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Abstract. Let W be the sum of dependent random variables, and h(x) be a function. This
paper provides an Edgeworth expansion of an arbitrary “length” for E{h(W)} in terms of
certain characteristics of dependency, and of the smoothness of h and/or the distribution
of W . The core of the class of dependency structures for which these characteristics are
meaningful is the local dependency, but in fact, the class is essentially wider. The remainder
is estimated in terms of Lyapunov’s ratios. The proof is based on a Stein’s method.

1. Introduction and results

1.1. Background and motivations

This paper concerns the Edgeworth expansion for E{h(W)}, where h is a function,
W = X1 + · · · +Xn, and Xi’s are random variables (r.v.’s).

There are numerous papers on the subject for various types of dependency; see,
e.g., papers (in the chronological order) by Statulevichius [41], Hipp [19], Jensen
[22], and Malinovskii [31], where Markov chains are considered; Götze and Hipp
[13], and Lahiri [25], concerning mixing summands; Rhee [37] on m-dependent
r.v.’s; Heinrich [14], [15], [16] on m-dependent r.v.’s and random fields; Mykland
[33] on expansions for martingales; Jensen [23] on expansions for random fields.
There are many further references in these articles. There has been also a great deal
of interest in the expansions for U-statistics; see, e.g., Korolyuk and Borovskikh
[24], Bickel, Götze and van Zwet [6], Loh [27], Maesono [28], Bloznelis and Götze
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[7], Bening [3]; and references therein. The paper by Bentkus, Götze and van Zwet
[4] on symmetric statistics does not deal with sums but contains relevant ideas.

The results of Götze and Hipp [13] and Lahiri [25] are probably the closest to
the present paper. They concern, in particular, an expansion for E{h(W)} when h
is sufficiently smooth, and Xi’s are weakly dependent. The weakest condition on
smoothness of h was established in [25]: for the Edgeworth expansion involving
the first d moments in the main term (that is, the expansion has “length” d−2), the
function h should have d − 1 continuous derivatives. For m-dependent summands
Lahiri requires only the existence of the derivative of order d − 2.

For non-smooth functions [25] gives the expansion under a conditional Cramer
condition and strong mixing with an exponential rate.

In the present paper we consider a different and rather broad class of dependency
structures. For the remainder in the expansions below we provide not only asymp-
totic rates but give explicit bounds for the remainder in terms of Lyapunov’s ratios
and some characteristics of the dependence. The method of this paper is based on
the Stein approach. Expansions for independent summands by Stein’s method were
studied by Barbour [1], and we use below several facts and ideas from this paper.

A typical example of the dependency structure under consideration is that spec-
ified in terms of dependency neighborhoods by indicating for every term in the
sum, a set of other terms on which it “essentially” depends. More precisely, for
each summandX we introduce a chain of collections of summands N1,..., Nd such
that X ∈ N1 ⊆ ... ⊆ Nd . (Writing N ′ ⊆ N ′′ , we mean that all r.v.’s from the
collection N ′ belong to the collection N ′′ .) We assume that X may depend in a
strong way only on terms from N1, and weakly in some sense on terms not in N1;
the collection N1 essentially depends only on terms from N2, and weakly on terms
outside of N2; and so on. Note that in the case of independent summands we would
set all Ns to contain onlyX. The notion of weak dependence mentioned above will
be quantified by conditions close to mixing, with an arbitrary rate. In particular, we
may assume the rate to be less restrictive than the exponential rate which appears
in most of the literature.

Note that we have ordered the summands by Xi, i = 1, . . . , n, only for con-
venience: in fact, the above dependency structure need not be associated with an
ordering of the summands, which may be compared with more “classical” CLT’s
where the dependence is specified in terms of an ordering (Markov chains, martin-
gales, mixing, etc.).

The core of the class of dependencies which may be described in this way is the
so called local dependency whenX does not depend at all on the terms not involved
in N1, the collection N1 does not depend on the terms not in N2, and so on. The
simplest example ism-dependence. In introducing such structures we follow Stein
[43].

However, the class of dependencies we deal with is essentially wider. A certain
flexibility is due in particular to the fact that the sequence N1,..., Nd considered
in the theorems below is arbitrary, and for each particular dependency structure
one can specify the most apt sequence of N ’s for which the error of approxima-
tion would be small. For related decompositions see also Barbour, Karoński and
Ruciński [2], Rinott and Rotar [39], and references therein.
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Concerning the remainder, we show that, as in the case of independence, if the
main term in the approximation involves d first moments of the summands, and
the moments of order (d + 1) are also finite, then under some natural conditions,
the remainder has, roughly speaking, the order O(n−(d−1)/2). (On the desirability
of such a setup see, e.g., a discussion in Bentkus, Götze and van Zwet [4]). To this
end we assume that h has a bounded derivative of the order d − 1.

Comparing it with the paper of Lahiri [25] concerning mixing, it is worth noting
that the goal of the mentioned paper is to obtain an error of o(n−(d−2)/2), which
requires just E{|X|d(ln(1 + |X|))p} < ∞ for some p. If one wants to obtain the
remainder of a higher order, say,O(n−(d−1)/2), then a higher order, namely d + 1,
of the finite moment is needed. We, however, have managed to maintain in this
situation the same order (d − 1) of the derivative of h.

In general, to obtain, by the method of this paper, a remainder of the order
O(n−(d−2+α)/2) for an α ∈ (0, 1], one should assume h(d−2), where h(l) denotes
the l-th derivative of h, to satisfy the Lipschits condition of the order α, and the
(d + α)-th moments of X’s to exist.

In the case of local dependency the smoothness condition on derivatives may
be weakened if one requires the distribution of the sum itself to be smooth enough
(in the usual statement of the problem for sufficiently large n). Say, if we assume
that the distribution mentioned has a density whose m-th derivative exists and is
absolutely integrable, then we need just h(d−m) to be bounded.

The condition on the smoothness of the distribution ofW is certainly not mild,
though for large n it is not so restrictive as it might seem. Say, in the independency
case, as is well known, the distribution mentioned may be non-smooth for small n,
and sufficiently smooth when n is large, due to the convolution effect. In the case
of dependency one can expect a similar effect at least when the dependency is not
too strong.

In this section we formulate general theorems; some particular schemes are
considered in Section 2. The most typical example for the results of this paper
is mixing on graphs, that is when the parameter indexing the summands, which
is usually thought of as a “time” or “space” parameter, has values which may be
identified with vertices of a graph. If the graph is a usual integer valued lattice in
Z
k , with edges connecting only nearest vertices, we deal with the usual mixing

scheme for random fields, and for k = 1 – with a process on a line. If the graph is
arbitrary, the scheme is more complicated. This is especially true when the graph is
random, and its structure may depend on the values of summands. In this case the
above dependency neighborhoods may be random too. Stein’s method works well
in the case of graph related dependencies because it allows to reduce the whole
dependency structure to the dependence of each separate variable on the others,
which simplifies consideration.

However it is worth emphasizing that the results of this paper do not completely
cover all known results for mixing. The bounds for the remainder below have a right
order typically in the case of local dependency (though not only); for example, in the
case of m-dependence on graphs (though m may be random, may depend on X’s,
etc.) However, in the classical mixing framework with exponentially decreasing
mixing coefficients, the bounds below would have an order ofO([ln n]pn−(d−1)/2)
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for some p (see Section 2.4.1), which is a bit worse than the results for classical
mixing for random processes or fields (see, e.g., [13], [25], [23]).

One can say that the method enables us to investigate more general situations,
in particular more general dependency neighborhoods, but possibly at a cost of ln n
in the numerator. The dependency neighborhoods should be viewed as a part of the
parameters determining the dependency, which is in fact quite general. In the case
of dependency expressed with graph-related neighborhoods, our approach allows
in principle to write bound for arbitrary graphs, in terms of certain parameters,
which include the neighborhoods.

1.2. Method

We study the following representation, the possibility of which was first pointed
out and justified in a certain case in Barbour [1]. Let f be an r times differentiable
function, and W be a r.v. with finite first r + 1 moments. Then

E{Wf (W)} =
r∑

m=0

γm+1

m!
E{f (m)(W)} + R, (1.1)

where γm is the m-th cumulant of W , and R is a remainder which may be small
under suitable conditions; see [1] and below for details. IfE{W } = 0, E{W 2} = 1,
it follows from (1.1) that

E{Wf (W)} − E{f ′(W)} =
r∑

m=2

γm+1

m!
E{f (m)(W)} + R. (1.2)

For a given function h, denote by S(h) the Stein function f solving the differ-
ential equation f ′(w) − wf (w) = h(w) − �(h) (see, e.g., Stein [42], [43]), that
is,

S(h)(x) = 1

ϕ(x)

∫ x

−∞
[h(t)− �(h)]ϕ(t)dt,

where ϕ is the standard normal density, and �(h) = ∫∞
−∞ h(t)ϕ(t)dt. For f =

S(h), from (1.2) it follows that

E{h(W)} − �(h) = −
r∑

m=2

γm+1

m!
E{f (m)(W)} − R. (1.3)

The main term in (1.3) specifies the proximity to normality in terms of cumulants
which are small under very mild requirements, providedW is close to normal. Thus
the main conditions to be imposed should concern the remainder. The essential dif-
ficulty, however, lies in the fact that it is hardly possible to estimate R efficiently in
terms of cumulants or some other characteristics ofW itself as a non-decomposable
r.v.

Considering independent summands, Barbour [1] wrote down the representa-
tions (1.1) for each summand separately, and then combined them adroitly, pro-
ceeding in the spirit of Stein’s approach, and using independence in a crucial way.
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The main idea of this paper is to derive (1.1) or a representation close to it
taking into account the structure of the r.v.W from the very beginning; see the key
Proposition 12 in Section 3. The way in which we suggest to do this is not short,
but leads to a proper remainder for certain dependency structures.

1.3. Results

We fix an integer d ≥ 2, and assume that EXi = 0, and E|Xi |d+1 < ∞ for
all i = 1, ..., n. We fix also a function h, set hε+(x) := sup|y|≤ε h(x + y), and
hε−(x) := inf |y|≤ε h(x + y), and suppose that

ω(ε;h) := sup
z

∫
(hε+(x + z)− hε−(x + z))

(
1 + |x|3d

)
ϕ(x)dx → 0,

as ε → 0. (1.4)

If h is the indicator of an interval, or if h(1) is uniformly bounded, which will be
one of the possible conditions below, (1.4) is clearly satisfied.

Consider a summand X = Xi . Henceforth we often suppress the index i in
notations when it does not cause a misunderstanding. For each X we introduce d
decompositions

W = Wk + W̃k, k = 1, ..., d. (1.5)

One can view Wk as a partial sum of summands defined by Wk = ∑
Xj∈N

k
Xj ,

with X ∈ N1 ⊆ N2 . . . as above, but it is not necessary. Formally the decom-
positions introduced are arbitrary. In particular, Wk may be the sum of a random
number of summands, as in the example in Sections 2.2 and 2.4 below.

In order to provide a language in which the dependency will be described, we
introduce the notations W0 = 0, and Us = Ws − Ws−1 for 1 ≤ s ≤ d. Then
Ws = U1 + ... + Us , and W̃s = Us+1 + W̃s+1 for s = 1, ..., d − 1. So, in the
situation of the previous example, Us = ∑

Xj∈Ns \Ns−1
Xj . In the independence

case we set all Wk = X.

Let

µl = E{(|X| + |U1| + ...+ |Ud |)l}. (1.6)

We now characterize the dependency structure. Let F0 = σ {X}, Fs =
σ {X,U1, U2, ..., Us}, theσ -algebra generated by the variables {X,U1, U2, ..., Us},
and F̃ s = σ {Us+1, ..., Ud, W̃d}, s = 0, 1, ..., d − 1; F̃d = σ {W̃d}. Thus,
between Fs and F̃s+1 there is a “gap” Us+1. Recalling that X = Xi , we may
sometimes write Fsi for Fs , and similarly for other quantities in which the index i
is usually suppressed.

The term local dependency is used if Fsi and F̃s+1,i are independent for all
s = 1, ..., d − 1 and i = 1, . . . , n.

Next, using standard notations (see, e.g., Bradley [8], [9]), for two σ -algebras
A and B we set

φ(A,B) := sup {|P(B|A)− P(B)| ; A ∈ A, B ∈ B, P (A) > 0} . (1.7)
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Below it will be important for us that φ(A,B) admits also the representation

φ(A,B) = 1

2

{
sup

Y1∈L1(A), Y2∈L∞(B)
|E{Y1Y2} − E{Y1}E{Y2}|

‖Y1‖1‖Y2‖∞

}
. (1.8)

(See, e.g., Bradley [9]. For the fact that the r.-h.s. of (1.8) does not exceed the r.-h.s.
of (1.7) see, Bradley [9], also Iosifescu and Theodorescu[21, Lemma 1.1.9]; one
can come arbitrarily close to achieving equality taking indicators as r.v.’s under
consideration).

We define the characteristic of dependence

T = sup
s,i

φ(Fsi , F̃s+1,i ). (1.9)

In the local dependency case, T = 0. In general, T is a counterpart of a well
known quantity in the mixing framework; see, e.g., Bradley [8], [9], Doukhan [11],
Ibragimov [20], Peligrad [34].

Now we turn to smoothness conditions. In the general case T 	= 0, we will
assume that at least

||h(d−2)||∞ < ∞. (1.10)

In the local dependency case, that is, when T = 0, conditions on smoothness of h
may be weakened if we assume the distributions of W̃ ’s to be sufficiently smooth.
More precisely, denote by qs(·, ω) the conditional density of W̃s with respect to Fs
(provided that it exists for a.e. ω in the probability space. We omit obvious issues
of non-uniqueness and regularity.) If for some m, 1 ≤ m ≤ d − 1, the density
qs(x, ω) is m times differentiable in x, set

ψm = max
s=0,...,d

Ess sup
ω

{
max

k=0,...,m−1
‖q(k)s (·, ω)‖∞ + max

k=0,...,m
||q(k)s (·, ω)||1

}
.

Set ψ0 ≡ 1. (In this case we do not need the density q to exist.) We will see
that, if ψm < ∞ for an m ≥ 1, then the order of the highest finite derivative of h
needed, may be reduced.

Recall that in all quantities above, the index i of the summand X = Xi was
suppressed. So in fact Wk = Wki, Uk = Uki, Fs = Fsi , ψm = ψmi, µl = µli .
We define:

	m = max
1≤i≤n

ψmi, µ̄l =
n∑

i=1

µli, ηk = ηki =
k∑

l=1

µli,

η̄k =
n∑

i=1

ηki (=
k∑

l=1

µ̄l), z̄k =
k∑

l=2

µ̄l . (1.11)

To clarify the order of the quantities in (1.11), assume for a moment that W
has already been normalized in some way, and suppose, as an example, that after a
normalization |Xi | ≤ Y/

√
n (in distribution), where Y is a positive r.v. with (d+1)
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finite moments. Also suppose that the Ui’s are sums of a bounded number of X’s.
Then it is easy to show that µ̄l+2 = O(n−l/2), and z̄k = O(1), or in other words,
it is a bounded quantity. As to η̄k , it involves the first absolute moment µ̄1, so this
quantity is “large”, having in the above situation the orderO(

√
n). In the remainder

it will be multiplied by T which is supposed to be “small”.
Below, by convention, we set the quantities 	m, ||h(k)||, and so on, to equal

infinity, not only when these quantities are infinite but when they do not exist. It
will not cause a misunderstanding. Also, by convention, ∞ · 0 = 0.

In order to formulate first results, define as usual (see, e.g., Petrov [35]), the
signed measure

Qν(dx) =
∑

(ν)
pkνLν+2s(dx), (1.12)

where Lm(dx) = (−1)mϕ(m)(x)dx,

pkν =
ν∏

m=1

1

km!

(
βm+2

(m+ 2)!

)km
, (1.13)

s = s(k) = k1 + ...+ kν , and the summation in
∑
(ν) is over all vectors of nonneg-

ative integers k = (k1, ..., kν) such that k1 + 2k2 + ...+ νkν = ν.

For the coefficients βl in (1.13), we consider below two types of quantities.
Either traditionally

(i) βl = γl where γl denotes the l-th cumulant of the sum W ;
or

(ii) βl equals another characteristic, ᾱl , which is defined in detail later in (3.3),
and which coincides with the lth cumulant of W in the case of local dependency,
that is, when T = 0. In particular, ᾱ2 = ∑n

i=1 α2i , where α2i = E{XiU1i}. It
is easy to see that in the case of local dependence, ᾱ2 = Var{W }. The other α’s
are certain combinations of the expectations of higher order products of Xi , and
U1i , ..., Usi , while ᾱ’s are obtained by summing over i. The formal representation
for ᾱl coincides with that in the case of the local dependency (see (3.3) for de-
tail). Note also that under some mild conditions the characteristics γ and ᾱ are
asymptotically close which is reflected below in Proposition 4.

When dealing with the characteristics ᾱ in the first theorem below, we suppose
ᾱ2 > 0, which is a rather mild condition in the case of normal convergence. If
ᾱ2 > 0, we can “normalize”W by dividing it by ᾱ1/2

2 , which amounts to assuming
ᾱ2 = 1. When choosing a normalization, we in fact choose the normal distribution
by which we approximate the distribution of the original sum. So, setting ᾱ2 = 1,
we approximate the original sum by the normal distribution with the variance not
equal to the variance of the sum but to ᾱ2. We will see that such a choice of the
approximating normal and ᾱl , l > 2, for coefficients in (1.13), leads not only to
explicit coefficients in the expansion but to weaker conditions on dependency and
a better remainder. Also ᾱ’s may work when the traditional setup does not. The
following very simple
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Example shows that the choice of the characteristics mentioned is not just an artifact
of the above approach but can reflect the essence of the matter. LetZ1, Z2, ... be in-
dependent r.v.’s with the same distribution as a r.v.Z for whichEZ = 0, EZ2 = 1,
and for a fixed n the vector

(Y1n, ..., Ynn) =
{
(Z1, ..., Zn) with probability 1 − 1/n
(Z, ... , Z) with probability 1/n

(we skip formalities of defining all r.v.’s above in one space). Let Sn = Y1n +
... + Ynn. Obviously, ESn = 0, V ar{Sn} = 2n − 1, and the normalization by√
V ar{Sn} is not proper since (Sn/

√
n) converges in distribution to a standard

normal r.v. On the other hand, if we set Xi = Xin = Yin/
√
n, and choose in

(1.5)Wk = Wki = Xi for all k = 1, ..., d; i = 1, ..., n, then U1i = Xi , and as is
easy to see, ᾱ2 = n−1 ∑n

i=1 E{Y 2
in} = 1, that is, gives a correct normalization. It

is easy to verify that in this case T = 1/n, and Proposition 1 below will imply that
Eh(W) − (h) = O(1/

√
n), that is, the right rate in the CLT. The derivation of

examples for asymptotic expansions is a bit cumbersome, so we restrict ourselves
to the above example.

Returning to ᾱl in the general case note that it admits an explicit (though com-
plicated) representation involving a smaller number of mixed moments of the r.v.’s
Xi in comparison with γ ’s ( see (3.3) in Section 3 for detail); and they have a
desirable order: for l = 2, ..., d

|ᾱl | ≤ C(l)µ̄l, (1.14)

where here and below the symbol C(l) denotes a constant, perhaps different in
different formulas, depending only on l.

If again |Xi | ≤ Y/
√
n, as will follow from (3.3), we have ᾱ2 = O(1), ᾱl+2 =

O(n−l/2), for l ≥ 0, and all coefficients in Qν in (1.12) have the order O(n−ν/2).
We turn to the first result which uses quantities ᾱl , relegating their formal def-

inition through mixed moments of X’s to (3.3) of Section 3.
Set

ĥp = max
k=0,...,p

||h(k)||∞

Before presenting the main theorem consider, for ease of reading, a special case
of it.

Proposition 1. Let in (1.13) βk = ᾱk defined in (3.3). Assume that EXi = 0 and
ᾱ2 = 1. Then there exists a constant C(d) such that

Eh(W)−(h) =
d−2∑

ν=1

∫
h(x)Qν(dx)+ Rd, (1.15)

where

|Rd | ≤ C(d)ĥd−1(1 + z̄d )
d−2 [µ̄d+1 + η̄dT

]
.
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(For a definition of z̄d see (1.11).) Note that the term (1 + z̄d )
d−2 is typically

bounded and close to (1 + µ̄2)
d−2 due to normalization, and since µ̄k is “small”

for k ≥ 3. The above proposition is a corollary of

Theorem 2. Let (1.4) hold, and in (1.13) let βk = ᾱk defined in (3.3). Assume that
EXi = 0 and ᾱ2 = 1. Then there exists a constant C(d) such that the expansion
(1.15) holds with a remainder Rd satisfying for any m = 0, . . . , d − 1

|Rd | ≤ C(d)(1 + z̄d )
d−2

{
ĥd−1−m	mµ̄d+1 + ĥd−2η̄dT

}
. (1.16)

Clearly, one can take the minimum of the r.-h.s. of (1.16) in m.

Remarks. (1) In the case of local dependency T = 0, and we have for any m

|Rd | ≤ C(d)(1 + z̄d )
d−2ĥd−1−m	mµ̄d+1.

In particular, if 	d−1 < ∞, the expansion can be considered for any bounded h
satisfying (1.4), and in this case

|Rd | ≤ C(d)(1 + z̄d )
d−2‖h‖∞	d−1µ̄d+1.

(2) Let again T = 0, eachWki be the sum of some number of summandsX, and
let M be the maximum number of summands in all Wki’s. Suppose ‖Xi‖d+1 ≤ A

for all i. Then µl ≤ (MA)l, and

|Rd | ≤ C(d)[1 + n(MA)2]d−2nĥd−1(MA)
d+1. (1.17)

If, as before, |Xi | ≤ Y/
√
n (in distribution), where Y is a positive r.v. with

(d + 1) finite moments, then A = O(1/
√
n) and the r.-h.s. of (1.17) has the order

O(n−(d−1)/2).

Now we turn to expansions in terms of cumulants of W , and with the normali-
zation V ar{W } = 1. The resulting theorem is rather a tribute to tradition: from a
certain point of view Theorem 2 is better.

Using again standard notations (see, e.g., Bradley [8], [9]), for two σ -algebras
A and B we set

ψ(A,B) := sup {|P(AB)− P(A)P (B)|/|P(A)P (B)| ;
A ∈ A, B ∈ B, P (A), P (B) > 0} . (1.18)

Below we will use the fact that, provided that ψ(A,B) is finite ,

ψ(A,B) = sup
Y1∈L1(A), Y2∈L1(B)

|E{Y1Y2} − E{Y1}E{Y2}|
‖Y1‖1‖Y2‖1

. (1.19)

(See, e.g., [9]. For the fact that the r.-h.s. of (1.19) is less or equal than that of
(1.18) see, e.g., Philipp [36, Lemma 3, page 157 ]; one can come arbitrarily close
to achieving equality taking indicators as r.v.’s under consideration).
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Now we define the characteristic of dependence

T ′ = sup
s,i

ψ(Fsi , F̃s+1,i ). (1.20)

Again in the case of local dependency one may set T ′ = 0, and T ′ also has
its counterpart in the mixing framework; see, e.g., again Bradley [8], [9], Doukhan
[11], Peligrad [34].

As we mentioned before, ᾱm = γm when T ′ = 0, so it makes sense to consider
Theorem 3 only when T ′ 	= 0. But in this case, as will be seen from the formulation
of Theorem 3, we require ĥd−1 to be bounded, so the introduction of characteristics
	’s in this situation is superfluous.

Also, to avoid a cumbersome formulation, we introduce the condition

η̄dT
′ ≤ 1/2d , and T ′ ≤ 1. (1.21)

Since the bound on the remainder below contains the term η̄dT
′, and since η̄k typi-

cally is “large” [see also a remark after (1.11)], condition (1.21) does not “make the
theorem below worse”: if (1.21) is not true, the bound mentioned is not small in
any case.

Theorem 3. Let (1.4) and (1.21) hold, and in (1.13) set βk = γk , the k-th cumulant
of W, k = 2, ..., d. Assume that EXi = 0 and V ar{W } = 1. Then there exists a
constant C(d) such that the expansion (1.15) holds with

|Rd | ≤ C(d)ĥd−1(1 + z̄d )
2(d−1) [µ̄d+1 + η̄dT

′] . (1.22)

Remarks similar to those following Theorem 2 apply here too.
Finally we indicate the relation between the two expansions by showing that

the quantities ᾱk and the cumulants γk are close under suitable conditions:

Proposition 4. Let µ̄k < ∞, T ′ ≤ 1 and η̄1T
′ ≤ 1/2k . Then

|γk − ᾱk| ≤ C(k)η̄k(1 + z̄k)
(k−1)/2T ′. (1.23)

2. Some particular schemes

The aim of this section is not to consider schemes below in full generality but rather
to illustrate possibilities and restrictions of the above approach. In particular, in all
examples below we do not calculate explicitly coefficients in expansions: formally
it may be done with use of (1.13) and (3.3), but leads to cumbersome formulas as in
any complex enough scheme with dependent summands. For the same reason we
consider in this section a smooth h. Our goal is to justify, for particular examples
below, the validity of the expansion and to give bounds for remainders. While now-
adays the computer may calculate coefficients well enough, the remainder could
be still a hard problem for it.

We first consider a corollary from Theorem 2 concerning dependency neigh-
borhoods. We use this corollary first for two relatively simple particular examples
of random directed graphs, and next - for a general scheme based on undirected
graphs.
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2.1. A corollary for dependency neighborhoods

As usual, C and C(·) below indicate constants, absolute or depending only on ar-
guments in parentheses, and possibly varying between equations and even in the
same equation.

We assume now that the decompositions (1.5) are specified in terms of “real”
neighborhoods as was mentioned in Section 1.1. Identifying the sets N ’s from
Section 1.1 with the corresponding sets of indices, we consider for each sum-
mand Xi , a chain of sets {N1i , ...,Ndi} where all N ’s are subsets of {1, ..., n}, and
i ∈ N1i ⊆ . . . ⊆ Ndi . The sets N ’s may be random. Let

Wsi =
∑

j∈Nsi

Xj , and Usi =
∑

j∈Nsi\N(s−1)i
Xj , for s = 1, ..., d.

Denoting by |N | the cardinality of N , and keeping in mind that i ∈ N1i , we
get from (1.6) that

µli = E{(|Xi | + |U1i | + ...+ |Udi |)l} ≤ 2lE

{(∑
j∈Ndi

|Xj |
)l}

≤ 2lE
{
|Ndi |l−1

∑
j∈Ndi

|Xj |l
}

≤ 2l µ̂lE
{
|Ndi |l

}
,

where

µ̂l := max
i=1,...,n

Ess sup
ω

max
j∈Ndi

E{|Xj |l | Ndi}. (2.1)

Hence, for µ̄l from (1.11)

µ̄l ≤ C(l)µ̂lHl(n), where Hl(n) =
n∑

i=1

E{|Ndi |l}.

Set η̂k := max1≤l≤k µ̂l, ẑk := max2≤l≤k µ̂l . Since Hl(n) is increasing in l,
for η̄k, z̄k from (1.11), we have

z̄k ≤ C(k)ẑkHk(n), η̄k ≤ C(k)η̂kHk(n).

Now it is easy to derive from Proposition 1

Proposition 5. For the scheme above and under the conditions of Proposition 1,
the expansion (1.15) holds with

|Rd | ≤ C(d)ĥd−1[1 + (ẑdHd(n))
d−2]Hd+1(n)[µ̂d+1 + η̂dT ], (2.2)

where T is defined as in Section 1.

Note that, if after a normalization, |Xi | ≤ Y/
√
n (in distribution), where

Y is a positive r.v. with (d + 1) finite moments, then µ̂l = O(n−l/2), ẑk =
O(n−1), η̂k = O(n−1/2). So, if Hd+1(n) = O(n), then if ĥd−1 < ∞, we have
Rd = O

(
n−(d−1)/2 + √

nT
)
.

Next we consider two particular relatively simple examples.
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2.2. The nearest neighbor test

Consider a sample of n i.i.d. points from an absolutely continuous distribution F
in Rk , and the nearest neighbor graph whose n vertices are these points. This is
a directed graph such that from each vertex there is a directed edge pointing to
its nearest neighbor (with respect to Euclidean distance, say). Let each vertex be
independently assigned one of two colors, say, green or blue, with probabilities ν
and 1 − ν, respectively. For a vertex i, let N(i) denote its nearest neighbor, and
Yi = 1 if the vertices i and N(i) are both assigned the green, and 0 otherwise,
i = 1, . . . , n. Then S = ∑n

i=1 Yi counts the number of vertices i for which both
i and N(i) are green (with mutual nearest neighbors counted twice, once for each
vertex).

If the color allocation is not done at random, and vertices having the same color
tend to cluster together, we should expect large values of S. This phenomenon was
used by Henze [18] (see also Henze [17], and other references there), who proposed
a non-parametric statistic similar to S for testing equality of two distributions, and
proved its asymptotic normality. Rinott and Rotar [39] provided rates considering
several distributions (more than two colors), which led to a multivariate setup.

Here we consider asymptotic expansions. Clearly, ES = nν2; for V ar{S}
which depends on F , see [39]. Let Xi = (Yi − ν2)

/√
V ar{S} , W = ∑n

i=1Xi.

From calculations in [39], it follows in particular that V ar{S} ≥ nν2(1 − ν),
and hence

|Xi | ≤ 1
/[√

n
(
ν
√

1 − ν
)]
. (2.3)

Using the fact that the sets Nji may be random, we choose them depending on
the graph G. First, define Si to consist of i and all vertices which are connected
with i by an edge. Certainly Si depends on the realization of the graph mentioned.
As was proved in [39], Xi does not depend on {Xl; l /∈ Si}.

We point out the reason why we cannot nevertheless choose Si as N1i , in a

Remark. Consider, in the general framework, a random set A of indices, and XA =
{Xj ; j ∈ A}. Assume that we have managed to specify a set of vertices Ã ⊇ A,
such that any combination of a non-random number of r.v.’s Xk with k /∈ Ã does
not depend on XA. Nevertheless it does not mean that XA and X

Ãc
= {Xk; k /∈ Ã}

are independent since |Ã| may depend on XA (say, through
∑

j∈A Xj ), and hence
the whole collection X

Ãc
might depend on XA just because the number of r.v.’s in

X
Ãc

, that is, n− |Ã|, may depend on XA. It may cause problems.
[39, p. 341] contains a small gap connected with the above issue, which can be

easily fixed in the way we follow now. As is well-known, the degrees in the nearest
neighbor graph in Rk are bounded by some constant K(k) which depends on the
dimension k. In particular K(1) = 2,K(2) = 6,K(3) = 12, and estimates are
known for all k, see, e.g., Leech and Sloane [26]. If |Si | = K(k), we set N1i = Si .
Otherwise we add to Si nearest (K(k) − |Si |) points from the complement of
Si , and define the new set as N1i . Next consider S2i = ⋃

j∈N1i
Sj . Obviously,

|S2i | ≤ K2(k). If |S2i | = K2(k), we set N2i = S2i , otherwise we add to S2i
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any (K2(k) − |S2i |) points from outside of S2i , and so on. For N1i , ...,Ndi so
constructed,

|Nsi | = Ks(k) (2.4)

It remains to apply (2.2). From (2.1), (2.3), and (2.4) it follows that

µ̂l ≤ 1
/[
nl/2(ν

√
1 − ν)l

]
, ẑk ≤ 1

/[
n(ν

√
1 − ν)k

]
,

Hl(n) = nKld(k) = C(k, l, d)n .

Since by construction T = 0, the above bounds and (2.2) imply that for the
scheme under consideration the expansion (1.15) holds with

|Rd | ≤ C(k, d)
[
(ν

√
1 − ν)−d

2−1+d
]
ĥd−1n

−(d−1)/2.

2.3. A random non-complete U -statistic

Let ξ1, ξ2, ... be i.i.d. r.v.’s, and for a fixed n the vector Kn = {K(1), ..., K(n)},
whereK’s are independent r.v.’s which are also independent of ξ ’s, and which take
values from {1, ..., n}. Letψ(x, y) be a symmetric function, and Yi = ψ(ξi, ξK(i)),

i = 1, ..., n. For simplicity of calculations, we assume

P(K(i) = i) = 0. (2.5)

Suppose E{Yi} = 0, E{|Yi |d+1} = E{|ψd+1(ξ1, ξ2)|} < ∞. Set S = Sn =∑n
i=1 Yi.

It is convenient to view this as a directed graph with n vertices where each
vertex is connected with one and only one vertex (a neighbor), and Kn specifies
these connections; ξ ’s are assigned to vertices, and each Y is a function of the
corresponding ξ , and its “neighbor”. In Section 2.4 we consider a more general
scheme, though for undirected graphs, where the number of neighbors is random
and may be greater than two, ψ may depend on the sample (i,Ki), etc.

Set Nj = ∑n
i=1 I (K(i) = j), the number of vertices connected with j , and

NjD = ∑
i∈D I (K(i) = j) for D ⊆ {1, ..n}. Let AD = {K(i) ∈ D ∀ i ∈ D},

that is, D is isolated if AD occurs.
We define a number λ > 0 such that for any D, and any j ∈ D

E{NjD | AD} ≤ λ provided P(AD ) > 0. (2.6)

In other words,E{Nj } ≤ λ for each j , and the same is true for any NjD given that
D is isolated. Formally, since the scheme is finite, such a λ always exists. For the
results below to be meaningful λ should not depend on n.

Let pij = P(K(i) = j). Then, since K’s are independent, P(AD) =∏
j∈D(

∑
k∈D pjk), and (2.6) is implied by

∑

i∈D

(
pij

/∑
k∈D pik

)
≤ λ for all D, and j ∈ D, (2.7)

provided (0/0) = 0.
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For example, (2.7) holds if 0 < α ≤ (pij /pik) ≤ β for all i, j 	= i, k 	= i, and
some α, β (say, each vertex “chooses a neighbor” with equal probabilities). On the
other hand, the “classical” case S = ψ(ξ1, ξ2) + ψ(ξ2, ξ3) + ... + ψ(ξn−1, ξn) +
ψ(ξn, ξ1) is covered by (2.7) too with λ = 1 since, as is easy to see, in this case the
only D for which P(AD) > 0, is D = {1, ..., n}.

Let Ii = I (K(K(i)) = i), σ 2 = E{ψ2(ξ1, ξ2)}, c = E{ψ(ξ1, ξ2)ψ(ξ1, ξ3)}.
We assume σ > 0, |c| < σ 2. We need a simple

Lemma 6. (1) The conditional variance

E{S2 | Kn} = n(σ 2 + c)+ (σ 2 − 2c)
n∑

i=1

Ii + c

n∑

i=1

N2
i , and (2.8)

ES2 = n(σ 2 + c)+ (σ 2 − 2c)m1n + cm2n, (2.9)

where m1n = ∑n
i=1 E{Ii} = ∑n

i=1
∑n
j=1 pijpji, m2n = ∑n

i=1 E{N2
i } =∑n

i=1(λi + λ2
i )−∑n

i=1
∑n
j=1 p

2
ij , with λi = E{Ni} = ∑n

j=1 pji .

(2) Let �2
n := 1

n
E{S2

n | Kn}. Then

�2
n ≥ σ 2 > 0, (2.10)

and under condition (2.7) for any natural l

E{�2l
n } ≤ C(l)σ 2le2λ. (2.11)

(3) If the above scheme is given for an infinite sequence of natural n, and (2.7)
holds uniformly in n, that is, for the same λ for all n, then for θ2

n = E{�2
n}

�2
n − θ2

n

P→ 0, as n → ∞. (2.12)

Proofs of this and the next lemma are given in Section 5.1.
Set Xi = Yi

/[
θn

√
n
]
, W = ∑n

i=1Xi , and denote by Z a standard normal
r.v. independent of all other r.v.’s. In our opinion, it is more convenient and in a
certain sense more efficient, to approximate the distribution of W not by that of
Z itself but by the distribution of the r.v. Zn = [�n

/
θn ]Z, that is, by a weighted

normal. This leads to a better accuracy of approximation:W is closer to Zn than to
Z. The computation of the coefficients in the main terms of the approximation toZn
may appear cumbersome, but in fact even when approximating by Z an involved
numerical calculation would be required. Certainly, in view of (2.10) and (2.12)

Zn
L→ Z.
LetQν(dx | Kn) be measures (1.12) with the coefficients (1.13) whereβl equals

the lth cumulant of S/
[
�n

√
n
]

given Kn. The structure ofQν(dx | Kn) is the same
as of Qν(dx): the dependence on Kn is reflected only in coefficients. Note also
that, since below we will define the dependency neighborhoods in a way that T
will vanish, the cumulants mentioned will coincide with the quantities ᾱl defined
in Section 1.
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Proposition 7. Let γ = maxl=2,...,d+1(E{|ψ(ξ1, ξ2)|l
/
σ l ). Then

Eh(W)− Eh(Zn) =
d−2∑

ν=1

E

{∫
h([�n

/
θn] x)Qν(dx | Kn)

}
+ Rd, (2.13)

where

|Rd | ≤ C(d)e(d+1)λĥd−1(1 + γ )d−1 1

n(d−1)/2
. (2.14)

Proof. It is straightforward. Clearly

Eh(W)−Eh(Zn) = E
{
E
{
h
(
[�n

/
θn ]

[
S
/[
�n

√
n
] ])−h ([�n

/
θn ]Z

)∣∣ Kn

}}

= E
{
E
{
h̃
(
S
/[
�n

√
n
] )− h̃ (Z)

∣∣∣ Kn

}}
,

where h̃(x) = h̃n(x) = h
(
[�n

/
θn ]x

)
.

First, we fix Kn and apply Proposition 5 to estimate the remainder Rd(Kn ) in
the expansion

E
{
h̃
(
S
/[
�n

√
n
] )− h̃ (Z)

∣∣∣ Kn

}
=
d−2∑

ν=1

∫
h̃(x)Qν(dx | Kn)+ Rd(Kn ).

(2.15)

To this end we should define neighborhoods N1i , ...,Ndi .We take into account
(2.5), so all assertions below about Nis may be true only a.s.

Let N1i = {i} ∪ {K(i)} ∪ {j ; K(j) = i or K(i)}. Obviously, Yi does not de-
pend on {Yj ; j /∈ N1i}. Note also that all edges emanating from points in N1i end
at points from N1i with one possible exception: the edge fromK(i). In other words,
K(K(i)) may be out of N1i . In view of this, we set N2i = N1i ∪ {K(K(i))} ∪
{j ; K(j) ∈ N1i}∪{j ; K(j) = K(K(i))}.Again, all edges emanating from points
in N2i end at points from N2i save perhaps the edge from K(K(i)), and so on.
So, setting Ks(i) = K(K(...K(i))) where the operation Kappears s times, define
N(s+1)i = Nsi∪{K(Ks(i))}∪{j ; K(j) ∈ Nsi\N(s−1)i}∪{j ; K(j) = K(Ks(i))}.
It is straightforward to verify that in this case, given Kn, we deal with local depen-
dency, and hence T = 0.

Lemma 8. Under condition (2.7) for any l

E |Ndi |l ≤ C(l, d)e2dλ. (2.16)

A combinatorial proof is given in Section 5.1. We turn to an expansion using
notations from Section 2.1. To estimate the remainder we use (2.2). It is easy to see
that in our case, given Kn, and in view of (2.10) µ̂l = E{|ψ(ξ1, ξ2)|l}

/
(�n

√
n)l ≤

E{|ψ(ξ1, ξ2)|l}
/
nl/2σ l. Then µ̂l ≤ γ /nl/2, ẑk ≤ γ /n.
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Thus, in view of (2.2), and since T = 0 given Kn,

|Rd(Kn )| ≤ C(d)

(
max

k=0,...,d−1

(
�n

/
θn
)k ‖h(k)‖∞

)
(1 + γ )d−1

n(d+1)/2

[
1

n
Hd(n)

]d−2

·Hd+1(n)

≤ C(d)ĥd−1(1 + γ )d−1 1

n3(d−1)/2
[Hd+1(n)]

d−1
d−1∑

k=1

(
�n

/
σ
)k
,

where in this case Hl(n) = ∑n
i=1 |Ndi |l for given Kn.

Next we compute E|Rd(Kn )|. By (2.16) and (2.11)

E

{
[Hd+1(n)]

d−1
d−1∑

k=1

(
�n

/
σ
)k
}

≤
d−1∑

k=1

σ−knd−2
n∑

i=1

E
{
|Ndi |d2−1�kn

}

≤
d−1∑

k=1

σ−knd−2
n∑

i=1

(
E
{
|Ndi |2(d2−1)

}
E
{
�2k
n

})1/2 ≤ C(d)nd−1e(d+1)λ.

The above bounds lead to (2.13) and (2.14). ��

2.4. A graph related scheme with dependency neighborhoods

In this section we write some corollaries for the case when the graph specifying
the dependency structure is non-directed, and the dependency neighborhoods are
“geographical” neighborhoods with respect to the graph.

2.4.1. Mixing on non-directed graphs

Consider an arbitrary n-vertex simple graph. Let ∂(i, j) denote the distance
between vertices; ∂(A,B) – the distance between two sets, A and B, of vertices;
Ac – the complement of A, and |A| – its cardinality;O(i; r) – the r-neighborhood
of the vertex i w.r.t. the graph.

We assign to each vertex i a random variableXi , and set F(A) = σ(Xi; i ∈ A).
The dependency structure is characterized by

T (r) = max
i

sup
x
φ(F(O(i; x)), F(Oc(i; x + r))), (2.17)

where φ is defined in (1.7). As before we assume EXi = 0.
If the graph is, say, a usual integer valued lattice in R

k with edges connecting
only nearest vertices, we deal with the usual mixing scheme for random fields; if
the graph is arbitrary the scheme is more complicated.

As dependency neighborhoodsNji , we take just the sequenceO(i; r),O(i; 2r),
..., O(i; rd) where r is a free parameter. We again apply Proposition 5 observing
that in our case

µ̂l = max
i=1,...,n

E{|Xi |l }
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(see Section 2.1), and

Hl(n) =
n∑

i=1

|O(i; rd)|l ≤ �l(rd)n,

where �(r) = maxi |O(i; r)|, a characteristic of the graph.
We fix r , and assume that the r.v. W = ∑n

1 Xi has been already normalized in
such a way that the characteristic ᾱ2 = 1.

Setting η̂k := max1≤l≤k µ̂l, ẑk := max2≤l≤k µ̂l, it is easy to derive from (2.2)

Proposition 9. In the framework of this section the expansion (1.15) holds with

|Rd | ≤ C(d)ĥd−1[1 + (ẑdn)
d−2](�(rd))d

2−d+1 · n · [µ̂d+1 + η̂dT (r)]. (2.18)

Corollary 10. Assume that for some γ and l ≤ d + 1

µ̂l ≤ C(d)γ n−l/2, ẑl ≤ C(d)γ n−1, η̂l ≤ C(d)γ n−1/2 (2.19)

(which reflects a “natural” order). Then (2.18) implies that for any r > 0

|Rd | ≤ C(d)ĥd−1(1 + γ )d−1(�(rd))d
2−d+1[n−(d−1)/2 + n1/2T (r)]. (2.20)

If T (r) = 0 for r > some m (a sort of m-dependency on graphs), the bound
above has a “right” order, and Rd = O(n−(d−1)/2) provided �(md) is bounded
uniformly in n. (Say, for a complete graph it is not true since in this case �(r) ≡
n− 1.) If �(r) is not bounded, one can choose an optimal r = r(n) which depends
on the degree of growth of �(r). In particular, if �(r) ≤ Crt for some t (as for
“usual” random fields), while T (r) is decreasing exponentially, as is easy to see,
Rd = O

(
[lnp n]n−(d−1)/2

)
for some p = p(d, t) which can be easily computed.

As has been already told, the method allows to consider more general situations but
possibly at a cost of lnp n.

2.4.2. A random incomplete U -statistic on a undirected graph

Next we consider a particular example of the above scheme. The model below
admits an economic application, see Majumdar and Rotar [29], [30] and below
for details. Consider again a simple n-vertex graph, and assign to each vertex i a
random variable ξi . The dependency below remains non-trivial if ξ ’s are indepen-
dent, but we do not suppose that and introduce the characteristic T1(r)which is the
counterpart of characteristic (2.17) for ξ ’s. We define for each i a point-to-set map
Ai (x, y), where x, y are numbers, and Ai takes values in the set of all subsets of
{1, ..., n}. Suppose that i ∈ Ai (x, y) for all x, y, and set Ai = Ai (ξi , ηi), where
η1, ..., ηn are given r.v.’s independent between themselves and of all other r.v.’s un-
der consideration. (As a matter of fact, η’s may be random elements of an arbitrary
nature, but it would not make the scheme more general in essence.)

For example, for an integer-valued function g(x) and a fixed number k, one can
take the g(ξi)-neighborhood (with respect to the graph) of the vertex i , and choose
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at random k vertices in the neighborhood chosen, provided that k is not greater than
the cardinality of the neighborhood.

Let �i = {ξj ; j ∈ Ai} = {ξj ; j ∈ Ai (ξi , ηi)}. For brevity we call ξ ’s from
�i “partners” of ξi . Let {Gi(x1, ..., x|A| ; A)}, i = 1, ..., n, be a given collection of
functions such that for a fixed A ⊆ {1, ..., n} the function Gi( · ; A) : R|A| → R,
and symmetric. Set Xi = Gi(�i; Ai); in view of symmetry ofG this definition is
correct. Let W = ∑n

1 Xi .
One of essential differences of this scheme from that of Section 2.3 is that the

choice of a partner depends now on the value of the r.v. ξ .
In the economic setup mentioned (see, [29], [30] for detail) vertices are iden-

tified with “economic agents”; the graph reflects connections between agents, and
the r.v. ξi characterizes the “state” of the i-th agent. Each agent chooses “partners”
from a neighborhood with respect to the graph, and the neighborhood mentioned
depends on the state of the agent. Say, more an agent is “powerful”, larger the
possibility of choice of possible partners. X’s characterize production.

One may generalize the above scheme making the set Ai depending not only
on ξi but other ξ́ ’s; say a vertex-agent may refuse to be a partner, or an agent cannot
be a partner of too may agents simultaneously, etc. Here we restrict ourselves to
the framework defined.

Note also that formallyW above may be reduced to a non-random non-complete
U -statistic of (weakly) dependent r.v.’s, though in this case the order of the statistic
is not fixed (formally it may be any, up to n); all kernels, say, U(xj1 , xj2 , ...) =
Uj(xj1 , xj2 , ...), that is, depend on the sample j =(j1, j2, ...), and this dependence
cannot be reflected only through weights as in weighted U -statistics; the kernels
are not assumed to be non-degenerated (so the Hoefding representation might not
work); and the structure of dependence for ξ ’s is specified by a rather general graph.
We would not exclude nevertheless that a combination of a technique for weighted
U -statistics and some mixing technique could, in principle, work here, but it may
be hard. On the other hand, it is easy to see that Proposition 9 immediately implies
at least the following.

Proposition 11. Suppose that the dependency neighborhoods are chosen in the
same way as in Section 2.4.1 with a fixed r , and assume that the functions G
have been already normalized in a way that EXi = 0, and ᾱ2 = 1. Set Mi =
max{∂(j, i); j ∈ Ai (ξi , ηi)}̇, and suppose that for an r0 > 0

P( max
i=1,...,n

Mi ≤ r0) = 1. (2.21)

Then (2.18) holds with T (r) = T1(r − 2r0) if r > 2r0, and T (r) = 1 otherwise.

Again, under condition (2.19) we have the explicit bound (2.20).
Next we discuss the case when r0 satisfying (2.21) either does not exist, or too

large. Anyhow, we should first define a dependency neighborhood for each Xi , or
in other terms, the r.v.’s W1i and W̃1i from (1.5). The first that comes to mind is to
define W̃1i as the sum of all Xj ’s such that the vertices they correspond to, do not
have common “partners” with i. However in general case, unlike in Section 2.3, it
could lead to a problem: which vertices are partners of i depends now on the value
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of ξi , and hence on the value of Xi , while the fact that a vertex j does not have a
particular vertex as a partner influences the value of ξj , and hence of Xj . Attempts
to fix it lead to cumbersome constructions.

Another obstacle which one should be aware of, is the same as mentioned in
Remark in Section 2.2: the randomness of the cardinality of a neighborhood may
cause problems too.

For these reasons, one can choose a simpler way, namely a truncation, which
could make bounds for the remainder somewhat less accurate, but allows to avoid
problems mentioned. More precisely we can consider r.v.’s

X̄i =
{
Xi if Mi ≤ r0,

Zi if Mi > r0,

where r0 is now a free parameter, and the r.v.’sZi are at our choice. The simplest
way is to set Zi ≡ 0, however if we want to maintain the smoothness of X’s (if it
is the case), we can take as Z’s independent normal variables with appropriately
chosen variances. Let W̄ = ∑n

1 X̄i .

It is easy to see that for any h

|E{h(W)} − E{h(W̄ )}| ≤ 2ĥ0

n∑

i=1

P(Mi > r0). (2.22)

For W̄ one can apply Proposition 11 directly after a proper rescaling which
makes EW̄ = 0, ᾱ2 = 1. Note that the remainder in this case will be practically
the same as for originalX’s since the momentsE|X̄i |l ≤E|Xi |l+E|Zi |l . Because
of lack of room, we omit concrete calculations. In particular again, if probabilities
P(Mi > r) vanish exponentially, the same is true for T1(r), while �(r) is a power
function, then, as is easy to verify, Rd = O

(
[lnp n]n−(d−1)/2

)
for some p.

3. Proof of Theorem 2

We now define most of our notations, and one should refer to this part for notations
used later in the paper.

For the first few preliminary results it is convenient to use r = d − 1. Thus,
we consider (X,U1, ..., Ur , Ur+1), where X = Xi is a particular summand in
W = X1 + · · · + Xn. We now fix the index i and suppress it in the notation of all
quantities defined below. For example, the terms U1, ..., Ur , Ur+1 depend on i.

We haveWk = U1+· · ·+Uk , W = Wk+W̃k . Set Vs=(Ws, Us+1, ..., Ur , Ur+1),
U=V0=(U1, ..., Ur , Ur+1).

For s + l ≤ r + 1, p ≤ l we define

χl(s, p) =
∑

|m|=l
(p) 1

m!
E{Vm

s }, and ϑl+1(p) =
∑

|m|=l
(p) 1

m!
E{XUm},

where
∑

|m|=l
(p) is the sum over all m = (m1, . . . , mr+1), such thatmi = 1, ..., r+1

for all i ≤ p, andmi = 0 for p < i ≤ r+1, and |m| = m1 +· · ·+mr+1 = l; also,
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Um = ∏r+1
i=1 U

mi
i , and Vm

s = W
m1
s U

m2
s+1 · · ·Umr−s+2

r+1 , and m! = m1! · ... ·mr+1!. It
is easy to see that

|χl(s, p)| ≤
∑

|m|=l
(p) 1

m!
E{|Vms |} ≤ 1

l!
E{(|Ws | + |Us+1| + · · · + |Us+l−1|)l}

≤ 1

l!
E{(|U1| + · · · + |Us+l−1|)l} ≤ 1

l!
E{(|U1| + · · · + |Ur |)l} (3.1)

≤ E{(|X| + |U1| + · · · + |Ur+1|)l} = µl.

Likewise

|ϑl+1(s)| ≤ µl+1. (3.2)

Set ϒ00 = 1, ϒl0 = 0 for l ≥ 1, and for m ≥ 1

ϒlm = ϒlm(s) =
∑

l1+···+lm=l

l1∑

p1=1

...

lm∑

pm=1

χl1(s, p1)χl2(s + p1, p2) · · ·

× χlm(s + p1 + · · · + pm−1, pm).

For l ≤ r set

c(s, l) =
[l/2]∑

m=0

(−1)mϒlm(s), c̃(s, l) =
[l/2]∑

m=0

|ϒlm(s)|,

( c(s, 0) = 1, c(s, 1) = 0, s ≥ 0 ).

Recalling that the above quantities depend on the suppressed index i, and the no-
tation in (1.11), define αm+1(= αm+1,i ) and ᾱm+1 by

αm+1

m!
=

∑

t+l=m,l≥1

l∑

s=1

ϑl+1(s)c(s + 1, t), ᾱm+1 =
n∑

i=1

αm+1,i , m = 1, . . . , r.

(3.3)

The following facts are seen easily:

µlµk ≤ µl+k , and hence ϒlm, c(s, l), c̃(s, l) ≤ C(l)µl for all l ≤ r,

αm+1 ≤ C(m)µm+1 (3.4)

for constants C(l) depending only on l. Henceforth C(l) will indicate any such
constants, possibly varying between equations and even in the same equation.

Next letFs(= Fsi)be theσ -algebra generated by the r.v.’sX=Xi, U1i , ..., Usi,

and for l ≤ r and a sufficiently smooth function f , define

f̂l = maxk≤l ||f (k)||∞,
�l(f ) = max

1≤i≤n
max
s≤r+1

sup
x
Ess sup

ω
|E{f (l)(W̃si + x)

∣∣∣Fsi}(ω)|.

For now we assume that all derivatives of f which appear here and below exist.
We return to this issue later, in the proof of Theorem 2.

The next Proposition is a further development of (1.1).
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Proposition 12. (THE MAIN LEMMA) For any sufficiently smooth f ,

E{Wf (W)} =
r∑

m=1

ᾱm+1

m!
E{f (m)(W)} + Br(f ),

with

|Br(f )| ≤ C(r)[µ̄r+2�r+1(f )+ η̄r+1f̂rT ].

For the proof we need some lemmas.

Lemma 13. For any sufficiently smooth f, and k ≤ r ,

f (W) = f (W̃1)+
k∑

p=1

∑

|m|≤k
(p) 1

m!
Umf (|m|)(W̃p+1)+ Rk

= f (W̃1)+
k∑

l=1

l∑

p=1

∑

|m|=l
(p) 1

m!
Umf (l)(W̃p+1)+ Rk, (3.5)

where

Rk =
k+1∑

p=1

∑

|m|=k+1

(p) mp

m!
Um

∫ 1

0
(1 − t)(mp−1)f (k+1 )(W̃p + tUp)dt.

Proof. This follows by repeated Taylor expansions. First expand f (W) in a Taylor
series of k + 1 terms about W̃1 and a remainder containing f (k+1). Next expand
f ′(W̃1) into a k term Taylor series about W̃2 and a remainder, and f ′′(W̃1)

into a k − 1 term Taylor series about W̃2 and a remainder, etc. We skip a formal
proof. ��

Lemma 14. For any sufficiently smooth f , and k ≤ r ,

E{f (W̃s)} =
k∑

l=0

c(s, l)E{f ( l)(W)} +Msk(f )

= E{f (W)} +
k∑

l=2

c(s, l)E{f ( l)(W)} +Msk(f ), (3.6)

where

|Msk(f )| ≤ C(k)[µk+1�k+1(f )+ ηkf̂kT ].

The proof which uses (3.5) with W̃s and Vs replacing W̃1, and U, is given in
Section 5.
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Proof of Proposition 12. Since E{X} = 0, it follows from (3.5), (1.9) and (1.8)
that

E{Xf (W)} =
r∑

l=1

l∑

s=1

∑

|m|=l
(s) 1

m!
E{XUm}E{f ( l)(W̃s+1)} + E{XRr} + 2Tr,

(3.7)

where

|Tr | ≤ f̂r

[
r+1∑

l=1

µl

]
T = f̂rηr+1T , and |E{XRr}| ≤ µr+2�r+1(f ).

Computing the main term in (3.7), that is, ignoring for a while all terms in which T
or R appear, and applying Lemma 14 again ignoring the remainder term Msk (the
notation ≈ is used to indicate this approximation), we have for Xi = X

E{Xf (W)} ≈
r∑

l=1

l∑

s=1

∑

|m|=l
(s) 1

m!
E{XUm}E{f ( l)(W̃s+1)}

=
r∑

l=1

l∑

s=1

∑

|m|=l
(s) 1

m!
E{XUm}

r−l∑

t=0

c(s + 1, t)E{f (t+l)(W)}

=
r∑

m=1




∑

t+l=m,l≥1

l∑

s=1

ϑl+1(s)c(s + 1, t)



E{f (m)(W)}.

Summing over i we obtain the main term in the desired result.
Denote the remainder in the latter approximation by Br (which still depends on

i). By Lemma 14 applied to the function f (l), the term Ms+1,r−l (f (l)) appearing
below satisfies |Ms+1,r−l (f (l))| ≤ C(r)[µr−l+1�r+1(f ) + ηr−l f̂rT ]. Therefore,
we have (again allowing C(r) to vary between equations),

|Br | := |E{Xf (W)} −
r∑

m=1

αm+1

m!
E{f (m)(W)}|

≤ µr+2�r+1(f )+ f̂rηr+1T +
r∑

l=1

l∑

s=1

|ϑl+1(s)| · |Ms+1,r−l (f (l))|

≤ µr+2�r+1(f )+ f̂rηr+1T +
r∑

l=1

l∑

s=1

|ϑl+1(s)|C(r)

× [µr−l+1�r+1(f )+ ηr−l f̂rT ]

≤ C(r)[µr+2�r+1(f )+ f̂rηr+1T ].

This holds for X = Xi , and by summing over i, Proposition 12 follows. ��
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Lemma 15. For k, l ≥ 2

µ̄kµ̄l ≤ µ̄k+l−2µ̄2, µ̄kη̄l ≤ µ̄kη̄1 + µ̄2z̄k+l−2. (3.8)

Proof. Note that if a r.v. Y has the mixture distribution 1
n

∑
i Fi where Fi denotes

the distribution of |X|+|U1|+|U2|+· · · |Ur+1| withX = Xi , then the first required
inequality becomes EYkEY l ≤ EYk+l−2EY 2. For the latter inequality, see, e.g.,
[32, p.74], and references therein. The second inequality in (3.8) will follow from
the first if we write η̄l = η̄1 + z̄l . ��

Let f = S(h) denote the Stein function for h. The next lemma follows from
equation (41) in Lemma 5 of Barbour [1]; for k = 1, 2 it can be found in Stein [43].

Lemma 16. For any k ≥ 1, we have ||f (k)||∞ ≤ C(k)||h(k−1)||∞ where the con-
stant C(k) depends only on k.

We need more sophisticated properties of f. To clarify what will follow, note
that f admits the representation (see [1]):

f (x) =
(

−I (x ≥ 0)
∫ ∞

0
+I (x < 0)

∫ 0

−∞

)
e−xz−z

2/2[h(x + z)− �(h)]dz.

(3.9)

Differentiating (3.9), for k ≥ 1 one can get that

f (k)(x) = (−1)k−1�(h)G(x; 1; k, 0)+
k∑

m=0

(−1)k−m
(
k

m

)
G(x;h; k −m,m),

(3.10)

where

G(x;h; l, m) =
(

−I (x ≥ 0)
∫ ∞

0
+I (x < 0)

∫ 0

−∞

)
zle−xz−z

2/2h(m)(x + z)dz.

Set also �k(h) = ∫∞
−∞ zkh(z)ϕ(z)dz (so �(h) = �0(h) ), and for a r.v. W

define

�r(h;W) = max
1≤t≤r3, l≤r3, ν≤r

|E{WtG(W ;h; l + t − 1, ν)}|

+ max
l≤r3, ν≤r

|E{G(W ;h; l, ν)}| + |E{h(r)(W)}|
+ max

l≤r3
|�l (h)|. (3.11)

The complex expression in (3.11), and, in particular the term r3 above, is re-
quired for the induction in the proofs of Theorem 2, as reflected in the following
two lemmas whose proofs are given in Section 5.3. To avoid some superfluous
explanations in proofs we assume below that integrals

�l (h
(k)) are finite for integers k ≤ r, l ≤ r3. (3.12)
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Lemma 17. For any integer r ≥ 2, a sufficiently smooth h, and a r.v. W ,

|E{f (r+1)(W)}| ≤ C(r)�r(h;W), (3.13)

and for p = 2, ..., r ,

�r+1−p(f (p);W) ≤ C(r)�r(h;W). (3.14)

Lemma 18. LetW be a r.v. with a density p(x) such that for somem ≤ r, m ≥ 1,

pm := max
k≤m−1

‖p(k)‖∞ + max
k≤m

||p(k)||1 < ∞.

Then

�r(h;W) ≤ C(r)pm[ max
k=0,... ,r−m

‖h(k)‖∞]. (3.15)

For m = 0 the bound (3.15) is always true with p0 = 1.

Proof of Theorem 2. Note that for a given X = Xi we have from (3.3) that α2 =
E{XU1}. We assume that the variablesXi are normalized so that EX = 0 and that
ᾱ2 = 1.Also, assume that h, and hence the Stein function f = S(h) are sufficiently
smooth so that all derivatives appearing below exist. Later we will remove the
assumption by a standard smoothing argument. By Proposition 12

Eh(W)− �(h) = E{f ′(W)−Wf (W)} = −
r∑

m=2

ᾱm+1

m!
E{f (m)(W)} − Br(f ),

(3.16)

where |Br(f )| ≤ C(r)[µ̄r+2�r+1(f )+ η̄r+1f̂rT ].
Let �r(h;W ; i, s, ω) be defined in a manner similar to that of the quantity

�r(h;W) in (3.11) except that the expectationE is replaced byE{·|Fsi}.Then, by
(3.13)

�r+1(f ) ≤ C(r) max
1≤i≤n

max
s≤r+1

sup
x
Ess sup

ω
�r(h; W̃si + x; i, s, ω) =: C(r)�r(h).

(3.17)

Thus

|Br(f )| ≤ C(r)[µ̄r+2�r(h)+ η̄r+1f̂rT ] ≤ C(r)[µ̄r+2�r(h)+ η̄r+1ĥr−1T ],
(3.18)

by Lemma 16.
Consider the signed measureQν(dx) defined in (1.12) and (1.13) with βl = ᾱl .
Before proving Theorem 2 we prove a more cumbersome (but stronger, as

shown later) result:
For 1 ≤ t ≤ r ,

Eh(W)− �(h) =
t−1∑

ν=1

∫
h(x)Qν(dx)+Kt(h), (3.19)
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or equivalently

Eh(W) =
t−1∑

ν=0

∫
h(x)Qν(dx)+Kt(h), Q0(dx) = ϕ(x)dx, (3.20)

where |Kt(h)| ≤ C(t)(1 + z̄t+1)
t−1[µ̄t+2�t(h)+ η̄t+1ĥt−1T ].

Note that the case t = 1 is already established by (3.16) and (3.18) (with r = 1, us-
ing also the relation h(W)−�(h) = f ′(W)−Wf (W) and Lemma 16), and we pro-
ceed by induction to prove the case t = r assuming (3.20) holds for 1 ≤ t ≤ r − 1.
By (3.16), then by the induction hypothesis applied to f (p) with t − 1 = r − p,
and finally by (1.12),

Eh(W)− �(h)

= −
r∑

p=2

ᾱp+1

p!

(
r−p∑

ν=0

∫
f (p)(x)Qν(dx)+Kr−p+1(f

(p))

)
− Br(f )

= −
r∑

p=2

ᾱp+1

p!

r−p∑

ν=0

∑
(ν)
pkν

∫
f (p)(x)Lν+2s(dx)

−
r∑

p=2

ᾱp+1

p!
Kr−p+1(f

(p))− Br(f ). (3.21)

It is easy to see that (3.14) implies

�r+1−p(f (p)) ≤ C(r)�r(h). (3.22)

Applying (3.4), Lemma 15, Lemma 16, (3.22), and the induction hypothesis on
Kr−p+1(f

(p)), and again allowing C(r) to vary between equations and to depend
only on r , we obtain

r∑

p=2

|ᾱp+1Kr−p+1(f
(p))|

≤ C(r)

r∑

p=2

|µ̄p+1(1 + z̄r−p+2)
r−p[µ̄r−p+3�r+1−p(f (p))+ η̄r−p+2f̂rT ]

≤ C(r)(1 + z̄r )
r−2[µ̄2µ̄r+2�r(h)+ (µ̄p+1η̄1 + µ̄2z̄r+1)ĥr−1T ]

≤ C(r)(1 + z̄r+1)
r−1[µ̄r+2�r(h)+ η̄r+1ĥr−1T ].

This and (3.18) complete the induction step for the remainder |Kr(h)| ≤ Cr(1 +
µ̄2)

r−1[µ̄r+2�r(h)+ η̄r+1ĥr−1T ]. Set t + 1 = r + 1 = d in the above and define
Rd = Rr+1 = Kr(h). By (3.19)Rd is the remainder in (1.15), and applying Lemma
18 to bound�r(h), we easily obtain (1.16). (The role of densities p(x) in (3.15) is
played by qs(x, ω).)
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Turning to the main term from (3.21), that is,
∑r
p=2

ᾱp+1
p!

∑r−p
ν=0

∑
(ν) pkν∫

f (p)(x)Lν+2s(dx), and using the formula (see [1])

∫
f (p)(x)Lν(dx) = − 1

p + ν + 1

∫
h(x)Lν+p+1(dx), (3.23)

it is straightforward to verify that

−
r∑

p=2

ᾱp+1

p!

r−p∑

ν=0

∑
(ν)
pkν

∫
f (p)(x)Lν+2s(dx)

=
r−1∑

l=1

∑

ν+p=l+1

ᾱp+1

p!

∑
(ν)
pkν

1

l + 2(s + 1)

∫
h(x)Ll+2(s+1)(dx). (3.24)

In order to complete the proof of Theorem 2 we have to show that the latter
expression coincides with the three equal (because r − 1 = d − 2 and by (1.12))
expressions below:

d−2∑

ν=1

∫
h(x)Qν(dx) =

r−1∑

l=1

∫
h(x)Ql(dx) =

r−1∑

l=1

∫
h(x)

∑
(l)
pklLl+2s(dx).

Thus we have to show (setting p = i+1 in (3.24)) that for any l = 1, . . . , r−1

∑

ν+i=l

ᾱi+2

(i + 1)!

∑
(ν)
pkν

1

l + 2(s + 1)
Ll+2(s+1) =

∑
(l)
pklLl+2s ,

where in the left-hand side sum 1 ≤ i ≤ l and 0 ≤ ν ≤ l − 1. Fix now s0. Then it
suffices to show that

∑

ν+i=l

ᾱi+2

(i + 1)!

∑
(ν), s(k′)=s0−1

pk′ν
1

l + 2(s(k′)+ 1)
Ll+2(s(k′)+1)

=
∑

(l), s(k)=s0
pklLl+2s0 ,

or equivalently

∑

ν+i=l

ᾱi+2

(i + 1)!

∑
(ν), s(k′)=s0−1

pk′ν
1

l + 2s0
=
∑

(l), s(k)=s0
pkl .

Fixing k with s(k) = s0 and setting k(i) = k − ei where ei is the vector with all
components equal to zero except for the ith which equals 1, the latter relation can
be seen to follow from

l∑

i=1

ᾱi+2

(i + 1)!
pk(i)ν

1

l + 2s0
= pkl . (3.25)
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We rewrite the left-hand side as

l∑

i=1

ki(i + 2)

l + 2s0

ᾱi+2

ki(i + 2)!
pk(i),(l−i).

Noting that

ᾱi+2

ki(i + 2)!
pk(i),(l−i) = pkl , and

l∑

i=1

ki(i + 2)

l + 2s0
= 1,

we obtain (3.25) and the induction is complete.
This proves Theorem 2 for a smooth function h. A standard smoothing ar-

gument leads to the result for any h satisfying (1.4); see, e.g., Lemma 11.4 in
Bhattacharya and Ranga Rao [5]. We omit here standard details, and note only the
following. First, to apply the lemma mentioned one should take into account that
‖h(k)ε+‖∞ ≤ ‖h(k)‖∞, ‖h(k)ε−‖∞ ≤ ‖h(k)‖∞ for any k. Second, ||h(k)||∞ appearing
in the bound of (1.16) of Theorem 2 is interpreted as infinity if the kth derivative of
h does not exist. On the other hand, if ||h(1)||∞ < ∞, then (1.4) clearly holds. ��

4. On cumulants and Theorem 3

In this section we assume EW 2 = 1. Let Dl = maxi≤n maxs≤d E{|W̃si |l}.
First,

Dl ≤ 2l−1{max
i≤n

µli + E{|W |l}} ≤ 2l−1{µ̄l + E{|W |l}}. (4.1)

In particular, D2 ≤ 2(1 + µ̄2). We have also D1 ≤ √
2(1 + µ̄2), D0 = 1.

Lemma 19. Assume

T ′ ≤ 1, and T ′
n∑

j=1

E{|Xj |} ≤ 1/2m+1 (4.2)

for an even m. Then for p = 1, ..., m/2, and some constant C(p)

D2p ≤ C(p)(1 + z̄2p)
p, (4.3)

where again z̄k = ∑k
l=2 µ̄l .

Remark. In view of previous discussions, the quantity z̄k is typically bounded.
The bound (4.3) is quite rough, but it suffices for our purpose. Also, note that the
quantity on the left-hand side of (4.2) is smaller than η̄1T

′.
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Proof. For p = 1 (4.3) is true. We provide the induction step from p to p + 1,
making use of (3.5) and (3.2). We apply (3.5) to the function f (w) = w2p+1; the
remainder in this case vanishes, and we have, allowing the constant C(p) to vary
as usual,

E{W 2p+2} =
n∑

j=1

E{XjW 2p+1} =
n∑

j=1

E{XjW̃ 2p+1
1j }

+
n∑

j=1

2p+1∑

l=1

l∑

s=1

∑

|m|=l
(s) (2p + 1)!

(2p + 1 − l)! m!
E
{
XjUm

j (W̃s+1,j )
2p+1−l

}

≤ T ′(
n∑

j=1

E{|Xj |})D2p+1 + (1 + T ′)C(p)
2p+1∑

l=1

(

n∑

j=1

µl+1,j )D2p+1−l

≤ T ′(
n∑

j=1

E{|Xj |})D2p+1 + (1 + T ′)C(p)
2p+1∑

l=1

µ̄l+1D2p+1−l . (4.4)

Assume that D2p+2 ≥ 1, otherwise (4.3) is trivial. By the condition of the
lemma, T ′(

∑
j E{|Xj |}) ≤ 1/22p+2. Then from (4.1), (4.4) it follows that

D2p+2 ≤ 22p+1(µ̄2p+2 + E{W 2p+2})

≤ 22p+1µ̄2p+2 + (1/2)(D2p+2)
(2p+1)/(2p+2) + C(p)

2p+1∑

l=1

µ̄l+1D2p+1−l

≤ 22p+1µ̄2p+2 + (1/2)D2p+2 + C(p)

2p+1∑

l=1

µ̄l+1D2p+1−l ,

and hence,

D2p+2 ≤ 22p+2µ̄2p+2 + C(p)

2p+1∑

l=1

µ̄l+1D2p+1−l .

If l is odd, then by induction,

µ̄l+1D2p+1−l ≤ µ̄l+1C(p)(1 + z̄2p+1−l )(2p+1−l)/2

≤ C(p)(1 + z̄2p+2)
p+1.

If l is even, and consequently 2p + 1 − l is odd, we write

µ̄l+1D2p+1−l ≤ µ̄l+1D
(2p+1−l)/(2p+2−l)
2p+2−l

≤ µ̄l+1C(p)(1 + z̄2p+2−l )(2p+1−l)/2 ≤ C(p)(1 + z̄2p+2)
p+1.

It remains to combine the above bounds. ��
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We turn to comparing γ and ᾱ. For k ≤ r we have

E{Wk+1} =
k∑

m=0

(
k

m

)
γm+1E{Wk−m)}.

This known relation is a particular case of (1.1), see also [1].
We need also a version of Proposition 12 for f (w) = wk with T ′ replacing T .

Going through the proof of the proposition mentioned for this particular function,
and noting that in this case �k+1 ≡ 0, one can easily see that

E{Wk+1} =
k∑

m=0

(
k

m

)
ᾱm+1E{Wk−m} + R(k),

with a remainder satisfying

|R(k)| ≤ C(k)η̄k+1

(
max
i,s

max
l≤k

E{|W̃ l
si |}

)
T ′ = C(k)η̄k+1

(
max
l≤k

Dl

)
T ′. (4.5)

It is straightforward to verify that if

T ′ ≤ 1, η̄1T
′ < 1/2k+1, (4.6)

then (4.5) and (4.3) imply

|R(k)| ≤ C(k)η̄k+1(1 + z̄k+1)
k/2T ′

for k odd and even as well. Thus

|γk+1 − ᾱk+1| ≤
k−1∑

m=0

(
k

m

)
|(γm+1 − ᾱm+1)E{Wk−m}|

+ C(k)η̄k+1(1 + z̄k+1)
k/2T ′. (4.7)

The last step is to derive from this and (4.3) by induction that if (4.6) holds,
then

|γk+1 − ᾱk+1| ≤ C(k)η̄k+1(1 + z̄k+1)
k/2T ′. (4.8)

To this end it suffices first to observe that the bound (4.3) is certainly true for
E{W 2p} [one can, for example, write E{W 2p} ≤ 22p−1(EX1

2p + W
2p
11 ) ]; and

second to realize that if (k −m) is even, then by induction

|(γm+1 − ᾱm+1)E{Wk−m}| ≤ C(k)η̄m+1(1 + z̄m+1)
m/2T ′(1 + z̄k−m)(k−m)/2

≤ C(k)η̄k+1(1 + z̄k+1)
m/2T ′(1 + z̄k+1)

(k−m)/2 ≤ C(k)η̄k+1(1 + z̄k+1)
k/2T ′,

and if (k −m) is odd, then by induction

|(γm+1 − ᾱm+1)E{Wk−m}|
≤ C(k)η̄m+1(1 + z̄m+1)

m/2T ′(E{Wk−m+1})(k−m)/(k−m+1)

≤ C(k)η̄k+1(1 + z̄k+1)
m/2T ′((1 + z̄k−m+1)

(k−m+1)/2)(k−m)/(k−m+1)

≤ C(k)η̄k+1(1 + z̄k+1)
k/2T ′.

This proves Proposition 4. ��
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In general, if (4.6) holds for k = r , then
∣∣∣∣∣

r∑

m=1

γm+1

m!
E{f (m)(W)} −

r∑

m=1

ᾱm+1

m!
E{f (m)(W)}

∣∣∣∣∣

≤
r∑

m=1

|γm+1 − ᾱm+1|
m!

|E{f (m)(W)}|

≤ C(r)η̄r+1(1 + z̄r+1)
r/2T ′ max

m≤r |E{f (m)(W)}|
≤ C(r)η̄r (1 + z̄r+1)

r/2 f̂rT
′. (4.9)

Proof of Theorem 3. We repeat most of the proof of Theorem 2 and highlight the
differences. We now assume EW 2 = 1 instead of ᾱ2 = 1, the assumption that
led to (3.16). Also, assume that h, and hence the Stein function f = S(h) are
sufficiently smooth so that all derivatives appearing below exist.

Note also that, since Theorem 2 does not involve the characteristics 	’s, the
proof is simpler and does not use Lemma 17.

By (3.16), (3.18), (3.15), (4.9), (1.19), (1.20), and the facts that T ≤ T ′ and
η̄r ≤ η̄r+1, we have

Eh(W)− �(h) = E{f ′(W)−Wf (W)} = −
r∑

m=2

γm+1

m!
E{f (m)(W)} − Br(f ),

(4.10)

where

|Br(f )| ≤ C(r)[µ̄r+2ĥr + η̄r+1(1 + z̄r+1)
r/2f̂rT

′]. (4.11)

In analogy to the proof of Theorem 2, we now prove the following by induction:
if

η̄r+1T
′ ≤ 2−r−1, and T ′ ≤ 1, (4.12)

then for 1 ≤ t ≤ r

Eh(W)− �(h) =
t−1∑

ν=1

∫
h(x)Qν(dx)+Kt(h), (4.13)

or equivalently

Eh(W) =
t−1∑

ν=0

∫
h(x)Qν(dx)+Kt(h), Q0(dx) = ϕ(x)dx, (4.14)

where |Kt(h)| ≤ C(t)(1 + z̄t+1)
2t ĥt [µ̄t+2 + η̄t+1T

′].

Note that the case t = 1 is already established by (4.10) and (4.11) (with r = 1, us-
ing also the relation h(W)−�(h) = f ′(W)−Wf (W) and Lemma 16), and we pro-
ceed by induction to prove the case t = r assuming (4.14) holds for 1 ≤ t ≤ r − 1.
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It is obvious also that (4.12) implies η̄t+1T
′ ≤ 2−t−1 for t < r . Then by (4.10),

by the induction hypothesis applied to f (p) with t − 1 = r − p, and finally by
(1.12),

Eh(W)− �(h)

= −
r∑

p=2

γp+1

p!

(
r−p∑

ν=0

∫
f (p)(x)Qν(dx)+Kr−p+1(f

(p))

)
− Br(f )

= −
r∑

p=2

γp+1

p!

r−p∑

ν=0

∑
(ν)
pkν

∫
f (p)(x)Lν+2s(dx)

−
r∑

p=2

γp+1

p!
Kr−p+1(f

(p))− Br(f ).

From (4.8) and (3.4) it follows that

|γp+1| ≤ C(p)
{
µ̄p+1 + η̄p+1(1 + z̄p+1)

p/2T ′
}
. (4.15)

Applying Lemma 15, Lemma 16, (4.15) and the induction hypothesis on
Kr−p+1(f

(p)), and again allowing C(r) to vary between equations and to depend
only on r , we obtain that for p = 2, ..., r

|γp+1Kr−p+1(f
(p))|

≤ C(p)
[
µ̄p+1 + η̄p+1(1 + z̄p+1)

p/2T ′
]

×
[
(1 + z̄r−p+2)

2(r−p+1)f̂r+1[µ̄r−p+3 + η̄r−p+2T
′]
]

≤ C(r)(1 + z̄r )
2(r−1)ĥr

[
µ̄2µ̄r+2 + (µ̄p+1η̄1 + µ̄2z̄r+1)T

′]

+ C(r)(1 + z̄r+1)
2r+2−3p/2η̄p+1ĥrT

′ [µ̄r−p+3 + η̄r−p+2T
′]

≤ C(r)ĥr

{
(1 + z̄r )

2(r−1) [µ̄2µ̄r+2 + z̄r+1η̄r+1T
′]

+ (1 + z̄r+1)
2r−1T ′ [η̄r+1µ̄r+1 + η̄r+1η̄rT

′]}

≤ C(r)ĥr

{
(1 + z̄r+1)

2r−1 [µ̄r+2 + η̄r+1T
′]

+ (1 + z̄r+1)
2r
[
η̄r+1T

′ + (η̄r+1T
′)2
]}

≤ C(r)(1 + z̄r+1)
2r ĥr

[
µ̄r+2 + η̄r+1T

′] ,

if η̄r+1T
′ ≤ 2−r−1.

This, (4.11) and Lemma 16 complete the induction step for the remainder part.
Set t + 1 = r + 1 = d in the above and define Rd = Rr+1 = Kr(h). By (4.13) Rd
is the remainder in the l.-h.s.. of (1.22), so we easily obtain (1.22).

The main term is treated exactly as in the proof of Theorem 2, and the proof is
complete. ��
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5. Proofs of lemmas

5.1. Proofs of Lemmas 6 and 8

Proof of Lemma 6. As in Section 2.3 we set N1i = {i} ∪ {K(i)} ∪ {j ; K(j) = i

or K(i)}. Let V1i = ∑
j∈N1i

Yj .Then E{S2 | Kn} = ∑n
i=1 E{YiV1i | Kn}̇. It is

straight forward to verify that E{YiV1i | Kn} = σ 2 + (σ 2 − 2c)Ii + cNi + cNK(i).
Taking into account that

∑n
i=1NK(i) = ∑n

i=1N
2
i , and certainly

∑n
i=1Ni = n, we

have (2.8). The representations form1n, m2n, and hence (2.9), are straightforward.
Note now that for any l

E
{
Nl
i

}
≤ C(l)E

{
eNi

}
≤ C(l)




exp{(e − 1)
n∑

j=1

pji}



 ≤ C(l)e2λ. (5.1)

It is easy to calculate that

V ar

{
n∑

i=1

Ii

}
≤ 2n, V ar

{
n∑

i=1

N2
i

}
≤

n∑

i=1

V ar
{
N2
i

}
≤ Ce2λn (5.2)

in view of (5.1).
This implies (2.12). To prove (2.10), observe that

∑n
i=1N

2
i ≥ n, and hence

�2
n ≥ σ 2 + c − 2c + c = σ 2 > 0. Furthermore, by (2.8), (5.1), and since c < σ 2,

E{�2l
n } ≤ E






(
3σ 2 + σ 2

n

n∑

i=1

N2
i

)l

 ≤ C(l)σ 2l

{
1 + 1

n

n∑

i=1

E{N2l
i }
}

≤ C(l)σ 2le2λ. ��
Proof of Lemma 8. By construction,

E
∣∣N(s+1)i

∣∣l ≤ E



|Nsi | +NKs+1(i) +
∑

j∈Nsi\N(s−1)i

Nj




l

≤ C(l)E




|Nsi |l +Nl
Ks+1(i)

+ |Nsi \ N(s−1)i |l−1
∑

j∈Nsi\N(s−1)i

Nl
j




 .

For s ≤ d

E{Nl
Ks(i)

} = E{E{Nl
Ks(i)

∣∣∣K(i),K2(i), ..., Ks(i)}}

≤ E

{
E

{(
s +

∑

m

(K(i),...,Ks(i))I (K(m) = Ks(i))

)l∣∣∣∣

K(i),K2(i), ..., Ks(i)

}}

≤ 2l
[
sl +

n∑

j=1

P(Kd(i)} = j)E{Nl
j }
]

≤ C(d, l)e2λ
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in view of (5.1). Next we write

E




|Nsi \ N(s−1)i |l−1
∑

j∈Nsi\N(s−1)i

Nl
j






≤ E




|Nsi |l−1
∑

j∈Nsi\N(s−1)i

E
{
Nl
j

∣∣∣N1i , ...,Nsi

}



 .

As in (5.1), taking into account the structure of the sets N ’s described above, and
denoting by N c the complement of N , it is easy to verify that for j ∈ Nsi \N(s−1)i

E
{
Nl
j

∣∣∣N1i , ...,Nsi

}
≤ C(l)E

{
exp{Nj }

∣∣N1i , ...,Nsi

}

≤ C(l) exp





{(e − 1)

∑

k∈N c
si



pkj

/
∑

m∈N c
(s−1)i

pkm









≤ C(l)e2λ

in view of condition (2.7). Combining above bounds for s ≤ d − 1 we have finally
that

E
∣∣N(s+1)i

∣∣l ≤ C(l, d)e2λE |Nsi |l . (5.3)

On the other hand, since |N1i | = 1 +Ni +NK(i) − Ii, (5.1), the inequality

E
∣∣NK(i)

∣∣l =
n∑

j=1

pijE{Nl
j |K(i) = j } ≤

n∑

j=1

pijE{(1 +Nj)
l} ≤ C(l)e2λ,

and (5.3) imply (2.16). ��

5.2. Proof of Lemma 14

Before proving the first equality in (3.6), note that the second one follows simply
from the facts (see definitions) that c(s, 0) = 1, c(s, 1) = 0.

We now prove the first equality in (3.6). Replacing the vector U in (3.5) by Vs ,
and W̃1 by W̃s , taking expectations, using (1.8) and E{Ws} = 0 (which allows us
to start the sum below from l = 2), we have that for any k ≤ r + 1 − s

E{f (W)} = E{f (W̃s)} +
k∑

l=2

l∑

p=1

∑

|m|=l
(p) 1

m!
E{Vm

s }E{f ( l)(W̃s+p)}

+ E{Rks} + Tks

= E{f (W̃s)} +
k∑

l=2

l∑

p=1

χl(s, p)E{f ( l)(W̃s+p)}

+ E{Rks} + Tks, (5.4)
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where

|E{Rks}|

= |E{
k+1∑

p=1

∑

|m|=k+1

(p) mp

m!
Vm

s

1∫

0

(1−t)(mp−1)f (k+1 )(W̃s+p−1 + tUs+p−1)dt}|

≤ µk+1�k+1(f ),

Tks =
k∑

l=1

l∑

p=1

∑

|m|=l
(p) 1

m!

[
E{Vm

s f
( l)(W̃s+p)} − E{Vm

s }E{f ( l)(W̃s+p)}
]
,

so that

|Tks | ≤ f̂k

[
k∑

l=1

µl

]
T = f̂kηkT .

DenotingHks(f ) = E{Rks}+Tks andH0s = 0, we have |Hks(f )| ≤ µk+1�k+1(f )

+ f̂kηkT . Thus,

E{f (W̃s)}

= E{f (W)} −Hks(f )−
k∑

l=2

l∑

p=1

χl(s, p)E{f ( l)(W̃s+p)}

= E{f (W)} −Hks(f )−
k∑

l=2

l∑

p=1

χl(s, p)[E{f (l)(W)} −Hk−l,s+p(f (l))]

+
k∑

l1=2

l∑

p1=1

χl1(s, p1)

k−l1∑

l2=2

l2∑

p2=1

χl2(s + p1, p2)E{f ( l1+l2)(W̃s+p1+p2)},

(5.5)

where the last expression was obtained by applying the first relation to f (l). There-
fore,

|Hk−l,s+p(f (l))| = |E{Rk−l,s+p(f (l))} + Tk−l,s+p(f (l))|
≤ µk−l+1�k+1(f )+ f̂kηk−lT . (5.6)

We first treat only the main part, neglecting the remainder containing all terms
with H ’s, using ≈ to indicate this approximation. Repeating the above scheme we
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obtain

E{f (W̃s)} ≈ E{f (W)} −
k∑

l=2

ϒl1(s)E{f (l)(W)} +
k∑

l=4

ϒl2(s)E{f ( l)(W)}

−
k∑

l=6

ϒl3(s)E{f ( l)(W)} + ...

+ (−1)[k/2]
k∑

l=2[k/2]

ϒl[k/2](s)E{f ( l)(W)}

=
[k/2]∑

m=0

(−1)m
k∑

l=2m

ϒlm(s)E{f ( l)(W)} =
k∑

l=0

c(s, l)E{f ( l)(W)}

= E{f (W)} +
k∑

l=2

c(s, l)E{f ( l)(W)}.

It remains to consider the remainder. Using the bounds in (5.6) it is easy to
see that the remainder in the above expression for E{f (W̃s)}, which we denote by
Msk(f ), satisfies:

|Msk(f )| ≤ |
[k/2]∑

m=0

k∑

l=2m

ϒlm(s)[µk+1−l�k+1−l (f (l))+ f̂kηk−lT ]|

≤
k∑

l=0

c̃(s, l)[µk+1−l�k+1(f )+ f̂kηk−lT ],

and the result follows easily using (3.4).

5.3. Proofs of Lemmas 17 and 18

We give first a

Proof of Lemma 18. Note that

E{WtG(W ;h; l, ν)}
= −

∫ ∞

0

(∫ ∞

0
zle−xz−z

2/2h(ν)(x + z)dz

)
xtp(x)dx

+
∫ 0

−∞

(∫ 0

−∞
zle−xz−z

2/2h(ν)(x + z)dz

)
xtp(x)dx. (5.7)

Let first ν ≥ r − m, t ≥ 0, and g(x, z; t) = xte−xzp(x). Throughout this
proof, when integrating by parts, we use the boundedness of the derivatives of h
and that p(k) vanishes at infinity for k ≤ m− 1. (This is true due to the fact that, if
for a differentiable function p(x) its derivative is Lebesgue integrable, then p(x)
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is absolutely continuous and has limits at ±∞; see, e.g., [10]. Therefore, since p
is a density, p(±∞) = 0.)

Changing the order of integration in the above double integrals, and integrating
by parts s = ν +m− r times in the interior integrals, one would easily get that

E{WtG(W ;h; l, ν)}
=
∫ ∞

−∞
zle−z

2/2
(
h(ν−1)(z)g(0, z; t)− h(ν−2)(z)g′

x(0, z; t)+ ...

+ (−1)s−1h(v−s)(z)g(s−1)
x (0, z; t)

)
dz

− (−1)s
∫ ∞

0
zle−z

2/2
(∫ ∞

0
h(ν−s)(x + z)g(s)x (x, z; t)dx

)
dz

+ (−1)s
∫ 0

−∞
zle−z

2/2
(∫ 0

−∞
h(ν−s)(x + z)g(s)x (x, z; t)dx

)
dz,

where g(k)x = ∂kg/∂xk. (The main point here is that some of the integrals
∫∞

0 and∫ 0
−∞ can be united in one integral

∫∞
−∞.)

For the first type of the above integrals, we can write that for k ≤ s
∣∣∣∣
∫ ∞

−∞
zle−z

2/2h(ν−k)(z)g(k−1)
x (0, z; t)dz

∣∣∣∣

=
∣∣∣∣
∫ ∞

−∞
h(ν−s)(z)Ds−k

z [zle−z
2/2g(k−1)

x (0, z; t)]dz
∣∣∣∣

≤ ‖h(ν−s)‖∞
∫ ∞

−∞
|Ds−k
z [zle−z

2/2g(k−1)
x (0, z; t)]|dz

≤ C(t, l, ν)‖h(ν−s)‖∞ max
k≤s−1

|p(k)(0)|

≤ C(t, l, ν)‖h(r−m)‖∞ max
k≤m−1

|p(k)(0)|, (5.8)

since s = ν +m− r.

Regarding the second type of integrals, first note that, as a matter of fact we
should estimate expressions of the typeE{WtG(W ;h; l+ t−1, ν)} (see the defini-
tion of �r in (3.11)). So, when working with E{WtG(W ;h; l, ν)} we can assume
l ≥ t − 1.

Furthermore, g(s)x (x, z; t) is a linear combination of terms xt−kzj e−xzp(i)(x),
where k+ j + i = s. If l ≥ t − 1, noticing again that ν − s = r −m, we have for
ν ≥ r −m

∣∣∣∣
∫ ∞

0
zle−z

2/2
(∫ ∞

0
h(ν−s)(x + z)xt−kzj e−xzp(i)(x)dx

)
dz

∣∣∣∣

≤ ‖h(ν−s)‖∞
∫ ∞

0

(∫ ∞

0
zl+j e−xze−z

2/2dz

)
xt−k|p(i)(x)|dx

≤ C(ν, l)‖h(r−m)‖∞
∫ ∞

0
(1 + x)−l−j−1xt−k|p(i)(x)|dx
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≤ C(ν, l)‖h(r−m)‖∞
∫ ∞

0
(1 + x)

t−1−l |p(i)(x)|dx

≤ C(ν, l)‖h(r−m)‖∞ · ‖p(i)‖1. (5.9)

The integral
∫ 0
−∞ zle−z2/2

∫ 0
−∞ h(ν−m)(x + z)g

(m)
x (x, z)dxdz may be treated

similarly. Combining the above bounds we obtain for ν ≥ r −m

∣∣E{WtG(W ;h; l + t − 1, ν)}∣∣

≤ C(t, l, ν)‖h(r−m)‖∞
{

max
k≤m−1

|p(k)(0)| + max
i≤m

‖p(i)‖1

}
.

Similarly one can consider |E{G(W ;h; l, ν)}| .
The case ν < r − m may be considered in the same way, but in this case one

should not integrate by parts but estimate the expression (5.7) directly in the spirit of
(5.9). It will lead, in particular, instead of the term ‖h(r−m)‖∞ to the term ‖h(v)‖∞.

We turn to the last two terms in the definition (3.11). Integration by parts implies
that

|E{h(r)(W)}| ≤ ‖h(r−m)‖∞
∫ ∞

−∞
|p(m)(x)|dx.

Also, obviously |l(h)| ≤ C(l)‖h‖∞, which completes the proof. ��
For proving Lemma 17 we need two more lemmas which we prove in the end

of this section.

Lemma 20. For any r.v. W and sufficiently smooth h

|E{WtG(W ; f ; l, n)}| ≤ C(l, n)[ max
l+1≤s≤l+n, k≤n−1

|E{Wt+1G(W ;h; s, k)}|
+ max
l≤s≤l+n+1, k≤n−1

|E{WtG(W ;h; s, k)}| + |�(h)|E{|W |t /[1 + |W |]l+n}].
(5.10)

Lemma 21. For any natural l, n

|l(f (n))| ≤ C(l, n) max
k≤2n+l+1

|k(h)|, (5.11)

provided that all integrals k(h(p)) are finite for p ≤ n, k ≤ 2n+ l + 1.

Proof of Lemma 17. Since f ′(x)− xf (x) = h(x)− �(h), for k = 1, 2, ...

f (k)(x) = xf (k−1)(x)+ (k − 1)f (k−2)(x)+ [h(x)− �(h)](k−1). (5.12)

Note also that for h ≡ 1

|G(x; 1; k, 0)| ≤ C(k). (5.13)
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For (3.13), we have from (5.12), (3.10), (5.13):

|E{f (r+1)(W)}|
≤ |E{Wf (r)(W)}| + r|E{f (r−1)(W)}| + |E{h(r)(W)}|
≤ C(r)

{
max
l≤r,ν≤r

{|E{WG(W ;h; l, ν)}|

+ |E{G(W ;h; l, ν)}|} + |E{h(r)(W)}| + �(h)
}

≤ C(r)�r(h;W).

We turn to (3.14), starting with the last term in the definition (3.11). Since
2 ≤ p ≤ r , by (5.11)

max
l≤(r+1−p)3

|l(f (p))| ≤ C(r) max
l≤(r−1)3

max
k≤2r+l+1

|k(h)|
≤ C(r)max

k≤r3
|k(h)| ≤ C(r)�r(h;W).

For the third term in (3.11), by (3.13) which has been already proved, we have
|E{Dr+1−pf (p)(W)}| = |E{f (r+1)(W)}| ≤ C(r)�r(h;W).

Turn to the first term in (3.11). Noticing that G(W ; f (p); l + t − 1, ν)} =
G(W ; f ; l + t − 1, p + ν), and using (5.10) we have

max
1≤t≤(r+1−p)3, l≤(r+1−p)3, ν≤r+1−p

|E{WtG(W ; f (p); l + t − 1, ν)}|

≤ C(r)

{
max

1≤t≤(r+1−p)3, l≤(r+1−p)3, p+ν−1≤r

[
max

l+t≤s≤l+t−1+p+ν, k≤p+ν−1

|E{Wt+1G(W ;h; s, k)}|
+ max

l+t−1≤s≤l+t+p+ν, k≤p+ν−1
|E{WtG(W ;h; s, k)}|

+ �(h)E{|W |t /[1 + |W |]l+t−1+p+ν}
]}
.

Taking into account that p ≥ 2, and setting in the two consecutive “inside” maxima
s = j + t , and s = j + t − 1, respectively, we get that the last quantity is not less
than

C(r)

{
max

1≤t≤(r−1)3, l≤(r−1)3, p+ν−1≤r
[

max
l≤j≤l+r, k≤r

|E{Wt+1G(W ;h; j + (t + 1)− 1, k)}|
+ max

l≤j≤l+r+2, k≤r
|E{WtG(W ;h; j + t − 1, k)}|

+ �(h)E{|W |t /[1 + |W |]t−1+p}
]}
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≤ C(r)

{
max

t+1≤(r−1)3+1

(
max

j≤(r−1)3+r, k≤r
|E{Wt+1G(W ;h; j+(t+1)−1, k)}|

)

+ max
t≤(r−1)3

(
max

j≤(r−1)3+r+2, k≤r
|E{WtG(W ;h; t + j − 1, k)}| + �(h)

)}

≤ C(r)

{
max
t≤r3

max
0≤j≤r3, k≤r

|E{WtG(W ;h; t + j − 1, k)}| + �(h)

}

≤ C(r)�r(h;W).
Similarly, one can get

max
l≤(r+1−p)3, ν≤r+1−p

|E{G(W ; f (p), l, ν)}| ≤ C(r)�r(h;W). ��

Proof of Lemma 20. It is straightforward to derive from (5.12) that

G(x; f ; l, n)
= xG(x; f ; l, n− 1)+G(x; f ; l + 1, n− 1)+ (n− 1)G(x; f ; l, n− 2)

+G(x;h− �(h); l, n− 1). (5.14)

Furthermore, it is easy to verify that for x ≥ 0, and a function q(x)
∫ ∞

0

∫ ∞

0
tkzle−(t+z)

2/2e−(t+z)xq(x + t + z)dtdz

= C1(l, k)

∫ ∞

0
ul+k+1e−u

2/2e−uxq(x + u)du, (5.15)

where C1(l, k) = l!k!/(l + k + 1)! Similarly for x < 0
∫ 0

−∞

∫ 0

−∞
tkzle−(t+z)

2/2e−(t+z)xq(x + t + z)dtdz

= −C1(l, k)

∫ 0

−∞
ul+k+1e−u

2/2e−uxq(x + u)du. (5.16)

Making use of (3.10) and (5.15), it is straightforward to derive that for x ≥ 0
∫ ∞

0
zle−xz−z

2/2f (n)(x + z)dz

=
∫ ∞

0
zle−xz−z

2/2

(
−

n∑

k=0

(−1)n−k
(
n

k

)

×
∫ ∞

0
tn−ke−(x+z)t−t

2/2Dk{h(x + z+ t)− �(h)}dt
)
dz

= −
n∑

k=0

(−1)n−k
(
n

k

)∫ ∞

0

∫ ∞

0
tn−kzle−x(t+z)e−(t+z)

2/2

× Dk{h(x + t + z)− �(h)}dtdz (5.17)

= −
n∑

k=0

C2(l, n, k)

∫ ∞

0
u1+l+n−ke−u

2/2e−ux

× Dk{h(x + u)− �(h)}du, (5.18)

where C2(l, n, k) = (−1)n−k
(
n
k

)
l!(n−k)!

(l+n−k+1)! .
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Following (5.16) we get similarly “the same” for x ≤ 0:
∫ 0

−∞
zle−xz−z

2/2f (n)(x + z)dz

= −
n∑

k=0

C2(l, n, k)

∫ 0

−∞
u1+l+n−ke−u

2/2e−uxDk{h(x + u)− �(h)}du.

(5.19)

Thus,

G(x; f ; l, n) = −
n∑

k=0

C2(l, n, k)G(x;h− �(h); 1 + l + n− k, k). (5.20)

Below and above, as usual, C(k, l, n) or C(l, n) denote some coefficients
depending only on k, l, n, and perhaps different in different formulas.

From (5.20) and (5.14), we get that

G(x; f ; l, n) = xG(x; f ; l, n− 1)+G(x; f ; l + 1, n− 1)

+ (n− 1)G(x; f ; l, n− 2)+G(x;h− �(h); l, n− 1)

=
n−1∑

k=0

C(k, l, n)[xG(x;h− �(h); l + n− k, k)

+G(x;h− �(h); 1 + l + n− k, k)]

+
n−2∑

k=0

C(k, l, n)G(x;h− �(h); l + n− 1 − k, k)

+G(x;h− �(h); l, n− 1).

Note that in the expression appearing above,G(x;h−�(h); l, k) = G(x;h; l, k)
unless k = 0. Also

|G(x; 1, l, 0)| =
∣∣∣∣

(
I (x ≥ 0)

∫ ∞

0
−I (x < 0)

∫ 0

−∞

)
zle−xz−z

2/2dz

∣∣∣∣

≤ C(l)(1 + |x|)−l−1.

Thus,

G(x; f ; l, n) =
n−1∑

k=0

C(k, l, n)[xG(x;h; l+n− k, k)+G(x;h; 1 + l + n− k, k)]

+
n−2∑

k=0

C(k, l, n)G(x;h; l + n− 1 − k, k)

+G(x;h; l, n− 1)+ C(l, n)�(h)O([1 + |x|]−l−n),
where the last term above arises from terms of the formG(x;h− �(h); l, k), with
k = 0. A straightforward derivation of (5.10) from the above completes the proof.

��
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Proof of Lemma 21. Combining (5.18) and (5.19) for x = 0, we have

|l(f (n))| = |
∫ ∞

−∞
zlf (n)(z)ϕ(z)dz|

≤ C(l, n)

n∑

k=0

|
∫ ∞

−∞
z1+l+n−kDk{h(z)− �(h)}ϕ(z)dz|

≤ C(l, n)

{
|�(h)| + max

k≤n, s≤l+n+1
|
∫ ∞

−∞
zsh(k)(z)ϕ(z)dz|

}

≤ C(l, n)

{
|�(h)| + max

k≤n, s≤l+n+1
|
∫ ∞

−∞
h(z)Dk[zsϕ(z)]dz|

}

≤ C(l, n)

{
|�(h)| + max

k≤n, s≤l+n+1
max
j≤s+k

|
∫ ∞

−∞
zjh(z)ϕ(z)dz|

}

≤ C(l, n) max
j≤2n+l+1

|j(h)|.

(It is not difficult to realize that if all integrals involved are finite, in integration by
parts above all limits at ±∞ vanish.)
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