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Abstract. For a given functional Y on the path space, we define the pinning class of the
Wiener measure as the class of probabilities which admit the same conditioning given Y
as the Wiener measure. Using stochastic analysis and the theory of initial enlargement of
filtration, we study the transformations (not necessarily adapted) which preserve this class.
We prove, in this non Markov setting, a stochastic Newton equation and a stochastic Noe-
ther theorem. We conclude the paper with some non canonical representations of Brownian
motion, closely related to our study.
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1. Introduction

Given a constant time horizon T ∈ (0, +∞], we denote by I the interval [0, T ]
(resp. [0, T [) if T < +∞ (resp. T = +∞). We work on the Wiener space of
continuous paths

W = (CT , (Ft )t∈I , (xt )t∈I , P
)

(1) CT is the space of continuous functions f : I → R, such that f (0) = 0
(2) (xt )t∈I is the coordinate process defined by xt (f ) = f (t)

(3) (Ft )t∈I is the natural filtration of (xt )t∈I

(4) P is the Wiener measure.

On W we consider an FT -measurable functional Y and we study the set of prob-
abilities Q on W such that for any A ∈ FT , Q (A | Y ) = P (A | Y ). We call this
set the pinning class of Wiener measure under Y and denote it by RY (P).

This class has been the object of study of previous papers with various ap-
proaches:

(1) In [3] it was proved that RY (P) is the set of laws of weak solutions of stochastic
differential equations (called Conditioned Stochastic Differential Equations)

(2) When T < +∞ and Y = xT , our pinning class coincides with the set of Mar-
kov processes starting from 0 and belonging to the so called reciprocal class
of the Wiener measure (see [13] and references therein). Actually the general
reciprocal class is defined in the same way as the pinning class except that the
conditioning is made by the two functionals x0 and xT . Let us recall that any
element of the reciprocal class enjoys the Markov field property with respect
to time (or is a reciprocal process). If its initial value is deterministic, then it is
Markovian. This is the case here since all elements in RY (P) start at 0.

(3) The use of RY (P) in mathematical finance was developed in [3] and [5], in the
topic of asymmetric information between different insiders.

(4) In the case where Y = xT the invariance of a reciprocal class under some one
parameter families of transformations was investigated in [18]. This study was
based on symmetries for linear second order parabolic p.d.e. Another point of
view based on symmetries for an action functional related to RY (P) provided a
stochastic Noether theorem in [20]. At this point let us mention that symmetries
of Markov processes were also considered with motivation from filtering the-
ory (cf. [6]) and in the framework of potential theory (cf. [11]). These studies
were concerned with global symmetries whereas here we also study local ones
(these two notions are defined in the next paragraph).

The framework of the present paper differs from the above results since for a gen-
eral functional Y the elements of RY (P) are not Markovian. Our tools belong to
Stochastic Analysis and the theory of initial enlargement of a filtration. With these
tools we first associate to RY (P) two families of martingales. The first one is a
consequence of a stochastic Newton equation, the second one of a stochastic Noe-
ther Theorem. These two results provide a stochastic Mechanics interpretation of
RY (P) (see [17] for Newton equation in a reciprocal class). When it is possible,
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we state our results both in the canonical filtration and in the enlarged one. We also
characterize the transformations on the path space which leave RY (P) infinites-
imally invariant. We consider local (resp. global) transformations which preserve
a given element of RY (P) (resp. globally the whole class RY (P)) which we call
symmetries. We allow anticipating transformations since in our non Markov set-
ting, non trivial adapted symmetries may fail to exist. Since we are not in a Markov
setting any longer, we do not rely on the symmetries of an action functional nei-
ther of a partial differential equation. All through the paper we explicit our results
on three examples: Y = yT , the terminal value of a diffusion process (yt )0≤t≤T ,

Y = ∫ T

0 f (s) dxs , the Wiener integral of f , and Y = ∫ +∞
0 e2xs−2µsds (µ > 2),

the exponential functional of the geometric Brownian motion which appears for
instance in finance (Asian options), in optics and in the theory of diffusions in a
random environment. We conclude the paper by showing that our results allow to
recover some non canonical representations: singular linear Volterra transforms (cf.
[1]) and Pitman’s exponential theorem (cf. [15], [4]).

The present paper is organized as follows. Section 2 is devoted to some prelim-
inary results and the description of our basic assumptions. In Section 3 we present
our generalization of the stochastic Newton equation. In Section 4 we investigate
the local symmetries of the pinning class in order to prove a Noether Theorem
in our setting. Section 5 concerns global symmetries; in particular we study the
existence of non adapted symmetries with the techniques of anticipative calculus.
This section ends with non canonical representations. Section 6 ends the paper by
recalling some results of the Markovian setting which are generalized in this paper.

2. Preliminaries and assumptions

We will denote H the Cameron-Martin space associated with W. We recall (see [16]
pp. 26) that the Banach space D

1,n is the closure of the class of smooth cylindric
random variables S with respect to the norm

‖F‖1,n = (
P
(|F |n) + P

(‖DF‖n
L2

)) 1
n ,

where D is the Malliavin’s differential. For a vector field u : W → H, we will
sometimes denote by (δu)t the Skorohod integral process

∫ t

0
dus

ds
dxs (which coin-

cides with Itô classical integral as soon as u is adapted) and by DuF, with F ∈ D
1,2,

the directional derivative
∫ t

0
dus

ds
DsFds.

On W we consider a real valued functional of the trajectories Y ∈ D
1,2 which is

measurable with respect to FT . The law of Y under P shall be denoted PY . More-
over, all through the paper the functional Y is assumed to satisfy the following
conditions:

(A1) The law PY of Y under P is absolutely continuous with respect to the Lebes-
gue measure and the density, which will be denoted by p can be chosen strictly
positive in the interior of the support of PY and continuously differentiable.
Moreover, there exists a version of the regular conditional probabilities given
Y such that the map y → P(· | Y = y), is continuous in the weak topology
of convergence of probability measures.
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(A2) There exists an F−adapted and jointly measurable process

η
y
t , 0 ≤ t < T , y ∈ R

satisfying for any random variable Z bounded and Ft−measurable, t < T ,

and PY − a.e. y ∈ R,

E (Z | Y = y) = E
(
η

y
t Z

)
.

(A3) For PY − a.e. y ∈ R and 0 ≤ t < T , η
y
t ∈ D

1,2, and there exists a
measurable version of the two parameter process

(
Dsη

y
t

)
0≤s,t<T

verifying
for τ < T ,

P

(∫ ∫

[0,τ ]2

(
Dsη

y
t

)2
ds dt

)
< +∞.

Remark 1. Under these assumptions, the topological support of PY is a closed
interval (see [16], 1.2.12) and if, moreover, Y ∈ D

1,n with n > 2, then p is strictly
positive in the interior of this interval (see [16], 2.1.2).

We now turn to the definition of the main object of our study.

Definition 2. We call pinning class of the Wiener measure over the functional Y

the closure in the weak topology (i.e. the topology of convergence in law) of the set
of probabilities

RY (P) = {Q, Q ∼ P, ∀ A ∈ FT , Q (A | Y ) = P (A | Y )}.
Remark 3. (1) RY (P) is a convex set whose extremal points are the probabilities

P (· | Y = y) , y ∈ Supp (PY ) .

(2) In order to justify a careful study of RY (P), let us recall that the elements of
RY (P) are optimal for the following set of variational problems which arise
naturally, for instance in mathematical finance (see [3] and [5]). Let ν be a
probability measure on R which is absolutely continuous with respect to PY .

Consider now a convex function ϕ : R+ → R such that

∫

R

∣∣∣∣ϕ
(

dν

dPY

)∣∣∣∣ dPY < +∞,

and denote by Eν,ϕ the set of probability measures on FT which are absolutely
continuous with respect to P and such that:
(a)

P

(∣∣
∣∣ϕ

(
dQ

dP

)∣∣
∣∣

)
< +∞

(b) The law of Y under Q is ν.
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We have then,

inf
Q∈Eν,ϕ

P

(
ϕ

(
dQ

dP

))
= P

(
ϕ

(
dP

ν

dP

))

where P
ν is the element of RY (P) defined by

P
ν =

∫

R

P (· | Y = y) ν (dy) .

Let us now recall some elements from the theory of initial enlargement of the Itô
filtration F by the functional Y. In what follows, P(F) denotes the predictable
σ -field associated with the filtration F . We shall also denote, slightly abusively,
F ∨ σ (Y ) the filtration F initially enlarged with Y, i.e. the P−completion of⋂

ε>0 (Ft+ε ∨ σ (Y )) , t < T .

Proposition 4. (See [3]) There exists a P(F) ⊗ B(R) measurable process

[0, T [ × � × R → R

( t, ω, y ) → α
y
t (ω)

such that:

(1) For PY − a.e. y ∈ R and for 0 ≤ t < T ,

P

(∫ t

0

(
αy

)2
s
ds < +∞

)
= 1

(2) For PY − a.e. y ∈ R and for 0 ≤ t < T ,

Dt η
y
t = α

y
t η

y
t

(3) For Q ∈RY (P) , the process

xt −
∫ t

0
αY

s ds, t < T

is a Q Brownian motion in the enlarged filtration F ∨ σ (Y ) .

Assumption (A1). implies that we can furthermore chose versions for α and η

which are continuous with respect the variable y. Of course, we shall always use
such versions. Now remember that, according to the following proposition in [3],
RY (P) can be seen as a set of laws of weak solutions of stochastic differential
equations (called Conditioned Stochastic Differential Equations).

Proposition 5. (See [3]) If Q ∈RY (P) , then the process

xt −
∫ t

0

∫
R

α
y
s η

y
s Q (Y ∈ dy)

∫
R

η
y
s Q (Y ∈ dy)

ds, t < T

is a Q standard Brownian motion.
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To conclude this preliminary section, we give some examples of functionals Y

which satisfy the assumptions (A1), (A2), and (A3) and for which the processes(
α

y
t

)
0≤t<T ; y∈R

can be explicitly computed.

Example 6. (See [3] and [9]) Assume that there exist two functions

b : R → R

and

σ : R → R
∗
+

which are infinitely continuously differentiable with bounded derivatives, such that
the solution (yt )0≤t≤T of the stochastic differential equation

yt =
∫ t

0
b (ys) ds +

∫ t

0
σ (ys) dxs (2.1)

satisfies

yT = Y,

then for 0 ≤ t < T , y ∈ Supp PY

η
y
t = pT −t (yt , y)

pT (0, y)

α
y
t = σ (yt )

∂

∂x
ln pT −t (yt , y)

where pt (x, y) is the density with respect of the Lebesgue measure of the semi-
group associated with the diffusion (2.1) .

Example 7. (See [3]) Let f ∈ L2 ([0, T ]) then for the functional

Y =
∫ T

0
f (s) dxs

for 0 ≤ t < T , y ∈ R

η
y
t =

√√√√
∫ T

0 f (s)2 ds
∫ T

t
f (s)2 ds

exp






y2

2
∫ T

0 f (s)2 ds
−

(
y − ∫ t

0 f (s) dxs

)2

2
∫ T

t
f (s)2 ds




 ,

and

α
y
t = y − ∫ t

0 f (s) dxs
∫ T

t
f (s)2 ds

f (t) .
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Example 8. (See [3] and [4]) For the exponential Wiener functional
Y = ∫ +∞

0 e2xs−2µsds (µ > 2), for t ≥ 0 , y > 0

η
y
t = (

ext−µt
)2µ

(
y

y − ∫ t

0 e2xs−2µsds

)1+µ

e

1
2y

− e2xt −2µt

2(y−∫ t
0 e2xs−2µsds) 1∫ t

0 e2xs−2µsds<y
,

and

α
y
t = 2µ − e2xt−2µt

y − ∫ t

0 e2xs−2µsds
.

3. Newton martingales

In this paragraph, our motivation is to give a natural generalization of the following
very simple discussion which starts from a proposition first due to P. Lévy.

Proposition 9. Under the Wiener measure P, the process

Mt := xT − xt

T − t
, t < T

is a martingale in the enlarged filtration F ∨ σ (xT ) .

Let us consider Y = xT . An immediate corollary of the preceding proposi-
tion is that (Mt)0≤t<T is also a martingale in F ∨ σ (xT ) under each probability
Q ∈RY (P). Indeed, for s < t < T ,

Q (Mt | Fs∨σ (xT )) = P (Mt | Fs∨σ (xT )) = Ms.

Hence if Q ∈RY (P) , the process

Nt := Q (Mt | Ft ) , t < T

is a martingale in the filtration F under the probability Q. Now, it is known from
[10] or [20] that if

Q

(∫ T

0
N2

t dt

)
< +∞

(a sufficient condition for that is that the relative entropy of the law of xT under Q

with respect to PY is finite) then the following limits exist in L2

(DQx
)
t

:= lim
h→0+

Q

(
xt+h − xt

h
| Ft

)
, t < T

(
D2

Q
x
)

t
:= lim

h→0+
Q

((DQx
)
t+h

− (DQx
)
t

h
| Ft

)

, t < T
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and, furthermore, from a classical filtering formula that

(DQx
)
t
= Nt, t < T

Hence, as N is a martingale in F under Q, we deduce

D2
Q

x = 0

which is the stochastic analog of the Newton equation

d2x

dt2 = 0

which governs the dynamics of a mobile point in a free potential field in classical
mechanics.

3.1. Newton martingales in the Itô filtration

In order to construct some martingales related to RY (P), we make in this section
the following additional assumption:

Assumption (B). The process (Dt Y )0≤t≤T has a continuous version DY which
satisfies

1. DY �= 0
2. DY

D0Y
is F− adapted.

The following proposition shows that this assumption is not as restrictive as it might
seem.

Proposition 10. Assume that there exist two functions

b : R → R

and

σ : R → R
∗
+

which are infinitely continuously differentiable with bounded derivatives, such that
the solution (yt )0≤t≤T of the stochastic differential equation

yt =
∫ t

0
b (ys) ds +

∫ t

0
σ (ys) dxs

satisfies

yT = Y,

then Assumption B is satisfied.
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Proof. It is well-known (see [16], 2.2.) that, under the assumptions of the proposi-
tion, yT ∈ D

1,2

Dt yT = σ (yt ) exp

[∫ T

t

σ ′ (ys) dxs +
∫ T

t

(
b′ − 1

2

(
σ ′)2

)
(ys) ds

]

so that Assumption B is immediately satisfied since σ never vanishes. ��

Remark 11. Of course, if f ∈ L2 ([0, T ]) is continuous and such that for any
t ∈ [0, T ] , f (t) �= 0, then the Assumption B is satisfied for the functional

Y =
∫ T

0
f (s) dxs

Theorem 12. If Q ∈RY (P) then the process
(

D0Y
Dt Y

∫
α

y
t η

y
t ν(dy)∫

η
y
t ν(dy)

)

0≤t<T
is a Q mar-

tingale (not uniformly integrable in general).

Proof. We prove first our theorem for a dense subset (in the weak topology) of
RY (P) .

Let Q ∈RY (P) defined by

dQ = ξ (Y ) dP

where ξ is a strictly positive continuously differentiable function with bounded
derivative such that

∫
ξ (y) p (y) dy = 1

Let us denote by Zt the density process of Q with respect to P defined by
Zt := dQ

dP
|Ft

. We now compare two different expressions of Zt . By assumption
Zt = P (ξ (Y ) | Ft ). Since ξ (Y ) ∈ D

1,2 the Clark-Ocone formula applies and the
following identity holds:

ξ (Y ) = 1 +
∫ T

0
P (Dsξ (Y ) | Fs) dxs

Moreover from Proposition 5 we deduce that

〈Z, x〉t =
∫ t

0
Zs

∫
R

α
y
s η

y
s Q (Y ∈ dy)

∫
R

η
y
s Q (Y ∈ dy)

ds.

Therefore P-a.s. the following identity holds:

P
(
ξ ′ (Y ) Dt Y | Ft

)

Zt

=
∫
R

α
y
t η

y
t Q (Y ∈ dy)

∫
R

η
y
t Q (Y ∈ dy)

.
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The left hand side of this identity as a process belongs to L1 (Q); the right hand
side can be rewritten using the filtering formula. These two remarks result in:

(DQx
)
t
= Q

(
ξ ′ (Y )

ξ (Y )
Dt Y | Ft

)
.

Hence,

D0Y

Dt Y

(
DQx

)

t
= Q

(
ξ ′ (Y )

ξ (Y )
D0Y | Ft

)

and our result follows.
Let us now prove our statement for an arbitrary Q ∈RY (P) . From the previous

result and assumption (A2), we have for 0 ≤ s ≤ t < T and A ∈ Fs

P

(∫
η

y
t ν (dy)

[
D0Y

Dt Y

∫
α

y
t η

y
t ν (dy)

∫
η

y
t ν (dy)

− D0Y

DsY

∫
α

y
s η

y
s ν (dy)

∫
η

y
s ν (dy)

]

1A

)

= 0

with

ν (dy) = ξ (y) p (y) dy.

Hence,
∫

P

([
η

y
t

D0Y

Dt Y
α

y
t − η

y
s

D0Y

DsY
α

y
s

]
1A

)
ν (dy) = 0.

By taking a sequence ξn such that

ξn (y) p (y) dy →weakly
n→+∞ δy

we deduce

P

([
η

y
t

D0Y

Dt Y
α

y
t − η

y
s

D0Y

DsY
α

y
s

]
1A

)
= 0.

This implies that for Q ∈RY (P)

∫
P

([
η

y
t

D0Y

Dt Y
α

y
t − η

y
s

D0Y

DsY
α

y
s

]
1A

)
Q (Y ∈ dy) = 0.

Hence,

Q

([
D0Y

Dt Y

∫
α

y
t η

y
t Q (Y ∈ dy)

∫
η

y
t Q (Y ∈ dy)

− D0Y

DsY

∫
α

y
s η

y
s Q (Y ∈ dy)

∫
η

y
s Q (Y ∈ dy)

]

1A

)

= 0

which gives the expected result. ��
Now, we would like to rewrite the previous theorem as a stochastic Newton

equation.
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Proposition 13. Let Q ∈RY (P) . Assume that Q is absolutely continuous with
respect to P and that the law QY of Y under Q has a relative entropy with respect
to PY which is finite, i.e.

∫
ln

(
dQY

dPY

)
dQY < +∞

then the following limits exist in L2

(DQx
)
t

:= lim
h→0

Q

(
xt+h − xt

h
| Ft

)
, t < T

(
DQ

(
D0Y

DY
DQx

))

t

:= lim
h→0

Q

( D0Y
Dt+hY

(DQx
)
t+h

− D0Y
Dt Y

(DQx
)
t

h
| Ft

)

, t < T ,

and we have

DQ

(
D0Y

DY
DQx

)
= 0. (3.1)

Proof. It is easily seen that
∫

ln

(
dQY

dPY

)
dQY < +∞

implies
∫

ln

(
dQ

dP

)
dQ < +∞.

Thus, as in Theorem 2.4. of [20],

Q




(∫

R
α

y
t η

y
t Q (Y ∈ dy)

∫
R

η
y
t Q (Y ∈ dy)

)2


 < +∞.

Hence from [10], the following limits exist in L2

(DQx
)
t

:= lim
h→0

Q

(
xt+h − xt

h
| Ft

)
, t < T

and is precisely equal to
∫
R

α
y
t η

y
t Q (Y ∈ dy)

∫
R

η
y
t Q (Y ∈ dy)

which immediately gives the second part of our proposition from the previous
theorem. ��
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Remark 14. (1) It may be of interest to remark that, in all generality, according to
the “méthode des Laplaciens approchés” (see [7]) the bounded variation part A
of a continuous semimartingale X = M+A in a filtration G under a probability
measure Q is:

At = lim
h→0

∫ t

0

Q (Xs+h − Xs | Gs)

h
ds

as soon as the right hand side exists in the weak topology σ
(
L1, L∞)

.

(2) From a mechanical point of view, the term D0Y
DY

in the Newton equation can be
interpreted as a stochastic ”friction” term. Indeed, the equation of the motion
of a free mobile point which is submitted to frictions is

d2x

dt2 + k (t)
dx

dt
= 0,

or equivalently

d

dt

(
e
∫ t

0 k(s)ds dx

dt

)
= 0.

3.2. Newton martingales in the enlarged filtration

The following theorem shows that we can also write a Newton martingale in the
enlarged filtration, this martingale being the generalization of P. Lévy’s martingale
considered at the beginning of the section.

Theorem 15. Assume that Assumption B is satisfied, then for each Q ∈RY (P)

the process
(

D0Y
Dt Y

αY
t

)

0≤t<T
is a martingale adapted to the enlarged filtration

F ∨ σ (Y ) .

Proof. Let Q ∈RY (P) and

Mt := D0Y

Dt Y
αY

t , t < T

For s < t < T, A ∈ Fs and 
 ∈ B (R) we have

Q
(
(Mt − Ms) 1A∩(Y∈
)

) =
∫




P
y ((Mt − Ms) 1A) Q (Y ∈ dy)

where P
y ∈ RY (P) is defined by

P
y = P (· | Y = y) .

Under P
y we have almost surely

Mt = D0Y

Dt Y
α

y
t , t < T .
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Hence, according to proposition 12, (Mt)t<T is a P
y−martingale. This implies

∫




P
y ((Mt − Ms) 1A) Q (Y ∈ dy) = 0

and finally

Q
(
(Mt − Ms) 1A∩(Y∈
)

) = 0.

Therefore (Mt)t<T is a Q−martingale. ��
We are now going to specify the above results in two of the examples quoted in

section 2.

Example 16. Assume that there exist two functions

b : R → R

and

σ : R → R
∗
+

which are infinitely continuously differentiable with bounded derivatives, such that
the solution (yt )0≤t≤T of the stochastic differential equation

yt =
∫ t

0
b (ys) ds +

∫ t

0
σ (ys) dxs

satisfies

yT = Y.

Since,

Dt yT = σ (yt ) exp

[∫ T

t

σ ′ (ys) dxs +
∫ T

t

(
b′ − 1

2

(
σ ′)2

)
(ys) ds

]

we deduce that the process

exp

[∫ t

0
σ ′ (ys) dxs +

∫ t

0

(
b′ − 1

2

(
σ ′)2

)
(ys) ds

]
∂

∂x
ln pT −t (yt , Y )

t < T , is a martingale in the enlarged filtration F ∨ σ (Y ) .

Example 17. Let f ∈ CT such that for any t ∈ [0, T ] , f (t) �= 0 then the process

∫ T

t
f (s) dxs

∫ T

t
f (s)2 ds

, t < T

is a martingale in the enlarged filtration F ∨ σ
(∫ T

0 f (s) dxs

)
.
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4. Local symmetries of the pinning class and Noether martingales

Let us first recall that we only consider random variables Y which satisfy assump-
tions (A1) to (A3) given in section 2.

4.1. Symmetry of an element of the pinning class

We first turn to the definition of symmetry with respect to an element of the pinning
class. A vector field u : W → H is H-continuously differentiable if and only if, for
all ω ∈ W, the mapping h :→ u(ω + h) is continuously differentiable in H (cf.
[16] p 192).

Definition 18. Let u : W → H an H-continuously differentiable and adapted vec-
tor field satisfying the following Novikov’s condition, for ε > 0 small enough

P

(

exp

(
ε2

2

∫ T

0

(
dus

ds

)2

ds

))

< +∞. (4.1)

Let Q ∈RY (P) . Then u will be called an order-one symmetry of Q with respect to
Y if for any A ∈ FT such that P (A | Y ) = 0

(
d

dε

)

ε=0

(
T ε

)−1
Q (A) = 0

where T ε denotes the change of variable on the path space

T ε (x)t = xt + ε

∫ t

0

dus

ds
ds,

and (T ε)−1
Q is the direct image law of Q by (T ε)−1 .

The set of the order-one symmetries of Q with respect to Y shall be denoted
SymY (Q) .

4.2. Noether martingales and general form of the symmetries

In the Markov setting symmetry groups have been used to build martingales (cf.
[20]); such martingales were called Noether martingales since they are the stochas-
tic analog of the constants of motion associated to the symmetry group of an action
functional by Noether theorem in classical Mechanics. In the present section we
state our generalization of the Noether stochastic theorem obtained in [20]. We will
give a short survey of the Markovian case in Section 6.

Theorem 19. Let us consider Q ∈RY (P) and u : W → H an H-continuously dif-
ferentiable adapted vector field satisfying (4.1) such that ut = ∫ t

0
dus

ds
ds. Let us

denote by (δu)t the stochastic integral
∫ t

0
dus

ds
dxs . Then u ∈ SymY (Q) if and only

if there exists a signed (σ−finite) measure µ such that
∫

R

|µ| (dy) < +∞,

∫

R

µ (dy) = 0
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and

DuZt − (δu)t Zt =
∫

R

η
y
t µ (dy) , t < T

where Z is the density process of Q with respect to P. In particular,

Nt := DuZt − (δu)t Zt , t < T

is a P-martingale (non uniformly integrable in general).

Remark 20. The process DuZt − (δu)t Zt is a martingale for any continuously dif-
ferentiable adapted vector field (see the proof below). What characterizes the local
symmetries is the representation of this martingale using η. Further properties of
this martingale are given in Corollary 21 and Proposition 22 below.

Proof. Let Q ∈RY (P) and u an H-continuously differentiable adapted vector field.

We denote by ν the law of Y under Q. Let us denote by Sε the inverse of

T ε
t = xt + ε

∫ t

0

dus

ds
ds , t ≤ T .

From (4.1) and Girsanov’s theorem, we have at the first order in ε, for all t < T ,

and all bounded and Ft−measurable functional F ,

Q (F ◦ Sε) = P
[∫

R
η

y
t ν (dy) F ◦ Sε

]

= P

[(
1 − ε

∫ t

0
dus

ds
dxs

) ∫
R

(ηy ◦ T ε)t ν (dy) F
]

= P

[(
1 − ε

∫ t

0
dus

ds
dxs

) (∫
R

(
η

y
t + ε

∫ t

0
dus

ds
Dsη

y
t ds

)
ν (dy)

)
F
]

= P
[∫

R
η

y
t ν (dy) F

] + ε P [NtF ]

where

Nt =
∫ t

0

dus

ds

(∫

R

Dsη
y
t ν (dy)

)
ds −

(∫

R

η
y
t ν (dy)

)∫ t

0

dus

ds
dxs.

Let us now show that N is a P martingale. Indeed, by the above identity, if G is a
Fs−measurable, s < t, bounded functional then

P

[∫

R

η
y
t ν (dy) G

]
+ ε P [NtG] = P

[∫

R

η
y
s ν (dy) G

]
+ ε P [NsG]

which implies, because
(∫

R
η

y
s ν (dy)

)
0≤s<T

is a martingale

P [NtG] = P [NsG]

and so N is a martingale.
Assume now u ∈ SymY (Q) . In this case

P [NtF ] = P
[
Nt� (Y )

]



16 F. Baudoin, M. Thieullen

with

� (y) = P
[
η

y
t F

]
.

Indeed by writing F = (F − P [F | Y ]) + P [F | Y ] and using the fact that
(

d

dε

)

ε=0

(
T ε

)−1
Q ((F − P [F | Y ])) = 0

which holds since u ∈ SymY (Q), one obtains
(

d

dε

)

ε=0

(
T ε

)−1
Q (F ) =

(
d

dε

)

ε=0

(
T ε

)−1
Q (P [F | Y ])

which is equivalent to the identity P [NtF ] = P [NtP [F | Y ]] thanks to the pre-
ceding computation. Moreover from assumption (A2),

P [F | Y = y] = P
[
η

y
t F

]

and trivially P [NtF ] = P [P [Nt | Y ] P [F | Y ]]; it follows that

P [NtF ] = P

[(∫

R

η
y
t P (Nt | Y = y) p (y) dy

)
F

]
.

Thus, we get

Nt =
∫

R

η
y
t P (Nt | Y = y) p (y) dy

because the previous relationship holds for all F. Let us now set

µt (dy) = P (Nt | Y = y) p (y) dy, t < T .

Since N is a martingale, for s < t < T

∫

R

η
y
s µt (dy) =

∫

R

η
y
s µs (dy)

which implies

µt = µs.

In order to conclude, it is enough to note that
∫

R

|µ| (dy) ≤ P (|Nt |) < +∞,

∫

R

µ (dy) = P (Nt ) = 0.

Now, on the other hand if there exists a signed measure µ such that
∫

R

|µ| (dy) < +∞,

∫

R

µ (dy) = 0
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and
∫ t

0

dus

ds

(∫

R

Dsη
y
t ν (dy)

)
ds −

(∫

R

η
y
t ν (dy)

)∫ t

0

dus

ds
dxs

=
∫

R

η
y
t µ (dy) , t < T

from the previous computations, for all bounded functional F and Ft−measurable,
t < T

(
d
dε

)
ε=0 Q (F ◦ Sε) = ∫

R
P
(
η

y
t F

)
µ (dy)

= ∫
R

P (F | Y = y) µ (dy) .

So that the result is also true for t = T . This concludes the proof of our theorem.
��

We also deduce from the proof of the previous theorem.

Corollary 21. Let us consider Q ∈RY (P) and u : W → H a continuously differ-
entiable adapted vector field satisfying (4.1). Let us denote by Z the density process
of Q with respect to P. Then u ∈ SymY (Q) if and only if

Nt = DuZt − (δu)t Zt , t < T

is a martingale such that for any bounded and FT −measurable F which satisfies
P (F | Y ) = 0

lim
t→T −

P (NtF ) = 0.

As it was noticed in the previous theorem, in general, the martingale N is not
uniformly integrable and hence not closable, nevertheless:

Proposition 22. Let Q ∈RY (P) and u : W → H an H- continuously differen-
tiable vector field satisfying (4.1). Then, with the notations of Theorem 19, the
following limit exists P−a.s. and

lim
t→T −

Nt = dµa

dPY

(Y )

where

µ = µa + µs

is the Lebesgue decomposition of µ with respect to PY (µa denotes the absolutely
continuous part and µs the singular part of the decomposition).

Proof. We can, because of the Hahn-Jordan decomposition, assume that µ is pos-
itive. We shall denote by 
 the σ−finite measure defined by


 =
∫

R

P (· | Y = y) µ (dy) .

The proof proceeds now in two steps.
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First step.
For r ∈ R

+, let

Br = {ω, lim inf
0≤t<T

Nt ≤ r}

and

Br = {ω, lim sup
0≤t<T

Nt ≥ r}.

Let now (rn)n∈N be a strictly decreasing sequence which converges to r. We have

Br = lim
τ→T

↗
⋂

n>0

⋃

s<τ

{ sup
s≤u≤τ

Nu ≤ rn}.

Since N is continuous, the indexes above can be taken in Q.
We have,




(
⋃

s<τ

{ sup
s≤u≤τ

Nu ≤ rn}
)

≤ rnP

(
⋃

s<τ

{ sup
s≤u≤τ

Nu ≤ rn}
)

hence for A ∈ FT


 (A ∩ Br) ≤ r P (A ∩ Br) .

In the same way, it is shown that



(
A ∩ Br

) ≥ r P
(
A ∩ Br

)
.

Second step.
The martingale convergence theorem implies that when t → T −, Nt converges
P−a.s. to an integrable variable NT . Let us now introduce

C = {ω, lim
t→T −

Nt (ω) = NT (ω)}.

On �\C, which has P−measure zero, we set

NT := +∞.

Let us now consider the following sequence

ϕn =
∑

k

k

2n
1An,k

,

with

An,k = {ω,
k

2n
≤ NT ≤ k + 1

2n
}.

It is easy to verify the following pointwise convergence

ϕn → NT
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but, we also have

ϕn ≤ NT

which implies by the dominated convergence theorem

E (NT 1A) = lim
n→+∞ E (ϕn1A) .

Now,

E (ϕn1A) =
∑

k

k

2n
P
(
A ∩ An,k

)

and

An,k = Bk+1
2n

∩ B
k

2n ∩ C.

Hence, from the first step

2n

k + 1



(
A ∩ An,k

) ≤ P
(
A ∩ An,k

) ≤ 2n

k
P
(
A ∩ An,k

)
,

and hence

∑

k



(
A ∩ An,k

) = 
 (A ∩ C)

∑

k

k

k + 1



(
A ∩ An,k

) ≤ E (ϕn1A) ≤ 
 (A ∩ C) .

Now, since

∑

k

k

k + 1



(
A ∩ An,k

) →n→+∞ 
 (A ∩ C) ,

we deduce

lim
n→+∞ E (ϕn1A) = 
 (A ∩ C)

and finally

E (NT 1A) = 
 (A ∩ C)

which yields the expected result. ��
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5. Global symmetries

Up to now we have been studying the symmetries of a fixed element of RY (P) .

We will now look for global symmetries. Precisely, we are going to study
⋂

Q∈RY (P)

SymY (Q) .

As it will be seen, this intersection can be trivial (i.e. reduced to u = 0), but if
non-adapted symmetries are allowed, this is not the case. That is why we use the
tools of anticipative stochastic calculus (see [16] and [21]) to investigate global
symmetries.

On α, we shall make the following additional assumptions (A4):

(1) For 0 ≤ t < T and Z ∈ D
1,2, αZ

t ∈ D
1,2

(2) For PY − a.e. y ∈ R there exists a measurable version of the two parameter
process

(
Dsα

y
t

)
0≤s,t<T

verifying for τ < T

P

(∫ ∫

[0,τ ]2

(
Dsα

y
t

)2
ds dt

)
< +∞

(3) For PY − a.e. y ∈ R, the transformation

xt −
∫ t

0
α

y
s ds, t < T

is bijective.
(4) dt ⊗ P−a.s., the function y → α

y
t is infinitely differentiable on the support of

PY (which is assumed to be an interval, cf. Section Preliminaries and assump-
tions).

Remark 23. According to Proposition 4, the transformation

xt −
∫ t

0
αY(x)

s ds, t < T

can not be bijective. For instance, in the case Y = xT , then we have α
y
t = y−xt

T −t
and

xt −
∫ t

0

xT − xs

T − s
ds = xt + µt −

∫ t

0

(xT + µT ) − (xs + µs)

T − s
ds

for µ �= 0. Nevertheless, if we freeze the variable Y , then the transformation
becomes bijective because, for a process z,

xt +
∫ t

0

y − xs

T − s
ds = zt

easily implies

xt = t

T
y + (T − t)

∫ t

0

dzs

T − s
.
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Moreover, notice that

det
2

(
IH − D∗αY

∗
)

= 0

det2 being the Carleman-Fredholm determinant, whereas for PY − a.e. y ∈ R

det
2

(
IH − D∗α

y
∗
) = 1.

Let us recall how the Carleman-Fredholm determinant is defined. Let K be a lin-
ear operator from H to H with discrete spectrum and let λi be the sequence of
eigenvalues of K repeated according to their multiplicity. The Carleman-Fredholm
determinant of K is defined as

det
2

(IH + K) =
∞∏

i=1

(1 + λi) e−λi ,

and this product is known to converge for Hilbert-Schmidt operators.
Notice furthermore that, as easily checked, Assumption (A4) is satisfied for the

examples of functionals treated up to now.

5.1. Definition and characterization of the symmetries

Before we give the definition of a global symmetry of the pinning class, let us recall
the well-known Ramer-Kusuoka theorem (see [14] pp. 191, [16] pp. 202, or [21]).

Theorem 24. (Ramer-Kusuoka) Let (Ks)0≤s≤T a process taking values on H

(adapted or not) which is H−continuously differentiable (we recall that H is the
Cameron-Martin space). Let us consider the change of variable

T λ (x)t = xt + λ

∫ t

0
Ksds , t ≤ T

with λ ∈ [0, 1] .

Assume that

(1) T λ is bijective
(2) The operator IH + λD∗K∗ is invertible

Then,

P (F ) = P
(
Dλ F ◦ T λ

)

where

Dλ := det
2

(I + λD∗K∗) exp

[
−λ

∫ T

0
Ksdxs − λ2

2

∫ T

0
|Ks |2 ds

]

det2 being the Carleman-Fredholm determinant and
∫ T

0 Ksdxs the Skorohod inte-
gral of K .
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Definition 25. Let u : W → H an H-continuously differentiable vector field, u

will be called an order-one symmetry of RY (P) if the change of variable

T ε (x)t = xt + ε

∫ t

0

dus

ds
ds

satisfies for ε > 0 small enough the assumptions of the Ramer-Kusoka theorem
and if for all Q ∈RY (P) and A ∈ FT which satisfies P (A | Y ) = 0

(
d

dε

)

ε=0

(
T ε

)−1
Q (A) = 0,

(T ε)−1
Q denoting the direct image law of Q by (T ε)−1 .

Theorem 26. u : W → H is an order-one symmetry if and only if

DuY :=
∫ T

0

dus

ds
DsY ds

and

δu :=
∫ T

0

dus

ds
dxs

are deterministic functions of Y.

Proof. Let Q ∈RY (P) defined by

dQ = ξ (Y ) dP

where ξ is a strictly positive continuously differentiable function with bounded
derivative such that

∫
ξ (y) p (y) dy = 1.

Let us denote by Sε the inverse of

T ε (x)t = xt + ε

∫ t

0

dus

ds
ds , t ≤ T

Here Ks = dus

ds
and the Carleman-Fredholm determinant satisfies for ε close

to 0,

det
2

(I + εD∗K∗) = 1 + ρ(ε)

where ρ(ε) is negligible w.r.t. ε. This can be deduced from the following identity

det
2

(I + λD∗K∗) = 1 +
+∞∑

n=2

λn γ n

n!
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valid for all kernelK ∈ L2([0, T ]×[0, T ])withγn = ∫
[0,T ]n detK ′(ti , tj )dt1 . . . dtn

where K ′(ti , tj ) = K(ti, tj ) if i �= j and K(ti, ti) = 0 (cf. [16] pp. 239 formula
(A.11)). Therefore at the first order in ε, we have for all bounded functional F of
the Wiener space

Q [F ◦ Sε] = P [ξ (Y ) (F ◦ Sε)]
= P [ξ (Y ◦ T ε) F (1 − εδu)]

= P
[(

ξ (Y ) + εξ ′ (Y ) DuY
)
(1 − εδu) F

]

= P
[
ξ (Y ) F + ε

[
ξ ′ (Y ) DuY − ξ (Y ) δu

]
F
]
.

Hence,
(

d

dε

)

ε=0
Sε

Q (F ) = P
[(

ξ ′ (Y ) DuY − ξ (Y ) δu
)
F
]
.

Thus if u is an order-one symmetry,

P
[(

ξ ′ (Y ) DuY − ξ (Y ) δu
)
F
] = P

[(
ξ ′ (Y ) DuY − ξ (Y ) δu

)
P (F | Y )

]
.

Since this relationship must hold for all F, it implies

P
[
ξ ′ (Y ) DuY − ξ (Y ) δu | Y

] = ξ ′ (Y ) DuY − ξ (Y ) δu.

By taking ξ = 1 we see that δu is a deterministic function of Y. It follows that DuY

is also a deterministic function of Y.

Conversely, let us now assume that DuY and δu are deterministic functions of
Y. Let F a bounded functional such that P (F | Y ) = 0.

Let us again consider Q ∈RY (P) defined by

dQ = ξ (Y ) dP

We have, from the previous computations
(

d

dε

)

ε=0
Sε

Q (F ) = 0.

But,

Sε
Q (F ) =

∫
Sε

P
y (F ) ξ (y) p (y) dy

where P
y∈RY (P) is the disintegrated probability defined by

P
y = P (· | Y = y) .

Hence,
∫

R

(
d

dε

)

ε=0
Sε

P
y (F ) ξ (y) p (y) dy = 0.

By taking a sequence ξn such that

ξn (y) p (y) dy →weakly
n→+∞ δy
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we deduce,
(

d

dε

)

ε=0
Sε

P
y (F ) = 0.

Hence, if Q ∈RY (P) then
(

d

dε

)

ε=0

∫
Sε

P
y (F ) Q (Y ∈ dy) = 0,

which gives
(

d

dε

)

ε=0
Sε

Q (F ) = 0

��
Remark 27. This proposition shows that in the search of the order-one symmetries,
the enlarged filtration F ∨ σ (Y ) plays a central role. From a dual point of view,
this role is strengthened by the fact that all the L2 functionals F which satisfy
P (F | Y ) = 0 can be represented (See [2]) as a stochastic integral with respect to
the Brownian motion of the enlarged filtration, i.e. the process

xt −
∫ t

0
αY

s ds.

This remark will be enlightened by the structure theorem below.

Corollary 28. Let u : W → H an order-one symmetry, then there exists φ ∈
L2 (p) which satisfies

δu = φ (Y )

and

DuY = −1

p (Y )

∫ Y

−∞
p (y) φ (y) dy.

Proof. From the previous proposition , there exists φ which satisfies

δu = φ (Y ) .

First, we check that φ ∈ L2 (p) . Indeed,
∫

φ (y)2 p (y) dy = P

(
φ (Y )2

)
= P

(
(δu)2

)
< +∞.

Now, from the integration by parts formula on the Wiener space, for any function
f which is infinitely continuously differentiable and which has a compact support
included in the support of PY , we have

P (Duf (Y )) = P (f (Y ) δu) .
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Hence,

P
(
f ′ (Y ) DuY

) = P (f (Y ) δu) .

By denoting ϕ the function such that

DuY = ϕ (Y )

we have
∫

f ′ (y) ϕ (y) p (y) dy =
∫

f (y) φ (y) p (y) dy

and the conclusion follows readily. ��
Example 29. Let f ∈ L2 ([0, T ]). For the functional

Y =
∫ T

0
f (s) dxs

the (deterministic) vector field

ut =
∫ t

0
f (s) ds, t ≤ T

is a one-order symmetry. Indeed,

δu = Y

and

DuY =
∫ T

0
f (s)2 ds.

From this one-order symmetry, we deduce the following one-parameter family of
global symmetries

T λ (x)t = xt + λ

∫ t

0
f (s) ds , t ≤ T , λ ∈ R.

Example 30. For the exponential Wiener functional Y =∫ +∞
0 e2xs−2µsds (µ>2),

the vector field

ut =
∫ t

0
e2xs−2µsds, t ≥ 0

is a one-order symmetry. Indeed,

δu =
∫ +∞

0
e2xs−2µsdxs

But from Itô formula,
∫ +∞

0
e2xs−2µsdxs = (µ − 1)

∫ +∞

0
e2xs−2µsds − 1

2
.
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Hence,

δu = (µ − 1) Y − 1

2
.

We also have

DuY = 2
∫ +∞

0 e2xs−2µs
∫ +∞
s

e2xu−2µududs

= 2Y 2.

5.2. Structure theorem

In this paragraph, we describe the structure of a general order-one symmetry. For
PY − a.e. y, let us denote by �y the inverse transformation of

γ
y
t = xt −

∫ t

0
α

y
s ds, t < T

and we shall assume that for dt ⊗ P−a.s. the function y → �
y
t is differentiable

(see Assumption (A4)).

Theorem 31. For φ ∈ L2 (p) , there exists an order-one symmetry u which satisfies

δu = φ (Y ) .

Moreover, all the order-one symmetries u which satisfy

δu = φ (Y )

can be written as

ut = −1

p (Y )

∫ Y

−∞
p (y) φ (y) dy

(
d�y

dy

)

y=Y

(
γ Y

)

t
+ u0

t , t < T

where u0 satisfies δu0 = 0.

Before we prove this theorem, let us state a previous lemma interesting for itself:

Lemma 32. Let u : W → H a vector field adapted to the enlarged filtration
F ∨ σ (Y ) , then u is a one-order symmetry if and only if

dut

dt
=

∫ T

0

dus

ds

(
Dsα

y
t

)
y=Y

ds + (DuY )

(
dα

y
t

dy

)

y=Y

, t < T . (5.1)

Proof of the Lemma. Let u : W → H be a vector field adapted to the enlarged
filtration F ∨ σ (Y ) . Let now (Fs)0≤s≤T be a process adapted to the enlarged fil-

tration F ∨ σ (Y ) and such that P

(∫ T

0 F 2
s ds

)
< +∞. Consider now Q ∈RY (P)

defined by

dQ = ξ (Y ) dP
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where ξ is a strictly positive function such that
∫

ξ (y) p (y) dy = 1

and denote by Sε the inverse of

T ε (x)t = xt + ε

∫ t

0

dus

ds
(x) ds , t ≤ T .

We have, for ε > 0, small enough

(
T ε

)−1
Q

(∫ T

0
Fsdγ Y

s

)
= P

(
ξ (Y )

∫ T

0
F

(
Sε

)
u
dγ Y

(
Sε

)
u

)
.

But, in the first order in ε we have

(
γ Y

) (
Sε

) =
(
γ Y

)(
Id − ε

∫ ·

0

dus

ds
ds

)

and so,

(
γ Y

) (
Sε

) = Id − ε

∫ ·

0

dus

ds
ds

+ ε

∫ ·

0

[∫ T

0

dus

ds

(
Dsα

y
v

)
y=Y

ds + (DuY )

(
dα

y
v

dy

)

y=Y

]

dv.

If we denote

A :=
∫ ·

0

dus

ds
ds −

∫ ·

0

[∫ T

0

dus

ds

(
Dsα

y
v

)
y=Y

ds + (DuY )

(
dα

y
v

dy

)

y=Y

]

dv

we have then,

(
T ε

)−1
Q

(∫ T

0
Fsdγ Y

s

)
=P

(
ξ (Y )

(∫ T

0
F

(
Sε

)
u
dγ Y

u + ε

∫ T

0
F

(
Sε
)
u
dAu

))
.

But, since

P

(∫ T

0
F

(
Sε

)
u
dγ Y

u | Y

)
= 0

we get in the first order in ε

(
T ε

)−1
Q

(∫ T

0
Fsdγ Y

s

)
= εP

(
ξ (Y )

∫ T

0
FudAu

)
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and so, if u is an order-one symmetry

P

(
ξ (Y )

∫ T

0
FudAu

)
= 0.

Since this relationship must hold for all F and all ξ, we get A = 0 i.e.

dut

dt
=

∫ T

0

dus

ds

(
Dsα

y
t

)
y=Y

ds + (DuY )

(
dα

y
t

dy

)

y=Y

, t < T .

On the other hand, since every bounded random variable H which is FT −adapted
and which satisfies

P (H | Y ) = 0

can be expressed as
∫ T

0 Fsdγs for some (Fs)0≤s≤T we easily deduce that the nullity
of A is also a sufficient condition to ensure that u is an order-one symmetry. ��

With this characterization of the order-one symmetries which are adapted to the
enlarged filtration F ∨ σ (Y ) , we are now able to give the proof of our theorem.

Proof of the Theorem 31. Let us consider the vector field

ut = −1

p (Y )

∫ Y

−∞
p (y) φ (y) dy

(
d�y

dy

)

y=Y

(
γ Y

)

t
, t ≤ T .

As it is adapted to the enlarged filtration F ∨ σ (Y ) , in order to show that u is an
order-one symmetry, it suffices to check that

dut

dt
=

∫ T

0

dus

ds

(
Dsα

y
t

)
y=Y

ds + (DuY )

(
dα

y
t

dy

)

y=Y

, t < T .

As easily shown, we have

dP y

dy

(
γ y

)
t
=

∫ t

0

∫ T

0

d�y

ds

(
γ y

)
s

Dsα
y
v dsdv +

∫ t

0

dα
y
s

dy
ds , t < T .

Let us now show that

DuY = ϕ (Y )

where

ϕ (Y ) = −1

p (Y )

∫ Y

−∞
p (y) φ (y) dy.

We have, for all y ∈ Supp PY ,

Y
(
�y

) = y
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hence, by differentiating with respect to y

∫ T

0

d

dt

(
d�y

dy

(
γ y

))
Dt Y dt = 1

which gives

DuY = ϕ (Y ) .

We can now conclude that u is an order-one symmetry. By the integration by parts
formula, this symmetry satisfies

δu = φ (Y )

Let now ũ be an order-one symmetry which satisfies

δũ = φ (Y ) .

The vector field u − ũ is an order-one symmetry such that δ (u − ũ) = 0. ��

From the structure theorem, we deduce the following immediate corollaries:

Corollary 33. Let us denote by SRY (P) the vector space of the order-one symme-
tries and S∗RY (P) the subspace of the order-one symmetries which are adapted
to the filtration F ∨ σ (Y ), then

SRY (P) � S∗RY (P) ⊕ R0 (P)

where R0 (P) = {u :∈ SRY (P) , δu = 0}.

Corollary 34. There exist adapted global symmetries (i.e.
⋂

Q∈RY (P) SymY (Q) is
not trivial) if and only if there exist a Borel function f and an F−adapted process
A such that

d�y

dy

(
γ y

)
t
= f (y) At .

Remark 35. (1) Moreover, if there exist adapted order-one symmetries, then they
form a one-dimensional vector space because for PY − a.e. y ∈ R

det
2

(
IH − D∗α

y
∗
) = 1.

(2) The corollary above, which states that in the case where global symmetries
exist a certain flow is stationnary, suggests that there is an ergodic counterpart
to our study. More precisely, it is tempting to study σ−finite measures which
are infinitesimally invariant by S∗RY (P) (see examples below).
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Example 36. Let f ∈ L2 ([0, T ]) and

Y =
∫ T

0
f (s) dxs.

In this case, as easily seen, we have

�
y
t =

∫ t

0 f (s) ds
∫ T

0 f 2 (s) ds
y + �0

t .

Hence, all the order-one symmetries can be written as

ut = ϕ

(∫ T

0
f (s) dxs

)∫ t

0
f (s) ds + u0

t

And it is easily seen that the σ−finite measure

∫

R

P

(
· |

∫ T

0
f (s) dxs = y

)
dy

is infinitesimally invariant by the adapted symmetries

ut = k

∫ t

0
f (s) ds.

Example 37. For the exponential Wiener functional Y = ∫ +∞
0 e2xs−2µsds (µ > 2)

we have (see [4] and [8])

�
y
t = 2µt + xt + ln y − ln

(
y +

∫ t

0
e2xs+2µsds

)
.

Hence,

(
d�y

dy

)

y=Y

(
γ Y

)

t
=

∫ t

0 e2γ Y
s +2µsds

∫ +∞
0 e2xs−2µsds

(∫ +∞
0 e2xs−2µsds + ∫ t

0 e2γ Y
s +2µsds

) .

But, from Dufresne’s identity (see [4] and [8])

1
∫ t

0 e2γ Y
s +2µsds

+ 1
∫ +∞

0 e2xs−2µsds
= 1

∫ t

0 e2xs−2µsds
.

This implies

(
d�y

dy

)

y=Y

(
γ Y

)

t
=

∫ t

0 e2xs−2µsds
(∫ +∞

0 e2xs−2µsds
)2 .
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Hence all the order-one symmetries can be written as

ut = ϕ

(∫ +∞

0
e2xs−2µsds

)∫ t

0
e2xs−2µsds + u0

t .

Furthermore, it is easily seen that the σ−finite measure

∫

R
∗+

P

(
· |

∫ +∞

0
e2xs−2µsds = y

)
dy

y2

is infinitesimally invariant by the adapted symmetries

ut = k

∫ t

0
e2xs−2µsds.

5.3. Applications: Non-canonical representations of Brownian motion

We now show that the previous study of the order-one global symmetries of the
pinning class enables us to recover some well-known non-canonical representa-
tions of Brownian motion. This point of view is new in the topic of non-canonical
representations of the Brownian motion.

Proposition 38. (1) (See [1]) Let (Bt )0≤t≤T a standard Brownian motion and
f ∈ L2 ([0, T ]). The process

(

Bt −
∫ t

0

∫ u

0 f (v) dBv
∫ u

0 f (v)2 dv
f (u) du

)

0≤t<T

is well-defined and its natural filtration is strictly included in the natural filtra-
tion of B, moreover it is independent of

∫ T

0 f (s) dBs.

(2) (See [4] and [15]) Let (Bt )0≤t≤T a standard Brownian motion and µ > 2 1.
The process

(∫ t

0 e2Bs−2µsds

eBt−µt

)

t≥0

has a natural filtration which is strictly included in those of B, moreover it is
independent of

∫ +∞
0 e2Bs−2µsds.

Proof. (1) It is enough to show that the transformation

G (x)t = xt −
∫ t

0

∫ u

0 f (v) dxv
∫ u

0 f (v)2 dv
f (u) du

1 This result is also true for 0 < µ ≤ 2.
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is invariant under the action of a one-parameter family of one-order symmetries
of R∫ T

0 f (s)dBs
(P) . If

ut = k

∫ t

0
f (s) ds

with k ∈ R, we have

G (x + u)t = xt + k
∫ t

0 f (s) ds − ∫ t

0

∫ u
0 f (v)dxv∫ u
0 f (v)2dv

f (u) du − k
∫ t

0 f (s) ds

= G (x)t .

(2) It is enough to show that the transformation

H (x)t =
∫ t

0 e2xs−2µsds

ext−µt

is invariant in the first order in ε under the action of the following one-order
symmetry of R∫ t

0 e2xs−2µsds
(P)

ut =
∫ t

0
e2xs−2µsds.

We have, at the first order in ε,

H (x + εu)t = exp
(
−xt + µt − ε

∫ t

0 e2xs−2µsds
)

× ∫ t

0 exp
(
2xs − 2µs + ε

∫ s

0 e2xu−2µudu
)
ds

= H (x)t + ε exp (−xt + µt)

×
[
−

(∫ t

0 e2xs−2µsds
)2 + 2

∫ t

0 e2xs−2µs
∫ s

0 e2xu−2µududs

]

= H (x)t

which gives the expected result. ��

6. About the Markovian Noether theorem

To conclude, we show how the results of the present paper generalize the Markov-
ian case Y = xT . We give some details for the heat equation with a potential. For
a general second order parabolic p.d.e. with time dependent coefficients we refer
the reader to [19].

Let us recall that in classical Mechanics it is well known that the Newton equa-
tion d2x

dt2 = 0 holds as a consequence of the fact that the Lagrangian L(t, xt ,
dx
dt

) =
1
2

(
dx
dt

)2
does not depend on the position xt which implies that it is invariant under

space translations. Such property has been generalized in the Markovian case for
diffusions in [20] where the invariance of a stochastic Lagrangian under transfor-
mations provides martingales (the stochastic counterparts of the classical constants
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of motion; this is why this result has been called stochastic Noether Theorem).
The framework of [20] corresponds in our case to Y = xT . Let us first recall the
definition of symmetries for an action functional.

Definition 39. Let us denote by P the set of probabilities Q on W such that the
coordinate process is a semi-martingale under Q:

dxt = DQxt dt + dWt

with W a Brownian motion. Given a scalar potential V the action functional J is
defined on P by

J (Q) = Q

(∫ T

0

(
1

2

(DQxt

)2 + V (t, xt )

)
dt

)

whenever this quantity is finite. The one-parameter family of deterministic space-
time infinitesimal transformations

(t, x) → (
t, x

) = (t + εθ (t, x) , x + εU (t, x))

is a symmetry of J if and only if there exists a function φ such that for any T > 0,

for any Q ∈P it holds
(

d

dε

)

ε=0
J
(
Q

)
= Q (φ (T , xT ) − φ (0, x0))

where

J
(
Q

)
= Q

(∫ T

0

(
1

2

(DQxt + ε
(DQU − DQxtDQθ

))2 + V
(
t, xt

))DQt dt

)

with DQU = DQ (U (·, x·)) , DQθ = DQ (θ (·, x·)) obtained by Itô formula and
(
t, x

) = (t + εθ (t, xt ) , xt + εU (t, xt )) .

Proposition 40. The symmetries of the action J coincide with the symmetries of
the p.d.e.

∂

∂t
+ 1

2
� − V = 0.

In the case V = 0, the above symmetries are also symmetries of space-time har-
monics of the Brownian motion x. Now, we know that the set of the laws of the
Doob’s h−transforms is dense (for the topology of weak convergence of proba-
bility measures) in RxT (P), hence these symmetries are global symmetries of the
pinning class in the sense of Section 5. That is why we consider the results of the
Section 5 as a generalization of the Markovian setting.

Remark 41. It is important to note that in the preceding sections we have considered
only symmetries which act on the space variable and not on time (i.e. t = t).
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Let us now recall that, when V belongs to the Kato class, given any pair (h, k) of
strictly positive functions satisfying ∂h

∂t
+ 1

2�h − V h = 0 as well as ∂k
∂t

− 1
2�k +

V k = 0 and
∫
R

k(0, x)h(0, x) = 1, the Schrödinger process is the Markov dif-
fusion solution of the stochastic differential equation dxt = dWt + ∂

∂x
ln h (t, xt )

such that the law of x0 has density k(0, x)h(0, x) w.r.t. Lebesgue measure (cf. [12],
[22]).

In this Markovian setting, Noether stochastic theorem is the following:

Theorem 42. (see [20]) Let (θ, U) and φ define a symmetry of J in the sense of
Definition 39. Let us denote by S the law of the Schrödinger process associated to
the pair (h, k) as above. Then the process

θ (t, xt )
∂

∂t
ln h (t, xt ) + U (t, xt )

∂

∂x
ln h (t, xt ) − φ (t, xt )

is an S-martingale.

Let us notice that when the potential V vanishes, h is a solution of the heat equa-
tion ∂h

∂t
+ 1

2�h = 0; (h (t, xt )) is a P martingale and if M is a S martingale,
then (h(t, xt )Mt) is a P martingale. This provides another way of stating Noether
theorem with respect to P:

Corollary 43. With the previous notations

θ (t, xt )
∂

∂t
h (t, xt ) + U (t, xt )

∂

∂x
h (t, xt ) − φ (t, xt ) h (t, xt )

is a P martingale.

To prove this theorem, the system of determining equations played an important
role. We recall it below for the heat equation in R

d .

Proposition 44. The following system (system of determining equations) charac-
terizes the symmetries of J when V = 0 (or equivalently of ∂h

∂t
+ 1

2�h = 0):

∂iθ = 0 1 ≤ i ≤ d

∂iUi = 1
2∂t θ 1 ≤ i ≤ d

∂iUj + ∂jUi = 0 1 ≤ i < j ≤ d

∂tφ + 1
2�φ = 0

∂iφ = ∂tUi 1 ≤ i ≤ d.

We notice that in dimension 1, when θ = 0, this system reduces to

∂xU = 0
∂xφ = ∂tU

∂tφ + 1
2∂2

xφ = 0

which is equivalent to

U = U (t)

φ = φ (x)
∂U
∂t

= ∂xφ
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In this simple case of heat equation without drift this system can be solved explic-
itly. The solutions are the pairs (U(t), φ(x)) = (at + b, ax + c) with a, b, c real
constants. In the more general framework of our present paper the counterpart of
the above system of determining equations lies in theorem 26. We explicit below
the computations for d = 1 for simplicity. Indeed let U(t) be a deterministic vec-
tor field. From Theorem 26, U is a global symmetry of RxT (P) if and only if
there exists a function φ such that δ(U) = ∫ T

0 U ′
sdxs = φ(xT ) (the second con-

dition holds true since DUxT = U(T )). Assuming φ smooth, this is equivalent to
require that the two processes (U ′

s) ans (φ′
s) are equal to the same constant. Thus

(U(t), φ(x)) = (at + b, ax + c); we recover the system of determining equations
when d = 1. A similar argument holds for d > 1. For any Q in RxT (P) such that
for any t < T and for (U, φ) solution of the system of determining equations, the
Noether martingale of Theorem 41 coincides with that of Theorem 19.

In the general case, which has been treated here the equation which determines
the local symmetries is the following

DuZt − (δu)t Zt =
∫

R

η
y
t µ (dy) , t < T

where Z, µ and η are known and u is unknown (cf. Theorem 19). If Z does not
vanish, this equation can be written under the form

∫ t

0
K (ω, s, t) Ysds +

∫ t

0
Ysdxs = 
t, t < T

with straightforward notations (Y = dus

ds
is unknown, K and 
 are known) which

has the form of a stochastic linear integral equation.

7. Open question

It would be really interesting to know exactly the variables Y for which the set of
global symmetries is non trivial. As far as we know, up to now, the only examples
which are known are (up to elementary transformations) those studied in this paper
i.e. the case where Y is a Wiener integral or an exponential functional.
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