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Abstract. We consider boundary roughness for the “droplet” created when supercritical
two-dimensional Bernoulli percolation is conditioned to have an open dual circuit surround-
ing the origin and enclosing an area at least l2, for large l. The maximum local roughness is
the maximum inward deviation of the droplet boundary from the boundary of its own convex
hull; we show that for large l this maximum is at least of order l1/3(log l)−2/3. This comple-
ments the upper bound of order l1/3(log l)2/3 proved in [Al3] for the average local roughness.
The exponent 1/3 on l here is in keeping with predictions from the physics literature for
interfaces in two dimensions.

1. Introduction

We consider Bernoulli bond percolation on the square lattice at supercritical den-
sity, conditioned to have a large dual circuit enclosing the origin; we denote the
outermost such circuit by �0. (Complete definitions and the basic properties of the
model will be given in the next section.) The supercritical, or percolating, regime of
Bernoulli percolation is the analog of the low-temperature phase of a spin system,
and the region enclosed by the dual circuit is the analog of the droplet that occurs
with high probability in the Ising magnet below the critical temperature in a finite
box with minus boundary condition, when it is conditioned to have a number of
plus spins somewhat larger than is typical [DKS]. In fact, the droplet boundary
in the Ising magnet appears as a circuit of open dual bonds in the corresponding
Fortuin-Kastelyn random cluster model (briefly, the FK model) of [FK], in view of
the construction given in [ES]. One can gain information for the study of the Ising
droplet by studying the FK model conditioned on �0 enclosing at least a given area
l2, as is done in [Al3]. The droplet boundary in this FK model thus corresponds to
an interface; the heuristics in the case of Bernoulli percolation are the same, but
the mathematics is more tractable. We therefore refer to �0 and its interior as a
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droplet. Our main result is a lower bound on the maximum local roughness of the
droplet, that is, the maximum inward deviation of the boundary of the droplet from
the boundary of its convex hull. Related upper bounds were proved in [Al3].

The study of the shapes of such droplets is related to a classical problem: When
a fixed volume of one phase is immersed in another, what is the equilibrium shape
of the droplet, or crystal, having minimal surface tension? When the surface ten-
sion is known, this is an isoperimetric problem. The solution of the continuum
version of the problem is given by Wulff [Wu]: Let τ(n) be the surface tension of
a flat interface orthogonal to the outward normal n. For a fixed crystal volume, the
equilibrium shape is given by the convex set

W = {x ∈ Rd | x · n ≤ τ(n), for all n}. (1.1)

In the two-dimensional Ising model, say with minus boundary condition and condi-
tioned to have an excess of pluses, a rigorous justification of the Wulff construction
has been given for the resulting droplet of plus phase. Minlos and Sinai consid-
ered an instance in which the temperature T tends to zero as the volume grows
to infinity, and proved that most of the excess plus spins form a single droplet of
essentially square shape ([MS1], [MS2]); the Wulff shape W also tends to a square
as T → 0. Dobrushin, Kotecky and Shlosman [DKS] then provided a justification
of the Wulff construction at very low fixed temperatures. Moreover, they showed
that the Hausdorff distance between the droplet boundary γ and the boundary of
the Wulff shape W is bounded by a power of the linear scale of the droplet. This
Hausdorff distance is related but not equivalent to local roughness; see [Al3]. The
very-low-temperature restriction was removed by Ioffe and Schonmann [IS], who
proved Dobrushin-Kotecky-Schlosman theorem up to the critical temperature. For
Bernoulli percolation the Wulff construction was justified in [ACC], and for the FK
model this was done in [Al3]. For these models the surface tension is given by the
inverse of the exponential rate of decay of the dual connectivity.

Boundary roughness has been a topic of considerable interest in the physics
literature (see e.g. [KS]). The heuristics for the local roughness of �0, described in
[Al3], are related to the boundary-roughness heuristics for two-dimensional growth
models such as first-passage percolation that are believed to be governed by the
“KPZ” theory ([KPZ], [LNP], [NP]), to polymers in two-dimensional random envi-
ronments [Pi], and, as noted in [Al3], to the heuristics of rigorously proved results
on longest increasing subsequences of random permutations [BDJ], which in turn
are related to the fluctuations of eigenvalues of random matrices (see [Jo]). In all
cases for an object of linear scale l there is known or believed to be roughness
of order l1/3 and a longitudinal correlation length of order l2/3. In the percola-
tion droplet this correlation length should appear as the typical separation between
adjacent extreme points of the convex hull of �0.

In [Al3] the average local roughness, denoted ALR(�0), for the percolation
droplet was defined as the area between the droplet and its convex hull boundary,
divided by the Euclidean length of the convex hull boundary. It was proved there
that with high probability, for a droplet conditioned to have area at least l2,ALR(�0)

is O(l1/3(log l)2/3). The main feature of interest is the exponent 1/3 matching the
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KPZ heuristic; the power of log l may be considered an artifact of the proof. Here
we consider not average but maximum local roughness, denoted MLR(�0) and
defined as the maximum distance from any point of �0 to the convex hull bound-
ary, and we show that for the Bernoulli percolation droplet, for some c0 > 0, with
high probability it is at least c0l

1/3(log l)−2/3. It was proved in [Al3] that with high
probability MLR(�0) is O(l2/3(log l)1/3), but this is a presumably a very crude
bound, lacking the right power of l; it is more reasonable to compare the lower
bound here on MLR(�0) to the upper bound for ALR(�0), as the two should differ
by at most a multiplicative factor that is a power of log l, as we explain next.

One way to obtain more-detailed heuristics for the droplet boundary is to view
it as having Gaussian fluctuations about a fixed Wulff shape of area l2, a point of
view justified in part by the results in [DH] and [Hr]. This point of view suggests
that if we take a Brownian bridge on [0,1], rescale it by 2πl horizontally and l1/2

vertically, and wrap it around a circle of radius l, joining (0, 0) and (2πl, 0), the
result should resemble the droplet boundary. In [Uz] it was proved that for this
wrapped Brownian bridge the maximum local roughness is with high probability
bounded between c1l

1/3(log l)2/3 and c2l
1/3(log l)2/3 for some 0 < c1 < c2 <∞.

The exponent 2/3 on log l here is related to the Lévy modulus of continuity for
Brownian motion. The wrapped-Brownian-bridge heuristic suggests that ALR(�0)

should be of order l1/3, without a power of log l, supporting the idea that ALR(�0)

and MLR(�0) differ by only a multiplicative factor that is roughly a power of log l.
The circle provides a reasonable heuristic here because Ioffe and Schonmann [IS]
showed that for fixed p the curvature of the boundary of the unit-area Wulff shape
is bounded away from 0 and∞.

2. Definitions, preliminaries, statement of main result

A bond, denoted 〈xy〉, is an unordered pair of nearest neighbor sites x, y ∈ Z
2.

The set of all bonds between the nearest neighbor sites of Z
2, will be denoted

by B2. Let {ω(b), b ∈ B2} be an i.i.d. family of Bernoulli random variables with
P(ω(b) = 1) = p. Given a realization of ω, a bond b ∈ B2 is said to be open if
ω(b) = 1 and closed if ω(b) = 0. Consider the random graph containing the ver-
tex set of Z

2 and the open bonds only; the connected components of this graph are
called open clusters. For p below the critical probability pc = 1/2 [Ke] all open
clusters are finite with probability one and when p > pc, there exists a unique
infinite cluster of open bonds with probability one.

Forx ∈ Z
2 letx∗ denotex+(1/2, 1/2). The lattice with vertex set {x∗ : x ∈ Z

2}
and all nearest neighbor bonds is called the dual lattice. Each bond b has a unique
dual bond, denoted b∗, which is its perpendicular bisector; b∗ is defined to be open
precisely when b is closed, so that the dual configuration is Bernoulli percolation
at density 1− p. A (dual) path is a sequence (x0, 〈x0x1〉, x1, · · · , 〈xn−1, xn〉) of
alternating (dual) sites and bonds. A (dual) circuit is a path with xn = x0 which has
all bonds distinct and does not cross itself (in the obvious sense). Note we allow
a circuit to touch itself without crossing, i.e. nondistinct sites are not restricted to
xn = x0. For a (dual) circuitγ , the interior Int(γ ) is the union of the bounded compo-
nents of the complement of γ in R

2.An open dual circuit γ is called an exterior dual
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circuit in a configuration ω if γ ∪ Int(γ ) is maximal among all open dual circuits
in ω. A site x is surrounded by at most one exterior dual circuit; when this circuit
exits, it is denoted by �x. |·| denotes the Euclidean norm for vectors, cardinality
for finite sets and Lebesgue measure for regions in R

2, depending on the context.
For x, y ∈ R

2, let dist(·, ·) and diam(·) denote Euclidean distance and Euclidean
diameter, respectively. Let Br(x), denote the open Euclidean ball of radius r about
x. For A, B ⊂ R

2, define dist(A, B) = inf{dist(x, y) : x ∈ A, y ∈ B} and
dist(x, A) =dist({x}, A). We define the average local roughness of a circuit γ by

ALR(γ ) = |Co(γ ) \ Int(γ )|
|∂Co(γ )| ,

where Co(·) denotes the convex hull. The maximum localroughness is

MLR(γ ) = sup{dist(x, ∂Co(γ )) : x ∈ γ }
Throughout the paper, K1, K2, ... represent constants which depend only on p.

Our main result is the following.

Theorem 2.1. Let 1/2 < p < 1. There exists K1 > 0 such that, under the measure
P

( · ∣
∣ | Int(�0)| ≥ l2

)
, with probability approaching 1 as l→∞ we have

MLR(�0) ≥ K1l
1/3(log l)−2/3 (2.1)

The main ingredients of the proof will be coarse graining concepts, the renewal
structure of long dual connections in the supercritical regime and exchangeabil-
ity of the increments between regeneration points, all of which will be discussed
below. The basic idea is that MLR(�0) < K1l

1/3(log l)−2/3 implies that �0 stays
in a narrow tube along its own convex hull, which is a highly unlikely event,
due to the Gaussian fluctuations of connectivities. More precisely, if w and w′
are extreme points of the convex hull Co(�0) separated by a distance of order
l2/3(log l)−1/3, then MLR(�0) < K1l

1/3(log l)−2/3 requires that �0 stay confined
within O(l1/3(log l)−2/3) of the straight line from w to w′. Gaussian fluctuations,
though, would say that the typical deviation from the straight line is of order
l1/3(log l)−1/6, which is the square root of the length of the line. Thus the con-
finement for the segment between w and w′ is analogous to keeping the maximum
magnitude of a Brownian bridge below O((log l)−1/2), and such confinement along
the entire boundary of �0 is very unlikely. The Brownian bridge analogy is an under-
lying heuristic but does not enter directly into our proofs.

We use some notation, results and techniques introduced in [Al3]. For a fam-
ily of bond percolation models including Bernoulli percolation and the FK model,
upper bounds have been established in [Al3] for ALR(�0), MLR(�0) and the devi-
ation between ∂�0 and Wulff shape. We denote the unit Wulff shape (i.e. the set W

of (1.1), normalized to have area 1) by K1. There exists constants Ki such that the
following hold with probability approaching to 1, as l → ∞, under the measure
P(· | | Int(�0)| ≥ l2):

ALR(�0) ≤ K2l
1/3(log l)2/3, (2.2)

inf
x

distH
(
∂Co(�0), x + ∂(lK1)

) ≤ K3l
2/3(log l)1/3, (2.3)

MLR(�0) ≤ K4l
2/3(log l)1/3, (2.4)



66 H.B. Uzun, K.S. Alexander

where distH denotes Hausdorff distance. Together, (2.1) and (2.2) suggest that
local roughness is of order l1/3, up to a possible logarithmic correction factor, for
sufficiently large l.

We will use two standard inequalities for percolation: the Harris-FKG inequal-
ity [Ha] and the BK inequality [vdBK]. Let D ⊂ B2 and ω, ω̃ ∈ {0, 1}D. We write
ω̃ ≥ ω if all open bonds in ω are also open in ω̃. An event A ⊂ {0, 1}D is increasing
(decreasing) if its indicator function δA is nondecreasing (nonincreasing) according
to this partial order.

Harris-FKG inequality. For Bernoulli percolation, if A1, A2, · · · , An are all
increasing, or all decreasing, events, then

P(A1 ∩ A2 ∩ · · · ∩ An) ≥ P(A1)P (A2) · · ·P(An).

For sets S ⊂ B2, we will denote by ωS the restriction of ω to S. The event A is
said to occur on the set S in the configuration ω if ω′S = ωS implies ω′ ∈ A. Two
events A1 and A2 occur disjointly in ω, denoted by A1 ◦ A2, if there exist disjoint
sets S1, S2 (depending on ω) such that A1 occurs on S1, and A2 occurs on S2, in ω.
The event that A1 and A2 occur disjointly is denoted A1 ◦ A2.

BK inequality. If A1, · · · , An are all increasing, or all decreasing, events then

P(A1 ◦ A2 ◦ · · · ◦ An) ≤ P(A1)P (A2) · · ·P(An).

Two points x, y ∈ (Z2)∗ are connected, an event written { x ←→ y }, if there
exists a path of open dual bonds leading from x to y. The Harris-FKG inequality
implies that − log P(0↔ x) is a subadditive function of x, and therefore the limit

τ(x) = lim
n→∞−

1

n
log P(0∗ ↔ (nx)∗),

exists for x ∈ Q
2, where the limit is taken through the values of n satisfying

nx ∈ Z
2. This definition extends to R

2 by continuity (see [ACC]). τ is a strictly
convex norm on R

2; the strict convexity is shown in [CI]. The τ -norm for unit
vectors serves as the surface tension for our context. Let S denote the unit circle in
R

2. It is known ([Al2],[Me]) that for 1/2 < p < 1,

0 < min
x∈S

τ(x) ≤ max
x∈S

τ(x) <∞, (2.5)

β1|x|−β2 exp(−τ(x)) ≤ P(0∗ ↔ x∗) ≤ exp(−τ(x)) (2.6)

for some constants β1, β2 > 0 and

τ(e)√
2
≤ τ(x)

|x| ≤
√

2 τ(e), (2.7)

where e is a coordinate vector.
For x, y ∈ R

2, let distτ (·, ·) and diamτ (·) denote the τ -distance and the τ -
diameter, respectively. Some of the properties of connectivities and geometry of
Wulff shapes will be given next. Denote the unit τ -unit ball by U1:

U1=
{
x ∈ R

2 : τ(x) ≤ 1
}

and the Wulff shape by W1:
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W1=
{
t ∈ R

2 : (t, z)2 ≤ τ(z) for all z ∈ S
}
,

so that 0 ∈ Int(W1) and K1 =W1/|W1|. Here (·, ·)2 denotes the Euclidean inner
product. We also refer to multiples of W1 as Wulff shapes. For the functional

W(γ ) =
∫

γ

τ (vx) dx,

K1 minimizes W(∂V ) over all regions V with piecewise C1 boundary, subject to
the constraint |V | = 1; here vx is the unit forward tangent vector at x and dx is arc
length. (A class larger than the regions with piecewise C1 boundary can be used
here, but is not relevant for our purposes; for specifics see [Ta1], [Ta2].) We define
the Wulff constant W1 =W(∂K1). For every t ∈ ∂W1 and x ∈ ∂U1, we have

1 = max
y∈U1

(t, y)2 = max
s∈∂W1

(s, x)2.

Definition 2.2. Given x ∈ R
2\{0}, a point t ∈ ∂W1 is polar to x if

(t, x)2 = τ(x) = max
s∈∂W1

(s, x)2

3. Renewal structure of connectivities

For the remainder of the paper we assume we have fixed 1/2 < p < 1.
This section will follow Section 4 of [CI]. For x, y ∈ (Z2)∗ and t ∈ ∂W1, we

define the line

Ht
x = {z ∈ R

2 | (t, z)2 = (t, x)2}
and the slab

S t
x,y = {z ∈ R

2 |(t, x)2 ≤ (t, z)2 ≤ (t, y)2}.
When x and y are connected in the restriction of the percolation configuration to
the slab S t

x,y (excluding the bonds that are only partially in S t
x,y), Ct

x,y denotes the
set of sites in the corresponding common cluster inside S t

x,y . Let e = e(t) be a unit
vector in the direction of one of the axes such that the scalar product of e with t is
maximal.

Definition 3.1. For x, y ∈ (Z2)∗ satisfying (t, x)2 < (t, y)2, let
{

x
h̃t←→ y

}

denote the event that x and y are h̃t -connected, meaning x and y are connected

by an open dual path in S t
x,y . Let

{
x

ht←→ y
}

denote the event that x and y are
ht -connected, meaning x and y are connected inside S t

x,y and

Ct
x,y ∩ S t

x,x+e = {x, x + e} and Ct
x,y ∩ S t

y−e,y = {y − e, y}.

Let
{
x

ft←→ y
}

denote the event that x and y are ft -connected, meaning x
ht←→ y

and for no z ∈ Int(S t
x,y) do both x

ht←→ z and z
ht←→ y.
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Definition 3.2. Given a configuration and given x, y with x ↔ y, we say that z ∈
(Z2)∗ is a regeneration point if (t, x)2 < (t, z)2 < (t, y)2 and Ct

x,y ∩ S t
z−e,z+e =

{z− e, z, z+ e}.
Let Rt

x,y denote the random set of regeneration points of Ct
x,y . Next, a probabi-

listic bound on the size of Rt
x,y will be given. For our purposes, we need a different

formulation of Lemma 4.1 of [CI]: we use
{

x
h̃t←→ y

}
instead of

{
x

ht←→ y
}

to
state the lemma, but the proof is same with minor changes.

Lemma 3.3. For every ε ∈ (0, 1
2 ), there exists λ > 0, δ > 0 and ν > 0 such that

for all t0 ∈ ∂W1, t ∈ Bλ(t0) and all x satisfying (t, x)2 ≥ (1− ε)τ (x) we have

P
(|Rt0

0,x | < δ|x| ; 0
h̃t0←→ x

)≤ exp{−(t, x)2 − ν|x|}. (3.1)

4. Coarse graining and related preliminaries

We will use the coarse graining setup and results of [Al3]. For s > 0, and any
contour with a τ -diameter of at least 2s, the coarse graining algorithm selects a
subset {w0, w1, · · · , wm+1} of the extreme points of Co(γ ), with wm+1 = w0,
called the s-hull skeleton of γ and denoted HSkels(γ ). The points wi of HSkels(γ )

appear in order as one traces γ in the direction of positive orientation. We denote
the polygonal path w0 → w1 → · · · → wm+1 by HPaths(γ ). The specifics of the
algorithm for choosing the s-hull skeleton are not important to us here; we refer
the reader to [Al3]. What we need are the following properties, also from [Al3].

Lemma 4.1. There exist constants K5, K6, K7, K8 > 0 such that for every s > 0
and every circuit γ having τ -diameter at least 2s, the s-hull skeleton HSkels(γ ) =
{w0, w1, · · · , wm+1} satisfies

m+ 1 <
K5 diam(γ )

s
, (4.1)

| Int(γ ) \ Int(HPaths(γ ))| ≤ K6s
2, (4.2)

sup
x∈Co(γ )

dist(x, Int(HPaths(γ )) ≤ K7s
2

diam(γ )
, (4.3)

W(∂ Co(γ )) ≤W(HPaths(γ ))+ K8s
2

diam(γ )
. (4.4)

For 0 < θ < 1 a small constant to be specified later, our choice of s is

s =
(

θ
√

π

2K7

)1/2

l2/3(log l)−1/3.
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Suppose HSkels(�0) = {w0, w1, . . . , wm+1} with wm+1 = w0. We define

L =
{
i : |wi+1 − wi | ≥ s

√
π

16K5

}

For i ∈ L, we call the side between wi and wi+1 long. The next lemma gives a lower
bound on the sum of the lengths of long sides when diam(�0) is not abnormally
large. From [Al3], for some K9, K10, K11 > 0, for T > 0,

P(diamτ (�0) ≥ T ) ≤ K9T
4e−T

and

P
(| Int(�0)| ≥ l2) ≥ K10 exp

(−W1l −K11l
1/3(log l)2/3), (4.5)

so that for large l,

P
(
diamτ (�0) ≥ 2W1l

∣
∣ | Int(�0)| ≥ l2) ≤ e−W1l/2.

Also using (2.7), we have

diam(�0) ≤
√

2

τ(e)
diamτ (�0) ≤ 4

√
2

W1
diamτ (�0)

where in the second inequality we use W1 ≤ 4τ(e), which follows from the fact
that the unit square encloses the unit area. Therefore

P
(
diam(�0) ≥ 8

√
2l

∣∣ | Int(�0)| ≥ l2) ≤ e−W1l/2. (4.6)

so to prove Theorem 2.1 we need only consider configurations with diam(�0) <

8
√

2 l. We say that {w0, .., wm+1} is l-regular if there exists a configuration in
which | Int(�0)| ≥ l2, diam(�0) < 8

√
2 l and HSkels(�0) = {w0, .., wm+1}.

Lemma 4.2. If {w0, w1, . . . , wm+1} is l-regular and l is sufficiently large, then

∑

i∈L
|wi+1 − wi | ≥

√
π

2
l (4.7)

Proof. (4.2) implies that for some K12, and �0 as in the definition of l-regular,

|Int(HPaths(�0))| ≥ l2 −K12l
4/3(log l)−2/3 ≥ l2

2
,

where the last inequality is satisfied for sufficiently large l. By the standard isoperi-
metric inequality, it follows that

∑

i∈L
|wi+1 − wi | +

∑

i∈Lc

|wi+1 − wi | ≥ l
√

2π.

Using (4.1), the total number of sides can be bounded above:

m+ 1 ≤ K5 diam(�0)

s
≤ 8
√

2 K5 l

s
.
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Fig. 1. A section of Ad , and a connection from wi to wi+1 which includes a cylinder con-
nection from ai to bi

Therefore

∑

i∈Lc

|wi+1 − wi | ≤ (m+ 1)
s
√

π

16K5
≤

√
π

2
l,

and the lemma follows. ��

We next need to specify the vector ti which will be used to define slabs and
regeneration points for the connection from wi to wi+1. The natural choice is to
take ti polar to wi+1 − wi , but in order to avoid some technicalities in upcoming
proofs we will choose ti to be close to the polar value, but having rational slope. Let
V ⊂ R

2 denote the wedge consisting of those vectors x such that the angle from
the positive horizontal axis to x is in [0, π/4]. Due to lattice symmetries we may
assume that wi+1−wi ∈ V . Let t̃i ∈ ∂K1∩V be such that t̃i is polar to wi+1−wi .
Then the angular difference between t̃i and wi+1−wi is at most π/4. The existence
of a polar point with such properties is guaranteed by symmetries of K1. Let us fix
ε ∈ (0, 1/2), and let λ = λ(ε) as in (3.1). We choose ti ∈ V ∩ Bλ(̃ti) ∩ ∂K1 so
that the slope of ti is r/q, with q = [1/λ]+ 1 and r ∈ Z. Choosing ti this way will
allow us to use (3.1), with the parameters t0 and t chosen as ti and t̃i , respectively.
Note that e(ti) = (1, 0), which we denote by ei .

By (4.3) for our chosen s, the deviation between Co(�0) and Int(HPaths(�0))

inside it does not exceed θl1/3(log l)−2/3. Let li be the line through wi and wi+1. We
set d = 2θl1/3(log l)−2/3, and define Ad , the annular tube of diameter 2d around
HSkels(�0), as follows. Denote the line parallel to li which is d units outside of
HSkels(�0) by l+i and the line parallel to li which is d units in the opposite direction
by l−i . Let Hli be the half space bounded by li that contains HSkels(�0), let Hl±i

be

the halfspaces bounded by l±i such that Hl−i
⊂ Hli ⊂ Hl+i

and let
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Ad = Ad(w0, .., wm+1) =
( m⋂

i=1

Hl+i

)
\

( m⋂

i=1

Hl−i

)

(see Figure 1.) Let T i
d denote the (infinite) tube with diameter 2d, bounded by l+i

and l−i . Let w′i and w′′i be the points on l−i such that S ti
w′i ,w

′′
i

is the largest slab

satisfying

S ti
w′i ,w

′′
i

∩ T i
d ∩ Ad = S ti

w′i ,w
′′
i

∩ T i
d .

Let Bi be the event that there exist ai ∈ S ti
w′i ,w

′
i+ei
∩ T i

d and bi ∈ S ti
w′′i −ei ,w

′′
i

∩ T i
d

such that the event

{wi ←→ ai} ◦ {ai

h̃ti←→ bi in T i
d } ◦ { bi ←→ wi+1}

occurs. For configurations in
{
wi ←→ wi+1 in Ad

}\Bi , every open path from wi

to wi+1 must go “the long way around Ad”; presuming l is large and {w0, .., wm+1}
is l-regular, for some K13 this implies that wi ↔ z for some z ∈ S t

wi ,wi+ei
with

dist(z, wi) ≥ K13l. By ([Al3], Lemma 7.1) we then have for some K14, K15,

P
(
Bc

i

∣∣ wi ←→ wi+1
) ≤ K14e

−K15l . (4.8)

Lemma 4.3. There exists constants K14, K15 > 0 such that for {w0, .., wm+1}
l-regular and ε, ti as in the preceeding, we have

P(wi ↔ wi+1 in Ad

∣∣wi ↔ wi+1)

≤ K14 exp (−K15l)+
∑

ai ,bi

P (ai ↔ bi in T i
d

∣∣ ai

h̃ti↔ bi) (4.9)

where the sum is over all ai ∈ S ti
w′i ,w

′
i+ei
∩ T i

d ∩ (Z2)∗ and bi ∈ S ti
w′′i ,w′′i −ei

∩ T i
d ∩

(Z2)∗.

Proof. By (4.8) we can bound P(wi ↔ wi+1 in Ad) by

K14e
−K15lP (wi ↔ wi+1)

+
∑

ai ,bi

P
({wi ↔ ai} ◦ {ai

h̃ti←→ bi in T i
d } ◦ {bi ↔ wi+1}

)
,

where the sum is over all ai ∈ S ti
w′i ,w

′
i+ei
∩ T i

d ∩ (Z2)∗ and bi ∈ S ti
w′′i ,w′′i −ei

∩ T i
d ∩

(Z2)∗. We now apply the BK and FKG inequalities:
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∑
ai ,bi

P

(
{wi ↔ ai} ◦ {ai

h̃ti↔ bi in T i
d } ◦ {bi ↔ wi+1}

)

≤
∑

ai ,bi

P (wi ↔ ai) P (ai

h̃ti↔ bi in T i
d ) P (bi ↔ wi+1),

=
∑

ai ,bi

P (wi ↔ ai) P (ai

h̃ti↔ bi) P (ai

h̃ti↔ bi in T i
d | ai

h̃ti↔ bi) P (bi ↔ wi+1)

≤
∑

ai ,bi

P (wi ↔ wi+1) P (ai

h̃ti↔ bi in T i
d | ai

h̃ti↔ bi),

and (4.9) follows. ��

In order to bound the probability of the event
{
ai

h̃ti←→ bi in T i
d

}
using the

renewal structure of cylinder connectivities, we need control of the size of |bi −ai |
to apply (3.1). The parallelogram S ti

w′i+e,w′′i −e
∩ T i

d has 2 short sides (the sides not

parallel to wi+1−wi), one near wi and the other near wi+1 (see Figure 1). It follows
easily from the fact that wi+1 − wi, ti are in the wedge V that for every a in the
short side near wi we have |wi − a| ≤ 2d

√
2, and analogously for wi+1. Therefore

|wi − ai | ≤ 2d
√

2+ 1, |wi+1 − bi | ≤ 2d
√

2+ 1,

and hence
∣∣(wi+1 − wi)− (bi − ai)

∣∣≤ 4d
√

2+ 2. (4.10)

Since

τ(wi+1 − wi) = (̃ti , wi+1 − wi)2, (4.11)

provided l is large we have

(̃ti , bi − ai)2 ≥ (1− ε)τ (bi − ai) (4.12)

for our chosen ε.

Lemma 4.4. Given ε, ti , ai, bi as in the preceeding and δ as in (3.1), there exists
ν′ > 0 such that provided l is sufficiently large,

P
(|Rti

ai ,bi
| < δ|bi − ai |

∣∣ ai

h̃ti↔ bi

) ≤ exp(−ν′|bi − ai |). (4.13)

Proof. From ([Al3] equation (7.6)), for some K16, K17 > 0, we have

P
(
ai

h̃ti↔ bi

) ≥ K16|bi − ai |−K17 exp
(− τ(bi − ai)

)
. (4.14)

By (4.12), Lemma 3.3 applies; with (4.14) this shows that for some ν > 0,
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P
(|Rti

ai ,bi
| < δ|bi − ai |

∣∣ ai

h̃ti↔ bi

)

≤ 1

K16
|bi − ai |K17 exp

(− (̃ti , bi − ai)2 + τ(bi − ai)− ν|bi − ai |
)
. (4.15)

By (4.10) and (4.11), we have

− (̃ti , bi − ai)2 + τ(bi − ai)− ν|bi − ai |
≤ 2τ(wi+1 − wi − bi + ai)− ν|bi − ai |
≤ K18(4d

√
2+ 2)− ν|bi − ai |

for some K18 > 0. Since d is small compared to |bi−ai |, using this bound in (4.15),
for some constant ν′ < ν we have (4.13). ��

Next, we will define orthogonal increments between adjacent regeneration
points. There is no canonical choice of direction relative to which increments are
defined; we will use the direction orthogonal to the line joining wi and wi+1.

Definition 4.5. For any x ∈ S ti
wi ,wi+1 , define f : S ti

w′i ,w
′′
i

→ R as follows:

f (x) =
{

dist(x, li), if x is above the line li , joining wi and wi+1,

− dist(x, li), if x is on or below the line li .

For the following definitions assume ai

h̃ti↔ bi . The regeneration points between
ai and bi have a natural ordering according to their distance from Hti

ai
.

Definition 4.6. For r ′ ∈ S ti
ai ,bi

define  : S ti
ai ,bi
→ R as follows:

(r ′) =






f (r ′), if r ′ is the first regeneration point,

f (r ′)− f (r̃), if r̃ , r ′ are successive regeneration points,

0 if r ′ is not a regeneration point.

Definition 4.7. For Hti
z ⊂ S ti

ai ,bi
define

̃(Hti
z ) =

{
(r ′) if there is a regeneration point r ′ ∈ Hti

z ,

0 otherwise.

We will refer to the values (r) as increments. We need to show that, given

ai

h̃ti↔ bi , there are unlikely to be too many small increments. This will be proved
by showing that a positive proportion of increments have magnitude greater than
equal to 1/2, with high probability. This result will be used to bound the variance
of sums of increments from below.

For δ as in Lemma 3.3, and ai, bi fixed, let N = �δ|bi − ai |�, and R = �N/8�.
Let U be the collection of all (z1, · · · , zR) such that for j = 1, · · · , R, we have

(i) zj ∈ S ti
ai ,bi

; zj is on the line through wi , parallel to ti ,
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(ii) (ti , z1)2 < (ti, z2)2 < · · · < (ti, zR)2,
(iii) (Int S ti

zj−4ei ,zj+4ei
) and (Int S ti

zk−4ei ,zk+4ei
) are disjoint for j �= k.

By property (i), there is a bijection pairing {z1, z2, · · · , zR} ∈ U and the set of lines
Hti

zj
passing through the points {z1, z2, · · · , zR}. SupposeRti

ai ,bi
= {r1, r2, · · · , rI },

with I ≥ N . Next, we define Qti
ai ,bi
= {σ1, .., σR} ⊂ Rti

ai ,bi
according to the fol-

lowing algorithm:

(1) σ1 = rk1 , where k1 is the smallest integer satisfying (ti , ai +4ei)2 ≤ (ti , rk1)2,
(2) σj = rkj

, where kj is the smallest integer satisfying (ti , σj−1 + 8ei)2 ≤
(ti , rkj

)2, for j = 2, 3, · · · , R.

For j ≥ 2, this algorithm can skip at most 7 regeneration points after σj−1 before it
selects σj ; under the assumption that there are at least N regeneration points, it will
successfully choose exactly R regeneration points. (Qti

ai ,bi
is undefined when there

are fewer than N regeneration points, so |Qti
ai ,bi
| = R whenever Qti

ai ,bi
is defined.)

Notice that, for some (z1, z2, · · · , zR) ∈ U , the regeneration point σj occurs on
Hti

zj
, for j = 1, 2, · · · , R. Also, since the slope of ti is rational, the line Hti

σj
con-

tains other lattice points, which are also possible locations for the j th regeneration
point, when only Hti

σj
is specified.

Lemma 4.8. Given ε, ti , ai, bi as in the preceeding, for δ > 0 from (3.1), there
exist γ, ϕ > 0 such that

P

( N∑

k=2

δ{|(rk)|≥ 1
2 } ≤ γ |bi − ai | ; |Rti

ai ,bi
| > δ|bi − ai |

∣∣∣∣ ai

h̃ti↔ bi

)

≤ exp
(− ϕ|bi − ai |

)
. (4.16)

Proof. For some γ > 0 to be specified later, we write

P

( N∑

k=2

δ{|(rk)|≥ 1
2 } ≤ γ |bi − ai | ; |Rti

ai ,bi
| > N

∣∣∣∣ ai

h̃ti↔ bi

)

≤
∑

(z1,··· ,zR)∈U
P

(
Qti

ai ,bi
⊂

R⋃

j=1

Hti
zj
;

N∑

k=2

δ{|(rj )|≥ 1
2 } ≤ γ |bi − ai |

∣∣∣∣ ai

h̃ti↔ bi

)

≤
∑

(z1,··· ,zR)∈U
P

(
Qti

ai ,bi
⊂

R⋃

j=1

Hti
zj
;

R∑

j=2

δ{|̃(Hti
zj

)|≥ 1
2 }
≤ γ |bi − ai |

∣∣∣∣ ai

h̃ti↔ bi

)

≤
∑

(z1,··· ,zR)∈U
P

(
Qti

ai ,bi
⊂

R⋃

j=1

Hti
zj

∣∣
∣∣ ai

h̃ti↔ bi

)

× P

( R∑

j=2

δ{|̃(Hti
zj

)|≥ 1
2 }
≤ γ |bi − ai |

∣
∣∣
∣ Qti

ai ,bi
⊂

R⋃

j=1

Hti
zj
; ai

h̃ti↔ bi

)
.

(4.17)
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We will bound the second probability in the last sum. In order to do this, we will

describe a “renewal shifting” procedure. For ω ∈ {Qti
ai ,bi
⊂ ∪R

j=1Hti
zj
; ai

h̃ti↔ bi},
satisfying |̃(Hti

zj
)| < 1

2 for some fixed j ≥ 2, this procedure will produce a

configuration ω̃ ∈ {Qti
ai ,bi
⊂ ∪R

j=1Hti
zj
; ai

h̃ti↔ bi}, which has at most a bounded

number of bonds different from ω, and which satisfies |̃(Hti
zj

)| ≥ 1
2 . Moreover,

this procedure maps at most 2m configurations to the same ω̃, where m is the num-
ber of possibly-adjusted bonds. Once this procedure is described, for constants
c1, c2, · · · , cj−1 we get

P

(
|̃(Hti

zj
)| < 1/2

∣
∣
∣
∣ Qti

ai ,bi
⊂

R⋃

j=1

Hti
zj
; ai

h̃ti↔ bi ; ̃(Hti
zk

) = ck, 1 ≤ k < j

)

≤ λ′ P
(
|̃(Hti

zj
)| ≥ 1/2

∣
∣
∣
∣ Qti

ai ,bi

⊂
R⋃

j=1

Hti
zj
; ai

h̃ti↔ bi ; ̃(Hti
zk

) = ck, 1 ≤ k < j

)
, (4.18)

where λ′ = λ′(p) > 0. This yields

P

(
|̃(Hti

zj
)| ≥ 1/2

∣∣∣∣ Qti
ai ,bi
⊂

R⋃

j=1

Hti
zj
; ai

h̃ti↔ bi; ̃(Hti
zk

) = ck, for 1 ≤ k < j

)

≥ 1

1+ λ′

which is sufficient to bound the last probability in (4.17) by P
(
X < γ |bi − ai |),

where X is binomially distributed with parameters R − 1 and p∗ = 1
1+λ′ . Taking

γ < p∗ and using a bound from [Ho] we have

P
(
X < γ |bi − ai |

) ≤ exp

(
− (R − 1)(p∗ − γ )2

2

)
≤ exp(−ϕ|bi − ai |

)
,

for some ϕ > 0. Using this in the right side of (4.17) and observing that the
events {Qti

ai ,bi
⊂ ⋃R

j=1 Hti
zj
} are disjoint for distinct (z1, z2, · · · , zR) ∈ U , we

obtain (4.16), after summing over all (z1, z2, · · · , zR) ∈ U .
The proof will be completed by description of the “renewal shifting” procedure.

For a given configuration ω ∈ {Qti
ai ,bi
⊂⋃R

j=1 Hti
zj
; ai

h̃ti↔ bi} and a fixed j ≤ R,

let us assume |̃(Hti
zj

)| < 1
2 , for some j . We will define ω̃ by modifying some

dual bonds inside S ti
zj−4ei ,zj+4ei

. Since ti has slope r
q

, there exists infinitely many

equally spaced lattice points on the line Hti
zj

. We will use one of the two lattice

points on Hti
zj

closest to the regeneration point σj . Call these locations uj and vj ,
with uj = σj + (−r, q) and vj = σj + (r,−q). The configuration ω has open dual
bonds 〈σj − ei, σj 〉 and 〈σj , σj + ei〉.
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There exists a path γ L
j from σj − 2ei to uj − ei in S ti

zj−3ei ,zj−ei
having all

steps upward or leftward, with γ L
j ∩Hti

σj−ei
= {uj − ei}, and similarly a path γ R

j

from σj + 2ei to uj + ei in S ti
zj+ei ,zj+3ei

having all steps upward or leftward with

γ R
j ∩Hti

σj+ei
= {uj + ei}. Let Aj be the closed region bounded by γ L

j , γ R
j and the

horizontal lines through σj and uj . To make our choice of γ L
j , γ R

j unique, let us

specify that Aj be maximal under the constraints we have imposed on γ L
j , γ R

j . Let
Dj be the set of all dual bonds having one endpoint in ∂Aj and the other outside Aj .
Note there are at most 12q dual bonds contained in Aj , and at most 2r + 2q + 10
dual bonds in Dj . Let ω̃ be such that

(1) all dual bonds in ∂Aj\{〈σj − ei, σj 〉, 〈σj , σj + ei〉} are open;
(2) all other dual bonds contained in Aj are closed;
(3) all dual bonds in Dj ∩ Cti

ai ,bi
(ω) are open;

(4) all dual bonds in Dj\Cti
ai ,bi

(ω) are closed;
(5) all other dual bonds retain their state from ω.

In the altered configuration ω̃, the regeneration point is still on Hti
zj

but shifted

from σj to uj . After these alterations, if |̃(Hti
zj

)| ≥ 1
2 , then we are done. It is

possible that |̃(Hti
zj

)| < 1
2 , for the following reason. Let k be such that zj = rk .

If there are other regeneration points in S ti
zj−3ei ,zj+3ei

in ω, shifting the regenera-
tion point to uj will destroy these regeneration points; any regeneration points in
S ti

zj−4ei ,zj+4ei
\S ti

zj−3ei ,zj+3ei
in ω may or may not be destroyed, depending on the

exact geometry of the situation. At any rate, if rk−1 is destroyed, the new “pre-
ceding regeneration point” for zj will be outside the slab S ti

zj−3ei ,zj+3ei
, equal to

rk−2 or rk−3, and we may have |̃(Hti
zj

)| < 1
2 in ω̃, depending on the location

of this new preceding regeneration point relative to li . If this is the case we shift
the regeneration point from σj to vj instead of uj . For this we use paths γ̃ L

j from

σj − 2ei to vj − ei and γ̃ R
j from σj + 2ei to vj + ei in place of γ L

j and γ R
j , under

an analogous maximality constraint. Let xL
j (respectively xR

j ) be the site in γ L
j

(respectively γ R
j ) closest to Hti

σj−3ei
(respectively Hti

σj+3ei
). Due to the maximality

constraints we have imposed, since all our slabs have boundaries with slope−q/r ,
xL
j + (r,−q) is the site in γ̃ L

j closest to Hti
σj−3ei

, and xR
j + (r,−q) is the site in

γ̃ R
j closest to Hti

σj+3ei
. This means that γ L

j and γ̃ L
j intersect the same slabs orthog-

onal to ti , and similarly for γ R
j and γ̃ R

j . As a consequence, the same regeneration
points are destroyed, regardless of whether we shift to uj or vj , so ω̃ has the same
preceding regeneration point either way. It follows that if shifting to uj results in
|̃(Hti

zj
)| < 1

2 , then shifting to vj results in |̃(Hti
zj

)| ≥ 1
2 , i.e. there is always a

shift (the one we choose to create ω̃) which results in |̃(Hti
zj

)| ≥ 1
2 .

Note that only a bounded number of different configurations may map to the
same configuration ω̃. In any case, ω̃ and ω yield the same value of Qti

ai ,bi
, and

the probabilities of ω and ω̃ are within a bounded factor (depending on p), which
yields (4.18), completing the proof. ��
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5. Exchangeability of increments

The core idea in our proof of (2.1) is to make use of the renewal structure of connec-
tivities, for connections between any two consecutive extreme points wi, wi+1 in
the s-hull skeleton with i ∈ L, to see that the increments (rj ), 2 ≤ j ≤ N , form
an exchangeable sequence under certain conditioning, that is, the joint distribution
is permutation invariant. The partial sums of this sequence behave like those of an
i.i.d. sequence, and from this we can show that with high probability, the path of
open dual bonds will not stay in the “narrow tube” from wi to wi+1 with diame-
ter 2d = 4θl1/3(log l)−2/3. In this section we will prove this exchangeability. Let
ε, ti , ai, bi be as in the preceeding, δ as in (3.1) and γ as in (4.16). Define the event
E = E(ai, bi, ti , γ, δ) by

E =
{
ai

h̃ti←→ bi

}
∩

{
|Rti

ai ,bi
| ≥ δ|bi − ai |

}
∩

{ N∑

k=2

δ{|(rk)|≥ 1
2 } ≥ γ |bi − ai |

}
.

For v, w ∈ T i
d ∩ S ti

ai ,bi
∩ (Z2)∗, define the sets

V (v, w) =
{

ζ = (ζ2, ..., ζN) ∈ R
N−1 : |ζ2| ≥ |ζ3|

≥ · · · ≥ |ζN | ;
N∑

k=2

ζi = f (w)− f (v)

}
.

For given ζ ′ ∈ V (v, w), let F = F(v, w, ζ ′) denote the event that the following
all hold:

(i) ai

h̃ti←→ bi ,
(ii) the first and N -th regeneration points are at v and w, respectively,

(iii) for some permutation π : {2, · · · , N} → {2, · · · , N}, we have

(r2) = ζ ′π(2), (r3) = ζ ′π(3), · · · , (rN) = ζ ′π(N).

Observe that condition (iii) determines the values of the (rk)’s up to an ordering,
and (ii) and (iii) imply

∑N
k=2 (rk) = f (w)− f (v).

Lemma 5.1. For fixed ai, bi, ti , γ, δ, v, w, ζ ′, E, F as in the preceding,
(r2), · · · , (rN) are exchangeable under the measure P(· | E ∩ F).

Proof. E ∩ F determines the location of first and N -th regeneration points, and
values of increments in between them, up to an ordering. We will first show how
to exchange any two adjacent increments. Consider a configuration ω ∈ E ∩ F ,
with (r2) = ζ ′2, (r3) = ζ ′3, · · · , (rN) = ζ ′N . For fixed k ≥ 2, let us consider
increments (rk) and (rk+1). By definition of regeneration points, the bonds that
are only partially in the slab S ti

rk,rk+1 or have exactly one endpoint in the within-slab
cluster containing rk and rk+1 are all vacant. We construct a configuration ω̃ such
that outside S ti

rk−1,rk+1 we have ω̃ = ω. We obtain ω̃ by interchanging the relative
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positions of the configurations ωS ti
rk−1,rk

and ωS ti
rk ,rk+1

and moving the bonds cross-

ing Hti
rk so that they cross Hti

rk−1+(rk+1−rk)
instead. The latter move is done in such a

way that the relative positions of the bonds remain the same, with the old position
relative to rk becoming the new position relative to rk−1 + (rk+1 − rk). More pre-
cisely, the configuration in S ti

rk−1,rk is translated by rk − rk−1, the configuration
in S ti

rk,rk+1 is translated by rk − rk+1, and each bond touching or crossing Hti
rk is

translated by rk−1 + (rk+1 − 2rk). This moves the k-th regeneration point from rk
to rk−1 + (rk+1 − rk), without altering the locations of other regeneration points.
The configuration ω̃ is in E ∩ F and the increments of ω̃ satisfy

(rk) = ζ ′j+1, (rk+1) = ζ ′j , and (rm) = ζ ′m, for 2 ≤ m ≤ N, k �= m, m+ 1.

Moreover, replacing ω with ω̃ does not affect probability under the measure P(·|E∩
F), due to shift invariance. We can repeat the exchanging of adjacent increments
until we achieve the desired permutation of {2, 3 · · · , N}, and the lemma
follows. ��

6. Staying in the narrow tube

In this section, we will show that there is an extra probabilistic cost associated to
the event that �0 stays in the narrow tube T i

d , between ai and bi . The proof involves
randomization of the order of the increments, using exchangeability.

Lemma 6.1. Let i ∈ L and let ε, ti , ai, bi be as in the preceeding. Let δ be as
in (3.1) and γ as in (4.16). There exists κ = κ(γ ) > 0 such that for all v, w ∈
T i

d ∩ S ti
ai ,bi
∩ (Z2)∗ and ζ ′ ∈ V (v, w) ∩ [−2d, 2d]N , for E = E(ai, bi, ti , γ, δ),

F = F(v, w, ζ ′), provided l is large we have

P

(
ai

h̃ti←→ bi in T i
d

∣∣∣∣ E ∩ F

)
≤ 2 exp

(−κ|wi+1 − wi |
d2

)
. (6.1)

Proof. Observe that when ai

h̃ti←→ bi in T i
d , every open path from ai to bi in T i

d

must pass through all regeneration points. Thus

P
(
ai

h̃ti←→ bi in T i
d | E ∩ F

) ≤ P({r1, r2, · · · , rN } ⊂ T i
d ∩ S ti

ai ,bi

∣∣ E ∩ F
)
.

(6.2)

We can relate the last probability to an event involving increments. If 1 ≤ k1 <

k2 ≤ N and
∣∣ ∑k2−1

j=k1
(rj+1)

∣∣ > 2d , then the k1-th or k2-th regeneration point

must lie outside of T i
d . Therefore,

P({r1, r2, · · · , rN+1} ∈ T i
d ∩ S ti

ai ,bi

∣∣ E ∩ F
)

≤ P

(∣∣
∣∣

k2−1∑

j=k1

(rj+1)

∣∣
∣∣ ≤ 2d, for all 1 ≤ k1 < k2 ≤ N

∣∣
∣∣ E ∩ F

)
. (6.3)
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Instead of looking at partial sums for all possible values of k1, k2, we will con-
sider disjoint blocks of increments with random lengths X1, X2, · · · , XB satisfying
X1+ · · · +XB < N , for some B ∈ N. Let Sn =

∑n
k=1 Xk , for n = 1, · · · , B, and

let S0 = 0. Then (6.3) is bounded by

P

( B⋂

k=1

{
max

1≤m≤Xk

∣∣∣∣

Sk−1+m∑

j=Sk−1+1

(rj+1)

∣∣∣∣ ≤ 2d

}∣∣∣∣ E ∩ F

)
, (6.4)

where we define X0 = 0. If we take Xk , for 1 ≤ k ≤ B, to be deterministic, the
increments on these disjoint blocks will not be independent of the increments on
other blocks. In order to reduce the dependence between these disjoint blocks, we
will take the Xk’s to be (non-independent) binomially distributed random variables.
Next, we use exchangeability of increments to write (6.4) in an equivalent form. For
binomially distributed X1 with parameters, N − 1 and p0, with p0 to be specified
later,

X1+1∑

j=2

(rj )
d=

N∑

j=2

δj1ζ
′
j

where the δj1, j = 2, .., N are i.i.d. Bernoulli random variables with parameter
p0. That is, the sum of first X1 increments have the same distribution as the sum of
increments randomly selected according to the δj1’s. Continuing this way, for each
following random block, we replace the sum of increments corresponding to that
block with a sum of increments that are randomly selected from those increments
remaining after the earlier steps of the increment–selection process. More precisely,
we do the following. Define p0 and the number of blocks by

p0 = K19d
2

|wi+1 − wi | , B = � 1

2p0
�,

where K19 = K19(γ ) is sufficiently large constant, to be specified later. Observe
that p0 = O((log l)−1). For all 2 ≤ j ≤ N , define

δjk =
{

0 with probability pk = 1−kp0
1−(k−1)p0

1 with probability 1− pk = p0
1−(k−1)p0

,
(6.5)

with {δjk, j = 2, · · ·N , k = 1, · · · , B} independent random variables. Also
define Yjk = (1− δj1)(1− δj2) · · · (1− δjk), for j = 2, .., N , k = 1, .., B. Then
we have

Yjk =
{

0 with probability kp0

1 with probability 1− kp0
(6.6)

The random variable Yjk = 1 says that the j -th increment is not selected for the
first k blocks, and Yj(k−1)δjk = 1 says that the j -th increment is selected for the
k-th block. We define the length of the k-th block Xk as

Xk =
N∑

j=2

Yj(k−1)δjk, for k = 1, 2, · · · , B.
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It can be easily seen from (6.5) and (6.6) that the Xk’s are binomially distributed
(but not independent) with parameters N − 1 and p0. By exchangeability, we can
rewrite (6.4) as

P

( B⋂

k=1

{
max

2≤m≤N

∣∣∣∣

m∑

j=2

Yj(k−1)δjkζj

∣∣∣∣ ≤ 2d

} ∣∣∣∣ E ∩ F

)
, (6.7)

since
∑B

k=1 Xk ≤ N , which holds because no j can be chosen for more than one
block. We let

Dk =
{
ω : max

2≤m≤N

∣
∣
∣
∣

m∑

j=2

Yj(k−1)δjkζj

∣
∣
∣
∣ ≤ 2d

}
.

We need to control the number of increments |ζj | ≥ 1/2 which remain after some
blocks have been selected. By definition of E, there are at least �γ |bi − ai |� such
increments before the first block is selected. Let g = √B�γ |bi − ai |�, let G1 =
E ∩ F , and for k = 2, · · · , B define

Gk =
{
ω :

∣∣∣∣

( �γ |bi−ai |�∑

j=2

Yj(k−1)

)
− (1− (k − 1)p0)�γ |bi − ai |�

∣∣∣∣ ≤ g

}
.

Let Ik = {j : Yj(k−1) = 1, 1 ≤ j ≤ N − 1}, be the random set of remaining
increment indices before the k-th block is selected. Then Gk−1 provides control
over

∣∣Ik ∩ {1, 2, · · · , �γ |bi − ai |�}
∣∣, the number of remaining increments that are

greater than or equal to 1/2; here we use the monotonicity of the |ζj |’s, and the fact
that at least �γ |bi−ai |� increments are greater than or equal to 1/2. By (6.2)–(6.4)
we have

P
(
ai

h̃ti←→ bi in T i
d

∣∣ E ∩ F
)

≤ P

( B⋂

k=1

(
Dk ∩Gk

)
∣∣∣∣ E ∩ F

)
+ P

([ B⋂

k=1

Gk

]c ∣∣∣∣ E ∩ F

)
(6.8)

First we bound the probability in (6.8) of a large deviation for some block for the
number of available large increments, using a bound from [Ho]:

P

([ B⋂

k=1

Gk

]c ∣∣∣∣ E ∩ F

)
≤

B∑

k=2

P(Gc
k | E ∩ F)

≤ 2B exp
( −2g2

�γ |bi − ai |�
)

= 2B exp(−2B)

≤ exp(−B), (6.9)
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where the last inequality holds for l sufficiently large. Next, we consider the prob-
ability the probability of staying in the narrow tube in the absence of such a large
deviation. This probability from (6.8) can be written

P
(
D1

∣∣ E ∩ F
)×

B∏

k=2

P

(
Dk ∩Gk

∣∣∣∣ E ∩ F ∩
k−1⋂

j=1

(Dj ∩Gj)

)

≤ P
(
D1

∣∣ E ∩ F
)×

B∏

k=2

P

(
Dk

∣∣∣
∣ E ∩ F ∩

k−1⋂

j=1

(Dj ∩Gj)

)
. (6.10)

We will conclude by showing

P

(
Dk

∣
∣
∣
∣ E ∩ F ∩

k−1⋂

j=1

(Dj ∩Gj)

)
≤ 2/3, (6.11)

for k ≥ 2. The proof that P
(
D1

∣
∣ E ∩ F

) ≤ 2/3 follows by the same technique.
Let us fix k ≥ 2. We define a family of sets of indices:

Ik =
{
ϒ ⊂ {2, · · · , N − 1} :

∣∣∣∣

�γ |bi−ai |�∑

j=2

δ{j∈ϒ}

−(1− (k − 1)p0)�γ |bi − ai |�
∣∣∣∣ ≤ g

}
.

For ϒ ∈ Ik , and n ≤ N − 1, define

ϒn = ϒ ∩ {2, 3, · · · , n}
Observe that if Gk−1 occurs then Ik ∈ Ik . It follows that

P

(
Dk

∣∣∣∣ E ∩ F ∩
k−1⋂

j=1

(Dj ∩Gj)

)

=
∑

ϒ∈Ik

P

(
Dk ∩ {Ik = ϒ}

∣∣∣∣ E ∩ F ∩
k−1⋂

j=1

(Dj ∩Gj)

)
. (6.12)

Fix ϒ ∈ Ik and define the event Hk = [Ik = ϒ] ∩ E ∩ F ∩⋂k−1
j=1(Dj ∩ Gj).

Define

Q(k, ϒn) =
[

1

2

(
p0(1− kp0)

(1− (k − 1)p0)2

) ∑

j∈ϒn

(ζ ′j )
2
]1/2

,

so that

Var

( ∑

j∈ϒn

δjkζ
′
j

∣∣
∣∣ Hk

)
= 2[Q(k, ϒn)]

2.

For any index set ϒ ∈ Ik , one of three possibilities has to hold:
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(1) for all n = 2, 3, ..., N
∣∣∣∣E

( ∑

j∈ϒn

δjkζ
′
j

∣∣∣∣ Hk

)∣∣∣∣ =
∣∣∣∣

∑

j∈ϒn

p0

1− (k − 1)p0
ζ ′j

∣∣∣∣ ≤ 2d +Q(k, ϒn);

(2) for some n0, 2 ≤ n0 ≤ N

E

( ∑

j∈ϒn0

δjkζ
′
j

∣∣∣∣ Hk

)
> 2d +Q(k, ϒn0);

(3) for some n0, 2 ≤ n0 ≤ N

−E

( ∑

j∈ϒn0

δjkζ
′
j

∣
∣
∣
∣ Hk

)
> 2d +Q(k, ϒn0).

In case (2),

P
(
Dk

∣
∣ Hk

)

≤ P

(
− 2d ≤

∑

j∈ϒn0

δjkζ
′
j ≤ 2d

∣∣∣∣ Hk

)

≤ P

( ∑

j∈ϒn0

[
δjkζ

′
j −

p0

1− (k − 1)p0
ζ ′j

]
< −Q(k, ϒn0)

∣∣∣∣ Hk

)

By Chebyshev’s inequality, the last probability is bounded by

1

1+ [Q(k,ϒn0 )]2

2[Q(k,ϒn0 )]2

= 2

3
.

In case (3), similarly, P(Dk | Hk) ≤ 2/3. Case (1) requires some extra work. Using
Kolmogorov’s inequality we get

P(Dk | Hk)

≤ P

(
max

2≤m≤N

∣∣∣
∑

j∈ϒm

(
δjkζ

′
j −

p0

1− (k − 1)p0
ζ ′j

) ∣∣∣ < 4d +Q(k, ϒN)

∣∣∣∣ Hk

)

≤
[
6d +Q(k, ϒN)

]2

2[Q(k, ϒN)]2 .

The proof of (6.11) will be concluded by showing

d2

2[Q(k, ϒN)]2 ≤
1

98
,

since this implies
[
6d +Q(k, ϒN)

]2

2[Q(k, ϒN)]2 ≤ 2/3.
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Since ϒ ∈ Ik we have
∑

j∈ϒ
(ζ ′j )

2 ≥ 1

4

∑

j∈ϒ
δ{|ζ ′j |≥1/2

}

≥ 1

4
|ϒ�γ |bi−ai |�|

≥ 1

4

(
(1− (k − 1)p0)�γ |bi − ai |� − g

)

≥ 1

8

(
�γ |bi − ai |� − 2g

)

≥ 1

16
γ |bi − ai |

since 1
2 ≤ 1− kp0 ≤ 1, for sufficiently large l. Therefore,

d2

2[Q(k, N)]2 ≤
16d2((1− (k − 1)p0)

2)

p0(1− kp0)γ |bi − ai | ≤
32d2

p0γ |bi − ai | =
32|wi+1 − wi |
K19γ |bi − ai |

By (4.10), we can choose K19 = K19(γ ) (from the definition of p0) sufficiently
large so that the last expression is less than 1/98, for large l. Under each case (1)-
(3) we have shown P(Dk | Hk) ≤ 2/3, for arbitrary ϒ ∈ Ik . With (6.12) this
proves (6.11). Using (6.8)–(6.10) we get

P
(
ai

h̃ti←→ bi in T i
d

∣∣ E ∩ F
) ≤ (2/3)B + e−B

≤ 2 exp
(−κ|wi+1 − wi |

d2

)
,

for some κ > 0, which concludes the proof of the lemma. ��
Lemma 6.2. Let ε, ti , ai, bi be as in the preceeding, with i ∈ L. Let δ be as in
(3.1), γ as in (4.16) and κ as in (6.1). Provided l is sufficiently large we have

P

(
ai

h̃ti←→ bi in T i
d

∣∣ ai

h̃ti←→ bi

)
≤ 3 exp

(−κ|wi+1 − wi |
d2

)
. (6.13)

Proof. Let ν′ be as in (4.13) and ϕ as in (4.16). We will consider intersections of the

event {ai

h̃ti←→ bi in T i
d }with the events E = E(ai, bi, ti , δ, γ ) and Ec, separately.

First we have

P

(
Ec | ai

h̃ti←→ bi

)

≤ P

(
|Rti

ai ,bi
| < δ|bi − ai |

∣
∣ ai

h̃ti←→ bi

)

+ P

( N∑

j=1

δ{|(rj )|≥ 1
2 } ≤ γ |bi − ai | ; |Rti

ai ,bi
| > δ|bi − ai |

∣
∣∣∣ ai

h̃ti↔ bi

)

≤ exp(−ν′|bi − ai |)+ exp(−ϕ|bi − ai |), (6.14)
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by (4.13) and (4.16). Since i ∈ L, this bound is small compared to the right side
of (6.13). Next, we have

P

(
{ai

h̃ti←→ bi in T i
d } ∩ E

∣∣ ai

h̃ti←→ bi

)
≤

∑

v,w∈T i
d∩S

ti
ai+3ei ,bi

∩(Z2)∗
(6.15)

×
[ ∑

ζ ′∈V (v,w)

P

(
{ai

h̃ti↔ bi in T i
d } ∩ E ∩ F(v, w, ζ ′)

∣∣ ai

h̃ti↔ bi

)]
,

where the first sum is over all possible locations of first and N-th regeneration
points, and the second sum is over all possible sets of increments between v and w.
If the magnitude of one of these increments is greater than 2d, this implies at least
one regeneration point must be outside the tube T i

d . Therefore, we can restrict the
second sum to ζ ′ ∈ V (v, w) ∩ [−2d, 2d]N , and the last sum is bounded by

∑

v,w∈T i
d∩S

ti
ai+3ei ,bi

∩(Z2)∗

[ ∑

ζ ′∈V∩[−2d,2d]N

× P

(
{ai

h̃ti↔ bi in T i
d } ∩ E ∩ F(v, w, ζ ′)

∣∣ ai

h̃ti↔ bi

)]
. (6.16)

For the remainder of the proof, our sums are over v, w ∈ T i
d ∩ S ti

ai+3ei ,bi
∩ (Z2)∗

and ζ ′ ∈ V (v, w) ∩ [−2d, 2d]N . We can write the last expression as

∑

v,w

[ ∑

ζ ′
P

(
E ∩ F(v, w, ζ ′)| ai

h̃ti↔ bi

)
P

(
ai

h̃ti↔ bi in T i
d

∣∣ E ∩ F(v, w, ζ ′)
)]

≤ 2 exp

(−κ|wi+1 − wi |
d2

)∑

v,w

∑

ζ ′
P

(
E ∩ F(v, w, ζ ′)| ai

h̃ti↔ bi

)
,

using (6.1). Taking the double sum over the probabilities of disjoint events, in view
of (6.15) and (6.16) we get

P

(
{ai

h̃ti←→ bi in T i
d } ∩ E

∣∣ ai

h̃ti←→ bi

)
≤ 2 exp

(−κ|wi+1 − wi |
d2

)
.

Combining this with (6.14) completes the proof. ��

7. Assembling the segments

In the last section, we proved that on every long facet of the ∂HSkels(�0), there is
an extra probabilistic cost for staying in the narrow tube. In this section, we will
bring the pieces in the preceding sections together to deduce that, there is an extra
probabilistic cost of staying in the annular region Ad (with diameter 2d), throughout
the boundary of the HSkels(�0). We will show that in light of the inequality (4.3),
leaving the annular region Ad implies that MLR(�0) > θl1/3(log l)−2/3. Then by
bounding the number of possible skeletons, we will prove (2.1).
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Lemma 7.1. There exists K20 = K20(δ, γ ) such that for sufficiently large l, for all
l-regular s-hull skeletons {w0, .., wm+1},

P
({

w0 ↔ w1
} ◦ · · · ◦ {

wm ↔ wm+1
}

in Ad

)

≤ exp(−W1l − K20

θ2 l1/3(log l)4/3). (7.1)

Proof. Using the BK-inequality, we have

P
({

w0 ↔ w1
} ◦ · · · ◦ {

wm ↔ wm+1
}

in Ad

) ≤
m∏

i=0

P(wi ↔ wi+1 in Ad).

(7.2)

This last product can be written as products over long and short sides separately.
We will bound the product over long sides further. As before for i ∈ L, let ai ∈
S ti

w′i ,w
′
i+ei
∩T i

d and bi ∈ S ti
w′′i ,w′′i −ei

∩T i
d ; note there are at most 2d choices each for

ai and bi . Using (4.9), (6.13) and l-regularity we have
∏

i∈L
P(wi ↔ wi+1 in Ad)

≤
∏

i∈L
P(wi ↔ wi+1)

[
K14 exp (−K15l)+ 4d2 max

ai ,bi

P (ai ↔ bi in T i
d

∣∣ai

h̃ti↔ bi)

]

≤
∏

i∈L
P(wi ↔ wi+1)

[
K14 exp (−K15l)+ 12d2 exp

(−κ|wi+1 − wi |
d2

)]

≤
∏

i∈L
P(wi ↔ wi+1)

[
13d2 exp

(−κ|wi+1 − wi |
d2

)]
. (7.3)

Now we place a condition on the as-yet-unspecified constant θ ; recall that

s =
(

θ
√

π

2K7

)1/2

l2/3(log l)−1/3, d = 2θl1/3(log l)−2/3.

For some β = β(K5, K7, κ), provided θ is sufficiently small we have

13d2 exp

(−κ|wi+1 − wi |
2d2

)
≤ 20θ2l2/3(log l)−4/3 exp(−βθ−3/2 log l) ≤ 1,

so that

13d2 exp

(−κ|wi+1 − wi |
d2

)
≤ exp

(−κ|wi+1 − wi |
2d2

)
.

Therefore, using Lemma 4.2, the right side of (7.3) is bounded by

exp

(
− κ

2d2 ·
∑

i∈L
|wi+1 − wi |

)
·
∏

i∈L
P(wi ↔ wi+1)

≤ exp

(
− κ
√

π

8θ2
√

2
l1/3(log l)4/3

)
·
∏

i∈L
P(wi ↔ wi+1).
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Using (7.3) and (2.6) we then obtain

m∏

i=0

P(wi ↔ wi+1 in Ad) ≤ exp

(
− κ
√

π

8θ2
√

2
l1/3(log l)4/3

) m∏

i=0

P(wi ↔ wi+1)

≤ exp

(
− κ
√

π

8θ2
√

2
l1/3(log l)4/3 −

m∑

i=0

τ(wi+1 − wi)

)
.

(7.4)

By l-regularity there exists a dual circuit γ0 with | Int(γ0)| ≥ l2, diam(γ0) ≤ 8
√

2 l

and HSkels(γ0) = {w0, .., wm+1}. The first condition implies diam(γ0) ≥ l, and
by definition of W1 we have W(∂Co(γ0) ≥ W1l. Therefore by (4.4), for some
K21,

m∑

i=0

τ(wi+1 − wi) ≥W1l −K21θl1/3(log l)−2/3.

The lemma now follows from this together with (7.2) and (7.4). ��
Proof of Theorem 2.1. By (4.6),

P
(

MLR(�0) ≤ θl1/3(log l)−2/3
∣∣ | Int(�0)| ≥ l2 )

≤ P
( {MLR(�0) ≤ θl1/3(log l)−2/3} ∩ {diam(�0) ≤ 8

√
2l} ∣∣

| Int(�≥l2
)+ exp(−W1l/2). (7.5)

This means we need only consider l-regular skeletons {w0, · · · , wm+1} for �0.
When | Int(�0)| ≥ l2 we have diam(�0) ≥ l and therefore

K7s
2

diam(�0)
< d.

Presuming HSkels(�0) = {w0, · · · , wm+1}, this implies ∂Co(�0) ⊂ Ad . This
means that in order to have MLR(�0) ≤ θl1/3(log l)−2/3, �0 must be entirely
inside Ad . Thus

P
( {MLR(�0) ≤ θl1/3(log l)−2/3} ∩ {diam(�0) ≤ 8

√
2l} ∩ {| Int(�0)| ≥ l2})

≤
∑

{w0,··· ,wm+1}
P

( {
HSkels(�0) = {w0, · · · , wm}

}

∩
{ {

w0 ↔ w1
} ◦ · · · ◦ {

wm ↔ wm+1
}

in Ad(w0, .., wm+1
}})

, (7.6)

where the sum is over all l-regular skeletons. By (4.1) the number of l-regular
skeletons is at most

(K22l
2)K23θ

−1/2l1/3(log l)1/3 ≤ exp(K24θ
−1/2l1/3(log l)4/3),

for some K22, K23, K24. This together with (7.1) and (7.6) gives
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P
( {MLR(�0) ≤ θl1/3(log l)−2/3} ∩ {diam(�0) ≤ 8

√
2l} ∩ {| Int(�0)| ≥ l2})

≤ exp

(
−W1l −

(
K20

θ2 −
K24

θ1/2

)
l1/3(log l)4/3

)

which with (4.5) and (7.5) yields

P
(

MLR(�0) ≤ θl1/3(log l)−2/3
∣∣ | Int(�0)| ≥ l2 )

≤ exp

(
−

(
K20

θ2 −
K24

θ1/2

)
l1/3(log l)4/3 +K11l

1/3(log l)2/3
)

+ exp

(
− W1l

2

)
.

For θ > 0, sufficiently small, the last bound tends to 0, as l→∞. ��
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