set B, we let Bw = {η ∈ �N | (η, w) ∈ B},
then

Q(B) =
∫

µw(Bw)dP (w).

Expectations with respect to measures P and Q are connected in the follow-
ing way: if � is a map from � into the countable set of all maximal antichains
in �∗ such that for each maximal antichain ϒ , �−1(ϒ) is in the σ -algebra gen-
erated by {Jσ |σ  ϒ} and Y : �N × � → R is a random variable such that
Y (η, w) = Y (η′, w) provided η|�(w) = η′|�(w), then

EQ[Y ] = E

[∑

σ∈�

lασ Xσ Y (σ, ·)
]

.

In particular, if A ⊂ �N×� and there exists k ∈ N such that 1A(η, w) = 1A(η′, w)

whenever η|k = η′|k, then

Q(A) = EQ[1A] = E

[ ∑

|σ |=k

lασ Xσ 1A(σ, ·)
]

.
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For k ∈ N and (η, w) ∈ �N × � denote Xk(η, w) = Xη|k (w), Tk(η, w) =
Tη|k (w), lk(η, w) = lη|k (w).Thus for all p > 0 and k ∈ N,EQ[Xp

k ] = E[Xp+1] <

∞. We denote R̂k = {(η, w) ∈ �N × �|w ∈ R̂η|k } = ⋃

|σ |=k

A(σ) × R̂σ .

The exact Hausdorff dimension was determined in [7] by considering the
behaviour of the distribution function of the random variable X at infinity. As
it turns out, the exact packing dimension is determined by the behaviour of the
same distribution function at 0. Berlinkov and Mauldin in [3] proved (under certain
conditions) that if P(0 < X ≤ a) ≤ C2a

β, a ∈ (0, 1), then for the function

ϕ(t) = tαg(t),
∫

0+
gβ+1(s)

s
ds < ∞ implies Pϕ(K) = 0 a.s., where Pϕ denotes the

packing measure with respect to the gauge function ϕ. Later in the text we refer to
this situation as the case of polynomial decay (with parameter β). Assuming that
for some C1, C2 > 0, C1a

β ≤ P(0 < X ≤ a) ≤ C2a
β for all a ∈ (0, 1), we

prove in theorem 2 the conjecture about the lower bound, namely, if for the function

ϕ(t) = tαg(t),
∫

0+
gβ+1(s)

s
ds = ∞, then Pϕ(K) = ∞ a.s. provided K �= ∅. Thus,

the exact packing dimension does not exist in this case.

If t0 = lim
x→0

−x−1/β log P(0 < X ≤ x) = sup{t ≥ 0|E
[
etX1/β

]
< ∞} > 0

for some β ∈ R, it has been proved in [3], that for ϕ(t) = tα| log | log t ||β,

Pϕ(K) < ∞ a.s. We call this situation the case of exponential decay (with param-
eter β). In this case β < 0, and the "add-on function", g(t) = | log | log t ||β.

Assuming that for some C1, C2 > 0, C1a
1/β ≤ − log P(0 < X ≤ a) ≤ C2a

1/β

for all a ∈ (0, 1), we prove in theorem 2 that Pϕ(K) > 0 a.s. provided K �= ∅.

When this paper was being refereed, the author was informed that in the case of
Galton-Watson tree (example 4) the problem has been solved independently by
Watanabe in [21].

2. Results

In many previous papers (see, e.g. [5],[11], [22]) concerning the exact packing
dimension of stochastic processes, the authors proved its non-existence only for
the gauge functions of the type ϕ(t) = tαg(t) where g(t) is monotone, right-con-
tinuous and satisfies the doubling condition, lim

t→0
g(2t)/g(t) < ∞. Whether the

packing measure with gauge function ϕ(t) was infinite or zero was determined first

by looking at an integral, and then deciding from that whether the series
∞∑

i=1
g(2−i )

converges or diverges. We show in lemma 1 that these restrictions on g(t) are
unnecessary.

Lemma 1. If ϕ(t) = tαg(t) is a gauge function, β ≥ 0, then
∫

0+
gβ+1(s)

s
ds = +∞

if and only if for every N > 1 and 0 < ρ < 1,
∞∑

k=1
gβ+1(ρN−k) = +∞.
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Proof. Fix 0 < ρ < 1, N > 1. Let g1(x) = gβ+1(ρN−x), then
∫

0+
gβ+1(s)

s
ds =

+∞ if and only if
∞∫

g1(x)dx = +∞. Using that ϕ(t) is non-decreasing, we obtain

g1(k + y) = gβ+1(ρN−kN−y) ≤ gβ+1(ρN−k)/N−yα(β+1) = g1(k)Nyα(β+1)

for all 0 ≤ y ≤ 1, and if
∞∫

g1(x)dx = ∞, then

∞∑

k=1

g1(k) ≥ N−α(β+1)
∞∑

k=1

sup{g1(x)|k ≤ x ≤ k + 1} = ∞.

In the opposite direction, suppose that for some 0 < ρ < 1,N > 1,
∞∑

k=1
g1(k) =

∞. Since ϕ(t) is non-decreasing, for every 0 ≤ y ≤ 1 and k ∈ N, we have

g1(k + 1 − y) = gβ+1(ρN−k−1Ny) ≥ N−yα(β+1)gβ+1(ρN−k−1)

= N−yα(β+1)g1(k + 1),

and therefore
∞∫

g1(x)dx ≥
∞∑

inf{g1(x)|k ≤ x ≤ k + 1} ≥ N−α(β+1)
∞∑

g1(k + 1) = ∞.��
The following two lemmas interpret the conditions given to us with respect to

probability measure P, in terms of probability measure Q, which is the main tool we
work with. In exponential case denote t0 = lim

x→0
−x−1/β log P(0 < X ≤ x) < ∞.

Lemma 2. In case of exponential decay with parameter β, for all t > t0 and

all k ∈ N, EQ[etX
1/β
k ] = E[XetX1/β

] = ∞. For all 0 < ρ < 1, N > 1 and

C > t
−β
0 ,

∞∑

k=1
Q(X1 ≤ Cg(ρN−k)) = ∞, where g(t) = | log | log t ||β. More-

over, lim
k→∞

k∑

i=[log k]
Q(X1 ≤ Cg(ρN−i )) − D log k = ∞ for any D > 0 and

C > (3t0)
−β.

Proof. Take C > t
−β
0 , then C−1/β = t > t0. Let z = (t − t0)/2, c = (|β|/ez)β. It

is easy to see that for all x > 0, xezx1/β ≥ c. Hence, xetx1/β = xezx1/β
e(t0+z)x1/β ≥

ce(t0+z)x1/β
. Therefore

EQ[etX
1/β
k ] = E

[ ∑

|σ |=k

lασ Xσ etX
1/β
σ

]

= E
[
XetX1/β

]
≥ cE

[
e(t0+z)X1/β

]
= ∞.

Let h(x) = Q(etX
1/β
1 ≥ x), by [14], theorem 1.15,

∞∫

0
h(x)dx = ∞. Since h(x)

is non-increasing, we obtain that for all 0 < ρ < 1 and N > 1,
∞∑

k=1
h(| log ρ| +

k log N) =
∞∑

k=1
Q
(
X1 ≤ Cg(ρN−k)

) = ∞.
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Take C > (3t0)
−β and let h(x) = Q

(
eC−1/βX1/β/3 ≥ x 3√log N

)
. By the argu-

ment above,
∞∫

0
h(x)dx = ∞. By lemma 3.2 in [7],

lim
k→∞

3√
k∫

3√[log k]

h(x)x2dx − D log k = ∞.

The result now follows by easy computation. ��
Part of the next lemma can be also found in [12] or [22].

Lemma 3. In case of polynomial decay with parameter β, there exists K1 > 0
such that for all k ∈ N, Q(Xk ≤ a) = E

[
X1{X≤a}

] ≥ K1a
β+1 for all a ∈ (0, 1).

In case of exponential decay with parameter β there exists K1 > 0 such that
Q(X ≤ a) ≥ e−K1a

1/β
for all a ∈ (0, 1).

Proof. Let z ∈ (0, 1), then

Q(Xk ≤ a) = E

[ ∑

|σ |=k

lασ Xσ 1{Xσ ≤a}
]

= E
[
X1{X≤a}

]

≥ E
[
X1{az<X≤a}

] ≥ az(P (0 < X ≤ a) − P(0 < X ≤ az)).

In case of polynomial decay, take z < (C1/C2)
1/β . Then Q(Xk ≤ a) ≥

az(C1a
β − C2a

βzβ) = aβ+1z(C1 − C2z
β).

In case of exponential decay choose 0 < z < min{1/2, (3C1/2C2)
β}. Then

Q(X ≤ a) ≥ aze−C1a
1/β

(1 − ea1/β (C1−C2z
1/β )) ≥ K3ae−C1a

1/β
for some K3 > 0

for all a ∈ (0, 1). Thus there exists K1 > 0 such that Q(X ≤ a) ≥ e−K1a
1/β

for all
a ∈ (0, 1). ��
Theorem 1. Fix c > EQ[| log T1|] and let N = ec. There are M1, M2 > 0 such
that M1N

kα ≤ E[card{σ |N−k−1 < lσ ≤ N−k}] ≤ M2N
kα for all k ∈ N. In

particular, lim
k→∞

∞∑

j=1
Q(N−k−1 < lj ≤ N−k) > 0.

Proof. Fix k ∈ N. The upper bound was proved in [3], lemma 2. To make the lower
estimate we also begin as in that lemma:

N−kαE[card{σ |N−k−1 < lσ ≤ N−k}] = N−kα
∞∑

j=1

∑

|σ |=j

E[1{N−k−1<lσ ≤N−k}]

= N−kα
∞∑

j=1

E

[ ∑

|σ |=j

lασ Xσ l−α
σ 1{N−k−1<lσ ≤N−k}

]

≥
∞∑

j=1

EQ

[
1{N−k−1<lj ≤N−k}

]

=
∞∑

j=1

Q(N−k−1 < lj ≤ N−k) = EQ[card{j ∈ N : kc ≤ | log lj | < (k + 1)c}]
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=
∞∑

m=1

Q(card{j ∈ N : kc ≤ | log lj | < (k + 1)c} ≥ m)

≥ 1 − Q(card{j ∈ N : kc ≤ | log lj | < (k + 1)c} = 0).

Let τ = sup{j : | log lj | < kc} + 1. It is easy to see that EQ[τ ] < ∞. Now
using Markov’s inequality and Wald’s identity, we obtain

Q(card{j ∈ N : kc ≤ | log lj | < (k + 1)c} = 0) = Q(| log lτ | ≥ (k + 1)c)

≤ Q(| log lτ | − | log lτ−1| > c) ≤ EQ[| log lτ | − | log lτ−1|]/c
= EQ[τ ]EQ[| log T1|] − EQ[τ − 1]EQ[| log T1|]

c
= EQ[| log T1|]/c < 1.

��

Proposition 1. The series
∞∑

k=1
Q
(
lαk Xk+s0 < Cϕ(lkρ)

)
diverges for all C > 0 in

polynomial case, and for all C > ρ−αeαEQ[| log T1|]t−β
0 in exponential case.

Proof. In exponential case we can find N > eEQ[| log T1|] such that C > Nαρ−αt
−β
0 .

Conditioning on the value of lk, we obtain

∞∑

k=1

Q(lαk Xk+s0 < Cϕ(lkρ))

≥
∞∑

k=1

∞∑

j=1

Q(lαk Xk+s0 <Cϕ(lkρ)|N−j−1 < lk ≤ N−j )Q(N−j−1 < lk ≤ N−j )

≥
∞∑

k=1

∞∑

j=1

Q(N−jαXk+s0 < Cϕ(N−j−1ρ))Q(N−j−1 < lk ≤ N−j )

=
∞∑

k=1

∞∑

j=1

Q(X1 < CN−αραg(N−j−1ρ))Q(N−j−1 < lk ≤ N−j )

=
∞∑

j=1

Q(X1 < CN−αραg(N−j−1ρ))

∞∑

k=1

Q(N−j−1 < lk ≤ N−j )

≥ M1

∞∑

j=1

Q(X1 < CN−αραg(N−j−1ρ)) = ∞,

where M1 is taken from theorem 1, and the latter sum diverges in case of polyno-
mial decay by lemmas 1 and 3, and in case of exponential decay by lemma 2 and
by the choice of C. ��

Lemma 4. For all k ∈ N and m ≥ k + s0, Xm is independent of R̂k.
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Proof. Let B ⊂ R be a Borel set.

Q({Xm ∈ B} ∩ R̂k) = E

[ ∑

|σ |=m

lασ Xσ 1{Xσ ∈B}1R̂σ |k

]

=
∑

|σ |=m

E
[
Xσ 1{Xσ ∈B}

]
E
[
lασ 1

R̂σ |k

]

= E
[
X1{X∈B}

]
E

[ ∑

|σ |=m

lασ Xσ 1
R̂σ |k

]

= Q(Xk ∈ B)Q(R̂k). ��
Suppose further that the following assumption holds. For random self-similar

sets instead of reduction ratios in the assumption we use corresponding similarity
maps and their Lipschitz constants.

Assumption 1. There exist p0, ρ > 0, s0 ≥ 0 and a collection of events Rσ in the
σ -algebra generated by random vectors (Tτ∗1, . . . , Tτ∗n), σ ≺ τ, |τ | < |σ | + s0,

such that Rσ ∩ {Kσ �= ∅} �= ∅, for every w ∈ Rσ ∩ {Kσ �= ∅} there exists x ∈ Kσ

with dist(x, ∂Jσ ) ≥ ρlσ , and
∫

Rσ

∑

|τ |=s0

s0∏

i=1
T α

σ∗τ |i dP = p0.

Proposition 2. Random self-similar sets satisfy assumption 1 under random strong
open set condition.

Proof. Denote by Ŝσ = (Sσ∗1, Sσ∗2, . . . , Sσ∗n), σ ∈ �∗ a sequence of i.i.d. ran-
dom vectors of similarity maps, such that for j = 1, 2, . . . , n, Sσ∗j (Jσ ) = Jσ∗j

provided Jσ �= ∅. Let S̃σ : � → [0, 1]n+···+ns0 be a random vector consisting
of all vectors Ŝτ with σ ≺ τ, |τ | < |σ | + s0 listed in lexicographical order of
τ. The random strong open set condition for random self-similar sets says that
there exists B ⊂ [0, 1]n+···+ns0 such that P(S̃∅ ∈ B|K �= ∅) > 0 and for ev-
ery w ∈ S̃−1

∅ (B) ∩ {K �= ∅} there exists x ∈ K(w) such that dist(x, ∂J ) ≥ ρ0.

Denote the Lipschitz constant of a similarity map S by |S|, let Rσ = S̃−1
σ (B),

and p0 = ∫

S̃−1
∅ (B)

∑

|τ |=s0

|Sτ |αdP > 0. Since the random vectors S̃σ have the same

distribution, we have

E

[ ∑

|τ |=s0

s0∏

j=1

|Sσ∗τ |i |α1Rσ

]

=
∫

S̃−1
σ (B)

∑

|τ |=s0

s0∏

j=1

|Sσ∗τ |i |αdP

=
∫

S̃−1
∅ (B)

∑

|τ |=s0

s0∏

j=1

|Sτ |i |αdP = p0. ��

Let Rk = {(η, w) ∈ �N × �|w ∈ Rη|k } = ⋃

|σ |=k

A(σ) × Rσ ⊂ R̂k. Fix ρ so

that assumption 1 holds, fix an arbitrary C > 0 in case of polynomial decay and
C > (3t0)

−βρ−αeαEQ[| log T1|] in case of exponential decay.
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Lemma 5. For every σ ∈ �∗, E
[
Xσ 1Rσ

] = p0. For every k ∈ N, Q(Rk) = p0.

Proof.

E
[
Xσ 1Rσ

] = E

[ ∑

|τ |=s0

s0∏

i=1

T α
σ∗τ |i Xσ∗τ 1Rσ

]

=
∫

Rσ

∑

|τ |=s0

s0∏

i=1

T α
σ∗τ |i dP = p0.

Finally, Q(Rk) = E

[
∑

|σ |=k

lασ Xσ 1Rσ

]

= p0E

[
∑

|σ |=k

lασ

]

= p0. ��

Lemma 6. For j ≤ k, lj is independent of Rk.

Proof. Suppose B ⊂ R, then

Q({lj ∈ B} ∩ Rk) = E

[ ∑

|σ |=k

lασ Xσ 1Rσ 1{lσ |j ∈B}
]

=
∑

|σ |=k

E
[
lασ Xσ 1{lσ |j ∈B}

]
E
[
Xσ 1Rσ

] = p0Q(lj ∈ B).

��
For k ∈ N, let Bk = {lαk Xk+s0 ≤ Cϕ(lkρ)} ∩ Rk. Since Rk is independent of lk

and Xk+s0 , we have Q(Bk) = p0Q(lαk Xk+s0 ≤ Cϕ(lkρ)), and
∞∑

k=1
Q(Bk) = ∞ by

proposition 1. We would like to prove that Bk occurs i.o. Q-almost surely. To do
that in polynomial case, we use Borel-Cantelli lemma generalised by Ortega and
Wschebor in [16]. The exponential case requires another version of Borel-Cantelli
lemma by Talagrand ([20]). For the latest results and a thorough review of what has
been done in this direction the reader is referred to an article of Petrov ([19]).

Extended Borel-Cantelli lemmas. 1. Let {Bk}∞k=1 be a sequence of events in a

probability space such that
∞∑

k=1
Q(Bk) = ∞, and

lim
k→∞

∑

1≤i<j≤k

(
Q(BiBj ) − Q(Bi)Q(Bj )

)

(∑k
i=1 Q(Bi)

)2 ≤ 0, (1)

then Q
(
lim Bk

) = 1.

2. Let {Bk}∞k=1 be a sequence of events in a probability space. If there exist positive
constants M , ε, and positive integers k0, J such that for k0 ≤ j < J,

J∑

i=j+1

Q(Bj ∩ Bi) ≤ Q(Bj )



M + (1 + ε)

J∑

i=j+1

Q(Bi)



 (2)
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and
J∑

i=k0

Q(Bi) ≥ (1 + 2M)/ε, (3)

then

Q

( J⋃

i=k0

Bi

)

≥ 1/(1 + 2ε).

Let δ be a positive number. For k < m and v ∈ N, let Nv
k,m = {(η, w) ∈ �N ×

�|card{τ ∈ �m \ {η|m} : η|k ≺ τ, lτ ≥ δm−klη|k and Xτ > 0} = v}. For σ ∈ �m,

let Nv
k,σ = {w|card{τ ∈ �m \ {σ } : σ |k ≺ τ, lτ ≥ δm−klσ |k and Xτ > 0} = v}.

Lemma 7. Q(Nv
k,m) = Q(Nv

0,m−k).

Proof.

Q(Nv
k,m) = E

[ ∑

|σ |=m

lασ Xσ 1Nv
k,σ

]

= E

[ ∑

|σ |=m

lασ 1Nv
k,σ

]

=
∑

|σ |=k

E
[
lασ
]
E

[ ∑

|τ |=m−k

m−k∏

i=1

T α
σ∗τ |i 1Nv

k,σ∗τ

]

=
∑

|σ |=k

E
[
lασ
]
E

[ ∑

|τ |=m−k

lατ 1Nv
0,τ

]

=
∑

|σ |=k

E
[
lασ
]
Q(Nv

0,m−k) = Q(Nv
0,m−k). ��

Now consider a function v : N → N and denote Nk,m = {(η, w) ∈ �N ×
�|card{τ ∈ �m \ {η|m} : η|k ≺ τ, lτ ≥ δm−klη|k and Xτ > 0} ≤ v(m − k)}, and
for σ ∈ �m, let Nk,σ = {w|card{τ ∈ �m \{σ } : σ |k ≺ τ, lτ ≥ δm−klσ |k and Xτ >

0} ≤ v(m − k)}.
Lemma 8. If there exists δ > 0 such that P(Ti ≥ δ|Ti �= 0) = 1 for all i and

v(m) ≤ µm
0 for some µ0 < µ, then there exists M ′ > 0 such that

∞∑

m=1
Q(N0,m) <

M ′.
Proof.

Q(N0,m) = E

[ ∑

|σ |=m

lασ Xσ 1N0,σ

]

= E

[ ∑

|σ |=m

lασ 1{Xσ >0}1{lσ ≥δm}
∑

A⊂�m\{σ }
card(A)≤v(m)

∏

τ∈A

1{lτ ≥δm,Xτ >0}
∏

τ∈�m\A
1{lτ <δm or Xτ =0}

]

= E

[ ∑

|σ |=m

lασ

∑

σ∈A⊂�m

card(A)≤v(m)+1

∏

τ∈A

1{lτ ≥δm}1{Xτ >0}
∏

τ∈�m\A
1{lτ =0 or Xτ =0}

]
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≤
v(m)+1∑

j=1

∑

A⊂�m

card(A)=j

jP (K �= ∅, ∀τ ∈ A, lτ ≥ δm, and ∀τ ∈ �m \ A, lτ = 0 or Xτ = 0)

≤ (v(m) + 1)P (1 ≤ card{τ ∈ �m|lτ > 0} ≤ v(m) + 1 and K �= ∅)

+(v(m) + 1)P (card{τ ∈ �m|Xτ = 0} ≥ nm − v(m) − 1)

≤ (v(m) + 1)P (K �= ∅)P (1 ≤ card{τ ∈ �m|lτ > 0} ≤ v(m) + 1|K �= ∅)

+(v(m) + 1)
nmP (X = 0)P (X > 0)

(nmP (X > 0) − v(m) − 1)2

≤ P(K �= ∅)
(v(m) + 1)E

[
(card{τ ∈ �m|lτ > 0} − µm)2

]

(µm − v(m) − 1)2

+(v(m) + 1)
nmP (X = 0)P (X > 0)

(nmP (X > 0) − v(m) − 1)2
� v(m) + 1

µm
+ v(m) + 1

nm

as we know from [1]. The result follows. ��

Later we will choose µ0 < µ and put v(m) = µm
0 . To start the proof that

conditions of extended Borel-Cantelli lemmas hold in our case, we representQ(Bk∩
Bm) = Q(Bk ∩Bm ∩Nk+s0,m)+Q(Bk ∩Bm ∩Nk+s0,m). Suppose that the second
assumption holds. Note that it implies Q(lk = δk) = 1.

Assumption 2. There exists δ > 0 such that P(Ti = δ|Ti �= 0) = 1 for all i.

Lemma 9. Q(Bk ∩ Bm ∩ Nk+s0,m) ≤ Q(Bm)Q(Nk+s0,m).

Proof. Fix b > 0, then

Q({Xm+s0 ≤ b} ∩ Rm ∩ Nk+s0,m)

= E

[ ∑

|σ |=m+s0

lασ Xσ 1{Xσ ≤b}1Rσ |m 1Nk+s0,σ |m

]

= Q(Xm+s0 ≤ b)
∑

|σ |=m

E
[
lασ 1Nk+s0,σ

]
E

[ ∑

|τ |=s0

1Rσ

s0∏

i=1

T α
σ∗τ |i

]

= Q(Xm+s0 ≤ b)p0E

[ ∑

|σ |=m

lασ Xσ 1Nk+s0,σ

]

= Q({Xm+s0 ≤ b} ∩ Rm)Q(Nk+s0,m).
��

Remark. If the function g is monotone, lemma 9 can be proven in the form Q(Bk ∩
Bm ∩Nk+s0,m) ≤ Q(Bk)Q(Nk+s0,m) without assumption 2, and that is enough for
the purposes of the extended Borel-Cantelli lemma.

For natural numbers k + s0 < m, let Yk,m = Xk+s0 − Xm

m∏

j=k+s0+1
T α

j . For a

code σ of length at least m, let Yk,σ = Xσ |k+s0
− Xσ |m

m∏

j=k+s0+1
T α

σ |j . Then it is

easy to see that Yk,σ and Xτ with σ |m ≺ τ ≺ σ are P -independent, which results
in Q-independence of Yk,m and Xm.
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Lemma 10. Q(Bk ∩ Bm ∩ Nk+s0,m) = p0Q(Bm)Q({Yk,m ≤ Cραg(lkρ)} ∩
Nk+s0,m).

Proof. Fix a, b > 0, then

Q({Yk,m ≤ a} ∩ Rk ∩ {Xm+s0 ≤ b} ∩ Rm ∩ Nk+s0,m)

= E

[ ∑

|σ |=m+s0

lασ Xσ 1{Yk,σ ≤a}1{Xσ ≤b}1Rσ |k 1Rσ |m 1Nk+s0,σ |m

]

= Q({Xm+s0 ≤ b} ∩ Rm)E

[ ∑

|σ |=m

lασ Xσ 1{Yk,σ ≤a}1Rσ |k 1Nk+s0,σ

]

= Q({Xm+s0 ≤ b} ∩ Rm)

×
∑

|σ |=k+s0

E
[
lασ 1Rσ |k

]
E

[ ∑

|τ |=m−k−s0

Xσ∗τ 1{Yk,σ∗τ ≤a}1Nk+s0,σ∗τ

m−k−s0∏

i=1

T α
σ∗τ |i

]

= p0Q({Xm+s0 ≤ b} ∩ Rm)E

[ ∑

|σ |=m

lασ Xσ 1{Yk,σ ≤a}1Nk+s0,σ

]

= p0Q({Xm+s0 ≤ b} ∩ Rm)Q({Yk,m ≤ a} ∩ Nk+s0,m). ��
Lemma 11. In case of polynomial decay for every ε ∈ (0, 1) there exists Mε ∈
(0, 1) so that Q(X ≤ a(1 + Mε)) ≤ (1 + ε)Q(X ≤ a) for all a ∈ (0, 1/2). In
case of exponential decay there exists W > 0 such that for every ε ∈ (0, 1), if we
let Mε,a = εW−1e−K1a

1/β
, then Q(X ≤ a(1 + Mε,a)) ≤ (1 + ε)Q(X ≤ a) for all

a ∈ (0, 1/2).

Proof. By lemma 3, Q(X ≤ a) =
a∫

0
tP (X ∈ dt). From [1] we know that P -density

of X, wP (t), is continuous on (0, 1].
In polynomial case by theorem 1 in [4], C1t

β−1 ≤ wP (t) ≤ C2t
β−1 for all

t ∈ (0, 1). Suppose that M ∈ (0, 1), then there exists ya ∈ [a, a(1 + M)] such
that Q(X ≤ a(1 + M)) − Q(X ≤ a) = aMyawP (ya) ≤ MC2(2a)β+1. Thus by
lemma 3 it is enough to choose Mε < min{ε2−β−1K1/C2, 1}.

In exponential case we know from [1] that wP (t) is uniformly continuous. Thus
the Q-density of X, wQ(t), is bounded on [0, 1]. Denoting W = sup{wQ(t)|t ∈
[0, 1]} < ∞, we can estimate

Q(X ≤ a(1 + Ma,ε)) − Q(X ≤ a) ≤ aMε,aW < εe−K1a
1/β ≤ εQ(X ≤ a).

��
Proposition 3. In case of polynomial decay, for an appropriate choice of µ0 for
any ε ∈ (0, 1) there exists a finite set Aε ⊂ N such that the inequality Q({Yk,m ≤
a} ∩ Nk+s0,m) ≤ (1 + ε)Q(Xk ≤ a) holds for all a ∈ (0, 1/2) and all m > k,

where m − k �∈ Aε. In case of exponential decay for any ε ∈ (0, 1), Q(Yk,m ≤
a) ≤ (1+ε)Q(Xk ≤ a) for all m−k > max{s0,

| log a|+| log(Mε/3,aε/3)|+| log E[X2]|
α| log δ| }.
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Proof. We will consider only m > k + s0, thus 1, . . . , s0 ∈ Aε. Take an ε > 0.

In case of polynomial decay we choose M = Mε/3 by lemma 11. In case of expo-
nential decay we let M = Mε/3,a using the same lemma. Suppose that m − k ≥
| log a|+| log(Mε/3)|+| log E[X2]|

α| log δ| . Then

Q({Yk,m ≤ a} ∩ Nk+s0,m) ≤ Q(Yk,m ≤ a)

= Q(Yk,m ≤ a, δα(m−k)Xm ≤ aM) + Q(Yk,m ≤ a, δα(m−k)Xm > aM)

≤ Q(Xk ≤ a(1 + M)) + Q(Yk,m ≤ a)Q(δα(m−k)Xm > aM)

≤ (1 + ε/3)Q(Xk ≤ a) + Q(Yk,m ≤ a)EQ[X]δα(m−k)/aM

≤ (1 + ε/3)Q(Xk ≤ a) + Q(Yk,m ≤ a)ε/3.

Thus Q(Yk,m ≤ a) ≤ Q(Xk ≤ a)(1 + ε/3)/(1 − ε/3) < (1 + ε)Q(Xk ≤ a).

To perform the estimate when m− k <
| log a|
α| log δ| in polynomial case, assume that

m − k is large enough so that v(m − k) = µm−k
0 > max{4, 4/β}. Let {X′

i}i∈N be a
sequence of i.i.d.r.v. distributed as X. Let j = m − k − s0 and note that

Q({Yk,m ≤ a} ∩ Nk+s0,m)

= E

[ ∑

|σ |=j

lασ Xσ 1{Y0,σ ≤a}1N0,σ

]

≤ E

[ ∑

|σ |=j

lασ 1N0,σ
1{

δ(m−k)α
v(m−k)∑

i=1
X′

i≤a
}

v(m−k)∏

i=1

1{X′
i>0}

]

≤ P

(

0 <

v(m−k)∑

i=1

X′
i ≤ a/δα(m−k)

)

≤ P(0 < X ≤ a/δα(m−k))v(m−k). (4)

Now take r > 4β + 4, and assume that µ0 has been chosen to satisfy the inequal-

ity µ
4β+4

r < µ0 < µ. Suppose that m − k ≤ | log a|
2α| log δ| − | log C2−log K1|

4α| log δ| . From
inequality (4) we see that

Q({Yk,m ≤ a} ∩ Nk+s0,m) ≤ P(0 < X ≤ a/δα(m−k))v(m−k)

≤ C2a
βv(m−k)δ−αβ(m−k)v(m−k) ≤ K1a

β+1 ≤ Q(X ≤ a).

Now denote by � the distribution function of standard normal random variable
and by ς the P -variance of X. Again by inequality (4) we obtain

P({Yk,m ≤ a} ∩ Nk+s0,m)

≤ P

(

0 <

v(m−k)∑

i=1

X′
i ≤ a/δα(m−k)

)

≤ P

( v(m−k)∑

i=1

X′
i ≤ 1

)

= P








v(m−k)∑

i=1
X′

i − v(m − k)

ς
√

v(m − k)
≤ 1 − v(m − k)

ς
√

v(m − k)








.
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Since X has finite moment of order r, we can apply a theorem about non-uniform
estimate of speed of convergence in central limit theorem (see, e.g. [18]). Using
that v(m − k) > 2, we continue

≤ �
(
−µ

(m−k)/2
0 /2ς

)
+ C3µ

−(m−k)r/2
0 ≤ C4µ

−(m−k)r/2
0 (5)

for some constants C3, C4 > 0 that depend only on distribution of X and r and all
m − k large enough. Since log µ0 >

4β+4
r

log µ by the choice of µ0 and log µ =
α| log δ|, we see that the last term in inequality (5) does not exceed K1a

β+1 and thus
Q(X ≤ a), if m − k ≥ 2(β+1)| log a|

r log µ0
+ 2| log C4−log K1|

r log µ0
≥ | log a|

2α| log δ| + 2| log C4−log K1|
r log µ0

.

The result follows. ��

Remark. Boundedness of the Q-density of X in a neighbourhood of 0 is sufficient
for the proofs of lemma 11 and proposition 3.

Lemma 12. Under assumption 2 Q(lim Bk) = 1.

Proof. In case of polynomial decay without loss of generality we may assume that
lim0+ g = 0. Thus there exists k0 ∈ N such that in any case Cραg(lkρ) < 1/2 for
all k ≥ k0. Take ε > 0.

Suppose that we are in case of polynomial decay. Since
∞∑

i=1
Q(Bi) = ∞, it

suffices to prove inequality (1) when summation starts with k0. Denote by s1 the
cardinality of set Aε/2 from proposition 3. By lemmas 9, 7 and 8,

�1,k =
∑

k0≤i<j≤k
i+s0<j

Q(Bi ∩ Bj ∩ Ni+s0,j )

≤
k∑

j=k0+s0+1

Q(Bj )

j−s0−1∑

i=k0

Q(Ni+s0,j ) ≤ M ′
k∑

j=k0

Q(Bj ).

By proposition 3 and lemma 10,

�2,k =
∑

k0≤i<j≤k
j−i �∈Aε/2

(
Q(Bi ∩ Bj ∩ Ni+s0,j ) − Q(Bi)Q(Bj )

)

≤ ε

2

∑

k0≤i<j≤k

Q(Bi)Q(Bj ) ≤ ε

2




k∑

j=k0

Q(Bj )





2

.
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Obviously, �3,k = ∑

k0≤i<j≤k
j−i∈Aε/2

Q(Bi ∩ Bj ) ≤ s1

k∑

j=k0

Q(Bj ). Thus

∑

k0≤i<j≤k

(
Q(BiBj ) − Q(Bi)Q(Bj )

)

(∑k
i=k0

Q(Bi)
)2 ≤ �1,k + �2,k + �3,k

(∑k
i=k0

Q(Bi)
)2

≤ ε/2 + (s1 + M ′)




k∑

i=k0

Q(Bi)





−1

< ε

for all sufficiently large k by proposition 1, and thus condition (1) of the first
extended Borel-Cantelli lemma is satisfied.

Now suppose that we are in case of exponential decay, k0 > | log ρ|. By prop-
osition 3 and lemma 10, there exist constants D1 = D1(ε, ρ, C) > s0 and D2 =
D2(ε, ρ, C) such that for all j, i ≥ k0, j − i > D1 + D2 log i implies that Q(Bi ∩
Bj ∩Ni+s0,j ) ≤ (1 + ε)Q(Bi)Q(Bj ). By lemma 2 and observation after lemma 6,

for any k1 > ek0 there exists k > ek1 such that
k∑

i=[log k]
Q(Bi) − 2D2

ε
log k >

(2 + 2D1 + 2M ′)/ε. By remark after lemma 9, for every [log k] ≤ j < k

k∑

i=j+1

Q(Bj ∩ Bi) ≤ Q(Bj )



D1 + M ′ + D2 log k + (1 + ε)

k∑

i=j+1

Q(Bi)



 ,

and we see that conditions (2) and (3) of the second extended Borel-Cantelli lemma

are satisfied, thus Q

( ∞⋃

i=k1

Bi

)

≥ Q

(
k⋃

i=[log k]
Bi

)

≥ 1/(1 + 2ε). The result fol-

lows. ��
Lemma 13. Assume that Q(lim Bk) = 1, then there exists a sequence of natural
numbers {J̃ (k)}∞k=1, J̃ (k) ≥ k + s0, such that if we define for k ∈ N and w ∈ �

Ak(w) = {σ ∈ �J̃(k)| for all j = k + s0, . . . , J̃ (k)

Xσ |j > ραCg(ρlσ |j−s0
) or w �∈ Rσ |j−s0

or Kσ |j−s0
= ∅},

then there exists a sequence of natural numbers {ki}∞i=1 such that

lim
i→∞

∑

σ∈Aki

lασ Xσ = 0 a.s.

Proof. For j ∈ N, let R̃j = {(η, w) ∈ �N × �|Kη|j (w) �= ∅}. We see that

Q(R̃j ) = E

[ ∑

|σ |=j

lασ Xσ 1{Kσ �=∅}
]

= E

[ ∑

|σ |=j

lασ Xσ 1{lσ >0}1{Xσ >0}
]

= E

[ ∑

|σ |=j

lασ Xσ

]

= 1.
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It is enough to show that lim
k→∞

E

[
∑

σ∈Ak

lασ Xσ

]

= 0. Indeed,

E

[ ∑

σ∈Ak

lασ Xσ

]

= E

[ ∑

|σ |=J̃ (k)

lασ Xσ 1{σ∈Ak}
]

≤ E

[ ∑

|σ |=J̃ (k)

lασ Xσ

J̃ (k)∏

j=k+s0

1{Xσ |j (w)>ραCg(ρlσ |j−s0
) or w �∈Rσ |j−s0

or Kσ |j−s0
=∅}
]

= EQ




J̃ (k)∏

j=k+s0

1{Xj >ραCg(ρlσ |j−s0
) or (η,w)�∈Rj−s0 or (η,w)�∈R̃j−s0 }





= Q

( J̃ (k)−s0⋂

j=k

Bj ∩ R̃j

)

= 1 − Q

( J̃ (k)−s0⋃

j=k

Bj ∩ R̃j

)

= 1 − Q

( J̃ (k)−s0⋃

j=k

Bj

)

.

Therefore it suffices to choose J̃ (k) so that Q

(
J̃ (k)−s0⋃

j=k

Bj

)

≥ 1 − 1/k. ��

Theorem 2. Suppose Q(lim Bk) = 1 and that the construction satisfies assump-
tion 1, then

1. If C1a
β ≤ P(0 < X ≤ a) ≤ C2a

β for all a ∈ (0, 1) and ϕ(t) = tαg(t) is

a function, then
∫

0+
gβ+1(s)

s
ds = +∞ implies P(Pϕ(K(w)) = +∞|K(w) �=

∅) = 1.
2. If C1a

1/β ≤ − log P(0 < X ≤ a) ≤ C2a
1/β for all a ∈ (0, 1), then for

ϕ(t) = tαg(t) = tα| log | log t ||β , P(Pϕ(K(w)) > 0|K(w) �= ∅) = 1.

Proof. Suppose that the conclusion of the theorem is false for the ϕ-packing pre-
measure, which we denote by Pϕ

0 . Then in case 1 we can find M > 0 such that
p = P(Pϕ

0 (K(w)) < M|K(w) �= ∅) > 0, and in the second case we let p =
P(Pϕ

0 (K(w)) = 0|K(w) �= ∅) > 0. Since ess infX
{K �=∅}

= 0, there exists ε > 0 such

that P(X > ε|K �= ∅) > 1 − p/4. In case 1 choose C < ε/(2Mns0), and in
case 2 choose C > (3t0)

−βeαEQ[| log T1|]ρ−α. Fix w such that the following three
conditions hold:

∀σ ∈ �N lim
k→∞

lσ |k (w) = 0,

for every maximal antichain � ⊂ �∗, ε < X(w) =
∑

σ∈�

lασ (w)Xσ (w) < ∞,

and lim
i→∞

∑

σ∈Aki

lσ (w)αXσ (w) = 0,

where ki and Aki
are from lemma 13.
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Take an arbitrary γ > 0. Then there exists k0 ∈ N such that for all σ ∈
�N and all j ≥ k0 lσ |j (w) < γ. Next we choose i ∈ N such that ki ≥ k0,∑

σ∈Aki

lασ (w)Xσ (w) < ε/2. Let

A = {σ ∈ �N| for all j = ki + s0, . . . , J̃ (ki)

Xσ |j > ραCg(lσ |j−s0
ρ) or w �∈ Rσ |j−s0

or Kσ |j−s0
= ∅}. (6)

For σ ∈ �N \ A, let k(σ ) = min{j |ki + s0 ≤ j ≤ J̃ (ki) and condition in
line (6) fails}. Set �1 = {σ |k(σ ) : σ ∈ �N \ A}, �2 = {σ |

J̃ (ki )
: σ ∈ A}. Then

�1 ∪ �2 is a maximal antichain. For σ ∈ �1, there exists xσ ∈ Kσ ||σ |−s0
such

that dist(xσ , ∂Jσ ||σ |−s0
) ≥ lσ ||σ |−s0

ρ. Thus we can produce a packing of K by
B(xσ , lσ ||σ |−s0

ρ), σ ∈ �1. Since for each σ0 = σ ||σ |−s0 , there can be no more
than ns0 elements in �1 extending code σ0, we obtain with probability greater than
1 − p/4 for every γ > 0 :

Pϕ
0,γ (K(w)) ≥ n−s0

∑

σ∈�1

ϕ(lσ ||σ |−s0
ρ) = n−s0ρα

∑

σ∈�1

lασ ||σ |−s0
g(lσ ||σ |−s0

ρ)

≥ n−s0C−1
∑

σ∈�1

lασ Xσ ≥ n−s0C−1
(∑

σ∈�

lασ Xσ −
∑

σ∈�2

lασ Xσ

)

= n−s0C−1
(

X −
∑

σ∈�2

lασ Xσ

)

>

{
M in case 1

n−s0C−1ε/2 > 0 in case 2
.

This is a contradiction. Now using Baire’s category theorem we can spread the
result obtained for ϕ-packing premeasure onto ϕ-packing measure. ��
Remark. The proofs of theorem 2 and theorem 6 in [3] go through for random
recursive constructions in any complete separable metric space. Proposition 1 and
theorem 2 suggest that the result remains valid without assumption 2.

3. Examples

Example 1. Mandelbrot percolation.

Suppose the square is divided into n2 equal subsquares and each survives with
probability p. Inside each square that survives the procedure repeats. The fractal
dimension in this case is α = 2+(log p/ log n).The exact Hausdorff gauge function
is tα(| log | log t ||)1−(α/2) as determined in [7], example 6.2. By theorem 1 from the
article of Dubuc ([4]), we are in case of polynomial decay with parameter β, where β

is the solution of equation p1µ
β = 1, p1 = P(∃! i : Ti �= 0) = n2p(1−p)n

2−1 and

µ = n2p is the expected number of offspring. In this case β = −1 − log(1−p)n
2−1

log n2p
.

Without loss of generality n ≥ 3. The random strong open set condition is satisfied
with s0 = 1 because with positive probability all offspring touching the bound-
ary of the parent "die out." According to [3], example 1, for the gauge function

ϕ(t) = tαg(t) such that
∫

0+
g(s)β+1

s
ds < ∞, Pϕ(K) = 0 a.s. By theorem 2 and
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lemma 12,
∫

0+
g(s)β+1

s
ds = ∞ implies P(Pϕ(K) = ∞|K �= ∅) = 1, i.e. the exact

packing dimension does not exist.

Example 2. Modified Mandelbrot percolation.

Fix n ∈ N (without loss of generality n ≥ 3) and a probability measure ν

on the power set of {1, ..., n2}. Let J1, ..., Jn2 be a labelling of the partition of
[0, 1] × [0, 1] into congruent subsquares. If the square Jσ has been constructed,
then choose A ⊂ {1, ..., n2} according to ν and let Jσ∗i , i ∈ A be the subsquares
of Jσ obtained by scaling Ji into Jσ via the natural map.

This construction clearly satisfies the random strong open set condition with
s0 = 1, if we can get with positive probability an offspring that does not touch
the boundary of the parent. If all offspring touch the boundary but there is positive
probability of them touching different sides of the square, then the random strong
open set condition is satisfied with s0 = 2. Finally, if all offspring touch only one
side of the square almost surely, then the limit set can be realised as a random
self-similar set on the line with J = [0, 1] that satisfies our condition.

If µ, the essential infimum of the number of offspring, is at least 2, then accord-
ing to Biggins and Bingham([2], proposition 7) we are in the case of exponential
decay with parameter β = 1 − log µ/ log µ, and according to example 4 in [3],
for the gauge function ϕ(t) = tα| log | log t ||β , we have Pϕ(K) < ∞ a.s. By theo-
rem 2 and lemma 12, P(Pϕ(K) > 0|K �= ∅) = 1 and thus ϕ is the exact packing
dimension.

If µ = 1, the picture is the same as in example 1, i.e. there is no exact packing
dimension.

Example 3. Self-avoiding stochastic process on the Sierpinski gasket.

This process was introduced in [10], and its almost sure exact Hausdorff dimen-
sion was found in [9]. Here we give an alternative definition, which allows to apply
already known theorems about random recursive constructions.

Let J be an equilateral triangle of diameter 1 with one vertex O at the origin
and another vertex B at a point with coordinates (1,0). By A we denote the third
vertex of this triangle. J1, J2, J3 are those three equilateral triangles of diameter 1/2
out of 4 partitioning J that have as one of their vertices O, A or B correspondingly.
Then the process is iterated, and we obtain a (non-random) self-similar set which

is called the Sierpinski Gasket, G =
∞⋂

n=1

⋃

σ∈{1,2,3}n
Jσ .

Fix 1 > p > 0. Let fn(x) : [0, 1] → ⋃

σ∈{1,2,3}n
Jσ be a collection of random

maps such that for all σ ∈ {1, 2, 3}n, Jσ ∩ fn([0, 1]) coincides with a side of
triangle Jσ or is empty in the following way:

(i) For n = 0, f0(0) = O, f0(1) = A, and the map f0 is linear.
(ii) Suppose that the random function fn has been defined. For a fixed σ ∈

{1, 2, 3}n, let [aσ , bσ ] = f −1
n (Jσ ∩ fn([0, 1])). Let m ∈ {1, 2, 3} be such that

Jσ∗m∩Jσ ∩fn([0, 1]) = ∅, k ∈ {1, 2, 3} such that f (aσ ) ∈ Jσ∗k and l such that
f (bσ ) ∈ Jσ∗l . Define fn+1 so that fn+1(aσ ) = fn(aσ ), fn+1(bσ ) = fn(bσ ).
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With probability p, we let fn+1((aσ + bσ )/2) = Jσ∗k ∩ Jσ∗l , and with prob-
ability 1 − p, fn+1((aσ + bσ )/3) = Jσ∗k ∩ Jσ∗m and fn+1(2(aσ + bσ )/3) =
Jσ∗m ∩ Jσ∗l . Then the map fn+1 is extended by linearity. Inside all Jσ ’s, the
process of refining of fn to fn+1 is independent.

Finally we define a random map f : [0, 1] → G by setting f (x) = lim
n→∞ fn(x).

It is easy to see that the map f is well defined, continuous, one-to-one and f ([0, 1])
is a random arc that coincides with the limit set of the random recursive construc-
tion obtained by redefining the triangles Jσ so that for each σ, if only two triangles
out of Jσ∗1, Jσ∗2, Jσ∗3 intersect f|σ |+1([0, 1]) along an edge, these two triangles
are denoted by Jσ∗1 and Jσ∗2, and Jσ∗3 = ∅. For each σ in this random recursive
construction, the random vector of reduction ratios is (1/2, 1/2, 0) with probabil-
ity p, and (1/2, 1/2, 1/2) with probability 1 − p. Note that this is not a random
self-similar set.

By theorem 1 in [3] the Hausdorff, packing and Minkowski dimensions of
f ([0, 1]), α = log2(3 − p) almost surely. Assumption 1 is satisfied with s0 = 2,

Rσ = {Tσ∗3 �= 0, Tσ∗33 = 0}, assumption 2 is satisfied with δ = 1/2. By [2], prop-
osition 7, we are in case of exponential decay with parameter β = 1− log2(3−p).

Thus by lemma 12, theorem 2 and theorem 6 from [3], for the gauge function
ϕ(t) = tα| log | log t ||β, P (0 < Pφ(f [0, 1]) < ∞) = 1.

Example 4. Boundary of a Galton-Watson tree.

Let Nσ , σ ∈ �∗, be a sequence of i.i.d.r.v., Nσ ∈ N∪{0}, E[N∅ log N∅] < ∞.

The Galton-Watson tree T corresponding to this sequence is a subset of �∗ such
that ∅ ∈ T and σ ∈ T ⇐⇒ σ ∗ i ∈ T for all 1 ≤ i ≤ Nσ . The boundary, ∂T ,
of the random tree is the set of all infinite paths through the tree. The tree metric
on ∂T is defined by setting for σ, τ ∈ ∂T , dT (σ, τ ) = c|σ∧τ | when σ �= τ and
dT (σ, τ ) = 0 if σ = τ , where c ∈ (0, 1) and σ ∧ τ denotes the largest common
subsequence of σ and τ . We require that E[X2] < ∞.

Assumption 1 is satisfied with s0 = 0 and Rσ = �. Note that because of
s0 = 0 the proof of theorem 2 still holds in case of polynomial decay with param-
eter β if the number of offspring is unbounded and X has finite moment of order
r > 4β +4. The proof of theorem 6 in [3] holds for unbounded number of offspring
under assumption 2.

If the probability of Nσ = 1 is positive, we are in the case of polynomial decay,
and there exists no exact packing dimension. In case the number of offspring has
geometric distribution, P(N∅ = k) = p(1 − p)k for k ∈ N, by a result of Hawkes
in [8] P(0 < X ≤ x) = 1 − e−x for x ≥ 0. The rate of polynomial decay β = 1,

and we obtain the result of Xiao from [22] because X has moments of all orders.
If Nσ ≥ 2 almost surely, then we are in the case of exponential decay with

parameter β = 1 − log µ/ log µ. Thus, by theorem 2 and lemma 12 the exact
packing dimension function is given by ϕ(t) = tα| log | log t ||β. This proves the
conjecture of Liu in [13] who has studied the exact packing dimension of ∂T in
case of exponential decay and made a mistake in the proof of the lower bound as it
was pointed out in [3], theorem 7.
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venpää for helpful discussions.

References

[1] Athreya, K.B., Ney, P.E.: Branching Processes. Springer–Verlag, 1972
[2] Biggins, J.D., Bingham, N.H.: Large deviations in the supercritical branching process.

Adv. Appl. Probab. 25, 757–772 (1993)
[3] Berlinkov, A., Mauldin, R.D.: Packing measure and dimension of random fractals. J.

Theoret. Probab. 15, 695–713 (2002)
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