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Abstract. We present several constructions of a “censored stable process” in an open set
D ⊂ Rn, i.e., a symmetric stable process which is not allowed to jump outside D.

We address the question of whether the process will approach the boundary of D in a
finite time – we give sharp conditions for such approach in terms of the stability index α and
the “thickness” of the boundary. As a corollary, new results are obtained concerning Besov
spaces on non-smooth domains, including the critical exponent case.

We also study the decay rate of the corresponding harmonic functions which vanish on
a part of the boundary. We derive a boundary Harnack principle in C1,1 open sets.
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1. Introduction

We will introduce “censored” stable processes and present some of their basic
properties. A censored stable process in an open set D ⊂ Rn is obtained from the
symmetric stable process by suppressing its jumps from D to the complement of D,
i.e., by restricting its Lévy measure to D. In other words, a censored stable process
Y in a domain D is a stable process “forced” to stay inside D. We have not used
the word “conditioned” because this usually indicates conditioning in the sense of
Doob’s h-transform; it will be shown in this paper that in fact these two processes
are different. To study censored stable processes, we introduce yet another process
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Y ∗ on D, which we call reflected stable process on D. In a sense, Y ∗ is the maxi-
mal extension of Y . The relation between Y ∗ and Y is similar to that between the
reflected Brownian motion in D and the killed Brownian motion in D. We will
show that the censored stable process may be obtained by piecing together of killed
stable processes but it can be also represented as the reflected stable process killed
upon hitting of the boundary of D.

We believe that censored and reflected stable processes deserve to be studied
because their classical counterparts, killed and reflected Brownian motions, are
important models in both pure mathematics (RBM is related to the Laplacian with
Neumann boundary conditions) and in applied probability (RBM arises naturally
in queueing theory). This paper is mainly focussed on censored stable processes;
see [17] for some results on reflected α-stable processes, including heat kernel
estimates and a parabolic Harnack inequality.

Brownian motion is at the extreme end of the class of symmetric α-stable pro-
cesses, corresponding to α = 2. The potential theory for the Brownian motion
and that for the (discontinuous) symmetric stable processes share many similarities
but also exhibit numerous important differences. One of our goals is to compare
potential theories for censored stable processes and killed Brownian motion (see
question (Q2) below). We will not limit ourselves to comparisons, though, and we
will address some problems which are specific to censored processes (see question
(Q1)).

We will first show that the censored stable process can be constructed in three
different but equivalent ways and each construction is useful under different cir-
cumstances. We will also take the first few steps in the analysis of the new model.
The paper contains a large number of various estimates and other results on censored
processes but the two main questions we address in the paper are

(Q1) Does the censored process approach the boundary of the set to which it is
constrained in a finite time?

(Q2) Do harmonic functions corresponding to the censored process satisfy a bound-
ary Harnack principle analogous to the boundary Harnack principle for the
classical harmonic functions, i.e., those corresponding to Brownian motion?

We will now give a semi-formal presentation of our main results—see the main
body of the paper for the fully rigorous version.

An almost complete answer to question (Q1) is given in Corollary 2.6 and The-
orems 2.7 and 2.9 in Section 2. The following theorem is a special case of those
much more general results.

Theorem 1.1. Suppose that D ∈ Rn is a bounded Lipschitz open set, i.e., D lies
above the graph of a Lipschitz function in a neighborhood of every boundary point.

(1) If α ≤ 1 then the censored symmetric α-stable process Y in D is conservative
and will never approach ∂D;

(2) If α > 1 then the process Y has a finite lifetime ζ and will approach ∂D at ζ ;
that is, limt↑ζ Yt exists and takes a value in ∂D.

Our main results in Section 2 yield new information on Besov spaces. Corollary
2.6 gives necessary and sufficient conditions for an open n-set D ⊂ Rn so that the
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Besov or Sobolev spaces of fractional orders Ws,2(D) and W
s,2
0 (D) are the same,

where 0 < s < 1. The explicit results in terms of Hausdorff dimension of ∂D given
in Corollary 2.8 not only recover but also extend some results established recently
in Caetano [12] and in Farkas and Jacob [27]. In particular, our result covers the
critical case which is left open in both [12] and [27]. Our approach is quite different
from those in [12] and [27] and, we believe, is more elementary. We would like to
point out that [12] and [27] contain a number of other interesting results besides
the ones we referred to.

The proofs of Corollary 2.6, Theorems 2.7 and 2.9 are based on some pow-
erful results from the theory of Dirichlet spaces and Sobolev (or Besov) spaces
of fractional order, so they might not be accessible to some readers. Sections 3–7
provide a gentler approach to the process Y . The alternative technique developed
in these sections is applied to a certain class of relatively smooth domains being of
independent interest in the boundary theory of stable processes.

In Section 3 we derive basic properties of harmonic functions of Y such as the
Harnack inequality. To this end we use a characterization of Y as a Feynman-Kac
transform of the symmetric stable process X killed off D.

In Section 4 we consider the problem of hitting the boundary when D is a half-
line. The methods used in this section are very different and less technical than the
multidimensional methods of Sections 5 and 6 and so this section may serve as an
elementary introduction to the problem of estimating the hitting probabilities for
the process Y .

In Sections 5 and 6 we study in detail powers of the distance function x →
dist(x, Dc). We show that some of these functions are super- or subharmonic for
the process Y at the boundary of C1,β−1 domains (see Section 5 for definitions).
Here β ∈ (1, 2]. We focus on the case β = 2 in Section 6.

An open set D in Rn is said to be C1,1 if there is a localization radius r0 > 0 and
a constant � > 0 such that for every Q ∈ ∂D, there is a C1,1-function φ = φQ :
Rn−1 → R satisfying φ(0) = 0, ‖∇φ‖∞ ≤ �, |∇φ(x) − ∇φ(z)| ≤ �|x − z|,
and an orthonormal coordinate system y = (y1, · · · , yn−1, yn) = (ỹ, yn) such
that B(Q, r0) ∩ D = B(Q, r0) ∩ {y : yn > φ(ỹ)}. The pair (r0, �) is called the
characteristics of the C1,1-open set D. In dimension n = 1, a C1,1 open set is
the union of (at most countably many) disjoint open intervals Ij with lengths |Ij |
and distances dij between any two distinct intervals Ii and Ij bounded below by
a positive constant. For definiteness, we may put r0 = min(inf |Ij |, inf dij )/2 and
� = 0 in this case. The main result concerning C1,1 open sets is the following
boundary Harnack principle, which gives a sharp estimate for the rate of decay at
the boundary of nonnegative harmonic functions of the censored symmetric α-sta-
ble process Y when α ∈ (1, 2). This is our partial answer to question (Q2) stated
above.

Theorem 1.2. Let D be a C1,1 open set in Rn with characteristics r0 ≤ 1 and �,
and let ρ(x) = dist(x, Dc). Let Y be the censored stable process in D with index
of stability α ∈ (1, 2). Let Q ∈ ∂D and r ∈ (0, r0).

Assume that u ≥ 0 is a function on D which is not identically equal to 0, van-
ishes continuously on ∂D ∩ B(Q, r) and is harmonic on D ∩ B(Q, r) for Y . Then
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there is a constant C = C(n, α, �) > 1 such that

u(x)

u(y)
≤ C

ρ(x)α−1

ρ(y)α−1 for x, y ∈ D ∩ B(Q, r/2). (1.1)

The notation C = C(n, α, �) means that the positive real constant C depends
only on n, α, �. This convention will be in force throughout the paper.

Theorem 1.2 played a key role in Chen and Kim [16] in obtaining sharp two-
sided Green function estimates for censored α-stable processes in bounded C1,1-
open sets when α > 1. It can also be used to answer question (Q1) when D is a
C1,1 open set and α ∈ (1, 2)—this is shown in Subsection 4.1 in the special case
when D is a half-line.

The present paper is a contribution to the boundary potential theory for discon-
tinuous non-Lévy Markov processes on open subsets D ⊂ Rn. For some recent
results on the boundary potential theory for discontinuous Lévy processes on open
subsets D ⊂ Rn, see [7]–[13], [18]–[22], [33], [40] and [45]. We also refer the
reader to [4], [42] and to the references therein for an account of the potential
theory of Lévy processes on the whole of Rn.

In this paper, we use “:=” to indicate a definition. For functions f and g, the
notation “f ≈ g” means that there exist constants c2 > c1 > 0 such that c1g ≤
f ≤ c2g. For two real numbers a and b, a∨b := max{a, b} and a∧b := min{a, b}.

2. Boundary behavior in non-smooth open sets

In the first part of this section we will define a censored stable process. We will
start by reviewing some standard definitions and results for the classical symmetric
stable processes.

Let X = {Xt } denote the symmetric α-stable process in Rn with α ∈ (0, 2)

and n ≥ 1, that is, let Xt be a Lévy process whose transition density p(t, y − x)

relative to the Lebesgue measure is given by the following Fourier transform,
∫

Rn

eix·ξp(t, x)dx = e−t |ξ |α .

It follows that X has a scaling property. Namely, if {Xt, t ≥ 0} has the distribution
Px then the distribution of {cXt/cα , t ≥ 0} is Pcx .

It is well known (cf. (I.2.20) of [5] and Example 1.4.1 of [29]) that the Dirichlet
form (C, FRn

) associated with X is given by

C(u, v) = 1

2
A(n, −α)

∫
Rn

∫
Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy, (2.1)

FRn =
{
u ∈ L2(Rn) :

∫
Rn

∫
Rn

(u(x) − u(y))2

|x − y|n+α
dxdy < ∞

}
, (2.2)

where

A(n, −α) = |α| 2α−1	(α+n
2 )

πn/2	(1 − α
2 )

.
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It is also well known that space C∞
c (Rn) of smooth functions in Rn with compact

support is dense in FRn
with respect to the inner product C1 := C + (·, ·)L2(Rn,dx).

Every function u in FRn
has a quasi-continuous version and it is this version that

will be used hereafter for u ∈ FRn
.

Given an open set D ⊂ Rn, define τD = inf{t > 0 : Xt /∈ D}. Let XD
t (ω) =

Xt(ω) if t < τD(ω) and set XD
t (ω) = ∂ if t ≥ τD(ω), where ∂ is a coffin state

added to Rn. The process XD , i.e., the process X killed upon leaving open set D is
called the symmetric α-stable process in D. Note that XD is irreducible even when
D is disconnected. The Dirichlet form of XD on L2(D, dx) is (C, FD), where

FD = {f ∈ FRn

: f = 0 q.e. on Dc}.
Here q.e. is the abbreviation for quasi-everywhere (cf. [29]). For u, v ∈ FD , by
(2.1),

C(u, v) = 1

2
A(n, −α)

∫
D

∫
D

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy

+
∫

D

u(x)v(x)κD(x)dx,

where

κD(x) = A(n, −α)

∫
Dc

1

|x − y|n+α
dy (2.3)

is the density of the killing measure of XD . We will use Cc(D) (C∞
c (D)) to denote

the space of continuous (smooth) functions in D with compact support. It is well
known that FD is the C1-closure of C∞

c (D), where C1 = C + ( · , · )L2(D).
Note that limt↑τD

Xt exists and typically belongs to D. We would like to extend
XD beyond its lifetime τD . To this end, define a bilinear form E on C∞

c (D):

E(u, v)= 1

2
A(n, −α)

∫
D

∫
D

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy, u, v∈C∞

c (D).

(2.4)

By Fatou’s lemma, (C∞
c (D), E) is closable in L2(D, dx); that is, whenever

{uk}k≥1 ⊂ C∞
c (D) is an E-Cauchy sequence such that uk → 0 in L2(D, dx),

then E(uk, uk) → 0. Let

F be the closure of C∞
c (D) under the Hilbert inner product E1 =E+(· , ·)L2(D).

It is well known that for every ε > 0, there is a φε ∈ C∞
c (R) taking values in

(−ε, 1 + ε) such that φε(t) = t on [0, 1], and 0 ≤ φε(t)−φε(s) ≤ t − s whenever
t > s. Clearly for each u ∈ C∞

c (D), φε ◦ u ∈ C∞
c (D) and E(φε ◦ u, φε ◦ u) ≤

E(u, u). Thus (F, E) is Markovian and hence a regular Dirichlet form on L2(D, dx)

(cf. Theorem 3.1.1 of [29]). Therefore there is an associated symmetric Hunt pro-
cess (Y, Px) taking values in D and with lifetime ζ (cf. Theorem 7.2.1 of [29]). As
(F, E) has no killing measure,

Px(Yζ− ∈ D) = 0 for E-q.e. x ∈ D. (2.5)



94 K. Bogdan et al.

Here E-q.e. is the abbreviation for quasi-everywhere with respect to the Dirichlet
form (F, E). See Section 2 for details.

We will now show that the above construction of Y is equivalent to an alternative
construction called the “Ikeda-Nagasawa-Watanabe piecing together procedure.”
Note that κD(x)dx is a Radon measure on D. It is the Revuz measure for the
following positive continuous additive functional of Y ,

At =
∫ t

0
κD(Ys)ds, t ≥ 0.

Here we used the convention that κD(∂) = 0. The decreasing multiplicative func-
tional e−At uniquely determines a probability measure P̂x on � for E-q.e. x ∈ D,
which satisfies the following condition for any bounded Borel measurable function
f on D,

Êx[f (Yt )] = Ex[e−At f (Yt )],

and which makes Yt a right Markov process (we used the fact that Yt = ∂ for t ≥ ζ

and the convention that f (∂) = 0). Let (Y κ, ζ κ) denote the process with distribu-
tions P̂x . By Theorems 6.1.1 and 6.1.2 of [29], Y κ is a symmetric strong Markov
process with associated Dirichlet form (Fκ , Eκ) that is regular on L2(D, dx). Here
Fκ = F ∩ L2(D, κD(x)dx) and

Eκ(u, v) = E(u, v) +
∫

D

u(x)v(x)κD(x)dx, u, v ∈ Fκ .

Thus Eκ = C on Fκ ∩ FD . Note that Cc(D) ∩ F = Cc(D) ∩ FD = Cc(D) ∩ Fκ .
Since (Fκ , Eκ) is regular on L2(D, dx), we conclude that Fκ is the C1-completion
of Cc(D)∩FD . Therefore (Fκ , Eκ) = (FD, C) and so the process Y κ has the same
distribution as the symmetric stable process XD in D. We can construct Y and Y κ

on the same probability space with Y κ being the process Y killed at a random time
ζ κ ≤ ζ (see section III.3 of [5]) that has the property

Px(ζ
κ > 0) = 1 for all x ∈ D and t + ζ κ ◦ θt = ζ κ for all t < ζ κ,

(2.6)

where θt is the time shift operator. Define τ1 = ζ κ and τj+1 = τj + ζ κ ◦ τj for
j ≥ 1, with the convention that if τj = ζ then τm = ζ for all m > j . Clearly
η := limj→∞ τj has property (2.6) with ζ κ being replaced by η and, moreover, we
see that a.s. η ≤ ζ . We claim that η = ζ a.s. To see this, we define a subprocess
Z of Y by Zt(ω) = Yt (ω) for t < η(ω) and Zt(ω) = ∂ if t ≥ η(ω). By Corollary
III.3.16 of [5], Z is a Hunt process, and so by its quasi-left continuity,

P (η < ζ) = P
(
Zη− ∈ D

) = P
(

lim
j→∞

Zτj
∈ D, τj < τj+1 for all j ≥ 1

)

≤ P
(
Zη ∈ D

) = 0.

This proves that η = ζ a.s. It follows that the process Y can also be obtained by
extending XD beyond its lifetime τD by the Ikeda-Nagasawa-Watanabe piecing
together procedure described as follows. Let Yt (ω) = XD

t (ω) for t < τD(ω). If
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XD
τD−(ω) /∈ D, set Yt (ω) = ∂ for t ≥ τD(ω). If XD

τD−(ω) ∈ D, let YτD
(ω) =

XD
τD−(ω) and glue an independent copy of XD starting from XD

τD−(ω) to YτD
(ω).

Iterating this procedure countably many times, we obtain a process on D which is
a version of the strong Markov process Y ; the procedure works for every starting
point in D. Thus constructed process Y may be called a “resurrected” process, see,
e.g., [29]. Hence, our “censored” stable process Y is an example of a “resurrected”
Markov process.

Our final construction of Y is based on the Feynman-Kac transform. Note that
for any bounded function f on D, by 62 of Sharpe [43],

Ex[e
∫ t

0 κD(Y κ
s )dsf (Y κ

t )] = Ex

[
e−At eAt f (Yt )

]
= Ex[f (Yt )]. (2.7)

Hence Y can also be obtained from XD by “creation” at the rate κD through the

Feynman-Kac transform e
∫ t

0 κD(XD
s )ds . We summarize the three constructions of Y

presented above as a theorem.

Theorem 2.1. The following processes have the same distribution.

(1) The symmetric Hunt process Y associated with the regular Dirichlet form
(E, F) on L2(D, dx);

(2) The strong Markov process Y obtained from the symmetric α-stable process
XD in D through the Ikeda–Nagasawa–Watanabe piecing together procedure;

(3) The process Y obtained from XD through the Feynman-Kac transform

e
∫ t

0 κD(XD
s )ds .

We will now investigate the problem of whether limt↑ζ Yt ∈ ∂D on {ζ < ∞}.
In other words, we will seek an answer to question (Q1) posed in the Introduction.

Let (E ref , F ref
a ) be the Dirichlet space on L2(D, dx) defined by

F ref
a =

{
u ∈ L2(D) :

∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy < ∞

}
,

E ref(u, v) = 1

2
A(n, −α)

∫
D

∫
D

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy, u, v∈F ref

a .

We will show below that (E ref , F ref
a ) is the active reflected Dirichlet form for

(E, F), introduced by Silverstein in [44]. To this end, we first relate spaces F and
F ref

a to Sobolev (or Besov) spaces of fractional order W
α/2,2
0 (D) and Wα/2,2(D).

To simplify notation, let s = α/2. Recall that Ws,2(Rn) = FRn
with the Sobolev

norm ‖u‖s,2 = √C1(u, u), and

Ws,2(D) =
{
u ∈ L2(D, dx) : u = v a.e. on D for some v ∈ Ws,2(Rn)

}
,

‖u‖s,2;D = inf
{
‖v‖s,2 : v ∈ Ws,2(Rn) with v = u a.e. on D

}
.

It is known that (Ws,2(D), ‖ · ‖s,2;D) is a Hilbert space. Let (W
s,2
0 (D), ‖ · ‖s,2;D)

be the smallest closed subspace of Ws,2(D) containing C∞
c (D).
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We will state our main results (Corollary 2.6, Theorems 2.7 and 2.9 below) in
the greatest possible generality given our technical tools. In order to do so, we will
recall the definition of a d-set. Readers who are not interested in very rough open
sets may want to limit their attention to Lipschitz domains, each of which is an
example of a d-set.

For 0 < d ≤ n, we will use Hd to denote the d-dimensional Hausdorff measure
in Rn.

Definition 2.1. A Borel set 	 ⊂ Rn is called a d-set for some 0 < d ≤ n if there
exist positive constants c1 and c2 such that for all x ∈ 	 and r ∈ (0, 1],

c1r
d ≤ Hd(	 ∩ B(x, r)) ≤ c2r

d .

The notion of a d-set arises both in the theory of function spaces and in fractal
geometry. It is well known that (see Proposition 1 in ChapterVIII of [38]) that if 	 is
a d-set, then its Euclidean closure 	 is also a d-set and 	 \	 has zero Hd -measure.
If an open set D is an n-set, then by Theorem 1 on page 103 of [38],

Ws,2(D) = F ref
a and the Sobolev norm ‖ · ‖s,2;D is equivalent to

√
E ref

1 . (2.8)

Consequently,

W
s,2
0 (D) = F . (2.9)

Theorem 2.2. For any open set D ⊂ Rn, the Dirichlet form (E ref , F ref
a ) on

L2(D, dx) defined above is the active reflected Dirichlet form of (E, F) in the
sense of [14] and [44]; that is,

F ref
a =

{
u ∈ L2(D) : uk = ((−k) ∨ u) ∧ k ∈ Floc and sup

k≥1
E ref(uk, uk) < ∞

}
,

(2.10)

E ref(u, u) = lim
k→∞

E ref(uk, uk). (2.11)

Here f ∈ Floc means that for any relatively compact open subset D0 of D, there
is some f0 ∈ F such that f = f0 a.e. on D0.

Proof. For (2.10), it suffices to show that F ref
a ⊂ Floc. Without loss of gener-

ality, assume that u ∈ F ref
a is bounded. For any relatively compact open subset

D0 of D, there is a φ ∈ C∞
c (D) and a relatively compact smooth open sub-

set U0 of D such that D0 ⊂ U0, φ = 1 on D0 and supp[φ] ⊂ U0. As U0 is
smooth, by applying (2.8) to u|U0 with U0 in place of D, we see that there is some
v ∈ Ws,2(Rn)∩L∞(Rn) such that v = u a.e. on U0. Since C∞

c (Rn) is ‖·‖s,2-dense
in Ws,2(Rn), there is a sequence {vk}k≥1 ⊂ C∞

c (Rn) that is ‖ · ‖s,2-convergent to
v with supk≥1 ‖vk‖∞ ≤ 1 + ‖v‖∞. This implies that

sup
k≥1

E1(φvk, φvk) < ∞.

Hence by the Banach-Saks theorem there is a subsequence {km} such that the Cesàro

means
{

1
j

∑j
m=1 φvkm

}
j≥1

of {φvkm}m≥1 ⊂ C∞
c (D) are E1-convergent to some
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f ∈ F . Clearly f = φv = u a.e. on D0. This proves u ∈ Floc and therefore (2.10).
Property (2.10) follows from the Lebesgue dominated convergence theorem. ��
Lemma 2.3. Let Fb := F ∩ L∞(D, dx) and F ref

a,b := F ref
a ∩ L∞(D, dx). Then

Fb is an ideal of F ref
a,b; that is, uv ∈ Fb whenever u ∈ Fb and v ∈ F ref

a,b.

Proof. Letu ∈ Fb andv ∈ F ref
a,b. Then one can find a sequence {uk}k≥1 ⊂ C∞

c (D)∩
F such that uk’s converge to u in E1-norm and supk≥1 ‖uk‖∞ ≤ 1 + ‖u‖∞. It fol-
lows from Theorem 2.2 that ukv ⊂ F with E1-norm bounded uniformly in k.
Hence there is a subsequence {km} such that the Cesàro means of {ukmv} ⊂ F are
E1-convergent to some f ∈ F . Clearly f = uv a.e. on D. ��

Let us present a probabilistic interpretation for the actively reflected Dirichlet
space (E ref , F ref

a ) (see also Remark 2.1 below). By Theorem 20.1 of Silverstein
[44], Theorem 2.2 and Lemma 2.3 above, there is a compactification D∗ of D and
a symmetric Hunt process Y ∗ on D∗ with associated Dirichlet form (F ref

a , E ref)

such that the process Y ∗ killed upon leaving D has the same distribution as Y . If
D is an open subset of Rn having finite Lebesgue measure, then Y ∗ is recurrent as
1 ∈ F ref

a and E ref(1, 1) = 0. If 1 ∈ F , then E(1, 1) = 0. Thus by Theorem 1.6.3
of [29], Y is recurrent and therefore it is conservative. It follows then that Y = Y ∗
and (F, E) = (F ref

a , E ref). If 1 /∈ F and D has finite Lebesgue measure, then F is
strictly contained in F ref

a as 1 ∈ F ref
a . In such a case D∗ \ D is non-polar and so

it will be hit by Y ∗ infinitely many times with probability 1 (cf. Theorem 4.6.6 of
[29]). This implies that Y is transient having finite lifetime ζ . We summarize these
remarks as a theorem.

Theorem 2.4. Suppose that D is an open set in Rn with finite Lebesgue measure.
Then the following conditions are equivalent

(1) Px(ζ < ∞) > 0 for some (and hence for all) x ∈ D;
(2) Px(ζ < ∞) = 1 for some (and hence for all) x ∈ D;
(3) 1 /∈ F;
(4) F �= F ref

a .

Remark 2.1. (1) When D ⊂ Rn is an open n-set and 0 < s < 1, by Theorem 1
of Chapter V in [38], Ws,2(D) is the restriction (or trace) of Ws,2(Rn) on D.
More precisely, there is a restriction operator R : Ws,2(Rn) → Ws,2(D) such
that there is a constant c1 > 0 so that

Rf = f a.e. on D and ‖Rf ‖s,2;D ≤ c1‖f ‖s,2 for any f ∈ Ws,2(Rn),

(2.12)

and there is an extension operator S : Ws,2(D) → Ws,2(Rn) such that there
is a constant c2 > 0 so that

Su = u a.e. on D, Su ∈ Ws,2(Rn) and ‖Su‖s,2 ≤ c2‖u‖s,2;D
for any u ∈ Ws,2(D). (2.13)

As C∞
c (Rn), the space of smooth functions in Rn with compact support, is

‖ · ‖s,2-dense in Ws,2(Rn), Cc(D) ∩ F ref
a is dense both in (F ref

a , E ref
1 ) and
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in (Cc(D), ‖ · ‖∞). Hence (E ref , F ref
a ) is a regular Dirichlet form on D and

its associated Hunt process Y ∗ lives on D. A similar construction transforms
the usual Brownian motion into a “reflected” Brownian motion so it is natural
to call process Y ∗ a reflected α-stable process in D. One can take D∗ = D

and then Y can be identified with the process Y ∗ killed upon leaving D. As
XD is irreducible, we have by Theorem 2.1 that Y is irreducible and so is Y ∗.
When W

s,2
0 (D) �= Ws,2(D), Y is a proper subprocess of Y ∗ and ∂D is not

a polar set for Y ∗. This implies that almost surely on {ζ < ζY ∗}, Yζ− exists
in the Euclidean topology, where ζ Y ∗

is the lifetime of Y ∗. In particular, if
W

s,2
0 (D) �= Ws,2(D), we have

Px(Yζ− ∈ ∂D, ζ < ∞) > 0 for all x ∈ D. (2.14)

If D has finite Lebesgue measure, then Y ∗ is recurrent. In this case, if 1 /∈
Ws,2(D), then almost surely Yζ− exists in the Euclidean topology and, more-
over, by (2.5),

Px(Yζ− ∈ ∂D, ζ < ∞) = 1 for all x ∈ D. (2.15)

(2) The reflected α-stable process Y ∗ mentioned in (1) above in general differs
from the following two processes, which can also be candidates for the title of
“reflected α-stable process”. The first one, denoted as Ut , is the α/2-subordi-
nation of reflecting Brownian motion in D. The second one, denoted as Vt , is
obtained from the symmetric α-stable process in Rn by solving the correspond-
ing Skorohod equation in D, whenever the latter is uniquely solvable. Consider
the case n = 1 and D = [0, ∞). It is shown in Lemma 3.1 of Burdzy, Chen
and Sylvester [11] that the deterministic Skorohod equation in D is uniquely
solvable and so process Vt can be defined. It is easy to see that both Ut and Vt

have the same law as |Xt |, where Xt is the one-dimensional symmetric α-stable
process. As the symmetric Dirichlet form corresponding to |Xt | is of the form

C(u, u) = c

∫
D×D

(u(x) − u(y))2
(
|x − y|−1−α + |x + y|−1−α

)
dx dy,

we see that both Ut and Vt differ from Y ∗.

We will show next that when D ⊂ Rn is an open n-set, Y is the censored
α-stable process in D and Y ∗ is the reflected α-stable process on D, then Y ∗ will
not visit those sets in D which are not visited by the symmetric α-stable process X

in Rn, and vice versa. In particular, Yζ− will not visit subsets of the boundary ∂D

which are avoided by X. To this end, we recall the following terminology.
A set A is called polar for the process Y ∗ if there is a nearly Borel measurable

set B ⊃ A such that Px(σ
Y ∗
B < ∞) = 0 for every x ∈ D, where σY ∗

B := inf{t >

0 : Y ∗ ∈ B}. Polar sets for Y and X are defined similarly, with D replaced by D

and Rn, respectively. Recall that (E, W
s,2
0 (D)), (E ref , Ws,2(D)) and (C, Ws,2(Rn))

are the Dirichlet spaces for Y , Y ∗ and X respectively. A set A is called E ref -polar if
there is a nearly Borel measurable set B ⊃ A such that

∫
D

Px(σ
Y ∗
B < ∞) dx = 0.

E-polar sets and C-polar sets are defined in a similar way. As transition probabilities
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of Y (cf. Theorem 2.1) and X have densities with respect to the Lebesgue measures
in D and in Rn respectively, Theorem 4.1.2 of [29] shows that a set A is E-polar
(respectively, C-polar) if and only if it is polar for the process Y (respectively, X).
A statement is said to be true E ref -q.e. (respectively, C-q.e.) if it holds everywhere
except on a E ref -polar set (respectively, C-polar set). It is well known (cf. [29]) that
functions in Ws,2(D) (respectively, Ws,2(Rn) have E ref -quasi-continuous versions
(respectively, C-quasi-continuous versions) and in the sequel they are always rep-
resented by their quasi-continuous versions, which are unique up to E ref -polar sets
(respectively, C-polar sets).

Theorem 2.5. Suppose that D ⊂ Rn is an open n-set, and that Y and Y ∗ are
censored α-stable process in D and reflected α-stable process on D respectively.

(1) A set A ⊂ D is E ref -polar if and only if it is polar for the process X.
(2) A set A ⊂ D is polar for process Y if and only if it is polar for the process X.

If a set A ⊂ ∂D is polar for the process X, then

Px(Yζ− ∈ A) = 0 for every x ∈ D. (2.16)

Proof. Let s = α/2. Let CapX and CapY ∗ denote the 1-capacity for processes X

and Y ∗ respectively. Capacity CapX is also called Riesz capacity of order n − α or
Bessel capacity of order (s, 2) in [1]. It is well known from the theory of Dirichlet
forms (cf. Theorem 4.2.1 [29]) that a set A is E ref -polar (C-polar) if and only if
CapY ∗(A) = 0 (respectively, CapX(A) = 0).

(1) For any relatively open subset U in D,

CapY ∗(U) := inf{E ref
1 (u, u) : u ∈ Ws,2(D) with u ≥ 1 a.e. on U}

≤ inf{C1(u, u) : u ∈ Ws,2(Rn) with u ≥ 1 C-q.e. on U}
= CapX(U)

(cf. Theorem 2.1.5 of [29]). This implies by the definition of the capacity (cf. page
64 of [29]) that for any set A ⊂ D,

CapY ∗(A) = inf
{
CapY ∗(U) : U is a relatively open set in D containing A

}
≤ inf

{
CapX(U) : U is a relatively open set in D containing A

}
≤ CapX(A).

We will now obtain a lower bound for CapY ∗(A) in terms of CapX(A). Let S :
Ws,2(D) → Ws,2(Rn) be the extension operator specified in (2.13). Fukushima
and Uemura observed in [30] that S maps a continuous function in Ws,2(D) with
compact support in D into a continuous function in Ws,2(Rn) with compact support
in Rn. Note that C∞

c (D), the space of smooth functions with compact support in
D, is the special standard core of (E ref , Ws,2(D)) in the sense of [29] (on page 6).
For a compact subset K ⊂ D, by Lemma 2.2.7 of [29] and (2.13),

CapY ∗(K) = inf{E ref
1 (f, f ) : f ∈ C∞

c (D) with f ≥ 1 on K}
≥ c−2

2 inf{C1(Sf, Sf ) : f ∈ C∞
c (D) with f ≥ 1 on K}

≥ c−2
2 inf{C1(u, u) : u ∈ Ws,2(Rn) with u ≥ 1 C-q.e. on K}

≥ c−2
2 CapX(K).
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Hence for any Borel subset A ⊂ D,

CapY ∗(A) = sup
{
CapY ∗(K) : K ⊂ A, K is compact

}
≥ c−2

2 sup
{
CapX(K) : K ⊂ A, K is compact

}
= c−2

2 CapX(A)

(cf. (2.1.6) of [29]). Thus we have proved that for any set A ⊂ D,

c−2
2 CapX(A) ≤ CapY ∗(A) ≤ CapX(A). (2.17)

Therefore a subset A in D is E ref -polar if and only if it is polar for the process X.
(2) Note that Y is the subprocess of Y ∗ killed upon leaving the open set D. So

by Theorem 4.4.3 in [29], a subset A in D is E-polar if and only if it is E ref -polar.
Hence A ⊂ D is polar for the process Y if and only if it is polar for X. Next suppose
that A ⊂ ∂D is polar for the process X and therefore it is E ref -polar. By Theorem
A.2.3 of [29],

Px

(
there is some t > 0 such that Y ∗

t (ω) ∈ A or Y ∗
t−(ω) ∈ A

)=0 for a.e. x ∈D.

In particular,
Px(Yζ− ∈ A) = 0 for a.e. x ∈ D.

Note that it follows from Theorem 2.1 that the process Y has a transition density
function p(t, x, y) with respect to Lebesgue measure in D. So for each x ∈ D,
using the Markov property of Y ,

Px

(
Yζ− ∈ A

) = lim
t↓0

Px(Yζ− ∈ A, ζ > t)

= lim
t↓0

∫
D

Py(Yζ− ∈ A) p(t, x, y)dy = 0.

This proves the theorem ��
Remark 2.2. (1) Recall that for any increasing function h on [0, ∞) with h(0) = 0,

one can define a Hausdorff measure Hh with respect to the gauge h in the fol-
lowing way (see, e.g., p.132 of [1]). For E ⊂ Rn,

Hh(E)

= lim
ε↓0

inf

{ ∞∑
k=1

h(rk) : E ⊂
∞⋃

k=1

B(xk, rk) for some xk ∈Rn with sup
1≤k≤∞

rk ≤ε

}
.

When h(r) = rβ for some β > 0, the Hausdorff measure Hh is denoted Hβ .
In the case of α ≤ n, there is an intimate relationship between the Hausdorff
measure Hh and the Riesz capacity CapX of order n − α (it is called New-
tonian capacity if n ≥ 3 and α = 2, and is called logarithmic capacity if
α = n), see Theorems 2.2.7, 5.1.9 and 5.1.13 in [1]. Namely, Hh(A) < ∞
implies that CapX(A) = 0 if we take h(r) = rn−α in the case n > α and
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h(r) = (max{log(2/r), 0})−1 when n = α. On the other hand if CapX(A) = 0
then Hh(A) = 0 for every h such that

h is increasing on [0, ∞) with h(0) = 0 and
∫ 1

0

h(r)

rn+1−α
dr < ∞. (2.18)

In particular, CapX(A) = 0 implies Hλ(A) = 0 for any λ > n − α.
(2) The converse to the last statement in Theorem 2.5(2) is not true. Take, for

example, D to be the unit ball in R2 centered at x0, and α ∈ (1, 2). Theorem
2.9 below asserts that Px(Yζ− ∈ ∂D, ζ < ∞) = 1 for all x ∈ D. By the rota-
tion invariance of Y , it is easy to see that the distribution of Yζ− under Px0 is
the normalized surface measure on ∂D. It follows from the Harnack inequality
(Theorem 3.2 below) that the distribution of Yζ− under Px is absolutely con-
tinuous with respect to the surface measure on ∂D for every x ∈ D. Let A be a
Cantor set embedded into the circle ∂D. It is well known that A has Hausdorff
dimension log 2/ log 3 so Px(Yζ− ∈ A) = 0 for every x ∈ D. However when
α > 2 − (log 2/ log 3), the set A will be visited by the symmetric α-stable
process X.

(3) A result similar to Theorem 2.5 can be established for the reflecting Brown-
ian motion in “extension domains” D ⊂ Rn and Brownian motion in Rn

by an almost identical proof. Here an extension domain means a domain D

on which there is a bounded linear operator S : W 1,2(D) → W 1,2(Rn) with
S(W 1,2(D)∩C∞

c (D)) ⊂ W 1,2(Rn)∩Cc(Rn). Examples of extension domains
are Lipschitz domains and (ε, δ)-domains (see Lemma 3.5 of [37] for a proof).
The class of (ε, δ)-domains was introduced by Peter Jones [37] in 1981; this
class includes Lipschitz domains and non-tangentially accessible domains. The
boundary of an (ε, δ)-domain can be non-rectifiable and highly irregular but
always has zero Lebesgue measure.

The following corollary follows immediately from Theorem 2.5 and the rela-
tionship between Y and Y ∗ outlined in Remark 2.1.

Corollary 2.6. Let n ≥ 1, 0 < α < 2, D be an open n-set in Rn, and Y and Y ∗ be
the censored symmetric α-stable process in D and the reflected α-stable process
in D respectively. Denote by ζ the lifetime of Y . Then the following statements are
equivalent.

(1) Y �= Y ∗;
(2) W

α/2,2
0 (D) � Wα/2,2(D);

(3) ∂D is not polar for the symmetric α-stable process in Rn;
(4) Px(limt↑ζ Yt ∈ ∂D, ζ < ∞) > 0 for every x ∈ D;
(5) Px(limt↑ζ Yt ∈ ∂D, ζ < ∞) > 0 for some x ∈ D.

Proof. Note that Y is the process Y ∗ killed upon leaving the open set D, and that
W

α/2,2
0 (D) and Wα/2,2(D) are the domains of the Dirichlet forms for Y and Y ∗

respectively. The equivalence of (1)–(4) of the corollary follows immediately from
Theorem 2.5 and (2.14). Clearly (4) implies (5). Suppose now (5) holds. As Y has
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strictly positive transition density function p(t, x, y) with respect to the Lebesgue
measure in D and

0 < Px(lim
t↑ζ

Yt ∈ ∂D, ζ < ∞) = lim
t→0

∫
D

Py(lim
t↑ζ

Yt ∈ ∂D, ζ < ∞)p(t, x, y)dy,

we have for any w ∈ D,

Pw(lim
t↑ζ

Yt ∈ ∂D, ζ < ∞) = lim
t→0

∫
D

Py(lim
t↑ζ

Yt ∈ ∂D, ζ < ∞)p(t, w, y)dy > 0.

Thus (4) holds and therefore Corollary 2.6 is established. ��
The following result provides an explicit and essentially complete answer to

Question 1.1 in terms of Hausdorff dimension and measure.

Theorem 2.7. Suppose that n ≥ 1, α ∈ (0, 2) and D � Rn is an open n-set. Let Y
and Y ∗ be the censored symmetric α-stable process in D and the reflected α-stable
process in D, respectively.

(1) Suppose that α ≤ n and that Hh(∂D ∩ Km) < ∞ for an increasing sequence
of Borel sets Km such that ∪∞

m=1Km ⊃ ∂D, where h(r) = rn−α if α < n and
h(r) = max{log 2

r
, 0} when α = n = 1. Then Y = Y ∗ and so Y does not

approach ∂D at any finite time.
(2) Suppose that α ≤ n and that Hh(∂D) > 0 for some h satisfying (2.18). Then

Y is a proper subprocess of Y ∗, Y is transient with lifetime ζ so that

Px(lim
t↑ζ

Yt ∈ ∂D, ζ < ∞) > 0 for all x ∈ D.

In particular, this statement holds if Hd(∂D) > 0 for some d > n − α.
(3) When α ≥ n = 1, Y ∗ is recurrent. If α > n = 1, then Y is transient with finite

lifetime ζ and

Px(lim
t↑ζ

Yt ∈ ∂D, ζ < ∞) = 1 for all x ∈ D.

(4) Whenα < nandD is unbounded with compact boundary, then Px(ζ = ∞) > 0
for every x ∈ D.

Proof. (1) If the condition of (1) is satisfied, then by Theorem 2.5 and Remark
2.2(1), each ∂D ∩ Km and therefore ∂D is E ref -polar for Y ∗. So Y = Y ∗.

(2) Suppose now the condition of (2) is satisfied, then by Theorem 2.5 and
Remark 2.2(1), ∂D has positive capacity and therefore will be visited by Y ∗ with
positive probability for every starting point in D (cf. Theorem 4.6.6 of [29]), which
yields the conclusion of (2).

(3) It is well know (see, e.g., page 83 of [5] and page 34 of [4]) that the one-
dimensional α-stable process is recurrent if and only if α ≥ 1 (it is pointwise
recurrent if α > 1 and neighborhood recurrent if α = 1). This implies by The-
orem 1.6.3 in [29] that when α ≥ 1, there is a sequence {un} ⊂ FR such that
limn→∞ un = 1 a.e. on R and limn→∞ C(un, un) = 0. Let fn = un|D . Then
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fn ∈ Wα/2,2(D), limn→∞ fn = 1 a.e. on D and limn→∞ E(fn, fn) = 0. So by
Theorem 1.6.3 in [29], Y ∗ is recurrent when α ≥ 1. On the other hand, a point
is polar for the one-dimensional symmetric α-stable process X on R if and only
if α ≤ 1. Thus when α > 1, as ∂D is not E ref -polar for Y ∗, it is hit by Y ∗ with
probability one for almost every starting point. As Y has a density function with
respect to the Lebesgue measure in D, part (3) of the theorem is established.

(4) When α < n, the symmetric α-stable process X in Rn is transient. Let R > 0
be such that ∂D ⊂ B(0, R). Then for x ∈ Rn with |x| > R, there is a positive
Px-probability that the event {inf{t > 0 : Xt ∈ B(0, R)} = ∞} occurs. This says
that there is a positive probability that X wanders to infinity without entering Dc

and so by Theorem 2.1, Px(ζ = ∞) > 0 for every x ∈ D. ��
Corollary 2.8. Suppose that n ≥ 1, s ∈ (0, 1) and D � Rn is an open n-set.

(1) If 2s ≤ n and Hh(∂D ∩ Km) < ∞ for an increasing sequence of Borel sets
Km such that ∪∞

m=1Km ⊃ ∂D, where h(r) = rn−2s if 2s < n and h(r) =
(max{log(2/r), 0})−1 when 2s = n = 1, then W

s,2
0 (D) = Ws,2(D).

(2) If either 2s > n = 1 or 2s ≤ n with Hh(∂D) > 0 for some h satisfying
(2.18) with 2s in place of α there, then W

s,2
0 (D) � Ws,2(D). In particular,

W
s,2
0 (D) � Ws,2(D) if Hd(∂D) > 0 for some d > n − 2s, with H0 being

interpreted as counting measure on R in the case of 2s > n = 1.

Proof. This follows from Theorem 2.7 with α = 2s and the fact that W
s,2
0 (D) and

Ws,2(D) are the domains of the Dirichlet forms for Y and Y ∗ respectively. ��
Remark 2.3. The above Corollary not only recovers but also extends the corre-
sponding results in Caetano [12] (Proposition 2.2, Corollary 2.7 and Proposition
3.7) and in Farkas and Jacob [27] (Theorems 3.3 and 3.9). In these two papers,
some additional conditions are imposed, for example in Caetano [12], it is required
that D is a bounded open set with ∂D being a d-set for some d ∈ [n − 1, n). In
Farkas and Jacob [27], D is a bounded (ε, δ)-domain with ∂D being a d-set for
some d ∈ [n − 1, n). Our proof is quite different from those in [12] and [27] and
more elementary. Furthermore, when D is an open n-set and ∂D “locally” has finite
d-dimensional Hausdorff measure for some d ∈ [n−1, n), our result asserts that in
the critical case of 2s = n − d , Ws,2(D) = W

s,2
0 (D). This critical case is covered

in neither [12] nor [27]. Our result also extends substantially Theorem 4.3.2.1(a) in
[46] where W 1/2,1(D) = W

1/2,1
0 (D) is proved for bounded C∞-smooth domains.

Theorem 2.9. Suppose that n ≥ 1, α ∈ (0, 2) and D ⊂ Rn is an open n-set
having finite Lebesgue measure.

(1) Suppose that α ≤ n and Hh(∂D ∩ Km) < ∞ for an increasing sequence of
Borel sets Km such that ∪∞

m=1Km ⊃ ∂D, where h(r) = rn−α if α < n and
h(r) = (max{log(2/r), 0})−1 when n = α = 1. Then the censored symmetric
α-stable process Y in D is recurrent and therefore conservative. It does not
approach ∂D at any finite time.

(2) If either α > n = 1 or α ≤ n with Hh(∂D) > 0 for some h satisfying (2.18),
then the censored symmetric α-stable process Y in D is transient with finite
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lifetime ζ . Moreover, Px(limt↑ζ Yt ∈ ∂D, ζ < ∞) = 1 for all x ∈ D. In
particular, the above statements hold if Hd(∂D) > 0 for some d > n − α with
H0 being interpreted as the counting measure in R in the case of α > n = 1.

Proof. Let s = α/2. As 1 ∈ Ws,2(D), the reflected α-stable process Y ∗ on D is
recurrent. Claims (1) and (2) follow immediately from Theorem 2.7. ��
Proof of Theorem 1.1. When n = 1, a bounded Lipschitz open set D in R is a finite
union of bounded intervals with no common endpoints, which is a 1-open set. It
is well known (see, e.g. page 83 of [5]) that a point is polar for one-dimensional
symmetric α-stable process if and only if α ≤ 1. So the conclusion of the theorem
follows from Corollary 2.6. Now for n ≥ 2, note that a bounded Lipschitz open set
D ⊂ Rn is an n-set and its boundary ∂D has positive and finite (n−1)-dimensional
Hausdorff measure. So the conclusion of this theorem follows immediately from
Theorem 2.9. ��

The localization condition in Theorem 2.7, Corollary 2.8 and Theorem 2.9 is
needed so that we can apply those results to open sets such as in Example 2.1 below.

Example 2.1. Let n = 2 and D be the unit square [0, 1]× [0, 1] with slits {1/k}×
[0, 1/2], k ≥ 2, removed. Then clearly D is an open 2-set with H1(∂D) = ∞ but
0 < H1(∂D∩Km) < ∞ for each m ≥ 2, where Km is the union of [1/m, 1]×[0, 1]
and {0} × [0, 1]. So Theorem 2.7, Corollary 2.8 and Theorem 2.9 apply. In partic-
ular, we have Ws,2(D) = W

s,2
0 (D) if and only if s ≤ 1/2; the censored α-stable

process Y in D is recurrent and therefore conservative if α ≤ 1, and Y is transient
with Px(limt↑ζ Yt ∈ ∂D, ζ < ∞) = 1 for every x ∈ D if α > 1. Note that ∂D is
not a d-set.

Example 2.2. Let n = 1 and D be the unit interval [0, 1] with the Cantor set
removed. It is well known that 0 < Hd(∂D) < ∞, where d = log 2/ log 3. Clearly
D is an open 1-set. So by Theorem 2.9, the censored α-stable process Y in D

is recurrent and therefore conservative if α ≤ 1 − log 2
log 3 , and Y is transient with

Px(limt↑ζ Yt ∈ ∂D, ζ < ∞) = 1 for every x ∈ D if α > 1 − log 2
log 3 . Furthermore,

Ws,2(D) = W
s,2
0 (D) if and only if s ≤ 1

2

(
1 − log 2

log 3

)
.

In view of Theorem 2.9(1) it is natural to ask whether a recurrent censored sym-
metric α-stable process in D has the same distribution as the symmetric α-stable
process in D conditioned not to leave D. We will show below that the answer is no.

Let D be a bounded open set in Rn and α ∈ (0, 2). P D
t has a symmetric density

function pD(t, x, y), which is bounded by ct−n/α . Since D is bounded,
∫

D

∫
D

pD(t, x, y)2dxdy =
∫

D

pD(2t, x, x)dx < ∞,

that is, P D
t is a Hilbert-Schmidt operator. So P D

t is a self-adjoint compact operator
in L2(D, dx) (see Problem 5.1.4 of [28]) and hence it has a discrete spectrum (see
Problems 6.7.4 and 6.7.5 in [28]). This implies that the infinitesimal generator LD
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of XD has a discrete spectrum. It is clear that the first eigenvalue λ1 of LD has to be
strictly negative. The symmetric stable process conditioned not to leave the open
set D is a process Z obtained from XD via a parabolic Doob’s h-transform, i.e., Z

is given by
Ex[f (Zt )] = e−λ1t ϕ(x)−1Ex[(ϕf )(XD

t )].

(See Gong, Qian and Zhao [32] for the diffusion case.) The following theorem
characterizes the process Z.

Theorem 2.10. The process Z is ϕ2 dx-symmetric and recurrent in D. Let (Ẽ, F̃)

be the Dirichlet space of Z on L2(D, ϕ2 dx). Then

Ẽ(u, v) = 1

2
A(n, −α)

×
∫

D

∫
D

(u(x) − u(y))(v(x) − v(y))ϕ(x)ϕ(y)

|x − y|n+α
dxdy, u, v ∈ F̃,

(2.19)

where F̃ is the closure of FD under the norm
√

Ẽ1, and Ẽ1(u, u) = Ẽ(u, u) +∫
D

u(x)2ϕ(x)2 dx.

Proof. Note that ϕ ∈ L2(D) and P D
t ϕ = eλ1t ϕ. So ϕ is a bounded function in FD ,

the Dirichlet space of XD . As a special case of a result of Fukushima and Takeda
(Theorems 6.3.1 and 6.3.2 in [29]), we have that process Z is ϕ2 dx-symmetric
and recurrent, F̃ ⊃ FD and (2.19) holds for u, v ∈ FD . It follows from a general
result recently proved in [15] that F̃ is the closure of FD with respect to the norm√

Ẽ1. ��
We claim that the eigenfunction ϕ can not be constant. Were ϕ a constant func-

tion, then we would have

C(ϕ, v) =
∫

D

v(x)ϕ(x)κD(x)dx for any v ∈ FD.

This would imply that LDϕ = −κDϕ and thus κD(x) would have to be constant,
i.e., κD(x) ≡ −λ1, which is impossible in view of (2.3). By comparing the Dirichlet
spaces (E, F) and (Ẽ, F̃) (see (2.4) and (2.19)), we see that Y and Z are different
processes for any α ∈ (0, 2). Furthermore, Y ∗ differs from Z for any α ∈ (0, 2)

as well.

Remark 2.4. All the results in this section hold for a large class of “pure jump”
processes whose jumping measure is comparable to that of the symmetric α-stable
process X on Rn. More precisely, the results in this section are valid when X is
replaced by a symmetric process X̃ on Rn whose Dirichlet form is given by

C̃(u, v) = 1

2
A(n, −α)

∫
Rn

∫
Rn

(u(x) − u(y))(v(x) − v(y)) k(x, y)

|x − y|n+α
dxdy,

FRn =
{
u ∈ L2(Rn) :

∫
Rn

∫
Rn

(u(x) − u(y))2

|x − y|n+α
dxdy < ∞

}
,
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where k(x, y) is a symmetric Borel measurable function on Rn × Rn satisfying
c−1 ≤ k(x, y) ≤ c for some 1 < c < ∞ and all x and y. (In fact it is enough
for this to hold on D × D.) Our claim can be justified as follows. The Dirichlet
form (C̃, FRn

) is comparable to (C, FRn
) in (2.1)–(2.2), so the capacity induced

by X̃ is comparable to that induced by X. On the other hand, X̃ has continuous
transition density functions by Theorem 1 of Komatsu [39]. Since the capacities are
comparable, the polar sets for the censored process and reflected process obtained
from X̃D , the subprocess of X̃ killed upon leaving an open n-set in Rn, are the
same as those of the censored α-stable process Y and reflected α-stable process Y ∗
on D respectively.

3. Harmonic functions of censored stable processes

We collect a few potential theoretic results for reference in later sections of the
paper. Let us recall some notation and definitions. Let 0 < α < 2 and let D be an
open set in Rn. By κ(x) := κα

D(x) = A(n, −α)
∫
Dc |y − x|−n−α dy, we denote the

density function of the killing measure for D, and we write Yt for the censored sta-
ble process on D. Clearly, κ is a C∞ function on D. Let eκ(t) = exp[

∫ t

0 κ(XD
s )ds].

In particular, eκ(τB) = exp[
∫ τB

0 κ(Xs) ds], where τB is the exit time from a set B.

Definition 3.1. Let U be an open subset of D. A Borel measurable function u on
Rn is harmonic on U with respect to the censored process Yt if

u(x) = Exu(YτB
) , x ∈ B , (3.1)

for every bounded open set B such that B ⊂ U . It is called regular harmonic in U if
(3.1) holds with U in place of B. We say that u is superharmonic (subharmonic) on
U for Yt if (3.1) is satisfied with the equality sign replaced by ≥ (≤, respectively).

Here we use the convention that Y∞ = δ. We will always make a tacit assump-
tion about all functions that they take value 0 at the cemetery point δ and that the
expectation in (3.1) is absolutely convergent, and so finite. As Y does not visit Dc,
the value of u on Dc is irrelevant in the above definition and thus one may assume
that u = 0 on Dc.

Functions “harmonic in U” for the unconstrained symmetric α-stable process
X on Rn are defined in a way analogous to (3.1), see, e.g., [10], [21].

Let D ⊂ Rn be a domain. Then using the Lévy system (see [43]) of X it is easy
to see that (see [35]) the distribution of the pair (XτD−, XτD

) restricted to event
{XτD− �= XτD

, τD < ∞} under Px , x ∈ D, is concentrated on D × Dc with the
density function gx(v, y) given by the following explicit formula:

gx(v, y) = A(n, −α)

|y − v|n+α
GD(x, v) , (v, y) ∈ D × Dc , (3.2)

where GD(x, v) is the Green function for the process XD
t . Note that if D is a

domain satisfying Px{XτD
∈ ∂D; τD < ∞} = 0, then Px(XτD− �= XτD

, τD <

∞) = Px(τD < ∞). This condition is satisfied, for example, when D has the exte-
rior cone property (see Lemma 6 and Lemma 17 of [7]). Assuming that Px(XτD− �=
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XτD
, τD < ∞) = Px(τD < ∞) and integrating (3.2) in v over D we obtain the

density function

gx(y) =
∫

D

A(n, −α) GD(x, v)

|y − v|n+α
dv , y ∈ Dc, (3.3)

of the harmonic measure Px{XτD
∈ dy; τD < ∞} with respect to the Lebesgue

measure.
When r > 0, Br is the ball B(0, r) ⊂ Rn and |x| < r , the Px-distribution

of XτBr
has a density function Pr(x, ·) (the Poisson kernel), explicitly given by a

formula of Riesz (cf. [6]):

Pr(x, y) = Cn,α

[
r2 − |x|2
|y|2 − r2

]α/2

|x − y|−n provided |y| > r , (3.4)

with Cn,α = 	(n/2)π−n/2−1 sin(πα/2), and equal to 0 otherwise. The Green
function of the unit ball B = B(0, 1) is given in [6]:

G(x, y) = Bn,α |x − y|α−n

∫ w(x,y)

0

sα/2−1

(s + 1)n/2 ds, x, y ∈ B, (3.5)

where

w(x, y) = (1 − |x|2)(1 − |y|2)/|x − y|2,
and Bn,α = 	(n/2)/(2απn/2[	(α/2)]2). Setting (3.3) equal to (3.4) for the unit
ball, multiplying both sides by |y|n+α , letting |y| → ∞ and using the scaling
property of X one easily recovers (cf. [9]) the following formula which originally
appeared in [31],

ExτB(x0,r) =
∫

B(x0,r)

GB(x0,r)(x, v) dv

= Cn,α

A(n, −α)

(
r2 − |x − x0|2

)α/2
, x ∈ B(x0, r) . (3.6)

For α < n the symmetric α-stable process Xt is transient and its potential kernel
is (see [5], [41]),

G(α)(y − x) =
∫ ∞

0
p(t; x, y) dt = A(n, α)

|y − x|n−α
, x, y ∈ Rn. (3.7)

Suppose that u is harmonic in U ⊂ D for censored α-stable process Y . By
Theorem 2.1(3) and (2.7), for every bounded open set B with B ⊂ U ,

Exu(YτB
) = Ex[τB < τD ; u(XτB

)eκ(τB)] = Ex[1D(XτB
)u(XτB

)eκ(τB)].

If u = 0 on Dc then by Theorem 2.1(3), (3.1) is equivalent to the equality

u(x) = Ex[u(XτB
)eκ(τB)] , x ∈ B . (3.8)
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Such u is κ-harmonic on U for the symmetric stable process Xt , meaning that u is
a harmonic function in U of the Feynman-Kac semigroup of XD obtained through
the multiplicative functional eκ . Consequently, u is continuous in U (cf. [9]). In the
discussion below we use the general setting of [9] and [10] to study such functions.

For a function u satisfying the integrability condition
∫

Rn

|u(y)|
(1 + |y|)n+α

dy < ∞, (3.9)

we define, as usual,

�α/2
ε u(x) = A(n, −α)

∫
|y−x|>ε

u(y) − u(x)

|y − x|n+α
dy , (3.10)

and

�α/2u(x) = A(n, −α)P.V .

∫
Rn

u(y) − u(x)

|y − x|n+α
dy := lim

ε→0+
�α/2

ε u(x) , (3.11)

whenever the limit exists. Here “P.V .” stands for the “principal value.” For instance,
the limit exists and is finite if u is of class C2 in a neighborhood of x and satisfies
condition (3.9); in such a case,

�α/2u(x) = A(n, −α)

∫
Rn

u(y) − u(x) − ∇u(x) · (y − x)1{|y−x|<ε}
|y − x|n+α

dy

for any ε > 0. Harmonic functions of the symmetric α-stable process X may be
characterized as those annihilating �α/2, see [10].

Let

Aα
Dφ(x) = A(n, −α)P.V .

∫
D

φ(y) − φ(x)

|y − x|n+α
dy

:= A(n, −α) lim
ε→0+

∫
{y∈D : |y−x|>ε}

φ(y) − φ(x)

|y − x|n+α
dy . (3.12)

It is elementary to see that for φ ∈ C∞
c (D),

E(φ, φ) = −(Aα
Dφ, φ) .

We can express the relation between Y and the symmetric stable process X in
terms of the generators Aα

D and �α/2. Namely, for x ∈ D and a sufficiently regular
function φ which vanishes on Dc we have

Aα
Dφ(x) = A(n, −α)P.V .

∫
Rn

φ(y) − φ(x)

|y − x|n+α
dy + A(n, −α)

∫
Dc

φ(x)

|y − x|n+α
dy

= �α/2φ(x) + κD(x)φ(x) ; (3.13)

so in particular,

Aα
D = �α/2 + κD on C2

c (D). (3.14)
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It can be shown using Theorem 2.1 that the L2-generator of Y is the smallest closed
extension of (Aα

D, C2
c (D)), which is a self-adjoint operator in L2(D, dx).

Let Ev
x denote the expectation for α-stable process X conditioned by the Green

function GD(·, v) if v ∈ D, or the Martin kernel KD(·, v) if v ∈ ∂D (see [9] or [22]
for a discussion of conditional expectations and processes). By (3.2) and routine
arguments we obtain for � ≥ 0 measurable with respect to FτD− and any Borel
f ≥ 0, the following useful formula

Ex[f (XτD
) �; XτD− �= XτD

]=Ex

[
f (XτD

) E
XτD−
x [�]; XτD− �= XτD

]
, x ∈D .

(3.15)

The formulas presented so far in this section help perform explicit calculations
for harmonic functions of X and some of them can be extended to the censored
process Y using the relationship of Y to the killed α-stable process XD . As an illus-
tration, in Theorem 3.2 below we will prove the Harnack inequality for nonnegative
harmonic functions of Y .

By ρ(x) = dist(x, Dc) we denote the Euclidean distance between x and Dc.

Lemma 3.1. There is r1 = r1(n, α) ∈ (0, 1), independent of domain D, such that
for every ball B = B(x, r1ρ(x)) ⊂ D,∫

B

GB(v, y)GB(y, w)

GB(v, w)
κD(y) dy ≤ 1/2, v, w ∈ B , (3.16)

where GB denotes the Green function of B for the symmetric stable process X.

Proof. Let

S = sup
v,w∈B

∫
B

GB(v, y)GB(y, w)

GB(v, w)
κD(y) dy ,

and let G be the Green function of the unit ball B(0, 1) ⊂ Rn. By translation
invariance and scaling of X we have that for all a, b, c ∈ Rn and s > 0

GB(a,s)(a + sb, a + sc) = sα−nG(b, c) .

By the change of variable v = x + r1ρ(x)v, y = x + r1ρ(x)y, w = x + r1ρ(x)w,
we obtain

S = rα
1 sup

v,w∈B(0,1)

∫
B(0,1)

G(v, y)G(y, w)

G(v, w)
κD−x

ρ(x)
(r1y) dy . (3.17)

We will assume without loss of generality that x = 0 ∈ D and ρ(x) = 1. For
y ∈ B(0, 1) ⊂ D and 0 < r1 < 1 we have

κD(r1y) ≤ A(n, −α)

∫
B(r1y,1−r1)c

dz

|r1y − z|n+α
= A(n, −α)

ωn

α
(1 − r1)

−α ,

which is bounded for r1 < 1/2. Here ωn is the surface measure of the unit sphere
in Rn. By Proposition 3.3 and (3.17) in [9] or by Theorem 1.6 in [18],∫

B(0,1)

G(v, y)G(y, w)

G(v, w)
dy ≤ const. , v, w ∈ B(0, 1) .

Thus, if we choose r1 small enough in (3.17) then (3.16) is satisfied. ��
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If (3.16) holds then by Khasminskii’s lemma (see Lemma 3.7 of [24]),

1 ≤ Ev
xeκ(τB) ≤ 2 , x, v ∈ B . (3.18)

Here Ev
x refers to conditioning with respect to the Green function of B; the quantity

Ev
xeκ(τB) is the so called conditional gauge function. The lower bound in (3.18) is

trivial because κ = κα
D > 0.

The following result is a scale-invariant version of the Harnack inequality for
nonnegative harmonic functions of the censored process Y , see also Theorem 4.1
in [9].

Theorem 3.2. Let D ⊂ Rn and let Y be the censored process on D. Let x1, x2 ∈ D,
r > 0 with B(x1, r)∪B(x2, r) ⊂ D and k ∈ {1, 2, . . . }, such that |x1 −x2| < 2kr .
If u ≥ 0 is harmonic for Y on B(x1, r) ∪ B(x2, r) then there exists a constant J

depending only on n and α, such that

J−12−k(n+α)u(x2) ≤ u(x1) ≤ J2k(n+α)u(x2) . (3.19)

Proof. We can assume as usual that u = 0 on Dc. We first consider the case when
|x1 − x2| < 2kr but |x1 − x2| ≥ r . Let B1 = B(x1, r1r), B2 = B(x2, r1r), where
r1 is the constant in Lemma 3.1. By (3.8) and (3.15),

u(y) = Ey[eκ(τB1)u(XτB1
)] = Ey[u(XτB1

)E
XτB1

−
y eκ(τB1)], y ∈ B1 . (3.20)

(3.20) and (3.18) yield

Eyu(XτB1
) ≤ u(y) ≤ 2Eyu(XτB1

), y ∈ Rn. (3.21)

Let w(y) = Eyu(XτB1
), y ∈ Rn. Note that w is harmonic in B1 for X, hence by

(3.4) and (3.21),

w(y) ≥ 2n−23−n+1w(x1) ≥ 2n−33−n+1u(x1) , if |y − x1| < r1r/2 . (3.22)

Straightforward calculations using (3.4) yield

u(x2) ≥ Ex2 [w(XτB2
); XτB2

∈ B(x1, r1r/2)]

≥ 2n−33−n+1u(x1)Px2{XτB2
∈ B(x1, r1r/2)}

≥ c(n, α)u(x1)(r1r)
n (r1r)

α

(|x1 − x2| + r1r/2)α
(|x1 − x2| + r1r/2)−n

≥ c(n, α) 2−k(n+α) u(x1) .

This proves the upper bound in (3.19) for the case of |x1 −x2| ≥ r , while the lower
bound follows by symmetry.

If |x1 − x2| < r , we take r ′ = |x1 − x2| and k′ = 1 ≤ k; then (3.19) follows
from the first part of the proof. ��
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It is noteworthy that in Theorem 3.2, the open set B(x1, r) ∪ B(x2, r), where
u is harmonic, may be disconnected and the Harnack inequality still holds. This is
due to jumps of Y .

For future reference we note that if x ∈ B and B is an open subset with
B ⊂ D, then by (3.2), (3.15) and Theorem 2.1(3), the joint Px-distribution of
(YτB−, YτB

)1{YτB−�=YτB
} on B × (D \ B) has the density function

hx(v, y) = A(n, −α)

|v − y|n+α
GB(x, v) Ev

xeκ(τB) , (v, y) ∈ B × (D \ B) . (3.23)

Here GB is the Green function of X in B and Ev
x is expectation under the law of X

conditioned by GB(·, v). Comparing (3.23) with the version of (3.2) for Y , we see
that

GY
B(x, v) := GB(x, v) Ev

xeκ(τB)

is the Green function of Y in B if B ⊂ D.As we mentioned earlier, if such B satisfies
the exterior cone condition then Px(XτB− = XτB

) = 0 and so by the characteriza-
tion of Y via Feynman-Kac transform from XD , we have Px(YτB− = YτB

) = 0. In
passing we note, by integrating both sides of (3.23), that

if inf
v∈B

∫
D\B

A(n, −α)

|v − y|n+α
dy ≥ c > 0,

then ExτB =
∫

D

GY
B(x, v) dv ≤ 1/c < ∞ (3.24)

for every x ∈ B (and hence for every x ∈ D). This in particular implies that
τB < ∞, Px-a.s. for Y .

From Definition 3.1, (3.18) and (3.23), we see that if u is a harmonic, superhar-
monic or subharmonic function of Y in U ⊂ D, then u must satisfy the following
integrability condition

∫
D

|u(y)|
(1 + |y|)n+α

dy < ∞. (3.25)

This is because the expectation in (3.1) is assumed to converge absolutely and by
(3.23) the Px-distribution of YτB

on the interior of D \ B has the density function

KB(x, y) = A(n, −α)

∫
B

GB(x, v) Ev
xeκ(τB)

|v − y|n+α
dv ≥ const. · (1 + |y|)−n−α.

On the other hand, it is easy to see from (3.12) and (3.11) that if Aα
Du (�α/2u) exists

and is less than positive infinity at two points, then u satisfies condition (3.25) ((3.9),
respectively).

The following result will be used on several occasions.

Lemma 3.3. Assume that v is continuous on U ⊂ D and Aα
Dv(x) ≤ 0 on U . Then

v is superharmonic on U for the censored process Yt on D.
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Proof. Without loss of generality, we may and do assume that v = 0 on Dc. As
Aα

Dv < ∞ exists in U , v satisfies the integrability condition (3.25). Let B be an
open bounded set such that B ⊂ U . We may and do assume that B is regular
for the process X, or equivalently for the process Y . We let w(x) = Exv(YτB

) =
Ex[eκ(τB)v(XτB

)], x ∈ Rn, which is well defined in view of continuity of v, (3.23)
and (3.25). The function w is continuous and κ-harmonic for Xt or harmonic for
Yt in B. Using pathwise integration, one has

w(x) = Exv(XτB
) + GB(κw)(x) , x ∈ Rn . (3.26)

Note that w is smooth in B. Indeed, for any ball B1 ⊂ B we have

w(x) = Exv(XτB1
) + GB1(κw)(x), x ∈ B1.

The function w is smooth in B1—the smoothness of w follows from the smooth-
ness of κ and smoothing properties of the Green operator and so it can be viewed
as a consequence of the explicit formulas (3.4) and (3.5). By Theorem 5.5 and
Lemma 3.8 in [10] we have

Aα
Dw(x) = (�α/2 + κ)w(x) = 0 (3.27)

pointwise in B1 (and hence in B). To complete the proof of the lemma we only need
to verify that r = v − w ≥ 0 on B. We note that r is continuous on Rn, vanishes
on Bc and

(�α/2 + κ)r(x) = Aα
Dv(x) ≤ 0 on B.

Suppose that r has a negative minimum at some point x0 ∈ B. Then

(�α/2 + κ)r(x0) = A(n, −α)P.V .

∫
D

r(y) − r(x0)

|y − x0|n+α
dy > 0

because r vanishes on Bc. This is a contradiction. ��

Conversely, we note that if, for example, a function v is harmonic on U ⊂ D

for the censored process Y in the sense of Definition 3.1 then (3.26) is satisfied
with w = v and so by (3.27) Aα

Dv(x) = 0 for x ∈ U .
For a C2 function φ on Rn we write ‖φ‖C2 = ∑

|j |≤2 ‖Djφ‖∞; here j ranges
over multi-indices.

Lemma 3.4. Let α ∈ (1, 2) and D be an open set in Rn. Let φ be a C2 function
on Rn. There is C1 = C1(n, α) such that

|Aα
Dφ(x)| ≤ C1‖φ‖C2 [1 + ρ(x)1−α] , x ∈ D . (3.28)

Proof. By Taylor’s expansion with the remainder of order 2,

|�α/2φ(x)| =
∣∣∣∣A(n, −α)P.V .

∫
Rn

φ(y) − φ(x)

|y − x|n+α
dy

∣∣∣∣ ≤ c1‖φ‖C2 , x ∈ Rn ,
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where c1 = c1(n, α). Thus

|Aα
Dφ(x)| =

∣∣∣∣A(n, −α)P.V .

∫
D

φ(y) − φ(x)

|y − x|n+α
dy

∣∣∣∣
≤ c1‖φ‖C2 + A(n, −α)

∫
Dc

|φ(y) − φ(x)|
|y − x|n+α

dy

≤ c1‖φ‖C2 + ‖φ‖C2 · A(n, −α)

∫
Dc

|y − x| ∧ 2

|y − x|n+α
dy

≤ c1‖φ‖C2 + ‖φ‖C2 · A(n, −α)

∫
|z|>ρ(x)

|z| ∧ 2

|z|n+α
dz

≤ C1‖φ‖C2 [1 + ρ(x)1−α].

��

(3.28) has a logarithmic analogue for α = 1, but we will not need such an
estimate for α ≤ 1.

4. One-dimensional censored stable processes

This section is entirely devoted to the analysis of one-dimensional censored sta-
ble processes on the half-line. More specifically, we will address the question of
whether such processes hit the boundary of the domain, i.e., the origin. The results
are a special case of much more general results presented in Theorems 1.1 and 2.7.
In this section two alternative elementary proofs of Theorem 1.1 are given in the
one-dimensional setting. We hope that simple techniques presented below will help
the reader develop an intuitive picture of the path behavior of censored processes.

In the remainder of the section we assume that n = 1 and we denote D =
(0, ∞). Let Y be the censored α-stable process in D, defined in Section 2, with
α ∈ (0, 2).

4.1. Kelvin transform

Let

wp(x) =
{

xp if x > 0 ,

0 if x ≤ 0 ,
(4.1)

and note that w0 = 1(0,∞), the indicator function of (0, ∞). We also let

w∗
0(x) =

{
log x if x > 0 ,

0 if x ≤ 0 .

Lemma 4.1. If α �= 1 then the functions w0 and wα−1 are harmonic in D with
respect to Y . If α = 1 then w0 and w∗

0 are harmonic in D with respect to Y .
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Proof. The argument for w0 is straightforward. If α ∈ (0, 2) and x ∈ (0, ∞) then

Aα
Dw0(x) = A(1, −α)P.V .

∫ ∞

0

w0(x) − w0(y)

|x − y|1+α
dy = 0 .

By Lemma 3.3, w0 is harmonic on D for Y .
The Kelvin transform of D is T D := {x/|x|2; x ∈ D}, so in the present context

T D = D. The Kelvin transform of w0(x) is the function T w0 given by

T w0(x) = |x|α−1w0(x/x2) = wα−1(x) , x �= 0 .

We have

κ(x) = κα
D(x) = A(1, −α)

∫ 0

−∞
dy

|x − y|1+α
(4.2)

= A(1, −α)

α
x−α . (4.3)

The function w0 is κ-harmonic for the symmetric stable process X on Rn so T w0 is
q-harmonic for X on T D, where q(x) = |x|−2ακ(x/|x|2), by Theorem 8.4 of [9].
Here, by (4.3), we have q(x) = κ(x), x ∈ D. It follows that wα−1 is κ-harmonic
for XD or harmonic for Y in D.

To see that w∗
0 is harmonic in the case of α = 1, note that

wα−1(x) − w0(x)

α − 1
→ w∗

0(x) , as α → 1 , x ∈ R1 .

By a limiting argument, one has

(�1/2 + κ)w∗
0(x) = 0 , x ∈ D ,

where κ = κ1
D . The proof is complete. ��

Let ζ be the lifetime of the censored process Y on D = (0, ∞).

Proposition 4.2. The following statements hold Px-a.s. for every x ∈ (0, ∞).

(1) If α ∈ (0, 1) then ζ = ∞ and limt→∞ Yt = ∞.
(2) If α ∈ (1, 2) then 0 < ζ < ∞ and limt↑ζ Yt = 0.
(3) If α = 1 then ζ = ∞ and the limit of Yt as t → ∞ does not exist.

Proof. First we will show that if for some x, Px(ζ < ∞) > 0 then Px(ζ < ∞) = 1.
We will prove this claim for x = 1 only—this does not cause any loss of generality,
for the following reason. The scaling property of stable processes easily implies that
if {Yt , t ≥ 0} has the distribution Px then the distribution of {cYt/cα , t ≥ 0} is Pcx .
Hence, Px(ζ < ∞) = 1 holds for every x or it does not hold for any x ∈ (0, ∞).

Assume that P1(ζ < ∞) > 0 and find t0 < ∞ and p > 0 such that P1(ζ <

t0) > p. Consider the following sequence of stopping times, T0 = ζ ∧ t0, Tk+1 =
ζ ∧ (Tk + t0(YTk

)α), k ≥ 0. Since (Yζ )
α is undefined, we declare that Tk+1 = ζ
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if Tk = ζ . By the scaling property of Yt and the strong Markov property applied
at Tk ,

P1(ζ > Tk+1 | ζ > Tk) ≤ 1 − p.

This implies that P1(ζ > Tk) ≤ (1 − p)k+1. We conclude that P1(ζ < ∞) = 1 by
letting k → ∞.

We will now consider a censored stable process with α ∈ (0, 1). Let Ia =
[1/2, a] for a > 1. Note that τIa < ∞ a.s. for Y by (3.24). Since wα−1 is har-
monic,

1 = wα−1(1) = E1wα−1(YτIa
)

= E1[YτIa
< 1/2 ; wα−1(YτIa

)] + E1[YτIa
> a ; wα−1(YτIa

)]

≥ (1/2)α−1P1(YτIa
< 1/2). (4.4)

Let TA denote the hitting time of a set A. By (4.4), for all a > 1,

P1(T(a,∞) < T(0,1/2)) = 1 − P1(YτIa
< 1/2) ≥ 1 − 2α−1. (4.5)

Since t → Yt is right continuous with left limits for t < ζ , Yt is bounded
on every closed subinterval of [0, ζ ). By this observation and letting a → ∞ in
(4.5) we have that P1(T(0,1/2) = ∞) > 0. This does not immediately imply that
P1(ζ = ∞) > 0 because, in principle, the process could die in a finite time without
hitting (0, 1/2). We will argue that this cannot happen. Note that for t0 > 0, there
is p = p(t0, α) > 0 such that the unconstrained symmetric α-stable process X

starting from x ≥ 1/2 stays on the positive half line for at least t0 units of time with
probability p or higher. Thus by the Ikeda-Nagasawa-Watanabe construction of Y

and the Borel-Cantelli lemma, we have P1(ζ = ∞) > 0, and so, in view of the
opening remarks of this proof, we see that P1(ζ = ∞) = 1. We will now show that
limt→∞ Yt = ∞. Since wα−1 is a non-negative harmonic function for Y , Yα−1

t is
a non-negative supermartingale and therefore limt→∞ Yα−1

t exists a.s. and

Ex

[
lim

t→∞ Yα−1
t

]
≤ xα−1. (4.6)

Since Yt is a Hunt process, with probability one, the limit limt→∞ Yt is not a
number in (0, ∞). In view of the existence of limt→∞ Yα−1

t and the assumption
that α ∈ (0, 1), (4.6) rules out the possibility that the limit is zero with positive
probability, and so limt→∞ Yt = ∞ a.s.

Next we assume that α ∈ (1, 2) and proceed along similar lines. Let Ja = [a, 2]
for a ∈ (0, 1). It follows from (3.24) that τJa < ∞ a.s. We have by the harmonicity
of wα−1,

1 = wα−1(1) = E1wα−1(YτJa
)

= E1[YτJa
< a ; wα−1(YτJa

)] + E1[YτJa
> 2 ; wα−1(YτJa

)]

≥ 2α−1P1(YτJa
> 2).

This implies that, for every a ∈ (0, 1),

P1(T(0,a) < T(2,∞)) = 1 − P1(YτJa
> 2) ≥ 1 − (1/2)α−1. (4.7)
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The unconstrained symmetric α-stable process jumps from any point of (0, 2] to
(2, ∞) at a rate bounded below, so the same holds for the process Y , in view of
Theorem 2.1(3). This together with (3.24) implies that ζ ∧ T(2,∞) < ∞, a.s. Let-
ting a → 0 in (4.7), we obtain P1(T(2,∞) = ∞) > 0 so P1(ζ < ∞) > 0. It
follows that P1(ζ < ∞) = 1, by the claim at the beginning of the proof. Since
k �→ wα−1(Yτ[1/k, k]) is a positive martingale under P1, by the martingale conver-
gence theorem, limk→∞ wα−1(Yτ[1/k, k]) exists P1-a.s., and

Ex

[
lim

k→∞
(Yτ[1/k, k])

α−1
]

≤ 1.

The finiteness of this expectation and α − 1 > 0 imply that Yζ− = 0 P1-a.s., as
limk→∞ Yτ[1/k, k] = Yζ−. Hence Yζ− = 0 Px-a.s., for every x > 0.

Finally, we will analyze the case α = 1. We start with some preliminary remarks
on the exit distribution of Yt from an interval. Consider an interval I = I[a,b] =
[a, b] for some 0 < a < 1 < b < ∞, and Y0 ∈ (a, b). Conditioning on {YτI

>

b, YτI − = y}, the distribution of YτI
has a density fy(x) = c(x − y)−2, for some

constant c and x > b (to see this, let the set B shrink to a point in (3.23)). For every
y ∈ I and x > 2b,

fy(x)

fy(2b)
≤ fa(x)

fa(2b)
= (x − a)−2

(2b − a)−2 ≤ (x/2b)−2.

This shows that the conditional density g(x) of YτI
given {YτI

> b, Y0 = z} satisfies
g(x)/g(2b) ≤ (x/2b)−2 for x > 2b. Hence,

Ez[YτI
> b ; w∗

0(YτI
)] ≤ log 2b + c

∫ ∞

2b

log x(x/b)−2dx ≤ c1,

where c1 < ∞ does not depend on a.
Similarly, the conditional density of YτI

given {YτI
< a, YτI − = y} is fy(x) =

c(y − x)−2. For every y ∈ I and x < a/2,

fy(x)

fy(a/2)
≤ fb(x)

fb(a/2)
= (b − x)−2

(b − a/2)−2 ≤ 1.

Thus the conditional density g(x) of YτI
given {YτI

< a, Y0 = z} must satisfy
g(x) ≤ g(a/2) for x < a/2. We conclude that,

Ez[YτI
< a ; w∗

0(YτI
)] ≥ log a/2 + c

∫ a/2

0
log xdx ≥ −c2,

where c2 < ∞ does not depend on b.
Recall that the function w∗

0 is harmonic for the censored stable process with
α = 1. Fix some y ∈ (0, ∞) and consider 0 < a < 1 < b < ∞ such that
a < y < b. Then τI < ∞ a.s. by (3.24) and we have

log y = w∗
0(y) = Eyw

∗
0(YτI

)

= Ey[YτI
< a ; w∗

0(YτI
)] + Ey[YτI

> b ; w∗
0(YτI

)]

≥ −c2 + log b · Py(YτI
> b)

= −c2 + log b · Py(T(b,∞) < T(0,a)).
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This implies that for any fixed a, Py(T(b,∞) < T(0,a)) ≤ (c2 + log y)/ log b → 0
as b → ∞. Since the unconstrained symmetric α-stable process cannot remain in
a compact subset of (0, ∞) forever, by Theorem 2.1(3) and (3.24) neither does Y .
The last two observations imply that Py(T(0,a) < ∞) = 1, for every a < y.

Similarly,

log y = w∗
0(y) = Eyw

∗
0(YτI

)

≤ c1 + log a · Py(YτI
< a)

= c1 + log a · Py(T(0,a) < T(b,∞)).

It follows that for any fixed b, lima→0 Py(T(0,a) < T(b,∞)) = 0. This in turn implies
that Py(T(b,∞) < ∞) = 1 for every b > y. So Yt oscillates between 0 and ∞ as
t → ζ . This does not immediately imply that ζ = ∞ because the process could
oscillate between 0 and ∞ on a finite interval.

We will argue that for every bounded interval I ⊂ [0, ∞), Yt is bounded by a
(random) constant on I ∩ [0, ζ ). This will imply that ζ = ∞ a.s. Choose arbitrarily
large p < 1 and t0 < ∞ and find x0 so large that the (uncensored) process X

starting from any point x ∈ [x0, ∞) will stay in (0, x + x0) for all t ∈ [0, t0] with
probability p or higher. It follows from the Ikeda-Nagasawa-Watanabe construc-
tion of the censored process that Y has the same property. By the strong Markov
property applied to Y at the stopping time T(x0,∞), the process Y will not leave the
interval (0, YT(x0,∞)

+ x0) for all t ∈ [T(x0,∞), T(x0,∞) + t0], with probability p or
higher. By letting p → 1 and t0 → ∞, we see that Y must be bounded on I ∩ [0, ζ )

a.s. for every closed interval I ⊂ [0, ∞). ��

4.2. Logarithmic transform

We will sketch another proof of Proposition 4.2, based on a logarithmic transform.

Second Proof of Proposition 4.2. By (3.14), the generator of the process Yt can be
written as

AY φ(x) = A(1, −α) lim
ε→0+

∫
(0,x−ε)∪(x+ε,∞)

φ(y) − φ(x)

|y − x|1+α
dy (4.8)

= A(1, −α)P.V .

∫ ∞

0
[φ(y) − φ(x)]µY

x (dy) , x > 0 , (4.9)

where µY
x (dy) = |y − x|−1−αdy. Recall that the “principal value” (P.V.) is defined

to be the limit of integrals as on the right hand side of (4.8); in other words, the
equality (4.9) is a tautology.

We will show that the generator of Zt = log Yt is given by the formula

AZφ(x) = A(1, −α)P.V .

∫ ∞

−∞
[φ(y) − φ(x)]µZ

x (dy) , x ∈ R , (4.10)

where µZ
x ([a, b]) = µY

ex ([ea, eb]), and, consequently,

µZ
x (dy) = |ey − ex |−1−αeydy = e−αxey−x |1 − ey−x |−1−αdy.
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For φ ∈ C∞
c (R), the expression in (4.10) may be written as

A(1, −α) lim
ε→0+

∫
(−∞,x−ε)∪(x+ε,∞)

[φ(y) − φ(x)]µZ
x (dy), (4.11)

while (4.8) yields

AZφ(x) = lim
t↓0

Ex[φ(Zt )] − φ(x)

t

= lim
t↓0

Eex [(φ ◦ log)(Yt ) − (φ ◦ log)(ex)

t

= AY (φ ◦ log)(ex)

= A(1, −α) lim
ε→0+

∫
(−∞,log(ex−ε))∪(log(ex+ε),∞)

[φ(y) − φ(x)]µZ
x (dy)

= A(1, −α) lim
ε→0+

∫
(−∞,log(ex−εex))∪(log(ex+εex),∞)

[φ(y) − φ(x)]µZ
x (dy).

(4.12)

In view of (4.12), to prove (4.10) it will suffice to show that

W =
∣∣∣∣
∫

(−∞,x−ε)∪(x+ε,∞)

[φ(y) − φ(x)]µZ
x (dy)

−
∫

(−∞,log(ex−εex))∪(log(ex+εex),∞)

[φ(y) − φ(x)]µZ
x (dy)

∣∣∣∣
converges to 0 as ε → 0. Note that for ε ∈ (0, 1) we have

log(ex −εex) = x+ log(1−ε) < x−ε < x+ log(1+ε) = log(ex +εex) < x+ε .

Thus,

W ≤
∫

(x+log(1−ε),x−ε)

|φ(y) − φ(x)|µZ
x (dy)

+
∫

(x+log(1+ε),x+ε)

|φ(y) − φ(x)|µZ
x (dy)

= O(ε2) · O(ε) · O(ε−1−α) = O(ε2−α).

This converges to 0 as ε → 0 because α < 2 and so (4.10) is proved.
We define a clock Ct = inf{r > 0 :

∫ r

0 exp(−αZs)ds > t} and time-change
Zt to obtain a new process Vt = ZCt . From (4.10) and Theorem 1.3 in Chapter 6
of [26] we see that the generator of Vt is equal to

AV φ(x) = A(1, −α)P.V .

∫ ∞

−∞
[φ(y) − φ(x)]µV

x (dy),

with
µV

x (dy) = ey−x |1 − ey−x |−1−αdy.
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In other words, Vt is a Lévy process with no drift nor Gaussian component
and has the Lévy measure �(dy) = ey |1 − ey |−1−αdy. Let �1(dy) =
min

{
ey |1 − ey |−1−α, e−y |1 − e−y |−1−α

}
dy and �2(dy) = �(dy) − �1(dy).

The process Vt may be represented as Vt = V 1
t + V 2

t , where V 1
t and V 2

t are
independent Lévy processes with Lévy measures �1 and �2. It follows from the
definition that �1 is symmetric with respect to 0. Since the tails of the density
of �1 go to zero exponentially fast, the process V 1

t has increments with a finite
variance and so it obeys the Central Limit Theorem. For α ∈ (0, 1), �2 charges
only the positive half-line so V 2

t goes to infinity at a rate not smaller than linear and
so Vt → ∞ as t → ∞. Similarly, for α ∈ (1, 2), �2 is carried by (−∞, 0) and
the same argument shows that Vt converges to −∞. Finally, when α = 1, �2(dy)

is the null measure, so Vt = V 1
t . In this case, Vt oscillates between ∞ and −∞.

We will translate these results into the language of Yt . Since Yt = exp(Zt ) and
Zt is a time-change of Vt , the long-time behavior of Vt -trajectories determines the
behavior of the paths of Yt . When α ∈ (0, 1), Yt converges ∞.A simple argument in
the last paragraph of the first proof of Proposition 4.2 has shown that Yt is bounded
on [0, k ∧ ζ ) for every k ≥ 1. Hence, ζ = ∞ a.s. If α ∈ (1, 2), Yt converges to 0
at its lifetime. Since positive jumps of Yt of size greater than 1 occur with intensity
bounded below by a positive constant, the process cannot converge to 0 during an
infinite time interval, i.e., we must have ζ < ∞ and limt→ζ− Yt = 0, a.s. Now
assume that α = 1. In this case Yt oscillates between 0 and ∞ infinitely many times
on every interval (ζ − 1/n, ζ ), n ≥ 1, if ζ < ∞, or on every interval (n, ζ ), n ≥ 1,
if ζ = ∞. The first alternative is ruled out, as it was shown in the last paragraph of
the first proof of Proposition 4.2 that Yt is bounded on [0, k ∧ ζ ) for every k ≥ 1.

��

Recall that the one-dimensional symmetric α-stable process Xt hits 0 if and
only if α ∈ (1, 2); censoring of jumps of Xt has no impact on this property.

5. Analysis in special C1,β−1 domains

We will continue our investigation of the probability that the censored process
approaches the boundary ∂D of a domain D in a finite time. We will shift our
attention from one-dimensional processes discussed in the previous section to mul-
tidimensional processes in relatively smooth domains. We will derive a number of
explicit estimates on our way to Theorem 5.10 which gives an upper bound for the
probability of the event that the censored process starting from a point near ∂D

visits a large set inside D before being killed at ∂D.
In this section, unless otherwise stated, we will only consider processes in sub-

sets of Rn with n ≥ 2. Our arguments will rely on the following explicit calculations
for half-spaces.

For a point x = (x1, . . . , xn) ∈ Rn we write x = (̃x, xn), where x̃ =
(x1, . . . , xn−1). Vectors in Rn−1 will be denoted x̃, ỹ, etc. As usual, x̃ · ỹ will
stand for the scalar product of x̃ and ỹ and |̃x| will be the Euclidean norm of x̃. Let



120 K. Bogdan et al.

Rn+ = {(̃x, xn) ∈ Rn : xn > 0}. Consider α ∈ (0, 2) and p ∈ (−1, α). We define

wp(x) = dist(x, (Rn
+)c)p =

{
x

p
n if xn > 0 ,

0 if xn ≤ 0 .
(5.1)

First we will derive a formula for I (x) := Aα
Rn+

wp(x) = (�α/2 + κRn+)wp(x),

where x ∈ Rn+. More explicitly we have

I (x) = A(n, −α) lim
ε→0+

∫
Rn+\B(x,ε)

y
p
n − x

p
n

|y − x|n+α
dy .

The limit exists by the remarks following (3.11). Let en denote (0, . . . , 0, 1) ∈ Rn.
By a change of variable z = (y − (̃x, 0))/xn, we have

I (x) = x
p−α
n A(n, −α)W,

where

W = P.V .

∫
Rn+

z
p
n − 1

|z − en|n+α
dz =

∫
Rn+

z
p
n − 1 − p(zn − 1)1B(en,1)(z)

|z − en|n+α
dz

=
∫

Rn−1

∫ ∞

0

tp − 1 − p(t − 1)1{(t−1)2+|v|2<1}
[|v|2 + (t − 1)2|](n+α)/2

dt dv .

A change of variable v = |t − 1|u turns this into
∫

Rn−1
(|u|2+1)−(n+α)/2

∫ ∞

0

(
tp − 1

|t − 1|1+α
− p

t − 1

|t − 1|1+α
1{(t−1)2(|u|2+1)<1}

)
dt du .

The last term in the second integral is anti-symmetric in t with respect to t = 1.
Thus

W =
∫

Rn−1
(|u|2 + 1)−(n+α)/2 du · P.V .

∫ ∞

0

tp − 1

|t − 1|1+α
dt .

Using polar coordinates we obtain
∫

Rn−1
(|u|2 + 1)−(n+α)/2 du = ωn−1

∫ ∞

0
rn−2(r2 + 1)−(n+α)/2 dr

= ωn−1

2
B

(
α + 1

2
,
n − 1

2

)
,

where B is the beta function and ωn−1 denotes the (n − 2)-dimensional Lebesgue
measure of the unit sphere in Rn−1.

For ε ∈ (0, 1), by a change of variable we have
∫

(0,∞)\(1−ε,1+ε)

tp − 1

|t − 1|1+α
dt

=
∫ 1−ε

0

tp − 1

(1 − t)1+α
dt +

∫ 1/(1+ε)

0

t−p − 1

(1/t − 1)1+α
t−2 dt

=
∫ 1−ε

0

tp − 1

(1 − t)1+α
(1 − tα−p−1) dt + R ,
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where R = ∫ 1/(1+ε)

1−ε
(1 − tp)(1 − t)−1−αtα−p−1 dt . Since 1 − ε < 1/(1 + ε) <

1 − ε + ε2 < 1,

|R| ≤ ε2 |1 − (1 − ε)p|
(1 − (1 − ε + ε2))1+α

[(1 − ε)α−p−1 ∨ (1 − ε + ε2)α−p−1]

≤ const · ε2−α → 0 as ε → 0+ .

We conclude that

P.V .

∫ ∞

0

tp − 1

|t − 1|1+α
dt =

∫ 1

0

(tp − 1)(1 − tα−p−1)

(1 − t)1+α
dt,

the latter integral being absolutely convergent. We denote

γ (α, p) =
∫ 1

0

(tp − 1)(1 − tα−p−1)

(1 − t)1+α
dt, α ∈ (0, 2), p ∈ (−1, α) , (5.2)

and we observe that

γ (α, p) ≤ 0 if and only if p(α − p − 1) ≥ 0 ,

γ (α, p) ≥ 0 if and only if p(α − p − 1) ≤ 0 .
(5.3)

We summarize our calculations as follows,

Aα
Rn+

wp(x) = x
p−α
n A(n, −α)

ωn−1

2
B

(
α + 1

2
,
n − 1

2

)
γ (α, p) , x ∈ Rn

+ ; n ≥ 2.

(5.4)

In dimension n = 1 we simply have (see (3.12), (3.14) and (4.1) for the notation),

Aα
R+wp(x) = xp−αA(n, −α)γ (α, p) , x > 0 . (5.5)

For later reference we also note that by a similar but simpler calculation than
that giving (5.4) we have

κRn+(x) = A(n, −α)

∫
(Rn+)c

dy

|y − x|n+α
= x−α

n A(n, −α)

∫
(Rn+)c

dz

|z − en|n+α

= x−α
n A(n, −α)

∫ ∞

0

∫
Rn−1

[|v|2 + (t + 1)2]−(n+α)/2 dv dt

= x−α
n

A(n, −α)

α

ωn−1

2
B

(
α + 1

2
,
n − 1

2

)
. (5.6)

In view of (5.3), the right hand side of (5.4) equals zero for p = α − 1. We
obtain the following result from Lemma 3.3.

Lemma 5.1. The function

wα−1(x) =
{

xα−1
n if xn > 0 ,

0 if xn ≤ 0 ,

is harmonic for the censored process Y on Rn+.
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For completeness we define

w∗
0(x) =

{
log xn if xn > 0 ,

0 if xn ≤ 0 .
(5.7)

Note that w∗
0(x) = limp→0+(wp(x) − 1)/p for x ∈ Rn+. By an easy limiting

procedure we have the following result for α = 1.

Corollary 5.2. We have

(�1/2 + κ1
Rn+

)w∗
0(x) = 0 , x ∈ Rn

+ . (5.8)

The result can also be obtained by a direct calculation.

Using the asymptotics of the harmonic functions as in the first proof of Propo-
sition 4.2, we obtain the following result.

Corollary 5.3. Let ζ be the lifetime of the censored process Y in Rn+. The follow-
ing statements hold Px-a.s. for every x ∈ Rn+. If α ∈ (0, 1) then ζ = ∞ and
limt→∞(Yt )n = ∞. If α ∈ (1, 2) then 0 < ζ < ∞ and limt↑ζ Yt exists with
limt↑ζ (Yt )n = 0. If α = 1 then ζ = ∞ and the limit of (Yt )n as t → ∞ does not
exist.

Lemma 5.1, Corollary 5.2, and Corollary 5.3 can also be derived directly from
Lemma 4.1 and Proposition 4.2, respectively, as follows. The n-th coordinate X

(n)
t

of the symmetric α-stable process Xt in Rn is a symmetric α-stable process in
R. It is easy to check that the censored version of X

(n)
t in (0, ∞) has the same

distribution as the n-th coordinate of Yt in Rn+—this follows, for example, from the
Ikeda-Nagasawa-Watanabe piecing together procedure.

Corollary 5.3 is a special case of Theorems 2.7 and 2.9.
In the remainder of the section, we will introduce a class of superharmonic

functions for the censored process Y on special C1,β−1 domains in Rn, which we
define below. In the remainder of the paper we focus on the case 1 < α < 2, to
study the hitting probability of ∂D by Y .

Let 	 : Rn−1 → R. For β ∈ (1, 2], we say that 	 is a C1,β−1 function if it is
differentiable and

‖	‖1,β−1 = sup
x̃ �=ỹ

|∇	(̃x) − ∇	(ỹ)|
|̃x − ỹ|β−1 < ∞ , (5.9)

where ∇	 = (∂	/∂xi)
n−1
i=1 . Note that ‖	‖1,β−1 is a seminorm which neither con-

trols the value of 	 nor, more importantly, the value of ∇	 at, say, 0̃ ∈ Rn−1.
However, if (5.9) holds then by the mean-value theorem,

|	(̃x) − {	(̃0) + ∇	(̃0) · x̃}| ≤ ‖	‖1,β−1 |̃x|β, x̃ ∈ Rn−1 . (5.10)

It is elementary to verify that 	(̃x) = |̃x|β + b · x̃ is a C1,β−1 function on Rn−1

and ‖	‖1,β−1 ≤ 16 for every b ∈ Rn−1.
We shall consider a suitable family of “tangential” regions in Rn. Let C ≥ 1.

We put

P =
{
x = (̃x, xn) ∈ Rn : C |̃x|β < xn < C−1

}
. (5.11)
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Using the vector en = (0, . . . , 0, 1) ∈ Rn, P may be equivalently defined by the
inequalities

C
(
|x|2 − (x · en)

2
)β/2

< x · en < C−1 .

For an arbitrary vector b ∈ Rn of unit length, we define a rotated version of P ,

Pb =
{
x ∈ Rn : C

(
|x|2 − (x · b)2

)β/2
< x · b < C−1

}
. (5.12)

Every set Pb + x with x ∈ Rn and Pb as in (5.12) will be called a region of
β-tangential approach of size C−1.

A domain D will be called a special C1,β−1 domain if for some C1,β−1 function
	 : Rn−1 → R, the domain can be represented as D = D	 = {x = (̃x, xn) ∈
Rn : xn > 	(̃x)}. For every such domain, at every boundary point Q ∈ ∂D,
Q = (Q̃, 	(Q̃)), there is a unique inward unit normal vector at Q, namely

b = (−∇	(Q̃), 1)√
|∇	(Q̃)|2 + 1

. (5.13)

The following elementary result will help us handle sets Pb.

Lemma 5.4. Let β ∈ (1, 2] and suppose that 0 < v ≤ u, c ≥ 1, and

c(u2 − v2)β/2 < v < c−1 . (5.14)

Then

v >
cβ−1

2
uβ . (5.15)

Proof. From (5.14) we obtain u2 − v2 < (c−2)2/β = c−4/β , hence u2 < c−4/β +
c−2 ≤ 2c−2. Suppose that (5.15) does not hold. Then

u2 − v2 ≥ u2 − (cβ−1/2)2u2β = u2 − u2(cβ−1/2)2u2(β−1)

> u2 − u2(cβ−1/2)2(2c−2)β−1

= u2(1 − 2β−3) > u2/2 .

Substituting this into (5.14), we have that c(u2/2)β/2 < v. So v > cuβ/2 ≥
cβ−1uβ/2, which proves (5.15). ��

Lemma 5.5. Let n ∈ {2, 3, . . . } and β ∈ (1, 2]. Let 	 : Rn−1 → R be a
C1,β−1 function and let D = D	 . There is C = C(β, ‖	‖1,β−1) ≥ 1 such that for
every Q ∈ ∂D, the region Pb + Q of β-tangential approach of size C−1 satisfies
Pb + Q ⊂ D, where b is the unit inward vector (5.13). Also, P−b + Q ⊂ Dc.
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Proof. Fix any C satisfying the inequality C ≥ (2‖	‖1,β−1)
1

β−1 ∨ 1. We will
assume without loss of generality that Q = 0 ∈ ∂D. In view of (5.10), we only
need to verify that for every y = (ỹ, yn) ∈ Rn satisfying

C(|y|2 − (y · b)2)β/2 < y · b < C−1 (5.16)

it holds that
yn > ∇	(̃0) · ỹ + ‖	‖1,β−1 |̃y|β .

For any y which satisfies (5.16),

yn − ∇	(̃0) · ỹ = y · b

√
|∇	(̃0)|2 + 1 ≥ y · b .

We apply Lemma 5.4 with u = |y|, v = y · b and c = C to obtain

yn − ∇	(̃0) · ỹ >
[
(2‖	‖1,β−1)

1
β−1 ∨ 1

]β−1
|y|β/2

= [(2‖	‖1,β−1) ∨ 1]|y|β/2 ≥ ‖	‖1,β−1 |̃y|β .

The last statement of the lemma can be proved similarly. ��

In the remainder of the section we assume that 1 < α < β ≤ 2 and we fix
a C1,β−1 function 	 : Rn−1 → R. We denote D = D	 and as usual we put
ρ(x) = dist(x, Dc).

Lemma 5.6. There is C2 = C2(n, α, β, ‖	‖1,β−1) such that

∣∣∣∣κD(x) − ρ(x)−α A(n, −α)

α

ωn−1

2
B

(
α + 1

2
,
n − 1

2

)∣∣∣∣
≤ C2ρ(x)−α[1 ∧ ρ(x)β−1] , x ∈ D . (5.17)

Proof. Let C = C(β, ‖	‖1,β−1) ≥ 1 be the constant of Lemma 5.5. Assume
that x ∈ D and first consider the case when ρ(x) ≤ 1/(2C). Let Q ∈ ∂D be
such that |x − Q| = ρ(x). Let b be the unit inward vector for D at Q, and let
�+ = {x ∈ Rn : (x − Q) · b > 0}. It follows from (5.6) that

κ�+(x) = ρ(x)−α A(n, −α)

α

ωn−1

2
B

(
α + 1

2
,
n − 1

2

)
. (5.18)

We will assume without loss of generality that Q = 0 and consider the regions of
β-tangential approach Pb ⊂ D and P−b ⊂ Dc, tangent to ∂D at Q = 0, as in
Lemma 5.5. Clearly, x ∈ Pb and

κ(P−b)
c (x) ≤ κD(x) ≤ κPb

(x)

and
κ(P−b)

c (x) ≤ κ�+(x) ≤ κPb
(x) .
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Hence we only need to estimate R = κPb
(x) − κ(P−b)

c (x) . Without loss of gen-
erality we will assume that b = en, consequently, Pb = P , where P is given by
(5.11); P−b = −P and x = (̃0, xn) with ρ(x) = xn. We have

R = A(n, −α)

∫
(P)c∩(−P)c

dy

|y − x|n+α

= A(n, −α)

[∫
T c

+
∫

T \(P∪(−P))

]
= A(n, −α) [I1 + I2] ,

where T = {y ∈ Rn : |̃y| < C−2/β , |yn| < C−1} ⊃ P ∪ (−P). Using polar
coordinates we obtain

I1 ≤
∫

B(x,C−2/β/2)c

dy

|y − x|n+α
= ωn

α
2αC2α/β < ∞.

Let T1 = {y ∈ T \(P ∪(−P)) : |̃y| ≤ C−2/βxn/2} and T2 = T \(P ∪(−P)∪T1).
Recall that ρ(x) ≤ 1/(2C), so xn < 1 and note that for y ∈ T1,

xn − C |̃y|β ≥ xn − xβ
n /(C2β) ≥ xn − xn/(C2β) > xn/2 .

Hence, using polar coordinates, we obtain
∫

T1

[
|̃y|2 + (xn − yn)

2
]−(n+α)/2

dy

≤
∫

{u∈Rn−1: |u|<C−2/βxn/2}

∫ C|u|β

−C|u|β
2n+αx−n−α

n dt du

≤ 4C

n + β − 1
ωn−1x

−α+β−1
n . (5.19)

On the other hand∫
T2

[
|̃y|2 + (xn − yn)

2
]−(n+α)/2

dy

≤
∫

{u∈Rn−1: C−2/βxn/2<|u|≤C−2/β }

∫ C|u|β

−C|u|β
|u|−n−α dt du

= 2Cωn−1

∫ C−2/β

C−2/βxn/2
rβ−α−2 dr

≤ 22+α−β ωn−1

α + 1 − β
C(2α+2−β)/βx−α+β−1

n . (5.20)

As a consequence, I2 ≤ const · x
−α+β−1
n , and so (5.17) holds provided ρ(x) ≤

1/(2C).
Next we assume that ρ(x) > 1/(2C). Then

κD(x) ≤ A(n, −α)

∫
B(x,ρ(x))c

dy

|y − x|n+α
= A(n, −α)

ωn

α
ρ(x)−α
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and
κ�+(x) ≤ A(n, −α)

ωn

α
ρ(x)−α .

It follows that
|κD(x) − κ�+(x)| ≤ A(n, −α)

ωn

α
ρ(x)−α.

The proof is complete. ��
The next theorem is the main technical result of this section. It gives explicit

examples of superharmonic functions with respect to Aα
D = �α/2 + κD near the

boundary of a special C1,β−1 domain. Recall that ρ(x) = dist(x, Dc).

Theorem 5.7. Let α ∈ (1, 2), p ∈ (0, α − 1) and

v(x) = ρ(x)p , x ∈ Rn .

There is C3 = C3(n, α, β, ‖	‖1,β−1, p) ≤ 1 such that for x satisfying 0 < ρ(x) ≤
C3,

(
�α/2 + κD(x)

)
v(x) ≤ ρ(x)p−αA(n, −α)

ωn−1

2
B

(
α + 1

2
,
n − 1

2

)

×|γ (α, p)|
[
−1 +

(
ρ(x)

C3

)β−1
]

. (5.21)

In particular, (�α/2 + κD(x))v(x) < 0 provided 0 < ρ(x) < C3.

Proof. We fix α, β, p, 	, D and v as above. Let x ∈ D be such that ρ(x) ≤ 1/(2C)

with C = C(β, ‖	‖1,β−1) of Lemma 5.5. We choose Q ∈ ∂D such that |x −Q| =
ρ(x). As usual, b is the unit inward normal vector at Q ∈ ∂D. We consider the
regions of β-tangential approach P ′ = Pb + Q and P ′′ = P−b + Q of size C−1.
We also denote �+ = {x ∈ Rn : (x − Q) · b > 0} and we define

w(y) = dist(y, (�+)c)p =
{

((y − Q) · b)p if y ∈ �+ ,

0 if y /∈ �+ ,

so that w(x) = |x − Q|p = ρ(x)p = v(x). We have, with �α/2v(x) interpreted as
in (3.11),

�α/2v(x) + κD(x)v(x) = (�α/2 + κD)(v − w)(x)

+ (�α/2 + κ�+)w(x) + (κD(x) − κ�+(x))w(x)

= J1 + J2 + J3 . (5.22)

By (5.17) and (5.18),

|J3| ≤ C2ρ(x)p−α+β−1 (5.23)

with C2 of Lemma 5.6. By (5.4), (5.6) and translation and rotation invariance of
�α/2,

J2 = ρ(x)pκ�+(x)αγ (α, p) , (5.24)

where γ (α, p) is given by (5.2).
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We will now find an upper bound for J1. Since v(x) = w(x) we have

J1 = A(n, −α)P.V .

∫
Rn

v(y) − w(y)

|y − x|n+α
dy

= A(n, −α)

[
P.V .

∫
P ′

+
∫
P ′′

+
∫

Rn\(P ′∪P ′′)

]

= A(n, −α) [K1 + K2 + K3] . (5.25)

Since v(y) = 0 = w(y) for y ∈ P ′′ ⊂ Dc ∩ (�+)c,

K2 = 0 . (5.26)

To estimate K1 from above let 0 < ε ≤ dist(x, (P ′)c) and let

Kε
1 =

∫
P ′\B(x,ε)

v(y) − w(y)

|y − x|n+α
dy ≤

∫
P ′\B(x,ε)

dist(y, P ′′)p − dist(y, (�+)c)p

|y − x|n+α
dy .

(5.27)

We will assume without loss of generality that Q = 0, b = en and, consequently,
x = (0, . . . , 0, ρ(x)) and �+ = Rn+. We have P ′ = P , P ′′ = −P , where P is
given by (5.11). By (5.11) we obtain

Kε
1 ≤

∫
P\B(x,ε)

(yn + C |̃y|β)p − y
p
n

|y − x|n+α
dy .

For y ∈ P we have C |̃y|β < yn and by Taylor’s expansion we get

Kε
1 ≤

∫
P\B(x,ε)

2pC |̃y|βy
p−1
n

|y − x|n+α
dy ≤ 2pC

∫
B(0,2)∩Rn+

|̃y|βy
p−1
n

|y − x|n+α
dy .

We note that |̃y|βy
p−1
n /|y − x|n+α ≤ y

p−1
n /|y − x|n+α−β , so this function of y

is integrable in a neighborhood of x and also in a neighborhood of ∂Rn+. Using a
change of variable, polar coordinates and the observation that xn ≤ 1/2 and

p − α + β − 2 < −1,

we obtain

Kε
1 ≤ 2pCx

p−α+β−1
n

∫
B(0,2/xn)∩Rn+

|̃z|βz
p−1
n

|z − en|n+α
dz

≤ 2pCx
p−α+β−1
n

[ ∫
B(0,2)∩Rn+

|̃z|βz
p−1
n

|z − en|n+α
dz + 2n+α

×
∫

[B(0,2/xn)\B(0,2)]∩Rn+

|̃z|βz
p−1
n

|z|n+α
dz

]

≤ c1x
p−α+β−1
n , (5.28)
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where c1 = c1(n, α, β, p). It is now clear that the Lebesgue integral∫
P ′

v(y) − w(y)

|y − x|n+α
dy

exists. Moreover,∫
P ′

v(y) − w(y)

|y − x|n+α
dy = K1 = lim

ε→0+
Kε

1 ≤ c1x
p−α+β−1
n < ∞, (5.29)

although the quantity on the left hand side may be equal to −∞.
To estimate K3 we continue to assume that Q = 0 and b = en and we reuse

the sets T , T1, T2 from the proof of Lemma 5.6. We have

K3 =
∫

Rn\(P∪P)

v(y) − w(y)

|y − x|n+α
dy =

∫
T c

+
∫

T1

+
∫

T2

.

For y ∈ T c we have |y − x| ≥ C−2/β/2 ≥ C1−2/β |x| ≥ C−2/β |x|/2, hence

v(y) ≤ |y|p ≤ [|y − x| + |x|]p ≤ |y − x|p[1 + 2C2/β ]p (5.30)

and

w(y) ≤ |y|p ≤ |y − x|p[1 + 2C2/β ]p . (5.31)

It follows that there is c2 = c2(n, α, β, ‖	‖1,β−1, p) such that∫
T c

|v(y) − w(y)|
|y − x|n+α

dy ≤ 2[1 + 2C2/β ]p
∫

T c

|y − x|−n−α+p dy ≤ c2 . (5.32)

If y ∈ T1 then |v(y) − w(y)| ≤ 2|y|p ≤ 2x
p
n and by (5.19)∫

T1

|v(y) − w(y)|
|y − x|n+α

dy ≤ 2x
p
n

∫
T1

dy

|y − x|n+α
(5.33)

≤ 8C

n + β − 1
ωn−1x

p−α+β−1
n . (5.34)

If y ∈ T2 then |y − x| > C−2/β |x|/2 so in view of (5.30)–(5.31),∫
T2

|v(y) − w(y)|
|y − x|n+α

dy ≤ 2[1 + 2C2/β ]p
∫

T2

|y − x|−n−α+p dy

≤ c3x
p−α+β−1
n , (5.35)

where c3 = c3(n, α, β, ‖	‖1,β−1, p), cf. (5.20).
By (5.22)–(5.35),

(�α/2 + κD(x))v(x) ≤ A(n, −α)

[
c1+c2+ 8C

n + β − 1
ωn−1 + c3

]
ρ(x)p−α+β−1

+ρ(x)pκ�+(x)αγ (α, p) + C2ρ(x)p−α+β−1,

provided ρ(x) ≤ 1/(2C). It follows from (5.18) and (5.3) that for small ρ(x) the
second term on the right hand side is negative and dominates the remaining terms
as stated in the theorem. ��
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For η > 0 we will write Dη = {x ∈ D : ρ(x) ≥ η}. We first give a simple
consequence of Theorem 5.7.

Proposition 5.8. Let 1 < α < β ≤ 2 and let 0 < p < α − 1. There is a constant
C4 = C4(n, α, β, p, ‖	‖1,β−1) such that for any special C1,β−1 domain D = D	

we have

Px

(
YτD\D1

∈ D1

)
≤ C4ρ(x)p , x ∈ D . (5.36)

Proof. Let v(x) = ρ(x)p. By Theorem 5.7, v is superharmonic in D \DC3 , where
C3 is the constant of Theorem 5.7. By Lemma 3.3 we have v(x) ≥ Exv(YτB

)

whenever B is an open precompact subset of D \ DC3 . If we let Bn = {x ∈ D :
1/n < ρ(x) < C3 − 1/n , |x| < n} and n → ∞ then by the quasi-left continuity
of Y we have that YτBn

→ YτD\DC3
. Therefore

ρ(x)p = v(x) ≥ Ex

[
lim inf
n→∞ v(YτBn

)
]

= Ex

[
v(YτD\DC3

)

]

≥ C
p
3 Px

(
YτD\DC3

∈ DC3

)
≥ C

p
3 Px

(
YτD\D1

∈ D1

)
.

We can take C4 = C
−p
3 in (5.36). ��

Lemma 5.9. Letv(x) = ρ(x)α−1,x ∈ Rn. There isC5 = C5(n, α, β, ‖	‖1,β−1) >

1 such that for every x ∈ D satisfying ρ(x) ≤ C−1
5 ,

(
�α/2 + κD(x)

)
v(x) ≤

{
C5ρ(x)β−2 if β < 2 ,

C5 log 1
ρ(x)

if β = 2 .
(5.37)

Proof. We adopt the notation of the proof of Theorem 5.7. To prove (5.37) we
only need to estimate J1, J2, J3 in (5.22). It follows from (5.17) and (5.18) that
for x ∈ D with ρ(x) small enough we have |J3| ≤ C2ρ(x)β−2, where C2 =
C2(n, α, 2, ‖	‖1,1) is the constant of Lemma 5.6. By (5.3) and (5.4), J2 = 0.

Let us consider J1 = A(n, −α)[K1 + K2 + K3] as in (5.25). We have K2 = 0
and by a calculation in the proof of Theorem 5.7 we have

Kε
1 =

∫
P\B(x,ε)

v(y) − w(y)

|y − x|n+α
dy

≤ 2(α − 1)Cxβ−2
n

[ ∫
B(0,2)∩Rn+

|̃z|βzα−2
n

|z − en|n+α
dz + 2n+α

×
∫

[B(0,2/xn)\B(0,2)]∩Rn+

|̃z|βzα−2
n

|z|n+α
dz

]
. (5.38)

We assume here that Q = 0 and b = en, as in the proof of Theorem 5.7. Using
polar coordinates, we obtain

K1 = lim
ε→0+

Kε
1 ≤

{
c1x

β−2
n if β < 2 ,

c1 log 1
xn

if β = 2 ,
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where c1 = c1(n, α, β). To estimate K3 we can use (5.32), (5.34) and (5.35) except
that we need to replace (5.35) by∫

T2

|v(y) − w(y)|
|y − x|n+α

dy ≤ c2 log(1/xn) ,

if β = 2, see also (5.20). Here c2 = c2(n, α, ‖	‖1,1). This completes the proof.
��

We already know from Theorem 2.9 that if 1 < α < 2, then the censored
process Y will approach the boundary of a C1,β−1 domain. The main result of this
section, Theorem 5.10 below, provides a quantitative version of this statement in
the form of a “gambler’s ruin” estimate.

Recall that D1 = {x ∈ D : ρ(x) ≥ 1}.
Theorem 5.10. Let 1 < α < 2 and let 2 ≥ β ≥ α ∨ (1 − α/2 +

√
1 + α2/4).

There is a constant C6 = C6(n, α, β, ‖	‖1,β−1) such that for any special C1,β−1

domain D = D	 we have

Px{YτD\D1
∈ D1} ≤ C6ρ(x)α−1 , x ∈ D . (5.39)

Proof. Let u(x) = Px{XτD\D1
∈ D1}, x ∈ Rn. Here X denotes the (uncensored)

symmetric α-stable process on Rn. By Propositions 7.4 and 7.6 in the Appendix
there is c = c(n, α, β, ‖	‖1,β−1) such that

c−1[ρ(x)α/β ∧ 1] ≤ u(x) ≤ c[ρ(x)α−(α/β) ∧ 1] , x ∈ Rn . (5.40)

Let v(x) = ρ(x)α−1 − u(x)/(2c), x ∈ Rn. Note that v = 0 on Dc. Given that
1 < α < β ≤ 2 we have ρ(x)α−(α/β) ≤ ρ(x)α−1 for ρ(x) ≤ 1 because α −
(α/β) > α − 1. By the right hand side of (5.40),

v(x) ≥ ρ(x)α−1/2 , x ∈ Rn .

Furthermore, by Lemma 5.9, the left hand side of (5.40) and (5.17),

(�α/2 + κD(x))v(x) = (�α/2 + κD(x))ρ(x)α−1 − κD(x)u(x)/(2c)

≤
{

C5ρ(x)β−2 − ρ(x)α/β−α/(2c2 · c1) , if β < 2 ,

−C5 log ρ(x) − ρ(x)−α/2/(2c2 · c1) , if β = 2 ,

provided ρ(x) is small enough. Here c1 = c1(n, α, β, ‖	‖1,β−1). We have 0 >

β − 2 > α/β − α if 2 > β > 1 − α/2 +
√

1 + α2/4, so

(�α/2 + κD(x))v(x) < 0 , 0 < ρ(x) ≤ c2 ,

where c2 = c2(n, α, β, ‖	‖1,β−1) < 1, that is, v is superharmonic on D \Dc2 . We
now obtain (5.39) as in the proof of Proposition 5.8. ��

Note that for all α ∈ (1, 2) we have 1−α/2+
√

1 + α2/4 < 2, so Theorem 5.10
always applies to β = 2. We conjecture that the theorem holds if we replace the
“technical” assumption 2 ≥ β ≥ α ∨ (1 − α/2 +

√
1 + α2/4) by 1 < α < β ≤ 2.

The conjecture holds trivially for α ≥ 3/2 because α ≥ 1 − α/2 +
√

1 + α2/4 for
such α.
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6. Boundary Harnack principle in C1,1 open sets

In the present section we will prove the boundary Harnack principle in C1,1 open
sets. This essentially amounts to verifying that for α > 1, the rate of decay of a
harmonic function of the censored process near the boundary of a C1,1 open set is
precisely p = α − 1, i.e., the opposite inequality to that in Theorem 5.10 is also
true.

We state without proof two geometric results on C1,1 open sets.

Lemma 6.1. Let b ∈ Rn, |b| = 1. If β = 2 then the region of 2-tangential ap-
proachPb defined by (5.12) satisfiesPb ⊃ B(Rb, R), whereR = 1/[(4‖	‖1,1)∨2].

The inclusion in Lemma 6.1 follows from the proof of Lemma 5.5. By Lemma 6.1
and Lemma 5.5 we obtain the following result.

Lemma 6.2. Assume that 	 : Rn−1 → R is a C1,1 function and let D = D	 .
Then B(Q + Rb, R) ⊂ D and B(Q − Rb, R) ⊂ Dc for every Q ∈ ∂D. Here b is
the unit inward vector at Q (see (5.13)) and R = 1/[(4‖	‖1,1) ∨ 2].

Lemma 6.2 states a well known geometric fact that for a C1,1 open set, there
exist inner and outer tangent balls of fixed diameter at every point on the boundary
of the domain. This geometric result yields sharp estimates for the Green function
of symmetric stable processes in a C1,1 domain, using explicit formulas for the
Green function for a ball and for the complement of a ball. Details of this argument
may be found in [23] in the case of the Brownian motion and in [13], [18] and [40]
in the case of symmetric stable processes; see also our Appendix. For censored
stable processes we do not have an explicit formula for the Green function in a ball.
Moreover, the Green function of the censored process in a domain is not related in
a simple way to the Green function in a subdomain. To find the exact rate of decay
of harmonic functions of censored processes in C1,1 open sets, we will use a dif-
ferent approach based on explicit formulas for half-spaces and the approximation
technique introduced in the previous section.

Throughout the section, unless stated otherwise, α ∈ (1, 2) and D = D	 is a
special C1,1 domain in Rn, n ≥ 2.

Lemma 6.3. Let v(x) = ρ(x)α−1, x ∈ Rn. There is C7 = C7(n, α, ‖	‖1,1) < 1
such that for every x ∈ D satisfying ρ(x) ≤ C7,

log(C7ρ(x)) ≤ �α/2v(x) + κ(x)v(x) ≤ log
1

C7ρ(x)
. (6.1)

Proof. The upper bound in (6.1) follows from a more general inequality (5.37).
The proof of the lower bound proceeds along the same lines as the proofs of

Theorem 5.7 and Lemma 5.9. We will outline only those steps which require mod-
ifications. Take β = 2 in those calculations. A direct examination of the proofs of
Theorem 5.7 and Lemma 5.9 reveals that the only term out of J1, J2, J3, K1, K2
and K3 which requires new bounds in the present context is K1.

To estimate Kε
1 , and, consequently, �α/2v(x) + κ(x)v(x) , from below we

use the inner tangent ball B = B(Q + Rb, R) = B(Ren, R) ⊂ D. Here R =
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1/[(4‖	‖1,1) ∨ 2], see Lemma 6.2. We assume that Q = 0 and b = en. We will
also use the flexibility of choice of the constant C ≥ (2‖	‖1,1) ∨ 1 defining P in
(5.11), see the beginning of the proof of Lemma 5.5. We have

Kε
1 ≥

∫
P\B(x,ε)

dist(y, Bc)α−1 − yα−1
n

|y − x|n+α
dy , (6.2)

and dist(y, Bc) = R −
√

(R − yn)2 + |̃y|2 provided y ∈ P ⊂ B. The inclusion
P ⊂ B takes place if C ≥ 1/R. Our actual choice will be however C = 2/R =
(8‖	‖1,1) ∨ 4. By (5.11) we have yn < 1/C = R/2 for y ∈ P . We consider the

function f (s) =
(
R −

√
(R − yn)2 + s

)α−1 − yα−1
n . By the mean value theorem

applied to f , we see that for y ∈ P there is θ ∈ (0, 1) such that

(
R −

√
(R − yn)2 + |̃y|2

)α−1

− yα−1
n

= −|̃y|2 α − 1

2

(
R −

√
(R − yn)2 + θ |̃y|2

)α−2

√
(R − yn)2 + θ |̃y|2

≥ −α − 1

R
|̃y|2

(
R −

√
(R − yn)2 + θ |̃y|2

)α−2

≥ −2α(α − 1)

4R
|̃y|2yα−2

n .

Substituting this bound into (6.2), we obtain an integral similar to that in (5.38)
with β = 2, and thus the logarithmic estimate for K1 follows. In particular, the
integral defining K1 is absolutely convergent and we have (6.1). ��

Recall that for r > 0, Dr = {x ∈ D : ρ(x) ≥ r}.

Theorem 6.4. There is C8 = C8(n, α, ‖	‖1,1) such that

C−1
8 ρ(x)α−1 ≤ Px{YτD\D1

∈ D1} ≤ C8ρ(x)α−1 , x ∈ D \ D1 . (6.3)

Proof. The right hand side of (6.3) is a special case of (5.39). To prove the left hand
side let

u(x) = Px{XτD\D1
∈ D1} , x ∈ Rn .

We will show that the function v(x) = ρ(x)α−1 + u(x) is subharmonic with
respect to Yt on D \Dc, for some c = c(n, α, ‖	‖1,1) < 1. Indeed, by Lemma 6.3,
Lemma 5.6 and Proposition 7.6 of the Appendix with β = 2,

(�α/2 + κD)v(x) = (�α/2 + κD)ρ(x)α−1 + κD(x)u(x)

≥ log(C7ρ(x)) + const · ρ(x)−α+α/2 , (6.4)

which is positive if ρ(x) is small enough. Note that v = 0 on Dc and v(x) ≤
(A3 +1)ρ(x)α−1, x ∈ Rn, by Proposition 7.4 of the Appendix with β = 2, because
α − 1 < α/2. Let v1 = v ∧ 1. Taking a smaller c = c(n, α, ‖	‖1,1) if necessary,
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we can assume that v1 = v on D \ Dc and v1 is subharmonic on D \ Dc. Indeed,
let f = v1 − v. Clearly, the support of f is contained in Dc; thus for x ∈ D \ Dc,

(�α/2 + κD)f (x) = �α/2f (x) = A(n, −α)

∫
Dc

f (y)

|y − x|n+α
dy ,

which is bounded if ρ(x) is small enough. So by (6.4), (�α/2 + κD)v1(x) > 0 if
ρ(x) is small enough. We obtain

ρ(x)α−1 ≤ v(x) = v1(x) ≤ Exv1(YτD\Dc
) ≤ Px{YτD\Dc

∈ Dc} when ρ(x) ≤ c .

To finish the proof of Theorem 6.4 we only need to replace Dc by D1 above. For
y = YτD\Dc

∈ Dc we have

Py{YτD\D1
∈ D1} ≥ Py{YτB(y,c/2)

∈ D1}
≥ Py{XτB(y,c/2)

∈ D1} ≥ c1 = c1(n, α, ‖	‖1,1) ,

as follows from the explicit formula (3.4) for the Poisson kernel for the ball and
Lemma 7.5. Then

Px{YτD\D1
∈ D1} = Ex{YτD\Dc

∈ Dc ; PYτ
D\Dc

{YτD\D1
∈ D1}}

≥ c1Px{YτD\Dc
∈ Dc} .

This completes the proof. ��
In the remainder of the section we will prove the Carleson estimate and the

boundary Harnack principle for nonnegative harmonic functions of the censored
process Y on C1,1 domains. As before, we will assume that 1 < α < 2. However
we will now put an additional constraint on the domain D = D	 . Namely, we will
assume that 	 is a Lipschitz function with Lipschitz constant λ:

|	(̃x) − 	(ỹ)| ≤ λ|̃x − ỹ| , x̃, ỹ ∈ Rn−1 , (6.5)

as well as a C1,1 function. Obviously, every C1,1 function is Lipschitz on every
compact set, so (6.5) imposes a constraint only on the global shape of D—this is a
technically convenient but inessential assumption.

We will also assume that 	(̃0) = 0. From now on, D = D	 will denote a
special Lipschitz and C1,1 domain. We let Y be the censored process in D.

Recall that for x = (x1, . . . , xn) ∈ Rn, we write x = (̃x, xn), where x̃ =
(x1, . . . , xn−1). We will use the following notation: η(x) = [xn − 	(x)] ∨ 0,
x ∈ Rn. The function η(x) represents the distance from x to the complement of D

along the vertical line (in the direction of xn). By the Pythagorean theorem,

ρ(x) ≤ η(x) ≤
√

λ2 + 1 ρ(x) , x ∈ Rn . (6.6)

Let �(x, a, r) be a “box” with bottom on ∂D, defined as follows:

�(x, a, r) = {y ∈ D : 0 < η(y) < a, |̃y − x̃| < r} ,
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where x ∈ Rn, and a, r ∈ (0, ∞]. We note that �(x, a, r) depends on x only
through x̃.

The following result is a preliminary version of the boundary Harnack principle
(cf. [3]).

Theorem 6.5. There is a constant C9 = C9(n, α, λ, ‖	‖1,1) such that

Px[Yτ�(0,1,1)
∈D]≤C9Px[Yτ�(0,1,1)

∈ �(0, 2, 1)] , for x ∈�(0, 1, 1) with x̃ = 0 .

(6.7)

Proof. Let

v(x) = Px{Yτ�(0,1,∞)
∈ D} , x ∈ D .

By (6.6) and Theorem 6.4 there is c1 = c1(n, α, λ, ‖	‖1,1) ≥ 1 such that

c−1
1 [η(x)α−1 ∧ 1] ≤ v(x) ≤ c1[η(x)α−1 ∧ 1] , x ∈ D . (6.8)

We also define

u(x) = Px{Xτ�(0,1,∞)
∈ D} , x ∈ Rn .

Then there is c2 = c2(n, α, λ, ‖	‖1,1) ≥ 1 such that

c−1
2 [η(x)α/2 ∧ 1] ≤ u(x) ≤ c2[η(x)α/2 ∧ 1] , x ∈ D , (6.9)

by Propositions 7.4 and 7.6 in the Appendix. Let φ be a C2 function with ‖φ‖C2 <

∞ such that φ(x) = |̃x|2 = x2
1 + . . . + x2

n−1 if |̃x| < 1 and φ(x) ≥ 1 if |̃x| ≥ 1.
We put

v1(x) = v(x) − u(x)/(2c2c1) + 8c2
1φ(x) , x ∈ D .

Here the coefficient 1/(2c2c1) is chosen so that v(x)−u(x)/(2c1c2) ≥ [η(x)α−1 ∧
1]/(2c1) for x ∈ D (recall that α − 1 < α/2). By (5.17), (3.28) and (6.9), for small
η(x),

Aα
Dv1(x) = −κD(x)u(x)/(2c2c1) + 8c2

1(�
α/2 + κD)φ(x)

≈ −const · η(x)−α/2 + const · η(x)1−α ,

which is negative provided η(x) > 0 is small enough. Thus there is m = m(n, α, λ,

‖	‖1,1) ≤ 1 such that v1 is superharmonic in �(0, m, ∞). By the super-mean
value property (i.e., (3.1) with the equality sign replaced by ≥) we have for every
x = (̃0, xn) ∈ D that

c1[η(x)α−1 ∧ 1] ≥ v1(x) ≥ 2c2
1 Px[Yτ�(0,m,1/2)

∈ D \ �(0, ∞, 1/2)],

and, using (6.8),

Px[Yτ�(0,m,1/2)
∈ D \ �(0, ∞, 1/2)] ≤ [η(x)α−1 ∧ 1]/(2c1) ≤ 1

2
v(x). (6.10)
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As

Px[Yτ�(0,m,1/2)
∈ D]

= Px[Yτ�(0,m,1/2)
∈ �(0, ∞, 1/2)] + Px[Yτ�(0,m,1/2)

∈ D \ �(0, ∞, 1/2)]

≤ Px[Yτ�(0,m,1/2)
∈ �(0, ∞, 1/2)] + (1/2)v(x)

= Px[Yτ�(0,m,1/2)
∈ �(0, ∞, 1/2)] + (1/2)Px[Yτ�(0,1,∞)

∈ D]

≤ Px[Yτ�(0,m,1/2)
∈ �(0, ∞, 1/2)] + (1/2)Px[Yτ�(0,m,1/2)

∈ D],

we have

Px(Yτ�(0,m,1/2)
∈ D) ≤ 2Px(Yτ�(0,m,1/2)

∈ �(0, ∞, 1/2)) . (6.11)

On the other hand, there is c3 = c3(n, α, λ, ‖	‖1,1) such that

∫
�(0,∞,1/2)\�(0,m,1/2)

A(n, −α)

|z − y|n+α
dy

≤ c3

∫
�(0,3m/2,1/2)\�(0,m,1/2)

A(n, −α)

|z − y|n+α
dy , z ∈ �(0, m, 1/2) .

By (3.23) and (6.11) we have

Px(Yτ�(0,m,1/2)
∈ D) ≤ 2c3Px(Yτ�(0,m,1/2)

∈ �(0, 3m/2, 1/2)),

provided x̃ = 0.
There is c4 = c4(n, α, λ, ‖	‖1,1) such that the process Y starting from any point

of �(0, 3m/2, 1/2) \ �(0, m, 1/2) can hit �(0, 2, 1) \ �(0, 1, 1) before leaving
�(0, 2, 1) with probability greater than c4, because this is true for XD . It follows
that

Px(Yτ�(0,1,1)
∈ �(0, 2, 1)) ≥ c4Px(Yτ�(0,m,1/2)

∈ �(0, 3m/2, 1/2))

≥ c4

2c3
Px(Yτ�(0,m,1/2)

∈ D)

≥ c4

2c3
Px(Yτ�(0,1,1)

∈ D),

for x with x̃ = 0. The proof is complete. ��

For later reference we note that

Px[Yτ�(0,1,1)
∈ �(0, 2, 1)] ≤ Px[Yτ�(0,1,∞)

∈ D] ≤ C10[η(x)α−1 ∧ 1] , x ∈ D ,

(6.12)

where C10 is the constant c1 in (6.8) above, so that C10 = C10(n, α, λ, ‖	‖1,1).
To prove the next result we combine arguments used for the proof of the Carle-

son estimate for classical harmonic functions of Brownian motion ([3], [36]) with
those used for harmonic functions of the symmetric stable processes Xt ([8]).
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Proposition 6.6 (Carleson estimate). Let �1 = �(0, 1, 1), �2 = �(0, 2, 2),
F = {x ∈ Rn : |̃x| < 2 , η(x) = 0} ⊂ ∂D, and A = (̃0, 1/2) ∈ �1. Assume
that a function u is nonnegative on Rn, vanishes continuously at every point of F

and is harmonic on �2 for the censored process Y on D. Then there is a constant
C11 = C11(n, α, λ, ‖	‖1,1) such that

u(x) ≤ C11u(A) for x ∈ �1 . (6.13)

Proof. By the Harnack inequality (Theorem 3.2), there is M = M(n, α, λ) such
that

u(x) ≤ 2kMu(A) for x ∈ �1 with η(x) ≥ 2−k . (6.14)

Here k is a positive integer. Assume that at some x0 ∈ �1 we have u(x0) >

2k0Mu(A). We will show below that if a positive integer k0 = k0(n, α, λ, ‖	‖1,1)

is large enough then this assumption contradicts the continuous decay of u at F .
In view of (6.14), η(x0) ≤ 2−k0 . Let ε = (α −1)/(2α) so that in particular 0 <

ε < 1. We define �0 = �(x0, 2−εk0 , 2−εk0) and 2�0 = �(x0, 21−εk0 , 21−εk0). We
will argue that

u(x0) = Ex0u(Yτ
�0 ) . (6.15)

By harmonicity, u(x0) = Ex0u(YτBl
), where Bl = �0 ∩{η(x) > 1/l}, l = 1, 2, . . .

By the continuity of u on F and quasi-left continuity of Y we obtain (6.15). We
further have

u(x0) = Ex0 [Yτ
�0 ∈ 2�0 ; u(Yτ

�0 )]+Ex0 [Yτ
�0 ∈ D\2�0 ; u(Yτ

�0 )] = E′+E′′ .

We will find a point x1 near x0 such that u(x1) is substantially larger than u(x0).
First consider the case when E′′ ≥ E′. Then E′′ ≥ u(x0)/2. By (3.23) and the
second sentence following (3.23),

1

2
u(x0) ≤

∫
D\2�0

∫
�0

A(n, −α)
GX

�0(x0, v)Ev
x0

eκ(τ�0)

|y − v|n+α
dv u(y) dy

≤
∫

D\2�0

∫
�0

A(n, −α)
GX

�0(x0, v)Ev
x0

eκ(τ�0)

(|y − (̃x0, 0)|/4)n+α
dv u(y) dy

= A(n, −α)4n+α

∫
�0

GX
�0(x0, v)Ev

x0
eκ(τ�0)dv

∫
D\2�0

u(y)

|y−(̃x0, 0)|n+α
dy

= A(n, −α)4n+αEx0τ
Y
�0

∫
D\2�0

u(y)

|y − (̃x0, 0)|n+α
dy .
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Here superscripts X and Y indicate with respect to which process a quantity is
calculated. Let x1 be such that x̃1 = x̃0 and η(x1) = 2−εk0/2. We have

u(x1) ≥
∫

D\2�0

∫
�0

A(n, −α)
GX

�0(x1, v)Ev
x1

eκ(τ�0)

|y − v|n+α
dv u(y) dy

≥
∫

D\2�0

∫
�0

A(n, −α)
GX

�0(x1, v)Ev
x1

eκ(τ�0)

(2|y − (̃x0, 0)|)n+α
dv u(y) dy

= A(n, −α)2−n−αEx1τ
Y
�0

∫
D\2�0

u(y)

|y − (̃x0, 0)|n+α
dy .

Therefore

u(x1)

u(x0)
≥ 2−3(n+α)

Ex1τ
Y
�0

Ex0τ
Y
�0

. (6.16)

By Theorem 6.4,

C8η(x0)
α−1 ≥ C8ρ(x0)

α−1 ≥ Px0{YτD\D1
∈ D1}

=
∫

D1

∫
D\D1

A(n, −α)
GX

D\D1
(x0, v)Ev

x0
eκ(τD\D1

)

|y − v|n+α
dv dy .

There existsS1 = S1(n, λ) such that for everyv ∈ D\D1 we have |B(v, S1)∩D1| >

1, see Lemma 7.5 in the Appendix. Thus

C8η(x0)
α−1 ≥ S−n−α

1 A(n, −α)Ex0τ
Y

D\D1
≥ S−n−α

1 A(n, −α)Ex0τ
Y
�0 . (6.17)

On the other hand we note that B1 = B(x1, η(x1)/
√

λ2 + 1) = B(x1, 2−εk0/

(2
√

λ2 + 1)) is a subset of �0. Thus, by (3.6),

Ex1τ
Y
�0 ≥ Ex1τ

X
B1

= Cn
α

A(n, −α)

(
2−εk0

2
√

λ2 + 1

)α

. (6.18)

By (6.16), (6.17) and (6.18) there is c2 = c2(n, α, λ, ‖	‖1,1) such that

u(x1) ≥ c22−k0(αε+1−α) u(x0) .

Our choice of ε = (α − 1)/(2α) yields αε + 1 − α = (1 − α)/2, and so

u(x1) ≥ c22k0(α−1)/2u(x0) . (6.19)

Next consider the case when E′′ ≤ E′. We have

u(x0) ≤ 2Ex0 [Yτ
�0 ∈ 2�0 ; u(Yτ

�0 )] ≤ 2 sup
y∈2�0

u(y) Px0 [Yτ
�0 ∈ 2�0] .

We would like to apply properly rescaled version of (6.12), so we will make a
digression on scaling. Suppose that we want to apply a result proved for D to a
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domain kD = {kx : x ∈ D} = D	k
, where 	k(x) = k	(x/k). The Lipschitz con-

stants of 	 and 	k are clearly the same. On the other hand, ‖	k‖1,1 = k−1‖	‖1,1.
In particular ‖	k‖1,1 ≤ ‖	‖1,1 if and only if k ≥ 1. It follows that we can apply
(6.12), Theorems 6.4 and 6.5 to D	k

(without having to change the constants in
these results) provided k ≥ 1. By (6.12) and scaling,

Px0 [Yτ
�0 ∈ 2�0] ≤ Px0 [Yτ

�0 ∈ D] ≤ C9C10[η(x0)/2−εk0 ]α−1

≤ C9C102−k0(α
2−1)/(2α) .

Thus u(x0) ≤ 2C9C102−k0(α
2−1)/(2α) supy∈2�0 u(y), and so there is x1 ∈ 2�0 such

that

u(x1) ≥ 2k0(α
2−1)/(2α)

4C9C10
u(x0) . (6.20)

The distance from x0 to any point in 2�0 is bounded by 2−εk0 2
√

1 + (1 + λ)2

because of the Lipschitz character of ∂D. Hence in both cases E′′ ≥ E′ and
E′′ ≤ E′ we have for our choice of x1,

|x1 − x0| ≤ 2−εk0 2
√

1 + (1 + λ)2 .

Also, if k0 is large enough then both (6.19) and (6.20) can be combined into the
following weaker but simpler inequality

u(x1) ≥ 2k0(α−1)/4u(x0) > 2M[k0+k0(α−1)/(4M)] u(A) ,

or

u(x1) ≥ 2k1Mu(A) , (6.21)

where k1 is the smallest integer larger than k0 + k0(α − 1)/(4M) − 1. We may and
do choose k0 so large that k1 ≥ k0 + 1.

We proceed by induction. We find a point x2 ∈ �2 and an integer k2 > k1 using
x1 and k1, then a point x3 ∈ �2 and an integer k3 > k2 using x2 and k2, etc., with
the following properties. First of all,

u(xi) ≥ 2Mki u(A), (6.22)

where ki ≥ ki−1 + 1 ≥ k0 + i. Also,

|xi − xi−1| ≤ 2−ki−1(α−1)/22
√

1 + (1 + λ)2

≤ 2−k0(α−1)/22−i(α−1)/22
√

1 + (1 + λ)2 . (6.23)

We have |xi − x0| ≤ ∑∞
j=1 |xj − xj−1|. If k0 is large enough then the sum of the

series is smaller than 1/(2
√

1 + λ2) and so the pointsxi do not leave�(0, 3/2, 3/2).
By (6.22) and (6.14), η(xi) ≤ 2−ki , i = 1, 2, . . . This contradicts the continuous
decay of u at F . The contradiction proves that u(x) ≤ 2Mk0 for x ∈ �1. ��
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The boundary Harnack principle for classical harmonic functions was first
proved in [2], [25] and [47]; see also [3] and [7] for a more recent exposition.
The following theorem gives the boundary Harnack inequality in special C1,1 do-
mains. We would like to remind the reader that the harmonicity of a function in an
open subset of D is characterized by the underlying censored stable process, which
is dependent on the global geometry of the domain D.

The assumptions on the domain in Theorem 6.7 can be relaxed—see Theo-
rem 1.2 and its proof below and Remark 6.3.

Theorem 6.7. Assume that u ≥ 0 on Rn and u = 0 on Dc. Furthermore assume
that u is regular harmonic on �(0, 4, 4) for the censored process Y on D, i.e.,

u(x) = Ex[u(Yτ�(0,4,4)
) ; Yτ�(0,4,4)

∈ D ] , x ∈ �(0, 4, 4) . (6.24)

Let A = (̃0, 1/2) ∈ �(0, 1, 1). There is C12 = C12(n, α, λ, ‖	‖1,1) such that

C−1
12 u(A)η(x)α−1 ≤ u(x) ≤ C12u(A)η(x)α−1 , x ∈ �(0, 1, 1) . (6.25)

Proof. We would like to point out that the assumption that u = 0 on Dc is a nor-
malizing convention and not an essential restriction, see Section 3. First assume
that u(x) = Px[Yτ�(0,3,3)

∈ S] for x ∈ D and u(x) = 0 for x ∈ Dc, where
S ⊂ D \ �(0, 3, 3). For x ∈ �(0, 2, 2), using Theorem 6.5 and (6.12),

u(x) = Px[Yτ�(0,3,3)
∈ S] ≤ Px[Yτ�(x,1,1)

∈ D] ≤ C9Px[Yτ�(x,1,1)
∈ �(x, 2, 1)]

≤ C9Px[Yτ�(x,1,∞)
∈ D] ≤ C9C10[η(x)α−1 ∧ 1].

Thus u(x) decays continuously at the bottom part of the boundary of �(0, 2, 2).
Using the strong Markov property of Y we have

u(x) = Ex[u(Yτ�(0,1,1)
) ; Yτ�(0,1,1)

∈ �(0, 2, 1)]

+ Ex[u(Yτ�(0,1,1)
) ; Yτ�(0,1,1)

∈ �(0, 3, 2) \ �(0, 2, 1)]

+ Ex[u(Yτ�(0,1,1)
) ; Yτ�(0,1,1)

∈ D \ �(0, 3, 2)]

= E1(x) + E2(x) + E3(x) .

We will assume for now that x = (̃0, xn) with 0 < xn < 1; we will remove this
assumption at the end of the proof. By the Harnack inequality (Theorem 3.2) there
is c1 = c1(n, α, λ) such that

c−1
1 u(A) ≤ u(y) ≤ c1u(A) , y ∈ �(0, 2, 1) \ �(0, 1, 1) .

Therefore, by (6.7) and (6.8),

u(x) ≥ E1(x) ≥ c−1
1 Px[Yτ�(0,1,1)

∈ �(0, 2, 1)]u(A)

≥ c−1
1 C−1

9 Px[Yτ�(0,1,1)
∈ D]u(A)

≥ c−1
1 C−1

9 Px[Yτ�(0,1,∞)
∈ D]u(A) ≥ c2[η(x)α−1 ∧ 1]u(A) , (6.26)

where c2 = c2(n, α, λ, ‖	‖1,1).
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Next we will prove the opposite inequality. First we note that by (6.8),

E1(x) ≤ c1Px[Yτ�(0,1,1)
∈ �(0, 2, 1)]u(A)

≤ c3[η(x)α−1 ∧ 1]u(A) , (6.27)

where c3 = c3(n, α, λ, ‖	‖1,2). By the Carleson estimate (Proposition 6.6) and
scaling, and by (6.7) and (6.12),

E2(x) ≤ c4Px[Yτ�(0,1,1)
∈ D]u(A)

≤ c4C9C10[η(x)α−1 ∧ 1]u(A) , (6.28)

where c4 = c4(n, α, λ, ‖	‖1,1).
Recall that S ⊂ D \ �(0, 3, 3). To estimate E3(x) let

I (v) =
∫

D\�(0,3,2)

A(n, −α)u(y) dy

|y − v|n+α
, v ∈ �(0, 3, 2) .

It is straightforward to check that for some c5 = c5(n, α, λ),

c−1
5 I (v) ≤ I (A) ≤ c5I (v) , v ∈ �(0, 5/2, 3/2) . (6.29)

Thus by (3.23) we have,

E3(x) ≤ c5Exτ
Y
�(0,1,1)I (A) . (6.30)

For every z∈�(0, 2, 1)\�(0, 1, 1) let B =B(z, 1/(2
√

λ2 + 1))⊂�(0, 5/2, 3/2).
By (6.29), (3.23) and (3.6) we have

u(z) ≥ c−1
5 I (A)Ezτ

Y
B ≥ c−1

5 I (A)Ezτ
X
B = c−1

5
Cn,α

A(n, −α)2α(λ2 + 1)α/2 I (A) .

(6.31)

There is c6 = c6(n, α, λ) such that

J (v) =
∫

�(0,2,1)\�(0,1,1)

A(n, −α) dy

|y − v|n+α
≥ c6 , v ∈ �(0, 1, 1) .

By (6.30), (3.23) and (6.31),

E1(x) ≥ Exτ
Y
�(0,1,1)c6c

−1
5

Cn,α

A(n, −α)2α(λ2 + 1)α/2 I (A) ≥ const · E3(x) ,

so, combining this with (6.27) and (6.28),

u(x) = E1(x) + E2(x) + E3(x) ≤ const · (η(x)α−1 ∧ 1)u(A).

This and (6.26) yield for some C12 = C12(n, α, λ, ‖	‖1,1) and all x = (̃0, xn) with
0 < xn < 1,

C−1
12 u(A)(η(x)α−1 ∧ 1) ≤ u(x) ≤ C12u(A)(η(x)α−1 ∧ 1). (6.32)
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The inequality holds also for positive finite linear combinations of functions of the
form ui(x) = Px[Yτ�(0,3,3)

∈ Si], for arbitrary measurable sets Si ⊂ D \�(0, 3, 3).
An approximation argument then extends (6.32) to all u which are positive and
regular harmonic for Y in �(0, 3, 3). Finally the Harnack inequality (Theorem 3.2)
can be used to replace A in (6.32) with any point y such that |̃y| ≤ 1 and η(y) = 1/2
(the constant C12 may have to be adjusted). Thus, (6.25) may be obtained by apply-
ing (6.32) in �(x, 3, 3). Note that the assumption made in the statement of the
theorem that u is harmonic in �(0, 4, 4) and not only in �(0, 3, 3) enables us to
apply (6.32) in �(x, 3, 3) with x ∈ �(0, 1, 1). On the technical side, this argument
relies on invariance of the norm ‖	‖1,1 upon translations of 	. ��
Remark 6.1. Consider two functions u1, u2 satisfying the assumptions of Theo-
rem 6.7 and such that u1(x) = u2(x) > 0 for some x ∈ �(0, 1, 1). We will sketch
an argument showing that

lim
D�x→0

u1(x)

u2(x)
:= q (6.33)

exists. In fact, one can show that
∣∣∣∣u1(x)

u2(x)
− q

∣∣∣∣ ≤ c|x|σ , x ∈ �(0, 1, 1) , (6.34)

where c and σ depend only on n, α, λ and ||	||1,1, but the proof of this result is
rather technical and we refer the reader to the proof of Lemma 16 in [7], whose
arguments can be easily adapted to censored processes.

It can be also proved that the limit

lim
D�x→0

u1(x)

ρ(x)α−1 exists, (6.35)

which is a result of independent interest. This can be done by analyzing, at ∂D,
super- and subharmonic functions similar to those in the proofs of Theorems 5.10
and 6.4. Namely, the functions v and v1 used in the proofs of Theorems 5.10 and
6.4 should be replaced by v1D\Dε

and v11D\Dε
for small ε > 0. As (6.35) is outside

of the scope of the paper, we do not give the proof here. Certain details of our cal-
culation suggest that σ = 1 − α/2 is a possible choice for the Hölder exponent in
(6.34), and also that a modification of the calculation should give a better exponent
σ . We conjecture that σ may be arbitrarily close to 1.

Going back to (6.33), we first note that

C−4
12 ≤ u1(x)

u2(x)
≤ C4

12 , for all x ∈ �(0, 1, 1) . (6.36)

This version of the boundary Harnack principle and an argument from [3] imply
the following. If functions u1, u2 satisfy the assumptions of Theorem 6.7 and for
some M ≥ m ≥ 0 we have mu1(x) ≤ u2(x) ≤ Mu1(x) on �(0, 4, 4)c, then

m′u1(x) ≤ u2(x) ≤ M ′u1(x) , x ∈ �(0, 1, 1)c , (6.37)
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where M ≥ M ′ ≥ m′ ≥ m and

M ′ − m′ ≤ (1 − C−4
12 )(M − m) .

This rather easily yields that

sup
�(0,ε,ε)

u1(x)

u2(x)
− inf

�(0,ε,ε)

u1(x)

u2(x)
→ 0 , as ε → 0 ,

which is the same as (6.33).

Proof of Theorem 1.2. We first note that u is bounded and regular harmonic for Y

in, say, D ∩ B(Q, 3r/4) because of the assumption of continuous decay of u at
∂D ∩ B(Q, r), see the proof of (6.15). This is the only place where the present
proof uses the property of continuous decay of u at ∂D ∩ B(Q, r).

Let n ≥ 2. To simplify the notation we may and do assume that Q = 0 and r = 1
(see the discussion of scaling by a factor k ≥ 1 in the proof of Proposition 6.6),
and, by an isometric mapping of D, that

D ∩ B(0, 1) = D0 ∩ B(0, 1) , (6.38)

where D0 is a special C1,1 domain with defining function 	 satisfying ‖∇	‖∞ ≤ �

and ‖	‖1,1 ≤ �. In what follows, all the boxes �(x, a, r) are defined relative to
	.

Note that even though D ∩ B(0, r) may be disconnected, our version of the
Harnack inequality (Theorem 3.2) shows that (1.1) holds if ρ(x), ρ(y) are not too
small compared to r . Thus, by Theorem 3.2, to prove Theorem 1.2 we only need to
verify that there are constants a = a(n, α, �) and c = c(n, α, �) such that

c−1u(A)ρ(x)α−1 ≤ u(x) ≤ c u(A)ρ(x)α−1 , x ∈ �(0, a, a) , (6.39)

where A = (0̃, a/2), provided u ≥ 0 on Rn, u = 0 on Dc and

u(x) = Exu(Yτ�(0,17a,17a)
) , x ∈ D .

To prove (6.39) we will introduce two auxiliary functions 	−, 	+ : Rn−1 →
R, and sets D− = D	− , D+ = D	+ such that D+ ⊂ D ⊂ D− and

κD(x) − c1 ≤ κD−(x) ≤ κD(x) ≤ κD+(x) ≤ κD(x) + c1 , x ∈ �(0, b, b) ,

(6.40)

where c1 = c1(n, α, �), b = b(n, α, �) are two positive constants. To this end we
fix a function φ ∈ C∞(Rn−1) which is nonnegative, supported in {x̃ ∈ Rn−1 :
3/4 < |x̃| < 1} with

∫
Rn−1 φ(x̃)dx̃ = 1.

For a positive integer j , define

φj (x̃) = 2−2jφ(2j x̃) , x̃ ∈ Rn−1 .

Clearly ‖φj‖1,1 = ‖φ‖1,1 and∫
Rn−1

φj (x̃)dx̃ = 2−j (n+1) . (6.41)
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We put 	j = 	 − φj and Dj = D	j
. Obviously, D0 ⊂ D	j

or, equivalently,
Dc

0 ⊃ Dc
	j

. Consider x ∈ D ∩ B(0, 2−j−1). We have

κD(x) − κDj
(x) = [κD(x) − κD0(x)] + [κD0(x) − κDj

(x)] .

By (6.38) there is c2 = c2(n, α) such that

−c2 ≤ κD(x) − κD0(x) ≤ c2 . (6.42)

By (6.41) we have

κD0(x) − κDj
(x)

=
∫

Dc
0\Dc

j

A(n, −α)

|y − x|n+α
dy ≥ c−1

3 2−j (n+1)2−j (−n−α) = c−1
3 2j (α−1) ,

and
κD0(x) − κDj

(x) ≤ c32j (α−1) ,

where c3 = c3(n, α, �). By (6.42) we can choose j = j (n, α, �) so that the first
two inequalities in (6.40) are valid in D ∩ B(0, 2−j−1) for 	− := 	j = 	 − φj .

By a similar calculation, we can choose j so that if 	+ := 	 + φj then the
last two inequalities in (6.40) hold for x ∈ D ∩ B(0, 2−j−1). Note that ‖	−‖1,1 ≤
‖	‖1,1+‖φ‖1,1 and ‖∇	−‖∞ ≤ ‖∇	‖∞+‖∇φ‖∞ (similarly for 	+), which gives
us a control of characteristics of D− (and D+) by those of D. Clearly, 	− ≤ 	 ≤ 	+
and 	−(x̃) = 	(x̃) = 	+(x̃) if |x̃| ≤ 2−j−1. In particular, the domains D−, D,
D+ coincide locally at 0 or, more precisely, the boxes �(0, s, s) defined by 	−, 	,
	+ are the same provided s ≤ 2−j−1. We choose b = 2−j−1/(2

√
�2 + 1) to have

�(0, b, b) ⊂ D ∩ B(0, 2−j−1), which yields (6.40).
Let Y (1) and Y (2) denote the censored processes on D− and D+, respectively.
Case 1. Take a = min{b/19, r/26} and assume additionally that u = 0 on

D \ �(0, 19a, 19a). Note that u is bounded in �(0, 19a, 19a). Let

U(x) = Exu(Y (2)
τ�(0,17a,17a)

) , x ∈ D+ ; U(x) = 0 , x ∈ Dc
+ .

By (6.40) and Theorem 2.1(3),

u(x) ≤ U(x) , x ∈ Rn .

(In fact, U is superharmonic on �(0, 17a, 17a) for the censored process Y on D.)
By Theorem 6.7 and scaling applied to U we see that U and so u decay continuously
at ∂D in a neighborhood of the closure of �(0, 4a, 4a). Thus, u(x) is continuous
in a neighborhood of the closure of �(0, 4a, 4a).

Let

u−(x) = Exu(Y (1)
τ�(0,4a,4a)

) , x ∈ D− ; u−(x) = 0 , x ∈ Dc
− ,

and

u+(x) = Exu(Y (2)
τ�(0,4a,4a)

) , x ∈ D+ ; u+(x) = 0 , x ∈ Dc
+ .
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The above continuity result for u implies that u− and u+ are continuous at all the
points of the closure of �(0, 4a, 4a). We note here that the regularity of points in
the bottom part of ∂�(0, 4a, 4a) follows from Theorem 6.7.

By (6.40) and Theorem 2.1(3),

u−(x) ≤ u(x) ≤ u+(x) , x ∈ Rn . (6.43)

Thus, by Theorem 6.7 and scaling,

c−1
4 u−(A)ρ(x)α−1 ≤ u(x) ≤ c4u+(A)ρ(x)α−1 , x ∈ �(0, a, a) ,

where A = (0̃, a/2) and c4 = c4(n, α, �). Now, to prove (6.39) we only need to
verify that there is c5 = c5(n, α, �) such that

u+(A) ≤ c5u−(A) . (6.44)

Let f = u+ − u−. Clearly, f ∈ C0(�(0, 4a, 4a)) and f ≥ 0. Let f (x0) =
maxx∈�(0,4a,4a) f (x). We have

Aα
Df (x0) = A(n, −α)P.V .

∫
D

f (y) − f (x0)

|y − x0|n+α
dy

≤ −f (x0)A(n, −α)

∫
D\�(0,4a,4a)

dy

|y − x0|n+α
≤ −f (x0)c6a

−α ,

(6.45)

where c6 = c6(n, α, �). On the other hand

Aα
Df (x0) = [κD(x0) − κD+(x0)]u+(x0) − [κD(x0) − κD−(x0)]u−(x0) .

By (6.40), (6.43) and Proposition 6.6 we have that Aα
Df (x0) ≥ −2c1u+(x0) ≥

−c7u+(A), where c7 = c7(n, α, �) > 0. Thus, by (6.45),

f (x0) ≤ c7c
−1
6 u+(A)aα . (6.46)

Choosing a = a(n, α, �) small enough we have f (A) ≤ f (x0) ≤ u+(A)/2, thus
u−(A) = u+(A)− f (A) ≥ u+(A)/2. We have obtained (6.44), which finishes the
proof of (6.39) in Case 1.

Case 2. We now assume that u = 0 on �(0, 18a, 18a) \ �(0, 17a, 17a) and,
as before, that u ≥ 0 on Rn, u(x) = Exu(Yτ�(0,17a,17a)

), x ∈ D, and u = 0 on Dc.
Here a = a(n, α, �) is the constant determined in Case 1.

By (3.23) we easily obtain that there is c8 = c8(n, α, �) > 1 such that

c−1
8 u(x) ≤ Exτ

Y
�(0,17a,17a)

∫
�(0,17a,17a)c

u(y)

(1 + |y|)n+α
dy ≤ c8u(x) ; (6.47)

see the proof of Proposition 6.6 for a similar calculation. In particular, there is
c9 = c9(n, α, �) such that

c−1
9 Exτ

Y
�(0,17a,17a) ≤ Px[Yτ�(0,17a,17a)

∈ �(0, 19a, 19a) \ �(0, 18a, 18a)]

≤ c9Exτ
Y
�(0,17a,17a) . (6.48)



Censored stable processes 145

Case 1 shows that (6.39) applies to the function x �→ Px[Yτ�(0,17a,17a)
∈

�(0, 19a, 19a) \ �(0, 18a, 18a)]. From this, (6.47) and (6.48) we obtain

u(x) ≈ ρ(x)α−1
∫

�(0,17a,17a)c

u(y)

(1 + |y|)n+α
dy . (6.49)

In particular u(A) ≈ ∫
�(0,17a,17a)c

u(y)(1 + |y|)−n−αdy; this and (6.49) imply
(6.39) in Case 2. The case of general u in (6.39) follows easily from Cases 1 and 2.

We now prove Theorem 1.2 when dimension n = 1. Recall that in dimension
n = 1, a C1,1 open set is any union of open intervals with lengths and distances
between distinct intervals bounded away from zero. By scaling we may and do
assume that u is harmonic in D ∩ (−1, 1) = (0, 1). Let A = 1/2. By (5.5) it is
easy to see that there is b = b(α) < 1/3 such that the functions

u+(x) = 2[wα−1(x) ∧ 1] − 1

2
[wα/2(x) ∧ 1] , x ∈ Rn ,

u−(x) = [wα−1(x) ∧ 1] + 1

2
[wα/2(x) ∧ 1] , x ∈ Rn ,

are non-negative superharmonic and subharmonic, respectively, on (0, b) for the
censored process Y on D. We conclude using the proof of Proposition 5.8 and
Theorem 6.4 that there is a constant c1 = c1(n, α) > 0 such that

c−1
1 ρ(x)α−1 ≤ Px[Yτ(0,b)

∈ (0, 2/3)] ≤ c1ρ(x)α−1 , x ∈ (0, b) . (6.50)

By the Harnack inequality (Theorem 3.2), the mean value property of u and
(6.50), we obtain the lower bound in the following inequality:

c−1
2 ρ(x)α−1u(A) ≤ u(x) ≤ c2ρ(x)α−1u(A) , x ∈ (0, b) , (6.51)

where c2 = c2(α). For the upper bound in (6.51) we decompose u as

u(x) = Ex[Yτ(0,b)
∈ (0, 2/3) ; u(Yτ(0,b)

)] + Ex[Yτ(0,b)
∈ [2/3, ∞) ; u(Yτ(0,b)

)]

= u1(x) + u2(x).

The following upper bound for u1,

u1(x) ≤ const. · ρ(x)α−1u(A) , x ∈ (0, b) ,

follows easily from (6.50) and the Harnack inequality for u. A similar upper bound
for u2 is obtained as in Case 2 above for n ≥ 2. The proof is now complete. ��
Remark 6.2. As we see at the beginning of the proof above, if a function u ≥ 0
on D vanishes continuously on ∂D ∩ B(Q, r), and is harmonic in D ∩ B(Q, r)

for Y then u is bounded and regular harmonic in D ∩ B(Q, δ r) for Y for any
δ ∈ (0, 1). Conversely, the above proof shows that a nonnegative function on D

that is bounded and regular harmonic on D ∩ B(Q, r) for Y vanishes continuously
on ∂D ∩ B(Q, r/2). For a general non-negative function u on D that is regular



146 K. Bogdan et al.

harmonic on D ∩ B(Q, r), note that uk(x) := Ex

[
u(YτD∩B(Q,r)

) ∧ k
]

is bounded
regular harmonic in D ∩ B(Q, r). So by Theorem 1.2,

uk(x)

uk(y)
≤ C

ρ(x)α−1

ρ(y)α−1 , x, y ∈ D ∩ B(Q, r/2).

As u(x) = limk→∞ uk(x), it follows that

u(x)

u(y)
≤ C

ρ(x)α−1

ρ(y)α−1 , x, y ∈ D ∩ B(Q, r/2).

This implies in particular that such u vanishes continuously on ∂D ∩ B(Q, r/2).

Remark 6.3. Using a finite open covering of the boundary ∂D and the Harnack
inequality (Theorem 3.2), one can easily show that Theorem 1.2 holds with balls
B(Q, r) and B(Q, r/2) replaced by an open set U and a compact set F ⊂ U , but
then the constant C would depend on D, U , and F .

Remark 6.4. For completeness we note that for any two functions u1 and u2 satis-
fying the assumptions of Theorem 1.2,

lim
D�x→Q

u1(x)

u2(x)
:= q exists and

∣∣∣∣u1(x)

u2(x)
− q

∣∣∣∣ ≤ c ρ(x)σ , x ∈ D ∩ B(Q, r/2) ,

(6.52)

The inequality in (6.52) follows easily from (6.34) and the estimates in the proof
of Theorem 1.2, in particular (6.46). In consequence, under the assumptions of
Theorem 1.2 one obtains the existence and finiteness of the limit

lim
D�x→Q

u(x)

ρα−1(x)
,

see Remark 6.1.

7. Appendix

The appendix contains several auxiliary lemmas on the uncensored stable process
X, i.e., the rotation invariant symmetric α-stable Lévy process in Rn. The results are
needed in the main sections of this paper and may be also of independent interest.

We first prove a geometric result related to C1,β−1 domains.

Lemma 7.1. Let C ≥ 1, 1 < β ≤ 2 and P = {
x = (̃x, xn) ∈ Rn : C |̃x|β <

xn < C−1
}
. Let A = (̃0, a) with 0 < a < (23−βC)1/(1−β). Then

a/2 < a − 2(2C)
2

2−β a
β

2−β ≤ dist(A, Pc) ≤ a if β < 2 , (7.1)

and

dist(A, Pc) = a if β = 2 . (7.2)
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Proof. We first assume that 1 < β < 2. The rightmost inequality in (7.1) is
obvious. The assumption on a implies that a < 1/(2C), thus dist(A, Pc) =
inf t∈[0,∞)

√
t2 + (a − Ctβ)2. Every t ≥ 0 can be written in the form t = ca1/(2−β)

with some c ≥ 0. We have that

W = t2 + (a − Ctβ)2 = a2 + a2/(2−β)(c2 − 2Ccβ) + c2βC2a2β/(2−β)

≥ a2 + a2/(2−β)(c2 − 2Ccβ) .

If c2 ≥ 2Ccβ , or c ≥ (2C)1/(2−β) then W ≥ a2. If c < (2C)1/(2−β) then we have

W ≥ a2 − a2/(2−β)2Ccβ > a2 − 2(2C)2/(2−β)a2/(2−β) .

It follows that

dist(A, Pc) ≥
√

[a2 − 2(2C)2/(2−β)a2/(2−β)] ∨ 0

= a
√

[1 − 2(2C)2/(2−β)a(2β−2)/(2−β)] ∨ 0

≥ [a − 2(2C)2/(2−β)aβ/(2−β)] ∨ 0 .

Note that 2(2C)2/(2−β)aβ/(2−β) ≤ a/2 if a ≤ (23−βC)1/(1−β). The proof of (7.1) is
complete. Equality (7.2) is obtained by taking β → 2− in (7.1), see also Lemma 6.2.

��
Lemma 7.2. Let B = B(0, 1) be the unit ball in Rn, n ≥ 1, and assume that
0 < α < 2 ∧ n. Let TB be the first entrance time of B by the symmetric α-stable
process Xt . There is a constant A1 = A1(n, α) such that

Px[TB = ∞] ≤ A1(|x| − 1)α/2 for x ∈ Rn with |x| > 1. (7.3)

Proof. For |x| ∈ (1, 2), by Corollary 2 of [6] and a change of variable u = (|x|2 −
1)v,

Px(τBc = ∞) = 	(n/2)

	((n − α)/2)	(α/2)

∫ |x|2−1

0
(u + 1)−

n
2 u

α
2 −1du

≤ 	(n/2)

	((n − α)/2)	(α/2)

(
|x|2 − 1

)α/2
∫ 1

0
v

α
2 −1dv

≤ 6	(n/2)

α	((n − α)/2)	(α/2)
(|x| − 1)α/2 .

This proves the lemma as probability is always bounded by 1. ��
Note the (7.3) follows from the more general results given for C1,1 domains in

[18] and [19], but the present derivation is more explicit. The same remark applies
to the next estimate.

Lemma 7.3. Suppose 0 < α < 2. Consider points x, y ∈ B(0, 2) ⊂ Rn such that
|x| < 1/4 and |y| < 1/4. Let 0 < r < 1/4 and U = B(0, 2) \ B(y, r). There is
A2 = A2(n, α) such that

Px[XτU
∈ B(0, 2)c] ≤ A2

(
dist(x, B(y, r))

r

)α/2

. (7.4)
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Proof. Consider the case α < n. We need to consider only x /∈ B(y, r), or |x−y| >

r . Let z = x − y and B = B(0, 1) ⊂ Rn. We have

Px[XτU
∈ B(0, 2)c] ≤ Px[τB(y,1) < TB(y,r)] = Pz[τB < TB(0,r)] .

By the strong Markov property,

Pz[TB(0,r) = ∞] ≥ Pz[τB < TB(0,r) ; PXτB
{TB(0,r) = ∞}] . (7.5)

We note that K(v) = |v|α−n is harmonic in Rn \ {0} with respect to the symmetric
α-stable process X, as it is the Green function G(v, 0) of X modulo a constant
multiple (see (3.7)). So for |w| ≥ 1 we obtain

1 ≥ K(w) = Ew[K(XTB(0,r)
) ; TB(0,r) < ∞] ≥ rα−nPw[TB(0,r) < ∞] .

As a consequence, a.s.,

PXτB
[TB(0,r) = ∞] ≥ 1 − rn−α ≥ 1 − 4α−n ,

and by (7.5),

Pz[τB < TB(0,r)] ≤ Pz[TB(0,r) = ∞]/(1 − 4α−n) .

By scaling and Lemma 7.2 we obtain,

Px[XτU
∈ B(0, 2)c] ≤ (1 − 4α−n)−1Px−y[TB(0,r) = ∞]

≤ A1(1 − 4α−n)−1 (|(x − y)/r| − 1)α/2

= A1(1 − 4α−n)−1
( |x − y| − r

r

)α/2

.

The case n = 1 ≤ α follows easily from (3.4) and is left to the reader. ��
Proposition 7.4. Let n ∈ {2, 3, . . . } and 0 < α < 2. Let 1 < β ≤ 2 and β > α.
Consider a C1,β−1 function 	 : Rn−1 → R and let D = D	 , ρ(x) = dist(x, Dc),
D1 = {x ∈ D : ρ(x) ≥ 1}. There is A3 = A3(n, α, β, ‖	‖1,β−1) such that

Px[XτD\D1
∈ D1] ≤ A3[ρ(x)α−α/β ∧ 1] , x ∈ Rn . (7.6)

Proof. Consider the case when β < 2. Suppose x ∈ D and let Q ∈ ∂D be such
that |x − Q| = ρ(x). As in Lemma 5.5 we write P−b + Q for the outer tangential
region at Q. Note that

Px[XτD\D1
∈ D1] ≤ Px[τB(Q,1) < TP−b+Q] .

To estimate the latter probability we will assume without loss of generality that
Q = 0 and b = en = (0, . . . , 0, 1) ∈ Rn. Let y = −aen where 0 < a <

(23−βC)1/(1−β) (comp. Lemma 7.1) and C = C(β, ‖	‖1,β−1) is the constant of
Lemma 5.5. We define r by r/2 = a − 2(2C)2/(2−β) aβ/(2−β). By Lemma 7.1,

B(y, r/2) ⊂ P−en .
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By Lemma 7.3 and scaling

Px[XτD\D1
∈ D1] ≤ Px[τB(0,1) < TB(y,r/2)] ≤ A2

(
dist(x, B(y, r/2))

r/2

)α/2

.

Assume that ρ(x)(2−β)/β < (23−βC)1/(1−β) and let a = ρ(x)(2−β)/β = |x|(2−β)/β .
We have

r/2 = |x|(2−β)/β − 2(2C)2/(2−β)|x| ≥ a

2
= 1

2
|x|(2−β)/β ,

and dist(x, B(y, r/2)) = |x|[1 + 2(2C)2/(2−β)]. We conclude that

Px[XτD\D1
∈ D1] ≤ A2

(
2[1 + 2(2C)2/(2−β)]|x|1−(2−β)/β

)α/2= const· |x|α[1−1/β] .

This proves (7.6) for small values of ρ(x). For values of ρ(x) which are greater
than a positive constant, (7.6) is trivial.

The remaining case β = 2 follows even more easily by an appropriate choice
of r independent of x in the proof above. It can also be found in [18] and [19]. ��
Lemma 7.5. Let 1 < β ≤ 2 and let 	 : Rn−1 → R be a C1,β−1 function. Let
D = D	 ⊂ Rn and D1 = {x ∈ D : ρ(x) ≥ 1}. There is S = S(n, β, ‖	‖1,β−1)

such that for every Q ∈ ∂D we have

|B(Q, S) ∩ D1| ≥ 1 , (7.7)

where |B(Q, S) ∩ D1| is the Lebesgue measure of B(Q, S) ∩ D1.

The proof is somewhat tedious (because the seminorm ‖	‖1,β−1 does not dom-
inate ∇	(0̃)), but completely elementary so it is left to the reader.

Proposition 7.6. Under the assumptions of Proposition 7.4 there is A4 =
A4(n, α, β, ‖	‖1,β−1) such that

Px[XτD\D1
∈ D1] ≥ A−1

4 [ρ(x)α/β ∧ 1] , x ∈ Rn . (7.8)

Proof. Consider the case of β < 2. Let ρ(x) ≤ 1 and let Q ∈ ∂D be such that
|x − Q| = ρ(x). As in Lemma 5.5 we write Pb + Q for the inner tangential region
at Q. Consider a ball B = B(A, r) in Pb +Q such that x ∈ B ⊂ D \D1. By (3.2),
Lemma 7.5 and (3.6)

Px[XτD\D1
∈ D1] ≥ Px[XτB

∈ D1] = A(n, −α)

∫
D1

∫
B

GB(x, v)

|y − v|n+α
dv dy

≥ A(n, −α)(S +
√

2)−(n+α)

∫
B

GB(x, v) dv

= Cn
α(S +

√
2)−(n+α)[r2 − |x − A|2]α/2 . (7.9)

Here S = S(n, β, ‖	‖1,β−1) is the constant of Lemma 7.5. To obtain the desired
lower bound for the last expression we need to choose A and r appropriately.
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We will assume without loss of generality that Q = 0, b = en = (0, . . . , 0, 1),
and thus Pb + Q = P and x = |x|en. We put A = (ε|x|)(2−β)/βen, where
ε = ε(n, α, β, ‖	‖1,β−1) is a small positive constant to be determined in the course
of the following calculation. Note that if |x| is small enough, then A is above x;
|A| > |x|. We then take r = |A| − 2(2C)2/(2−β)|A|β/(2−β). Here C is the con-
stant defining P , see Lemma 5.5. If |A| is small enough then by Lemma 7.1 we
have that r > |A|/2, B = B(A, r) ⊂ P and B ⊂ D \ D1. Note that r =
(ε|x|)(2−β)/β − 2(2C)2/(2−β)ε|x|. Thus

[r2 − |x − A|2]α/2

= [r2 − (|A| − |x|)2]α/2 = [r + |A| − |x|]α/2[r − |A| + |x|]α/2

= [2(ε|x|)(2−β)/β − 2(2C)2/(2−β)ε|x| − |x|]α/2[|x|{1 − 2(2C)2/(2−β)ε}]α/2 .

For ε small enough

[r2 − |x − A|2]α/2 ≥
[
(ε|x|)(2−β)/β |x|1

2

]α/2

= const · |x|α/β ,

which proves (7.8) for small ρ(x). When ρ(x) is greater than a positive constant,
say, η, we put B = B(x, η). We can assume that |B| ≤ 1/2. Using (7.7) and an
analogue of (7.9) we see that

Px[XτD\D1
∈ D1] ≥ Px[XτB

∈ D1 \ B]

is bounded below by a positive constant for such x. The proof is complete for
1 < β < 2.

For the case of β = 2 we refer the reader to [18] and [19]. This case can also
be obtained by an appropriate choice of r independent of x in the proof above. ��

The exponents α[1 − 1/β] and α/β in (7.6) and (7.8) suffice for the applica-
tion in the proof of (5.39) above, but it is an open problem if they can actually be
replaced by α/2. We conjecture it is true for β > α. This motivates in part our
interest in C1,β−1 domains.
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