
Digital Object Identifier (DOI) 10.1007/s00440-003-0268-0
Probab. Theory Relat. Fields 126, 289–306 (2003)

Franco Fagnola · Rolando Rebolledo

Transience and recurrence of quantum Markov
semigroups

Received: 27 January 2003 / Revised version: 19 February 2003 /
Published online: 12 May 2003 – c© Springer-Verlag 2003

Abstract. This article introduces a concept of transience and recurrence for a Quantum Mar-
kov Semigroup and explores its main properties via the associated potential. We show that an
irreducible semigroup is either recurrent or transient and characterize transient semigroups
by means of the existence of non trivial superharmonic operators.

1. Introduction

Transience and recurrence come to a probabilist mind as the first step in the clas-
sification of Markov processes. In classical probability, these two notions have
been extensively studied in connection with Semigroup and Potential Theory. In
the non commutative framework, quantum Markov semigroups arise as a natural
extension of the classical notion. Moreover, they are a fundamental tool in the non
commutative version of the theory due to both, the non existence of trajectories
and the difficulties to handle a good notion of stopping time. Although the large
time behavior of quantum Markov semigroup has been the subject of a number
of investigations, a detailed study of recurrence and transience is still unavailable.
This paper is aimed at filling that gap.

Quantum Markov Semigroups are usually defined on von Neumann algebras,
typical examples of which areL∞ spaces (the commutative case) and B(h), the non
commutative algebra of all bounded linear operators on a complex Hilbert space
h. In general, any von Neumann algebra A may be considered as a subalgebra of
B(h) for a suitable space h and it is the dual of a Banach space A∗. Within this
framework a Quantum Markov Semigroup, denoted T and abbreviated QMS, is a
weak∗-continuous semigroup of normal completely positive maps T = (Tt (·))t≥0
on A such that Tt (1) = 1 for all t ≥ 0, where 1 is the unit of A. This mathematical
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object provides both, a good model for the description of open quantum systems
and a suitable non commutative extension of classical Markov semigroups. This
is a rich interplay between Probability and Physics which allows us to investigate
new mathematical problems with physical significance.

Here we introduce a potential associated to a QMS, U(a) = ∫∞
0 Tt (a) dt , for

a ∈ A (see the precise definition in section 3). According to the nature of U(a)
we define transience or recurrence. Then we explore its main related properties as,
for instance, the relation with sub (or super) harmonic operators and the dichoto-
my transience-recurrence for irreducible semigroups. We end the paper by some
applications to QMS arising in Quantum Optics.

It is worth noticing here that the scope of the present investigation is not mere-
ly mathematical. Its results apply to the classification of an overwhelming variety
of open quantum system evolutions described through master equations (see for
instance [1], [11], [17], [21]), whose solution is a QMS. Thus, a QMS is the most
rigorous and successful model of the irreversible evolution of quantum systems in
interaction with the environment, which is influenced by effects such as dissipation
and decoherence. In this paper we show that a suitable probabilistic view on these
problems provides powerful tools to attack difficult operator equations that are hard
to handle otherwise.

2. Markov semigroups on von Neumann algebras

Throughout the paper we keep von Neuman algebras as the basic structure support-
ing our investigation. If A is a von Neumann algebra, its predual is denoted A∗. A
state ϕ is an element of A∗ such that ϕ(1) = 1, where 1 is the unit of A. As a rule,
we will only deal with normal states ϕ for which there exists a density matrix ρ,
that is, a positive trace-class operator of h with unit trace, such that ϕ(a) = tr(ρ a)
for all a ∈ A.

We say that an operator is non trivial if it is not a multiple of 1.
The concept of irreducible Quantum Markov semigroups is oftenly used in the

paper. It refers to the probabilistic notion of irreducibility as defined in our paper
[13]. This simply means that a QMS has no non-trivial subharmonic projections. A
positive operator a is subharmonic (respectively superharmonic, resp. harmonic),
if Tt (a) ≥ a (resp. Tt (a) ≤ a, resp. Tt (a) = a), for all t ≥ 0.

We shall often make use of the following elementary remark. Given a positive
x ∈ A and a projection p, pxp = 0 implies p⊥xp = pxp⊥ = 0, (see Lemma II.1
in [13]).

We recall that for any normal stateϕ on the von Neumann algebra A, the support
projection S(ϕ) is the smallest projection in A such that ϕ(aS(ϕ)) = ϕ(S(ϕ)a) =
ϕ(a), for all a ∈ A (c.f. [9], Prop.3, p. 63). If S(ϕ) = 1, we say that the state is
faithful.

Proposition 1. Let T be a QMS defined on the von Neumann algebra A. Assume
that there is an invariant state ϕ, then its support projection is subharmonic.

Proof. Let p = S(ϕ). The invariance of ϕ yields ϕ(p − pTt (p) p) = ϕ(p −
Tt (p)) = 0. Moreover pTt (p) p ≤ p, whence p = pTt (p) p. Therefore, the
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projection p⊥ = 1 − p satisfies pTt
(
p⊥)p = 0. It follows that p⊥Tt

(
p⊥)p = 0

and pTt
(
p⊥)p⊥ = 0. Thus, Tt

(
p⊥) = p⊥Tt

(
p⊥)p⊥ ≤ p⊥ and p ≤ Tt (p) for

all t ≥ 0. ��

3. Potential

Let T be a Quantum Markov Semigroup (QMS) on a von Neumann algebra A of
operators on a complex Hilbert space h.

Inspired by the classical theory of Markov processes [8], this section introduces
the non commutative version of potential and discusses its main properties. This is
the main tool in the study of recurrence and transience.

Throughout this paper, the use of quadratic forms settings will follow the book
of Kato (see [18]).

Definition 1. Given a positive operator x ∈ A we define the form-potential of x
as a quadratic form U(x) on the domain

D(U(x)) =
{

u ∈ h :
∫ ∞

0
〈u, Ts (x) u〉ds < ∞

}

,

by

U(x)[u] =
∫ ∞

0
〈u, Ts (x) u〉ds, (u ∈ D(U(x))).

This is clearly a symmetric and positive form and by Thm. 3.13a and Lemma
3.14a p.461 of [18] it is also closed. Therefore, when it is densely defined, it is
represented by a self-adjoint operator (see Th.2.1, p.322, Th. 2.6, p.323 and Th.
2.23 p.331 of [18]). This motivates the following definition.

Definition 2. A positive x ∈ A such that D(U(x)) is dense is called T –integrable
or simply integrable. We denote A+

int the cone of positive integrable elements of
A. For any x ∈ A+

int, we call potential of x the self-adjoint operator U(x) which
represents U(x).

Note that D(U(x)1/2) = D(U(x)) (see Th. 2.23, p.331 in [18]).
We recall that a closed operator A is affiliated with a von Neumann algebra A

if a′D(A) ⊆ D(A) and a′A ⊆ Aa′ for all a′ ∈ A′.

Proposition 2. For all x ∈ A+
int, the operator U(x) is affiliated with A.

Proof. Fix y ∈ A′ and define Xt = ∫ t
0 Ts (x) ds, for all t ≥ 0. Clearly, both Xt

and X1/2
t belong to A. Given any u ∈ h,

∫ t

0
〈yu, Ts (x) yu〉ds = 〈yX1/2

t u, yX
1/2
t u〉 ≤ ‖y‖2 〈u,Xtu〉.

Thus, if u ∈ D(U(x)), then

sup
t≥0

∫ t

0
〈yu, Ts (x) yu〉ds ≤ ‖y‖2

∫ ∞

0
〈u, Ts (x) u〉ds = ‖y‖2 U(x)[u].
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It follows that, if u ∈ D(U(x)) = D(U(x)1/2), then yu ∈ D(U(x)).
Now, if v, u ∈ D(U(x)), then y∗v, yu ∈ D(U(x)) and

∫ t

0
〈y∗v, Ts (x) u〉ds =

∫ t

0
〈Ts (x) v, yu〉ds,

so that letting t → ∞ and using complex polarization, we get

〈y∗v,U(x)u〉 = 〈U(x)v, yu〉.
That is, 〈v, y U(x)u〉 = 〈U(x)v, yu〉 it follows that yu ∈ D(U(x)) and U(x)yu =
y U(x)u, hence y U(x) ⊆ U(x)y. ��
Proposition 3. Let T be a Quantum Markov Semigroup and let x ∈ A positive.
Then the orthogonal projection p onto the closure of D(U(x)) is subharmonic.
In particular, if T is irreducible, then D(U(x)) is either dense or {0}.
Proof. We first notice that p ∈ A. Indeed, arguing as in the proof before, we can
show that for every u ∈ D(U(x)) and y ∈ A′, yu ∈ D(U(x)). Hence,

pypu = pyu = yu = ypu.

In other words, since D(U(x)) is dense in the range of p, we obtain pyp = yp.
On the other hand, y∗ ∈ A′, so that py∗p = y∗p. Therefore, pyp = py. Hence

yp = py, so that p ∈ A′′ = A.
We now show that Tt (p) ≥ p for any t ≥ 0. Let ρ be a density matrix ρ such

that
ρ =

∑

k

λk|uk〉〈uk|, λk ≥ 0,
∑

k

λk = 1, uk ∈ D(U(x)).

Note that ρ defines a normal linear functional on A. Therefore ρ ∈ A∗. More-
over, denote ϕ ∈ A∗ the state given by ϕ(a) = tr(ρa), for all a ∈ A. For any
t ≥ 0 there exists (see [9] Th.1, p.57) a density matrix ρt such that T∗t (ϕ) (a) =
tr(ρta) for all a ∈ A. Notice that for all s ≥ 0, tr(ρtTs (a)) = T∗t (ϕ) (Ts (a)) =
tr(ρTt+s (a)). Hence,

∫ ∞

0
tr(ρtTs (a))ds =

∫ ∞

0
tr(ρTt+s (a))ds =

∫ ∞

t

tr(ρTs (a))ds < ∞.

It follows that
ρt =

∑

k

λk(t)|uk(t)〉〈uk(t)|,

with uk(t) ∈ D(U(x)), for all k ≥ 1 and t ≥ 0 such that λk(t) > 0.
As a result, the range of ρt is included inD(U(x)), i.e.pρt = ρtp = pρtp = ρt .
Thus, tr(ρTt (p)) = tr(ρtp) = tr(ρt ) = 1, and

0 = tr(ρ(p − Tt (p))) = tr(ρ(p − pTt (p) p)).

However, we also have pTt (p) p ≤ pTt (1) p ≤ p. Therefore, pTt (p) p = p,
i.e. pTt

(
p⊥)p = 0, (see Lemma II.1 in [13]) so that Tt (p) ≥ p.

The second part is a trivial consequence of the above. ��
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Potentials are a natural source of superharmonic (or excessive) operators. In-
deed, heuristically,

Tt (U(x)) = Tt
(∫ ∞

0
Ts (x) ds

)

=
∫ ∞

t

Ts (x) ds ≤ U(x),

however U(x) is possibly unbounded. Further on, bounded potentials will be asso-
ciated with our concept of transience (see Theorems 2 and 5).

Theorem 1. For any x ∈ A+
int, the contraction

y = U(x)(1 + U(x))−1, (1)

is superharmonic and Tt (y) converges strongly to 0 as t → ∞.

Proof. Fix x ∈ A+
int and define Ut (x) = ∫ t

0 Ts (x) ds (t ≥ 0). For any s, t ≥ 0,

Tt (Us(x)) =
∫ t+s

t

Tr (x) dr = Ut+s(x)− Ut (x). (2)

It follows:

Tt (Us(x)) ≤ Ut+s(x). (3)

Since Tt (·) is in particular 2-positive, identity preserving and the function x �→
(1 + x)−1 is operator monotone (see e.g. [6]), we have

(1 + Tt (Us(x)))−1 ≤ Tt
(
(1 + Us(x))−1

)
.

From (3),

(1 + Ut+s(x))−1 ≤ Tt
(
(1 + Us(x))−1

)
.

It follows:

Tt
(
Us(x)(1 + Us(x))−1

)
= 1 − Tt

(
(1 + Us(x))−1

)

≤ 1 − (1 + Ut+s(x))−1

= Ut+s(x) (1 + Ut+s(x))−1 .

The map Tt (·) is normal and Ut+s(x) (1 + Ut+s(x))−1 strongly converges to y
as s → ∞. Therefore, letting s → ∞ yields Tt (y) ≤ y.

Finally, (2) implies

Tt
(
Us(x)(1 + Us(x))−1

)
≤ Tt (Us(x)) = Ut+s(x)− Ut (x),

so that for all u ∈ D(U(x)),

〈u, Tt
(
Us(x)(1 + Us(x))−1

)
u〉 ≤

∫ t+s

t

〈u, Tr (x) u〉dr.
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Letting s → ∞ again,

〈u, Tt (y) u〉 ≤
∫ ∞

t

〈u, Tr (x) u〉dr,

thus, 〈u, Tt (y) u〉 vanishes, as t goes to infinity. Since D(U(x)) is dense and the
operators Tt (y) are uniformly bounded in norm by ‖y‖ ≤ 1, the last statement of
the theorem follows. ��
Proposition 4. For any x ∈ A+, let K(x) = {u ∈ D(U(x)) : U(x)[u] = 0}. Then
the projection p on K(x) is subharmonic.

Proof. We use here the notations of the previous proof. Note that for x ∈ A+,
U(x)[u] = 0 if and only if Us(x)u = 0 for each s ≥ 0. Fix s > 0 and let qn(s)
denote the spectral projection of Us(x) associated with the interval ]1/n, ‖Us(x)‖],
(n ≥ 1).

It is worth noticing that q(s) = l.u.b. qn(s) is the projection onto the closure of
the range of Us(x). Equation (3) yields

Tt (qn(s)) ≤ nTt (Us(x)) ≤ nUt+s(x).

Since Tt (qn(s)) ≤ 1 we obtain,

Tt (qn(s))n ≤ nUt+s(x),

that is
Tt (qn(s)) ≤ n1/n Ut+s(x)1/n.

Therefore, letting n → ∞,

Tt (q(s)) ≤ q(t + s).

Now, notice that the family q(s) is increasing with s and q = l.u.b. q(s) is equal
to 1 − p, the projection onto the orthogonal of K(x). The conclusion follows from
the previous inequality letting s → ∞. ��

4. Recurrent and transient QMS

Recurrence and transience arise from the properties of non commutative potential,
as this section shows.

A self-adjoint operator X is strictly positive if 〈u,Xu〉 > 0 for any u ∈ D(X),
u �= 0 (we will write simply X > 0).

Theorem 2. The following statements are equivalent:

1. There exists a positive x ∈ A with U(x) bounded and U(x) > 0.
2. There exists a strictly positive x ∈ A with U(x) bounded.
3. There exists a positive x ∈ A with U(x) > 0.
4. There exists an increasing sequence of projections (pn)n≥1, with l.u.b.pn = 1

and U(pn) bounded for all n.
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Proof. 1⇒2: Let xλ = Rλ(x) (λ > 0), where Rλ(·) is the resolvent of the semi-
group T . Since U(x) > 0, then xλ > 0. Moreover, the resolvent identity implies

U(xλ) = U(Rλ(x)) = λ−1 (U(x)− Rλ(x)) ≤ λ−1U(x).

Thus, U(xλ) is bounded.
2⇒1: Clearly if x > 0 then U(x) > 0.
1⇒3 is self-evident.
3⇒1: Let x ∈ A positive with U(x) > 0 and set y as in Theorem 1. Clearly

0 < y < 1, and is a superharmonic operator. We may assume y in the domain of
the generator L(·) of T (otherwise replace y by Rλ(y); Tt (Rλ(y)) still vanishes
as t → ∞), then L(y) ≤ 0 and

∫ t

0
Ts (−L(y)) ds = y − Tt (y) , (t ≥ 0).

Letting t → ∞ yields U(−L(y)) = y. Thus −L(y) satisfies condition 1.
4⇒1: Define cn = 2−n ‖U(pn)‖−1, and x = ∑

n≥0 cnpn. Then x is strictly
positive, U(x) is bounded and U(x) > 0.

1⇒4: It suffices to take pn as the spectral projection of x associated with the
interval ]1/n, ‖x‖]. ��
Corollary 1. If A = B(h) and h is separable, then the statements of Theorem 2
are all equivalent to the following:

There exists an increasing sequence of finite dimensional projections (pn)n≥1,
with l.u.b.pn = 1 and U(pn) bounded for all n.

Proof. Clearly it suffices to prove that the statements of Theorem 2 imply the above
condition on finite dimensional projections. Let (pm;m ≥ 1) be an increasing se-
quence of projections satisfing the statement 4. For each m let (pm,k; k ≥ 1) be an
increasing sequence of finite dimensional projections on h with l.u.b.kpm,k = pm.
Note that 0 ≤ U(pm,k) ≤ U(pm) for all m, k. Therefore we have ‖U(pm,k)‖ ≤
‖U(pm)‖ < ∞. Finally, since h is separable, a diagonalization argument shows the
existence of a subsequence (pmn,kn; n ≥ 1)with l.u.b.npmn,kn = 1 and ‖U(pmn,kn)‖
< ∞ for all n. ��
Corollary 2. Let A = L∞(E, E, µ) where E is a topological space, E its Borel
σ -field and µ a σ -finite measure. Suppose that each U(f ), with f ∈ A is a low-
er semicontinuous function, then, under the equivalent conditions of Theorem 2,
U(1K) is bounded for each compact set K . If in addition E is a countable union
of compact sets, all the conditions of Theorem 2 are equivalent to: there exists an
increasing sequence of (Kn)n≥1 of compact sets such that E is the union of the
Kn’s and U(1Kn) is bounded for all n ≥ 1.

Proof. We first notice that, within this framework, any projection turns out to be the
multiplication operator by the indicator function of an element of E . Thus, condi-
tion 4 can be rewritten as follows: there exists an increasing sequence (An)n≥1 ⊆ E
whose union is E and U(1An) is bounded for any n ≥ 1. If each U(f ) is lower
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semicontinuous, then arguing as in the proof of 1⇒4, we can choose open An’s.
Therefore, for each compact K there exists an m, such that K ⊆ Am, so that
U(1K) ≤ U(1Am) is bounded.

The last claim follows now immediately. ��
Remark. The condition that U(f ) be lower semicontinuous is fulfilled, for instance,
by strong Feller semigroups, i.e. Tt (f ) is a continuous function for any t > 0 and
f ∈ L∞(E, E, µ).

Theorem 3. The following are equivalent:

1. For each positive x ∈ A and u ∈ h either u �∈ D(U(x)) or u ∈ D(U(x)) and
U(x)[u] = 0.

2. For each projection p and u ∈ h either u �∈ D(U(p)) or u ∈ D(U(p)) and
U(p)[u] = 0.

Proof. Clearly 1⇒2.We prove then that 2⇒1. Letx ∈ A andu ∈ h. Ifu ∈ D(U(x))
then, for each spectral projection p of x associated with an interval ]r, ‖x‖], u ∈
D(U(p)). Therefore, by condition 2, we have U(p)[u] = 0 i.e. 〈u, Tt (p)u〉 = 0
for all t ≥ 0. It follows then that 〈u, Tt (x)u〉 = 0 for all t ≥ 0. As a consequence
U(x)[u] = 0. ��
Corollary 3. If A = B(h), with h separable, the statements of Theorem 3 are
all equivalent to: for each finite dimensional projection p either U(p) = 0 or
D(U(p)) = {0}.
Proof. Suppose that the above condition on finite dimensional projections holds
and let p be any projection in A. Let (pn; n ≥ 1) be an increasing sequence of
finite dimensional such that l.u.b.pn = p. If u ∈ D(U(p)) then u ∈ D(U(pn)) and
U(pn)[u] = 0 for all n ≥ 1. This implies clearly 〈u, Tt (pn)u〉 = 0 for all n ≥ 1
and all t ≥ 0 and, letting n tend to infinity, 〈u, Tt (p)u〉 = 0 for all t ≥ 0. It follows
that U(p)[u] = 0. ��
Corollary 4. Let A = L∞(E, E, µ) where E is a locally compact space with
countable basis, E its Borel σ -field and µ a σ -finite measure. Then all the condi-
tions of Theorem 3 are equivalent to: for all compact set K either U(1K) = 0 or
D(U(1K)) = {0}.
Proof. Here, again, each projection is identified with the indicator function of a
Borel set. The hypothesis thatE is locally compact with countable basis implies the
inner regularity of the measureµ, so that inside any Borel setA, such thatµ(A) > 0
we can find a compact K with µ(K) > 0. The conclusion follows readily. ��

Corollaries 2 and 4, which recover well-known properties of recurrent and tran-
sient classical Markov semigroups (see [4], [16]), inspire the following definition.

Definition 3. A QMS is transient (resp. recurrent) if any of the equivalent conditions
of Theorem 2 (resp. Theorem 3) holds.

Proposition 5. If a QMS is irreducible, then it is either recurrent or transient.



Transience and recurrence of quantum Markov semigroups 297

Proof. Indeed, if a QMS is irreducible, then the domain of the form-potential U(x)
is either {0} or dense by Proposition 3. ��

We end this section by a last proposition on the large time behaviour of a QMS,
derived from the definition of potential.

Proposition 6. Let x ∈ A+
int. Then, for any state ϕ, limt→∞ ϕ(Tt (x)) = 0. In

particular, a transient semigroup has no invariant state.

Proof. The predual semigroup T∗ on A∗ is a C0-strongly continuous contraction
semigroup and the function t �→ T∗t (ϕ) is uniformly continuous in the norm of
A∗. Thus, the function f (t) = ϕ(Tt (x)) = T∗t (ϕ) (x) is uniformly continuous.

Suppose first that the eigenvectors of the density matrix of ϕ belong to the do-
main of U(x), then f is also integrable on [0,∞[. If lim supt→∞ f (t) > 2c >
0, then, by uniform continuity, there exists δ = δ(c) > 0, such that for any
t ≥ 0,

∫∞
t
f (s)ds > cδ. But this contradicts the integrability of f , so that

lim supt→∞ f (t) = 0.
The same conclusion also holds for an arbitrary state ϕ by an approximation

based on the density of D(U(x)).
If the QMS is transient, take an increasing sequence of projections (pn)n≥1

with U(pn) bounded. Suppose that ϕ is an invariant state, we have then ϕ(pn) =
ϕ(Tt (pn)) → 0 as t → ∞ and we obtain ϕ(pn) = 0, for each n. Letting n → ∞,
we end up with the contradiction ϕ(1) = 0. ��

5. Transience and superharmonic operators

The existence of non trivial superharmonic operators turns out to be intimately
connected with transience.

Definition 4. We say that a positive y ∈ A is a potential if there exists x ∈ A+
int,

such that U(x) = y.

For a family of positive operators (yt )t≥0 we write yt ↓ 0 if yt ≤ ys for each s ≤ t ,
and moreover yt → 0 strongly.

Theorem 4. A positive y ∈ A is a potential if and only if y is a superharmonic
operator and Tt (y) ↓ 0 as t ↑ ∞.

Proof. If y is a potential, it is superharmonic since, like in Theorem 1,

Tt (y) = Tt (U(x)) =
∫ ∞

t

Ts (x) ds ≤ U(x) = y,

and Tt (y) converges strongly to 0.
Conversely, assume y to be superharmonic and Tt (y) ↓ 0 as t ↑ ∞. Replacing

y by Rλ(y), if needed, one may also assume that y belongs to the domain of the
generator L of T . Since y − Tt (y) ≥ 0 for all t > 0, it turns out that −L(y) is in
A+. Define x = −L(y). Then, given any t ≥ 0,

Ut (x) =
∫ t

0
Ts (x) ds = −

∫ t

0
Ts (L(y)) ds = y − Tt (y) .
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Since Tt (y) ↓ 0, the family of positive operators Ut (x) converges strongly to y as
t → ∞. So that y = U(x). ��

Theorem 5. An irreducible QMS T is transient if and only if there exists a non-
trivial T -superharmonic operator in A.

Proof. If T is transient then, by Theorem 2, part 1, there exists a x ∈ A+
int with

y = U(x) bounded and y > 0. Then y is a superharmonic operator by Theorem 4.
Moreover Tt (y) ↓ 0, thus y is non trivial.

Conversely, if there exists a non-trivial T -superharmonic operator y in A by
adding a multiple of 1 we can assume that y is also positive. Since T is irreduc-
ible, as we shall prove in the forthcoming lemma, we may suppose in addition
that Tt (y) < y for some t > 0. Note that Rλ(y) is also non-trivial and satisfies
Tt (Rλ(y)) ≤ Rλ(y), for some t ≥ 0 and Tt (Rλ(y)) < Rλ(y) for some t > 0
and λ > 0. Therefore, replacing y by Rλ(y) if necessary, we can assume that y
belongs to the domain of the generator L too. Clearly L(y) < 0 and, as in the proof
of Theorem 4, U(−L(y)) ≤ y and T is transient by Theorem 2, part 2. ��

Lemma 1. Let T be a QMS on a von Neumann algebra A and let y be a strictly
positive T -harmonic operator in A. Then,

– either there exists n > 1, such that for all k < n, the operators y2k are T -har-
monic, and ‖y2n‖1 − y2n is superharmonic but not harmonic,

– or every spectral projection of y associated with an interval ]r,+∞[ is T -su-
perharmonic. In particular, if y is non trivial, then T is not irreducible.

Proof. Since y is harmonic, the Schwarz inequality yields,

y2 = Tt (y∗)Tt (y) ≤ Tt (y2).

Now, if y2 is not harmonic the proof is finished, otherwise, we can repeat the above
argument with y2 (instead of y), y4, . . . and so on until we find an n such that y2n

is subharmonic but not harmonic. If such an n does not exist then, arguing as in the
proof of Theorem 1, we can show that the operators y2n(s+ y2n)−1 (n ≥ 1, s > 0)
are T -superharmonic.

Note that, for each r > 0, the operator

lim
n
(r−1y)2

n

(s + (r−1y)2
n

)−1 = (s + 1)−1E{r} + E]r,+∞[

where E{r} denotes the orthogonal projection on the (possibly empty) eigenspace
of y corresponding to r and E]r,+∞[ the spectral projection of y associated with
the interval ]r,+∞[ and the limit exists in the strong operator topology. It follows
that

Tt
(
(s + 1)−1E{r} + E]r,+∞[

)
≤ (s + 1)−1E{r} + E]r,+∞[.

The conclusion follows letting s tend to infinity. ��
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6. Applications

In this section our classification of QMS will be illustrated through a couple of ap-
plications which show a nice interplay between classical and quantum probability.
Moreover, we discuss a connection with Scattering Theory.

A quantum Markov process is determined by a quantum Markov semigroup
and an initial law and, as far as we are concerned with recurrence or transience,
only the semigroup matters.

It is worth noticing here that a quantum Markov semigroup T on a von Neu-
mann algebra A might leave invariant some abelian subalgebra Ac which turns out
to be isomorphic to L∞(E, E, µ), with µ σ -finite. In this case the maps Tt = Tt |Ac

determine a classical Markov semigroup T which allows us to apply all the rich
classical theory. For example, we have the following fact.

Proposition 7. Under the above assumptions and notations, if T is transient, then
so is T .

Proof. Since T is transient, there exists a sequence An ∈ E , such that pn = 1An
satisfies condition 4 of Theorem 2. ��

Notice that, on the contrary, if T is recurrent this by no means implies the
recurrence of T as the following example shows.

6.1. Quantum Brownian Motion

Let h = L2(Rd; C) and let A = B(h). Our framework here is the same as that of
the harmonic oscillator in [19], Ch. III. By a Quantum Brownian Motion we mean a
quantum Markov process with associated semigroup T on A which is the minimal
semigroup (see [7], [10] and the references therein) with form generator

L−(x)=−1

2

d∑

j=1

(
aja

∗
j x−2ajxa

∗
j + xaja

∗
j

)
− 1

2

d∑

j=1

(
a∗
j aj x−2a∗

j xaj + xa∗
j aj

)
,

where a∗
j , aj are the creation and annihilation operators

aj = (
qj + ∂j

)
/
√

2, a∗
j = (

qj − ∂j
)
/
√

2,

∂j being the partial derivative with respect to the j th coordinate qj .
The commutative von Neumann subalgebra Aq of A whose elements are multi-

plication operatorsMf by a function f ∈ L∞(Rd; C) is T -invariant and Tt (Mf ) =
MTtf where

(Ttf )(x) = 1

(2πt)d/2

∫

Rd
f (y)e−|x−y|2/2t dy. (4)

The same conclusion holds for the commutative algebra Ap = F ∗AqF , where
F denotes the Fourier transform. Therefore, our process deserves the name of
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quantum Brownian motion since its contains a couple of non commuting classical
Brownian motions.

Moreover, notice that the von Neumann algebra AN generated by the number
operator N = ∑

j a
∗
j aj is also T invariant and the classical semigroup obtained

by restriction of T to AN is a birth and death on N with birth rates (n+ 1)n≥0 and
death rates (n)n≥0.

It can be shown by the methods of [13] that T is irreducible.
The unit vector e0(q) = π−d/4 exp(−|q|2/2), called the vacuum vector, satis-

fies aj e0 = 0 for all j . The rank-one projection |e0〉〈e0| onto e0 belongs to AN and
satisfies

Tt (|e0〉〈e0|) = 1

(1 + t)d
(1 + 1/t)−N (5)

This formula can be checked as follows. Notice first that each Weyl operatorW(z)
(see [19], III.4) belongs to the domain of L and L(W(z)) = −|z|2W(z) (e.g. by
[12], Lemma 1.1) Therefore, we have Tt (x)(W(z)) = exp(−t |z|2)W(z) and the
canonical commutation relation

W(−ζ/
√

2)W(z)W(ζ/
√

2) = exp(−i
√

2�〈z, ζ 〉)W(z)

leads to the explicit formula (see [3]) for x = W(z) ∈ B(h)

Tt (x) = 1

(2πt)d

∫

R2d
W(−ζ/

√
2)xW(ζ/

√
2) exp(−|ζ |2/2t) dζ (6)

where ζ = r + is with r, s ∈ R
d and dζ means drds. By normality this formula

also holds for an arbitrary x ∈ B(h).
We now check (5). Indeed, for each unit vector eα (α ∈ N

d ) of the canonical
orthonormal basis of h given by d dimensional Hermite polynomials multiplied by
the function e0, we have

〈eα, Tt (|e0〉〈e0|)eα〉 = 1

(2πt)d

∫

R2d

∣
∣
∣〈eα,W(ζ/

√
2)e0〉

∣
∣
∣
2

exp(−|ζ |2/2t) dζ

= 1

(2πt)d

∫

R2d

|ζ1|2α1 · · · |ζd |2αd
2|α|α1! · · ·αd !

exp(−(1 + 1/t)|ζ |2/2) dζ

where |α| = α1 +· · ·+αd . By the change of variables ζ = ξ/(1 + 1/t)1/2 we find

〈eα, Tt (|e0〉〈e0|)eα〉 = cα
(1 + 1/t)−|α|

(1 + t)d

where cα is a strictly positive constant that can be evaluated by computing a Gauss-
ian integral and shown to be equal to 1.

By means of (5), for each d ≥ 2, we can compute

∫ ∞

0
〈eα, Tt (|e0〉〈e0|)eα〉dt =

∫ ∞

0

(1 + 1/t)−|α|

(1 + t)d
dt < +∞.
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Moreover, since the restriction of T to A is also irreducible, for each β, we have
Ttβ (|e0〉〈e0|) ≥ κ(β, tβ)|eβ〉〈eβ | for some tβ > 0 and some constant κ(β, tβ) > 0.
It follows that, for each d ≥ 2, our QMS is transient.

On the other hand, when d = 1, suppose that T is again transient and let (pn)n≥1
be an increasing sequence of projections with l.u.b.pn = 1 and U(pn) bounded.
We have then

∫ ∞

0
〈e0, Tt (pn)e0〉dt = |〈e0, pne0〉|2

∫ ∞

0

dt

1 + t

which diverges whenever |〈e0, pne0〉|2 is nonzero. This contradicts the fact that e0
belongs to the domain of U(pn) for all n ≥ 0. Therefore, T being irreducible, it
must be recurrent.

Thus we have proved the following

Corollary 5. The QBM is recurrent for d = 1 and transient for d ≥ 2.

This apparently surprising result turns out to be natural if we recall the “prin-
ciple”: a d-dimensional QBM is a pair of non-commuting d-dimensional classical
Brownian motions.

6.2. The micromaser model

We follow our article [11] to introduce the Jaynes-Cummings model of the mi-
cromaser. Let h = l2(N), we use the customary notations a∗, a, N for creation,
annihilation and number operators respectively. Furthermore, (en)n≥0 stands for
the canonical orthonormal basis in l2(N).

The form generator is given by

L−(x) = −µ
2

2

(
a∗ax − 2a∗xa + xa∗a

)− λ2

2
(aa∗x − 2axa∗ + xaa∗)

+R2(cos(φ
√
aa∗)x cos(φ

√
aa∗)+ sin(φ

√
aa∗)S∗xS sin(φ

√
aa∗)− x),

where λ > 0, µ > 0, R and φ are real constants. In [11] the rigorous construction
of the minimal QDS was done showing also that it is identity preserving. Moreover
it can be shown by the methods of [13] that it is irreducible.

The above Jaynes-Cummings generator has a faithful invariant state if and only
if µ > λ. This state can be computed explicitly (the interested reader is referred to
[11]). Indeed, the procedure consists of noticing first that the von Neumann algebra
AN generated by the number operator N is invariant for the QMS. The operators
Tt |AN

constitute the semigroup of a birth and death process on N, with birth rates
and death rates, respectively

λk = λ2(k + 1)+ R2 sin2(φ
√
k + 1), µk = µ2k. (7)

So that if µ > λ, by a well-known classical result there exists a stationary
probability distribution for the birth and death process given by

π0 = c, πn = c

n∏

k=1

λ2k + R2 sin2(φ
√
k)

µ2k
(n ≥ 1). (8)
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where c is a suitable normalization constant. The corresponding stationary state is
given by the density matrix

ρ∞ =
∑

n≥0

πn|en〉〈en|. (9)

Thus, the existence of the stationary distribution for the classical process al-
lows to prove that the irreducible quantum semigroup has a stationary state, and it
is recurrent by Proposition 7. By the same proposition, if the classical process is
transient, then the QMS is transient in B(h) as well. We now show that this happens
if λ > µ. Call

γn =
n∏

k=1

µk

λk
=

n∏

k=1

µ2k

λ2(k + 1)+ R2 sin2(φ
√
k + 1)

. (10)

The classical birth and death process is transient if and only if
∑
n γn < ∞. When

λ > µ this condition is easily checked since γn ≤ (µ/λ)2n.
To decide whether the birth and death process is transient or not when λ = µ

requires a more subtle study, which depends on R and φ as the next lemma (where
we take λ = µ = 1 to simplify notations) shows.

Lemma 2. For each n ≥ 1 let γn be as in (10) with λ = µ = 1). Then the series∑
n≥1 γn is divergent if Rφ = 0, convergent if Rφ �= 0.

We postpone the proof to the appendix. The case λ = µ corresponds, up to
the scaling parameter, to the 1-dimensional Quantum Brownian Motion already
discussed in the first example. To summarize,

Corollary 6. If λ < µ, the QMS of the micromaser is recurrent and has a faithful
stationary state ρ∞ given by (9) and (8).

If λ > µ, the QMS above is transient.
If λ = µ we have two possibilities: either Rφ = 0, which implies that the QMS

is recurrent or Rφ �= 0 and the QMS is transient.

6.3. A connection with Scattering Theory

Large-time behaviour of quantum dynamics is the main concern of Scattering
Theory. In [24], Sinha introduced the concept of time of sojourn in a given re-
gion of the evolution of a pure state. More precisely, let h = L2(Rd), BR ={
x ∈ R

d : |x| ≤ R
}
, H a self-adjoint operator in h, and ψ ∈ h with ‖ψ‖ = 1,

consider

J (R,ψ) =
∫ +∞

−∞

∥
∥
∥1BRe

−itHψ
∥
∥
∥

2
dt.

Sinha calls J (R,ψ) the time of sojourn of ψ in the ball BR . Under a suitable hy-
pothesis on the Hamiltonian, Sinha has proved that the set of vectors ψ for which
J (R,ψ) < ∞ for all R > 0, is dense in the space of H -absolutely continuous
elements of h, which is usually associated with “scattering” pure states (see for in-
stance the book of Perry [22] for an account of this research in Scattering Theory).
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Here below, we give a definition of time of sojourn for a QMS and analyze
its use in the large time analysis of the semigroup. This generalization is a natural
consequence of our concept of potential operator.

Consider a QMS T on a von Neumann algebra A.

Definition 5. Let ϕ be a state and p ∈ A a projection. The time of sojourn of ϕ
in p is defined by

τ(ϕ, p) =
∫ ∞

0
ϕ (Tt (p)) dt =

∫ ∞

0
T∗t (ϕ) (p)dt. (11)

Given a pure state ϕu defined by a density matrix ρ = |u〉〈u| with u ∈ h of uni-
tary norm, the time of sojourn τ(ϕu, p) coincides with the potential form U(p)[u],
for all projection p ∈ A, which implicitly means that it takes the value +∞ if
u �∈ D(U(p)).
Definition 6. A state ϕ is scattering if for all finite-dimensional projection p, it
holds limt→∞ ϕTt (p) = limt→∞ T∗t (ϕ) (p) = 0.

A state ϕ is bound if the orbit (T∗t (ϕ) , t ≥ 0) is tight. This means that for each
ε > 0 there exists a finite-dimensional projection p such that T∗t (ϕ) (p) ≥ 1 − ε,
for all t ≥ 0.

The set of scattering states Ss(T ) and that of bound states Sb(T ) are disjoints.
In the remain of this subsection we consider A = B(h).

Proposition 8. Assume there exists a bound state ϕ. Then there exists an invari-
ant state ϕ∞. Moreover, for all projection p ∈ A such that ϕ(p) �= 0, one has
τ(ϕ∞, p) = ∞.

Proof. If ϕ is a bound state, then for all ε > 0 there exists a finite dimensional
projection pε such that T∗t (ϕ) (pε) ≥ 1 − ε, for all t ≥ 0. Therefore, if we choose
any net (tα)α in ]0,∞[, it follows that

Mα(ϕ) := 1

tα

∫ tα

0
T∗t (ϕ) dt,

is a tight net of states, so that it contains a convergent subnet. We call ϕ∞ its weak∗-
limit. Due to the tightness condition, ϕ∞ is a state too and it is invariant under the
semigroup T∗.

Moreover, for any projection p ∈ A,

τ(ϕ∞, p) =
∫ ∞

0
ϕ∞(Tt (p))dt =

∫ ∞

0
ϕ∞(p)dt = ∞.

��
Proposition 9. If the semigroup is transient, then all states are scattering.

This is clear from Proposition 6.
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Final Remark. The last proposition shows that for a transient semigroup T , S =
Ss(T ). For a recurrent semigroup T , both possibilities τ(ϕ, p) = 0 or τ(ϕ, p) =
∞ do exist for a ϕ ∈ Ss(T ) and a compact projection p, (even though ϕ cannot
be invariant). This suggests that a compact projection p should be called a region
of resonance whenever τ(ϕ, p) = ∞ for a recurrent semigroup T and a state
ϕ ∈ Ss(T ).

Appendix

Proof (of Lemma 2). If Rφ = 0, then γn = 1/(n + 1) and the conclusion is
immediate.

We concentrate on the case Rφ �= 0. Clearly

− log(γn) =
n∑

k=1

log

(

1 + 1 + R2 sin2(φ
√
k + 1)

k

)

.

By the elementary inequality log(1 + x) ≥ x − x2/2 (x ≥ 0), for all n ≥ 1, we
have

− log(γn) ≥
n∑

k=1

1 + R2 sin2(φ
√
k + 1)

k
− 1

2

n∑

k=1

(
1 + R2 sin2(φ

√
k + 1)

k

)2

.

The last term is easily estimated by

n∑

k=1

(
1 + R2 sin2(φ

√
k + 1)

k

)2

≤ (1 + R2)2
n∑

k=1

1

k2

≤ (1 + R2)2
(

1 +
∫ +∞

1
x−2dx

)

= 2(1 + R2)2.

Then the inequality

n∑

k=1

1

k
≥
∫ n

0
(1 + x)−1dx = log(n+ 1)

yields

− log(γn) ≥ log(n+ 1)+ R2
n∑

k=1

sin2(φ
√
k + 1)

k
− (1 + R2)2. (12)

In order to estimate the sum over the index k notice that sin2(φ
√
k + 1) ≥ 1/2

whenever π(m+ 1/4) ≤ φ
√
k + 1 ≤ π(m+ 3/4) for m = 0, 1, . . . Thus

π2φ−2(m+3/4)2−1∑

k=π2φ−2(m+1/4)2−1

sin2(φ
√
k + 1)

k
≥ 1

2

π2φ−2(m+3/4)2−1∑

k=π2φ−2(m+1/4)2−1

1

k
.
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Then the inequality

∑

r≤k≤s

1

k
≥
∫ s+1

r+1

1

x
dx = log

(
s + 1

r + 1

)

for r, s ∈ R, r < s + 1 yields

π2φ−2(m+3/4)2−1∑

k=π2φ−2(m+1/4)2−1

sin2(φ
√
k + 1)

k
≥ log

(
m+ 3/4

m+ 1/4

)

for all m such that there exists at least an integer k in the interval [π2φ−2(m +
1/4)2 − 1, π2φ−2(m+ 3/4)2 − 1] i.e. for all m such that m+ 1/2 ≥ π−2φ2.

Using again the inequality log(1 + x) ≥ x − x2/2 (x ≥ 0), we have

π2φ−2(m+3/4)2−1∑

k=π2φ−2(m+1/4)2−1

sin2(φ
√
k + 1)

k
≥ 2

4m+ 1
− 1

(4m+ 1)2
.

Thus, finally,

n∑

k=1

sin2(φ
√
k + 1)

k
≥

∑

π−2φ2−1/2≤m≤π−1φ
√
n+1−3/4

(
2

4m+ 1
− 1

(4m+ 1)2

)

≥
∑

π−2φ2−1/2≤m≤π−1φ
√
n+1−3/4

2

4m+ 1
−

∞∑

m=1

1

(4m+ 1)2

≥ −5

4
+

∑

π−2φ2−1/2≤m≤π−1φ
√
n+1−3/4

2

4m+ 1

≥ −5

4
+
∫ π−1φ

√
n+1+1/4

π−2φ2+1/2

2 dx

4x + 1

= 1

4
log(n+ 1)+ c(φ)

where c(φ) is a real constant depending only on φ.
The above inequality, together with (12), yields

− log(γn) ≥
(

1 + R2/4
)

log(n+ 1)+ R2c(φ)− (1 + R2)2,

i.e.

γn ≤
(

exp
(
(1 + R2)2 − R2c(φ)

))
(n+ 1)−(1+R2/4).

Since R �= 0 the conclusion follows. ��
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à P.A. Meyer et J. Neveu. Astérisque 236, 73–102 (1996)
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