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Abstract. We give a characterization of a modified edge-reinforced random walk in terms
of certain partially exchangeable sequences. In particular, we obtain a characterization of
an edge-reinforced random walk (introduced by Coppersmith and Diaconis) on a 2-edge-
connected graph. Modifying the notion of partial exchangeability introduced by Diaconis
and Freedman in [3], we characterize unique mixtures of reversible Markov chains under a
recurrence assumption.

1. Introduction

In the 1920s, the Cambridge philosopher W.E. Johnson gave the following char-
acterization of Polya urns (see [9]): Let X := (X0, X1, . . . ) be an exchangeable
sequence with values in a finite state space of cardinality m ≥ 3. If the conditional
probabilities P(Xn+1 = v|X0, X1, . . . , Xn) depend only on v and the number of
times state v has been visited up to time n and if some natural technical conditions
hold, then X has the same distribution as drawings from a Polya urn containing
balls of m different colors. Johnson formulated his statement in terms of Dirichlet
distributions rather than Polya urns, but it is well known that the two notions are
equivalent (see e.g. [8], Section 2).

Diaconis [personal communication] conjectured that edge-reinforced random
walks arise as naturally as Dirichlet distributions. In this article, we prove his
conjecture in the sense that we generalize Johnson’s statement for a modified edge-
reinforced random walk.

1.1. Result

Let G = (V , E) be a locally finite connected graph with vertex set V and edge
set E. We assume that G has no loops, i.e. each edge has two distinct endpoints.
Parallel edges are allowed. For an edge e we denote the set of its endpoints by ē.
We call π = (v0, e1, v1, . . . , en, vn) an admissible path if vi ∈ V for 0 ≤ i ≤ n,
ei ∈ E, and ēi = {vi−1, vi} for 1 ≤ i ≤ n. We say that π has starting point v0,
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endpoint vn, and length n. We denote by k(v, π) the number of visits to vertex v

and by k(e, π) the number of traversals of edge e:

k(v, π) := |{i ∈ {0, 1, . . . , n} : vi = v}| , (1.1)

k(e, π) := |{i ∈ {1, . . . , n} : ei = e}| ; (1.2)

here we write |S| for the cardinality of a set S. We define a sequence (X, Y ) := (X0,
Y1, X1, Y2, X2, . . . ) of random variables to be a nearest-neighbor random walk
on G if Zn := (X0, Y1, X1, . . . , Yn, Xn) is an admissible path for all n ≥ 0. We
abbreviate Z := (X, Y ).

We denote by P the set of all transition matrices on V × E associated with
Markovian nearest-neighbor random walks on G. For p ∈ P , we have p(v, e, v′, e′)
= 0 if ē �= {v, v′} and p(v, e, v′, e′) depends only on v′ and e′ if ē = {v, v′}. Thus
we write p(v′, e′) instead of p(v, e, v′, e′) in the following.

Definition 1.1. We say that a nearest-neighbor random walk Z on G is a unique
mixture of Markov chains if there exists a unique probability measure µ on V × P
such that for any admissible path π = (u0, e1, u1, . . . , en, un)

P (Zn = π) =
∫

V ×P

n−1∏
i=0

p(ui, ei+1)µ(du0, dp).

The measure µ is called the mixing measure. If for µ-a.a. (u0, p) the Markov chain
with transition matrix p is reversible, then we say that the process is a unique
mixture of reversible Markov chains.

Diaconis and Freedman [3] call a nearest-neighbor random walk partially
exchangeable if any two admissible paths with the same starting point and the same
number of transition counts for all directed edges have the same probability. They
prove that under a recurrence assumption their notion of partial exchangeability
characterizes unique mixtures of Markov chains (Theorem (7), [3]).

In recent years, reversible Markov chains have been widely applied and stud-
ied. Kelly [7] presents a book length survey. Aldous and Fill [1] give a book length
study of techniques for convergence and distributional properties. It is natural to
ask for a Bayesian characterization.

We introduce a restricted notion of partial exchangeability which characterizes
unique mixtures of reversible Markov chains: We define two finite admissible paths
π and π ′ to be equivalent if they have the same starting point and k(e, π) = k(e, π ′)
for all e ∈ E.

Definition 1.2. We call a nearest-neighbor random walk Z partially exchangeable
if P(Zn = π) = P(Zn = π ′) for any equivalent paths π and π ′ of length n.

Any Z which is partially exchangeable in the sense of Definition 1.2 is partially
exchangeable in the sense of Diaconis and Freedman. We prove:
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Theorem 1.1. Let Z be a nearest-neighbor random walk on a finite graph G

satisfying

P(Xn = X0 for infinitely many n) = 1 (1.3)

and for all e ∈ E and all u, v ∈ ē

P (There exists n ≥ 0 with (Xn, Yn+1, Xn+1) = (u, e, v)) = 1. (1.4)

Then Z is a unique mixture of reversible Markov chains if and only if Z is partially
exchangeable in the sense of Definition 1.2.

Assumption (1.4) says that every edge is traversed in both directions with prob-
ability 1.

A Markovian nearest-neighbor random walk on G with transition probabilities
given by strictly positive weights on the edges is partially exchangeable in the sense
of Definition 1.2 (transitions are made with probabilities proportional to the edge
weights). We call such a Markov chain a non-reinforced random walk.A more inter-
esting example of a nearest-neighbor random walk which is partially exchangeable
in the sense of Definition 1.2 is an edge-reinforced random walk. The process was
introduced by Coppersmith and Diaconis in 1987 (see [2]) as follows: All edges
are given strictly positive numbers as weights. In each step, the random walker
traverses an incident edge with a probability proportional to its weight. Each time
an edge is traversed, its weight is increased by 1.

Suppose G is 2-edge-connected, i.e. removing an edge does not make G dis-
connected. Let Z be a partially exchangeable nearest-neighbor random walk on G

such that the conditional probabilities to traverse edge e in the next step depend
only on the current location, the edge e, the local time accumulated at the present
vertex, and the number of times e has been traversed in the past. If in addition
some natural technical assumptions are fulfilled, then Z has essentially the same
distribution as a non-reinforced random walk or an edge-reinforced random walk.
More precisely, we make the following assumptions on G and Z:

Assumption 1.1. For all v ∈ V degree(v) �= 2.

Assumption 1.2. There exists v0 ∈ V with P(X0 = v0) = 1.

Assumption 1.3. For any admissible path π of length n ≥ 1 starting at v0 we have
P(Zn = π) > 0.

Assumption 1.4. Z is partially exchangeable in the sense of Definition 1.2.

For n ∈ N0, v ∈ V , and e ∈ E, we define

kn(v) := k(v, Zn), kn(e) := k(e, Zn).

Assumption 1.5. For all v ∈ V and e ∈ E there exists a function fv,e taking
values in [0, 1] such that for all n ≥ 0

P(Yn+1 = e, Xn+1 = v|Zn) = fXn,e(kn(Xn), kn(e)).
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It is not hard to see that an edge-reinforced random walk and a non-reinforced
random walk starting at v0 satisfy Assumptions 1.2-1.5; for the proof of partial
exchangeability of an edge-reinforced random walk, we refer the reader to the
proof of Corollary 3.1, below. We prove:

Theorem 1.2. Suppose G is 2-edge-connected and satisfies Assumption 1.1. If Z

is a nearest-neighbor random walk on G satisfying Assumptions 1.2–1.5, then Z is
an edge-reinforced random walk or a non-reinforced random walk starting at v0,
except that the conditional probabilities P(Yn+1 = e, Xn+1 = v|Zn, kn(Xn) ≤ 2)

may be different from the corresponding conditional probabilities for an edge-
reinforced/non-reinforced random walk.

Without Assumption 1.1, Theorem 1.2 need not be true. If G is the graph con-
sisting of two vertices which are connected by two parallel edges, then Assumption
1.5 is vacuous (because Assumption 1.4 holds) and Theorem 1.2 does not hold
(compare Zabell [9]).

A similar characterization for directed-edge-reinforced random walks on a com-
plete graph has been obtained by Zabell [10]. In a directed-edge-reinforced random
walk directed edges are reinforced; see [6] for the definition of the process. This
model is easier to treat because there is independence between what happens at
different vertices, and the assumption of a complete graph simplifies the proof
considerably.

The remainder of the article is organized as follows: In Section 2, we describe a
generalization of Theorem 1.2 for graphs which are not 2-edge-connected. Section
3 contains our results on mixtures of reversible Markov chains. In Section 4, we
collect some graph-theoretical lemmas. In Section 5 we prove Theorem 1.2 and its
generalization from Section 2.

2. Result for a general graph

In this section, we state a generalization of Theorem 1.2. For v ∈ V we denote by
Ev the set of all edges incident to v:

Ev := {e ∈ E : v ∈ ē}. (2.1)

For an admissible path π , we set

K(v, π) :=
∑
e∈Ev

k(e, π). (2.2)

For a nearest-neighbor random walk Z, n ∈ N0, and v ∈ V we define

Kn(v) := K(v, Zn).

Recall that a graph G′ is called 2-edge-connected if removing an edge does not
make G′ disconnected. G′ is 2-edge-connected if and only if for any two edges
e �= e′ in G′ there exists a cycle containing both e and e′. A bridge is an edge whose
deletion increases the number of connected components. There is no edge parallel
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to a bridge. A subgraph B of G is called a block of G if B is a bridge or a maximal
2-edge-connected subgraph of G. We denote the edge set of B by E(B). The graph
G decomposes into blocks B1, B2, . . . in the sense that the edge set E of G can be
written as disjoint union of the E(Bi)’s. We write V2 (E2) for the set of all vertices
(edges) contained in a 2-edge-connected block.

We define a modified edge-reinforced random walk as follows:

Definition 2.1. Let V → {0, 1}, v �→ dv be constant on any 2-edge-connected
block of G, and let av,e > 0, v ∈ V , e ∈ Ev , with the property av,e = au,e for all
e ∈ E2, u, v ∈ ē. We set av := ∑

e∈Ev
av,e. We define a modified edge-reinforced

random walk with starting point v0 to be a nearest-neighbor random walk (X, Y )

on G with P(X0 = v0) = 1 and for all n ≥ 0

P(Yn+1 = e, Xn+1 = v|Zn) =



aXn,e + dXn · kn(e)

av + dXn · Kn(Xn)
if ē = {Xn, v},

0 otherwise.

In the definition of a modified edge-reinforced random walk, we choose for each
pair (v, e) with e ∈ Ev an initial weight av,e > 0. If ē = {u, v} and e is contained
in a 2-edge-connected block, we require au,e = av,e. If dv = 0, then the weights
of (v, e) for e ∈ Ev never change, whereas if dv = 1 the weight of (v, e) increases
by 1 after each traversal of e. Since v �→ dv is constant on any 2-edge-connected
block B of G, the restriction of a modified edge-reinforced random walk to B is
either a non-reinforced or an edge-reinforced random walk.

It is easy to see that a modified edge-reinforced random walk starting at v0
satisfies Assumptions 1.2–1.5; in order to show partial exchangeability, one uses
that edge-reinforced random walk is partially exchangeable. We prove:

Theorem 2.1. Suppose G satisfies Assumption 1.1. If Z is a nearest-neighbor ran-
dom walk on G satisfying Assumptions 1.2–1.5, then the conditional probabilities
P(Yn+1 = e, Xn+1 = v|Zn, kn(Xn)≥ 3) agree with the corresponding conditional
probabilities for a modified edge-reinforced random walk starting at v0.

If G is the star-shaped graph with vertex set V = {v0, v1, . . . , vm} and edges
between v0 and vi for 1 ≤ i ≤ m, then the edge weights of an edge-reinforced
random walk observed at the times the random walker is at the central vertex v0,
obey the same dynamics as the number of balls in a Polya urn process where after
each drawing the ball is returned with two additional balls of the same color. In this
case, Assumption 1.5 is just Johnson’s “sufficientness” postulate and we recover
Johnson’s result (see [9], Corollary 2.2).

3. Mixtures of reversible Markov chains

In this section, we prove Theorem 1.1, and we derive conclusions for (modi-
fied) edge-reinforced random walks. We begin with a relation between k(e, π)

and k(v, π). Its elementary proof is omitted.
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Remark 3.1. If π is an admissible path in G starting at v0 and ending at v, then∑
e∈Ev

k(e, π) = 2k(v, π) − 1 − δv(v0); (3.1)

here δv(v0) denotes Kronecker’s delta. In particular, k(v, π) is determined by
k(e, π), e ∈ Ev , via equation (3.1).

A closed path is a path with the same starting and endpoint. If c := (u0, e1, . . . ,

en, un) is a closed path and all ei , 1 ≤ i ≤ n, are distinct, then we call c a cycle.

Proof of Theorem 1.1. If Z is a reversible Markov chain, its transition probabilities
can be described by weights on the edges. Hence for a finite path π the probability
P(Zn = π) depends only on k(e, π), e ∈ E, and k(v, π), v ∈ V . By Remark 3.1,
k(v, π) is uniquely determined by k(e, π), e ∈ Ev . Hence Z is partially exchange-
able in the sense of Definition 1.2, and the same is true if Z is a unique mixture of
reversible Markov chains.

Conversely, suppose Z is partially exchangeable in the sense of Definition 1.2.
Then Z is partially exchangeable in the sense of Diaconis and Freedman (see the
comments before Definition 1.2). By Theorem (7) of [3], Z is a unique mixture of
Markov chains. We denote the mixing measure by µ.

Suppose there exist e ∈ E and u ∈ ē such that p(u, e) = 0 on a set S

of positive µ-measure. Using the definition of mixtures of Markov chains, we
obtain P(There exists n ≥ 0 with (Xn, Yn+1, Xn+1) = (u, e, v)) ≤ 1 − µ(S),
which contradicts (1.4). Hence p(u, e) > 0 µ-a.s.. Thus for µ-a.a. (v, p) ∈ V ×P ,
the Markov chain with transition matrix p is irreducible and since the state space
is finite, recurrent.

Let c = (u0, e1, . . . , en, un) be a cycle. We set τ := min{i ≥ 0 : Xi = u0};
τ is the first hitting time of u0. We denote by Qv,p the distribution of the Mar-
kov chain with transition matrix p which starts in v with probability 1. We write
Qp(c) for the probability that the Markov chain with transition matrix p traverses
the cycle c starting at a point in the cycle. We define θ(X0, Y1, X1, Y2, . . . ) :=
(X1, Y2, X2, Y3, . . . ); thus θ shifts the random walk Z by one step. We denote by θm

themth iterate of θ . Form, n ≥ 0, (θmZ)n = (Xm, Ym+1, Xm+1, . . . , Ym+n, Xm+n)

equals the random path of length n traversed by the random walker starting at time
m. We calculate the probability that the process Z traverses c twice immediately
after time τ :

q := P(τ < ∞, (θτZ)n = c = (θτ+nZ)n)

=
∫

V ×P
Qv,p(τ < ∞, (θτZ)n = c = (θτ+nZ)n)µ(dv, dp)

=
∫

V ×P
Qv,p(τ < ∞)Qu0,p(Zn = c = (θnZ)n)µ(dv, dp)

=
∫

V ×P
Qp(c)2µ(dv, dp);
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for the first equality we used that the process is a mixture of Markov chains, for the
second equality we used the strong Markov property under Qv,p, and for the last
equality we used Qv,p(τ < ∞) = 1 which follows from recurrence of the Markov
chain.

Using partial exchangeability, we see that the probability that the process Z

traverses the reversed cycle c↔ := (un, en, un−1, . . . , e1, u0) twice immediately
after time τ equals q, and the same argument as above yields

q =
∫

V ×P
Qp(c↔)2µ(dv, dp).

Furthermore the probability to traverse first c and then c↔ immediately after time
τ also equals q:

q =
∫

V ×P
Qp(c)Qp(c↔)µ(dv, dp).

Consequently,
∫

V ×P
[
Qp(c) − Qp(c↔)

]2
µ(dv, dp)

=
∫

V ×P

[
Qp(c)2 − 2Qp(c)Qp(c↔) + Qp(c↔)2

]
µ(dv, dp)

= q − 2q + q = 0,

and we conclude Qp(c) = Qp(c↔) µ-a.s. It follows from Kolmogorov’s cycle
criterion (see e.g. [4], pages 259-260), that for µ-a.a. (v, p) the Markov chain with
transition matrix p is reversible. This completes the proof of Theorem 1.1. 
�
Corollary 3.1. Edge-reinforced random walks and modified edge-reinforced ran-
dom walks on a finite graph G are unique mixtures of reversible Markov chains.

Proof. The assumptions of Theorem 1.1 are satisfied for an edge-reinforced ran-
dom walk: It is straightforward to write down explicitly the probability of a finite
path π and to check that it depends only on k(e, π), e ∈ E (see Lemma 2 in [5] for
details). Hence, the process is partially exchangeable.

We verify (1.3) and (1.4): Let e ∈ E with endpoints u, v. For k ≥ 1, let τk

denote the time of the kth visit to u, and let Fτk
denote the past of the random walk

up to time τk . Note that the sum of the weights of all edges incident to u increases
by 2 between any two consecutive visits to u. Hence, the probability to traverse e

immediately after time τk given Fτk
satisfies the following lower bound on the set

{τk < ∞}

P
(
(Xτk

, Yτk+1, Xτk+1) = (u, e, v)|Fτk

) ≥ ae

au + 2k
;

here ae denotes the initial weight of edge e and au equals the sum of the ini-
tial weights of all edges in Eu. Let Ak := {(Xτk

, Yτk+1, Xτk+1) = (u, e, v)}.
Then Ak ∈ Fτk+1 and we have

∑∞
k=1 P(Ak|Fτk

) ≥ ∑∞
k=1

ae

au+2k
= ∞ on the set
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∩∞
k=1{τk < ∞}. It follows from the second Borel-Cantelli lemma (see e.g. [4], page

207, corollary (3.2)) that

P

(
(Xτk

, Yτk+1, Xτk+1) = (u, e, v) infinitely often

∣∣∣∣∣
∞⋂

k=1

{τk < ∞}
)

= 1.

We assumed G to be finite. Thus, almost surely, one (random) vertex u is visited
infinitely often. By the above, all edges e with ē = {u, v} are traversed from u

to v infinitely often. Using induction, one sees that all edges are traversed in both
directions with probability 1. Hence, (1.3) and (1.4) follow.

The claim for a modified edge-reinforced random walk follows similarly. 
�
For an edge-reinforced random walk on a finite graph the mixing measure can

be given explicitly. Let � := {(xe; e ∈ E) : xe ≥ 0,
∑

e∈E xe = 1}, and let σ

denote Lebesgue measure on �.

Theorem 3.1. Let Z be an edge-reinforced random walk on a finite graph G.
There exists a function � : � → [0, ∞[ such that for any admissible path π =
(v0, e1, v1, . . . , en, vn) the following holds:

P(Zn = π) =
∫

�

n∏
i=1

xei

xvi−1

�(xe; e ∈ E) dσ(xe; e ∈ E);

here xv := ∑
e∈Ev

xe. The density � is given explicitly in Theorem 1 of [5], see
also Diaconis [2]; � is strictly positive in the interior of �.

Proof. By Corollary 3.1, Z is a unique mixture of reversible Markov chains. Hence
the mixing measure can be described as the image of a measure on �. Theorem 1 of
[5] states that limn→∞(kn(e)/n; e ∈ E) exists almost surely and has distribution
�dσ . The claim follows from Markov chain theory. 
�

We note that edge-reinforced random walk of sequence type, where for some
α > 0 the weight of an edge equals (n + 1)α after n traversals, is not partially
exchangeable for all α �= 1. Hence, Theorem 3.1 does not generalize to non-linear
edge-reinforcement.

4. Some graph-theoretical lemmas

Throughout this section, let v0 be a fixed but distinguished vertex of G. We collect
some graph-theoretical results which will be needed in the proofs of Theorems 1.2
and 2.1.

If a path π starts at v0 and ends at v, then we say that π is a path from v0 to v.
For a vertex v ∈ V , we define 	v0,v to be the set of all admissible paths from v0 to
v which visit v only in the last step:

	v0,v := {π admissible path from v0 to v with k(v, π) = 1} . (4.1)
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	v0,v0 contains only the trivial path π = (v0). If π = (v0, e1, v1, . . . , en, vn) is
an admissible path, we say that π enters vertex vn via en. We define subsets of Ev:

Ev,initial := {
e ∈ Ev : every π ∈ 	v0,v enters v via e

}
, (4.2)

Ev,enter := {
e ∈ Ev : no π ∈ 	v0,v enters v via e

}
, (4.3)

Ev,cycle :=
{
e ∈ Ev : there exist e′ ∈ Ev \ {e} and a cycle c such that

e and e′ are both contained in c

}
. (4.4)

We have Ev0,initial = ∅ and Ev0,enter = Ev0 . If Ev,initial �= ∅, then it contains
precisely one edge which we denote by ev,initial. Removing ev,initial from G makes
the graph disconnected; thus e is a bridge. Hence Ev,initial ∩Ev,cycle = ∅. Note that
Ev = Ev,initial ∪ Ev,enter ∪ Ev,cycle.

If π and π ′ are admissible paths such that the endpoint of π agrees with the
starting point of π ′, then we write ππ ′ for the concatenation of π and π ′. For a
closed path π we denote by πk the concatenation of k copies of π . By definition,
π0 equals the empty path. We set N := {1, 2, . . . }, N0 := N ∪ {0}.
Definition 4.1. We define the domain Def(fv,e) of fv,e to be the set of all (k, ke)

such that there exists a path π from v0 to v with k(v, π) = k and k(e, π) = ke. We
set Dv,e(k) := {ke : (k, ke) ∈ Def(fv,e)}.

The following lemma collects information about Dv,e(k).

Lemma 4.1. Let v ∈ V with degree(v) ≥ 3 and k ∈ N.

1. Let e1 ∈ Ev . If k1 ∈ Dv,e1(k), then there exist e2, e3 ∈ Ev \ {e1}, e2 �= e3, and
k2, k3 ∈ {0, 1} such that for all k′

1, k
′
2, k

′
3 ∈ N0 with k′

i ≡ ki mod 2 there exists
a path π from v0 to v with k(ei, π) = k′

i for i = 1, 2, 3 and k(e, π) = 0 for
all e ∈ Ev \ {e1, e2, e3}.

2. Let e ∈ Ev . We set

mv,e :=
{

1 if e ∈ Ev,initial,

0 otherwise.
�v,e :=

{
1 if e ∈ Ev,cycle,

2 otherwise.

There exists Mv,e(k) ∈ N0 such that

Dv,e(k) = {
mv,e + j · �v,e : 0 ≤ j ≤ Mv,e(k)

}
. (4.5)

Proof. For i = 1, 2, 3, we write ēi = {v, vi}, and we set πi = (v, ei, vi, ei, v),
i.e. πi crosses edge ei back and forth starting from v. We observe that a path π

ending at v can be concatenated with πi for all i ∈ {1, 2, 3} so that it suffices to
prove statement 1 with the smallest possible k′

i ∈ N0 (1 ≤ i ≤ 3).
Case e1 ∈ Ev,cycle \Ev,enter: We can choose e2 and e3 such that there exist paths π

with (k(ei, π))i = (1, 0, 0) and (0, 1, 0). In this case, Dv,e1(k) = {j ≤ Mv,e1(k)}
for some Mv,e1(k).
Case e1 ∈ Ev,cycle ∩Ev,enter: If k = 1, then k1 = 0, Dv,e1(k) = {0}, and the proof is
straightforward. Suppose k > 1. Let e3 ∈ Ev \ {e1} be such that there exists a cycle
containing both e1 and e3. If v �= v0, then we choose e2 ∈ Ev \ Ev,enter; otherwise
we choose e2 ∈ Ev \{e1, e3} arbitrarily. There exist paths π such that (k(ei, π))i =
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(0, 1 − δv(v0), 0) and (1, 1 − δv(v0), 1) and Dv,e1(k) = {j ≤ Mv,e1(k)} for some
Mv,e1(k).
Case e1 ∈ Ev \ Ev,cycle: Between any two consecutive visits to v, the number of
traversals of e1 increases either by 0 or by 2. Hence, k1 is odd iff e1 ∈ Ev,initial.

If e1 ∈ Ev,initial, then there exist e2, e3 and a path π with (k(ei, π))i = (1, 0, 0).
Hence, Dv,e1(k) = {1 + 2j : 0 ≤ j ≤ Mv,e1(k)} for some Mv,e1(k). If e1 �∈
Ev,initial, then there exist e2, e3 and a path π with (k(ei, π))i = (0, 1, 0). Hence,
Dv,e1(k) = {2j : 0 ≤ j ≤ Mv,e1(k)} for some Mv,e1(k). This completes the proof
of the lemma. 
�

5. Proofs of Theorems 1.2 and 2.1

Throughout this section, we assume that G satisfies Assumption 1.1 and Z is a
nearest-neighbor random walk satisfying Assumptions 1.2-1.5. We will show that
the conditional probabilities P(Yn+1 = e, Xn+1 = v|Zn, kn(Xn) ≥ 3) agree with
the corresponding conditional probabilities for a modified edge-reinforced random
walk. By Assumption 1.5, it suffices to show that the functions fv,e have the
appropriate form. Lemma 5.2 below is the first step in this direction. We begin
with a remark which collects some properties of the functions fv,e.

Remark 5.1. For e ∈ Ev , the functionfv,e is strictly positive on its domain Def(fv,e).
If k and ke, e ∈ Ev , are such that there exists a path π from v0 to v with k(v, π) = k

and k(e, π) = ke for all e ∈ Ev , then
∑
e∈Ev

fv,e(k, ke) = 1. (5.1)

Proof. Let π = (v0, e1, . . . , en, vn = v) be a path as in the statement of the
remark. Then using Assumption 1.5, we obtain

1 =
∑
e∈Ev

P (Yn+1 = e|Zn = π) =
∑
e∈Ev

fv,e(k, ke).

Combining Assumptions 1.5 and 1.3 we see that fv,e(k, ke) > 0. 
�
We will need the following elementary lemma:

Lemma 5.1. Let α, α′, α′′, β, β ′, γ, γ ′, δ be real numbers. If

α + β ′ + γ ′ + δ = 1, (5.2)

α′ + β + γ ′ + δ = 1, (5.3)

α′ + β ′ + γ + δ = 1, and (5.4)

α′′ + β + γ + δ = 1, (5.5)

then α −α′ = β −β ′ = γ − γ ′ and α −α′ = α′ −α′′. If only (5.2) and (5.3) hold,
then α − α′ = β − β ′.

The following lemma states that fv,e is linear in the second argument.
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Lemma 5.2. For all v ∈ V with degree(v) ≥ 3, e ∈ Ev , and k ≥ 3, there exist
real-valued constants bv,e(k), cv(k) such that for all j ∈ Dv,e(k) the following
holds:

fv,e(k, j) = bv,e(k) + cv(k)j. (5.6)

Here bv,e(k) > 0 for e ∈ Ev \ Ev,initial and bv,e(k) + cv(k) > 0 for e ∈ Ev,initial.

Proof. Suppose degree(v) ≥ 3 and k ≥ 3. By Lemma 4.1, Dv,e(k) is a set of
non-negative integers which can be ordered in such a way that any two succes-
sive elements differ by �v,e ∈ {1, 2}. Since k ≥ 3, there exists j ∈ Dv,e(k) with
j ≥ mv,e + 4. First we show that the function j �→ fv,e(k, j) is linear on the sets
Dv,e(k) ∩ 2N0 and Dv,e(k) ∩ (1 + 2N0).

Claim 1. For all e1 ∈ Ev and j ∈ Dv,e1(k) with j ≥ mv,e1 + 4

fv,e1(k, j) − fv,e1(k, j − 2) = fv,e1(k, j − 2) − fv,e1(k, j − 4).

Let j be as in the assumption of Claim 1. By Lemma 4.1, there exist e2, e3 ∈ Ev\{e1}
with e2 �= e3 and k2, k3 with j + k2 + k3 = 2k − 1 − δv(v0) such that paths πi with
the following numbers of edge traversals for e ∈ Ev are possible: k(e, πi) = 0 for
all e ∈ Ev \ {e1, e2, e3} and

k(e1, π1) = j, k(e2, π1) = k2, k(e3, π1) = k3,

k(e1, π2) = j − 2, k(e2, π2) = k2 + 2, k(e3, π2) = k3,

k(e1, π3) = j − 2, k(e2, π3) = k2, k(e3, π3) = k3 + 2, and
k(e1, π4) = j − 4, k(e2, π4) = k2 + 2, k(e3, π4) = k3 + 2.

Applying equation (5.1) to these transition counts, we obtain equations of the form
(5.2)–(5.5) with α = fv,e1(k, j), α′ = fv,e1(k, j−2), α′′ = fv,e1(k, j−4). Lemma
5.1 implies Claim 1.

Next, we show that the increment does not depend on the edge e.

Claim 2. There exists e2 ∈ Ev such that for all e1 ∈ Ev \ {e2} we have

fv,e1(k, mv,e1 + 2) − fv,e1(k, mv,e1) = fv,e2(k, mv,e2 + 2) − fv,e2(k, mv,e2).

(5.7)

If |Ev \ Ev,enter| = 2, then we take e2 ∈ Ev,enter; otherwise we take e2 arbitrarily.
Let e1 ∈ Ev \ {e2} be arbitrary. If Ev \ [Ev,enter ∪ {e1, e2}] �= ∅, then we choose
e3 ∈ Ev \ [Ev,enter ∪ {e1, e2}]; otherwise we choose e3 ∈ Ev \ {e1, e2} arbitrarily.
Let k3 be such that mv,e1 + mv,e2 + 2 + k3 = 2k − 1 − δv(v0). There exist paths
πi with k(e, πi) = 0 for all e ∈ Ev \ {e1, e2, e3} and

k(e1, π1) = mv,e1 + 2, k(e2, π1) = mv,e2 , k(e3, π1) = k3,

k(e1, π2) = mv,e1 , k(e2, π2) = mv,e2 + 2, k(e3, π2) = k3.

This is true for the following reason: The case v = v0 is trivial. Suppose v �= v0. By
Lemma 4.1, mv,e = 1 iff e ∈ Ev,initial. If Ev,initial �= ∅, then Ev \Ev,enter = Ev,intial.
Hence, {e1, e2, e3} ∩ Ev,initial �= ∅, and we can choose paths πi which enter v via
ev,initial. Suppose Ev,initial = ∅. If |Ev \ Ev,enter| = 2, then e3 ∈ Ev \ [Ev,enter ∪
{e1, e2}] and we can choose πi which enter v via e3. Otherwise, |Ev \Ev,enter| ≥ 3
and again we can choose πi which enter v via e3.
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Applying equation (5.1) to the above transition counts yields equations of the
form (5.2) and (5.3) with α = fv,e1(k, mv,e1 + 2), α′ = fv,e1(k, mv,e1). Lemma
5.1 implies the claim.

Finally we show that j �→ fv,e(k, j) is linear on Dv,e(k) for e ∈ Ev,cycle.
Because of Claim 1 it suffices to prove

Claim 3. If e1 ∈ Ev,cycle, then

fv,e1(k, 3) − fv,e1(k, 1) = fv,e1(k, 2) − fv,e1(k, 0).

We can find edges e2, e3 ∈ Ev \ {e1}, e2 �= e3, and k3 such that there exist paths πi

with

k(e1, π1) = 3, k(e2, π1) = mv,e2 , k(e3, π1) = k3,

k(e1, π2) = 1, k(e2, π2) = mv,e2 + 2, k(e3, π2) = k3,

and k(e, πi) agree for both paths for all e ∈ Ev \{e1, e2, e3}. Using (5.1) with these
transition counts and Lemma 5.1 we obtain

fv,e1(k, 3) − fv,e1(k, 1) = fv,e2(k, mv,e2 + 2) − fv,e2(k, mv,e2).

Since mv,e1 = 0, the last equation together with Claim 2 implies Claim 3.

Let k ≥ 3 and e ∈ Ev \ Ev,initial. There exists a path π from v0 to v with
k(v, π) = k and k(e, π) = 0. Using Remark 5.1 we obtain bv,e(k) = fv,e(k, 0) >

0. A similar argument shows bv,e(k) + cv(k) > 0 for e ∈ Ev,initial. 
�
Lemma 5.3. If cv(k)cv(k + 1) = 0 for some k ≥ 3, then cv(k) = cv(k + 1) = 0.
In particular, we have either cv(k) = 0 for all k ≥ 3 or cv(k) �= 0 for all k ≥ 3.

Proof. Let k ≥ 3, and let e1, e2 ∈ Ev , e1 �= e2. We assume ei has endpoints v

and vi for i = 1, 2. Let π be any path from v0 to v with k(v, π) = k. We abbre-
viate ki := k(ei, π), kvi

:= k(vi, π). Let π̃i := (v, ei, vi, ei, v) be the path which
traverses ei back and forth starting at v. We define π1 := ππ̃1π̃2, π2 := ππ̃2π̃1.
By partial exchangeability (Assumption 1.4), π1 and π2 have the same probability.
Using Assumption 1.5 we can write the probability of πi as a product of values of
fu,e, u ∈ V , e ∈ E. The factors corresponding to the transitions in π agree for π1
and π2. Since fu,e is strictly positive on its domain by Remark 5.1, all these factors
cancel and we obtain

fv,e1(k, k1)fv1,e1(kv1 + 1, k1 + 1)fv,e2(k + 1, k2)fv2,e2(kv2 + 1, k2 + 1)

= fv,e2(k, k2)fv2,e2(kv2 + 1, k2 + 1)fv,e1(k + 1, k1)fv1,e1(kv1 + 1, k1 + 1).

The last equality implies

fv,e1(k, k1)fv,e2(k + 1, k2) = fv,e2(k, k2)fv,e1(k + 1, k1). (5.8)

Suppose cv(k) = 0. Using Lemma 5.2, we can rewrite (5.8) as follows:

bv,e1(k)
[
bv,e2(k + 1) + cv(k + 1)k2

]
= bv,e2(k)

[
bv,e1(k + 1) + cv(k + 1)k1

]
. (5.9)
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We make choices for e1 and e2 using an auxiliary edge e3: If Ev,initial �= ∅, let
e3 ∈ Ev,initial. If Ev,initial = ∅ and v �= v0, let e3 ∈ Ev,cycle \ Ev,enter; otherwise let
e3 ∈ Ev be arbitrary. Let e1, e2 ∈ Ev \ {e3} be arbitrary with e1 �= e2. There exist
paths π from v0 to v with k(v, π) = k and (k(ei, π))i=1,2 = (0, 2) and (2, 0).
Hence we can apply (5.9) first with k1 = 0, k2 = 2 and then with k1 = 2, k2 = 0.
This yields

bv,e1(k)
[
bv,e2(k + 1) + 2cv(k + 1)

] = bv,e2(k)bv,e1(k + 1), (5.10)

bv,e1(k)bv,e2(k + 1) = bv,e2(k)
[
bv,e1(k + 1) + 2cv(k + 1)

]
. (5.11)

Subtracting (5.11) from (5.10), we obtain

2bv,e1(k)cv(k + 1) = −2bv,e2(k)cv(k + 1). (5.12)

Since e1, e2 ∈ Ev \ Ev,initial, we have bv,e1(k), bv,e2(k) > 0 by Lemma 5.2. If
cv(k + 1) �= 0, then left and right-hand side of (5.12) have different signs. Hence
cv(k + 1) = 0. If we assume cv(k + 1) = 0, then we obtain (5.9) with k and k + 1
interchanged and the same argument shows cv(k) = 0. 
�
Lemma 5.4. Suppose k ≥ 3 and cv(k) �= 0. We set Kv := 2k − 1 − δv(v0),
av,e(k) := bv,e(k)/cv(k) for e ∈ Ev , and av(k) := ∑

e∈Ev
av,e(k). If (k, ke) ∈

Def(fv,e), then

fv,e(k, ke) = av,e(k) + ke

av(k) + Kv

.

Proof. We abbreviate bv(k) := ∑
e′∈Ev

bv,e′(k). Let (k, ke) ∈ Def(fv,e). There
exists a path π from v0 to v with k(v, π) = k and k(e, π) = ke. We set ke′ :=
k(e′, π) for all e′ ∈ E \{e}. By Remark 3.1, we have

∑
e′∈Ev

ke′ = Kv . Using (5.1)
and Lemma 5.2 we obtain

1 =
∑

e′∈Ev

fv,e′(k, ke′) =
∑

e′∈Ev

bv,e′(k) + cv(k)
∑

e′∈Ev

ke′ = bv(k) + cv(k)Kv.

Dividing the last equality by cv(k) yields

1

cv(k)
= bv(k)

cv(k)
+ Kv = av(k) + Kv. (5.13)

Another application of Lemma 5.2 yields

fv,e(k, ke) = bv,e(k) + cv(k)ke = cv(k)
[
av,e(k) + ke

] = av,e(k) + ke

av(k) + Kv

;

for the last equation we used (5.13). 
�
Lemma 5.5. If cv(3) �= 0, then there exist constants av,e > 0 for e ∈ Ev \Ev,initial
and av,e > −1 for e ∈ Ev,initial such that for all k ≥ 3 and ke ∈ Dv,e(k) the
following holds:

fv,e(k, ke) = av,e + ke

av + Kv

with av := ∑
e′∈Eu

av,e′ and Kv := 2k − 1 − δv(v0).
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Proof. Let k ≥ 3. Suppose cv(3) �= 0. By Lemma 5.4 it suffices to show av,e(k) =
av,e(3). We choose e1, e2 ∈ Ev , e1 �= e2, with the constraint e1 ∈ Ev \ Ev,enter if
v �= v0. Let π be any path from v0 to v with k(v, π) = k. We set ki := k(ei, π).
Applying Lemma 5.4 to the factors in (5.8) we obtain

av,e1(k) + k1

av(k) + Kv

· av,e2(k + 1) + k2

av(k + 1) + Kv + 2
= av,e2(k) + k2

av(k) + Kv

· av,e1(k + 1) + k1

av(k + 1) + Kv + 2
;

recall Kv := 2k − 1 − δv(v0). The denominators are equal, hence the enumerators
are equal:

[
av,e1(k) + k1

] [
av,e2(k + 1) + k2

]
= [

av,e2(k) + k2
] [

av,e1(k + 1) + k1
]
. (5.14)

We apply (5.14) with k1 = 1 − δv(v0), k2 = 0 and k1 = 1 − δv(v0), k2 = 2 to
obtain

[
av,e1(k) + k1

]
av,e2(k + 1) = av,e2(k)

[
av,e1(k + 1) + k1

]
, (5.15)[

av,e1(k) + k1
] [

av,e2(k + 1) + 2
] = [

av,e2(k) + 2
] [

av,e1(k + 1) + k1
]
.

Subtracting both equations yields

−2
[
av,e1(k) + k1

] = −2
[
av,e1(k + 1) + k1

]
,

which implies av,e1(k) = av,e1(k + 1). From (5.15) we conclude av,e2(k) =
av,e2(k + 1).

Let e ∈ Ev \ Ev,initial. The equation av,e(k + 1) = av,e(k) is equivalent to
bv,e(k+1)

cv(k+1)
= bv,e(k)

cv(k)
. Since bv,e(k), bv,e(k+1) > 0 by Lemma 5.2, cv(k) and cv(k+1)

have the same sign. In particular, cv(k) has the same sign as cv(3) for all k ≥ 3.
Suppose cv(3) < 0. Then cv(k) < 0 for all k ≥ 3 and by (5.13),

0 >
1

cv(k)
= av(k) + Kv = av(3) + 2k − 1 − δv(v0).

Since the right-hand side diverges to infinity for k → ∞, we obtained a con-
tradiction and we conclude cv(3) > 0. Hence av,e(3) = bv,e(3)

cv(3)
> 0 for all e ∈

Ev \ Ev,initial. By Lemma 5.2, av,e(3) + 1 = bv,e(3)+cv(3)

cv(3)
> 0 for e ∈ Ev,initial,

hence av,e(3) > −1 in this case. 
�
Lemma 5.6. If cv(3) = 0, then fv,e(k, ke) = bv,e(3) for all e ∈ Ev , k ≥ 3, and
(k, ke) ∈ Def(fv,e).

Proof. Suppose cv(3) = 0. We know from Lemmas 5.2 and 5.3 that fv,e(k, ke) =
bv,e(k) for all (k, ke) ∈ Def(fv,e), k ≥ 3. It remains to show bv,e(k) = bv,e(3) for
all k ≥ 3.

Let e1, e2 ∈ Ev , e1 �= e2. We write ēi = {v, vi} for the set of endpoints of ei ,
and we set π̃i := (v, ei, vi, ei, v), i = 1, 2. Let π ∈ 	v0,v , and let k ≥ 2. We
extend π adding in two different ways k + 1 copies of π̃1 and one copy of π̃2: We
define π1 := ππ̃k+1

1 π̃2, π2 := ππ̃k
1 π̃2π̃1. By partial exchangeability (Assumption
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1.4), π1 and π2 have the same probability. Using Assumption 1.5 we can write the
probabilities of π1 and π2 as products of values of fu,e, u ∈ V , e ∈ E. The factors
arising from the transitions in ππ̃k

1 are the same for π1 and π2. By Remark 5.1, all
these factors are strictly positive. Furthermore the contributions for the traversals
of ei starting from vi , i = 1, 2, are the same for π1 and π2 by Assumption 1.5.
After all these cancellations have been done, only the factors corresponding to the
traversals of ei starting from v, i = 1, 2 remain, and we obtain

bv,e1(k + 1)bv,e2(k + 2) = bv,e2(k + 1)bv,e1(k + 2),

which implies

bv,e2(k + 2)

bv,e2(k + 1)
= bv,e1(k + 2)

bv,e1(k + 1)
. (5.16)

Since e2 �= e1 was arbitrary in Ev , we conclude for e ∈ Ev

bv,e(k) = bv,e(3)

k−1∏
j=3

bv,e(j + 1)

bv,e(j)
= bv,e(3)

k−1∏
j=3

bv,e1(j + 1)

bv,e1(j)
; (5.17)

here the empty product is defined to be 1. Let ke := k(e, ππ̃k
1 ) for e ∈ E and

kv := k(v, ππ̃k
1 ). Then kv = k + 1. Combining Remark 5.1, Lemma 5.2 and

(5.17), we obtain

1 =
∑
e∈Ev

fv,e(kv, ke) =
∑
e∈Ev

bv,e(k + 1) =
∑
e∈Ev

bv,e(3)

k∏
j=3

bv,e1(j + 1)

bv,e1(j)

for all k ≥ 2, and we conclude
bv,e1 (k+1)

bv,e1 (k)
= 1 for all k ≥ 3. Consequently,

bv,e1(k) = bv,e1(3) for all k ≥ 3. Since e1 ∈ Ev is arbitrary, the claim follows. 
�
Lemma 5.7. 1. If cv(3) = 0, then cv′(3) = 0 for all vertices v′ contained in the

same 2-edge-connected block as v.
2. If cv(3) �= 0 for all v in a 2-edge-connected block B, then au,e = av,e for all

edges e in B and u, v ∈ ē.

Proof. Let v be contained in a 2-edge-connected block, and suppose cv(3) = 0.
There exists a cycle c = (u0, e1, u1, . . . , en, un) in G with u0 = v. We set

U0 := {
j : 0 ≤ j ≤ n − 1, cuj

(3) = 0
}
,

U1 := {
j : 0 ≤ j ≤ n − 1, cuj

(3) �= 0
}
.

Note that 0 ∈ U0. Let π be a path from v0 to v with the property k(ui, π) ≥ 3
for all i ∈ {0, 1, . . . , n}. (One can for instance take any path from v0 to v and
add three traversals of c.) We set ke := k(e, π) for e ∈ E, kv′ := k(v′, π) and
Kv′ := 2kv′ − 1 − δv′(v0) for v′ ∈ V . We extend π adding one traversal of c or of
the reversed cycle c↔: We set π1 := πc, π2 := πc↔. By partial exchangeability
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(Assumption 1.4), π1 and π2 have the same probability. Using Assumption 1.5, we
obtain

fu0,e1(kv, ke1)

n∏
j=2

fuj−1,ej
(kuj−1 + 1, kej

)

= fu0,en(kv, ken)

n−1∏
j=1

fuj ,ej
(kuj

+ 1, kej
).

The factors contributing to the probability of π have been cancelled already. Lem-
mas 5.5 and 5.6 imply

bu0,e1(3)
∏

j∈U0\{0}
buj ,ej+1(3)

∏
j∈U1

auj ,ej+1 + kej+1

auj +Kuj
+2

= bu0,en(3)
∏

j∈U0\{0}
buj ,ej

(3)
∏
j∈U1

auj ,ej
+ kej

auj +Kuj
+2

.

Since the denominators on both sides agree, the same is true for the enumerators:

bu0,e1(3)
∏

j∈U0\{0}
buj ,ej+1(3)

∏
j∈U1

[
auj ,ej+1 + kej+1

]

= bu0,en(3)
∏

j∈U0\{0}
buj ,ej

(3)
∏
j∈U1

[
auj ,ej

+ kej

]
. (5.18)

For m ≥ 0 we extend π adding m traversals of c or c↔: We set π1,m := πcm,
π2,m := π(c↔)m. An analogous argument as above shows that

(α1)
m

m−1∏
l=0

ϕ1(l) = (α2)
m

m−1∏
l=0

ϕ2(l) (5.19)

with

α1 := bu0,e1(3)
∏

j∈U0\{0}
buj ,ej+1(3)

α2 := bu0,en(3)
∏

j∈U0\{0}
buj ,ej

(3)

ϕ1(l) :=
∏
j∈U1

[
auj ,ej+1 + kej+1 + l

]

ϕ2(l) :=
∏
j∈U1

[
auj ,ej

+ kej
+ l
]
.

It follows from (5.19) that

α1

α2
= exp

(
1

m

m−1∑
l=0

ln

(
ϕ2(l)

ϕ1(l)

))
; (5.20)
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note that α1, α2 > 0 and ϕ1, ϕ2 > 0 on N0 by Remark 5.1. Since ϕ1 and ϕ2 are
polynomials with leading coefficient 1, liml→∞ ln (ϕ2(l)/ϕ1(l)) = 0, and the same
is true for the Cesaro mean: limm→∞ m−1∑m−1

l=0 ln (ϕ2(l)/ϕ1(l)) = 0. Taking the
limit as m → ∞ in (5.20) yields α1/α2 = 1; thus α1 = α2. Since (5.19) is valid
for all m ≥ 1, we conclude ϕ1(m) = ϕ2(m) for all m ≥ 0. Since ϕ1 and ϕ2 are
polynomials of degree ≤ n, ϕ1 and ϕ2 must be identical. In particular, the zeros of
ϕ1 and ϕ2 agree:

{−auj ,ej+1 − kej+1; j ∈ U1
} = {−auj ,ej

− kej
; j ∈ U1

}
. (5.21)

Suppose U1 �= ∅. By assumption, U0 �= ∅. Hence there exists j0 ∈ U1 \ {n − 1}
such that j0 + 1 �∈ U1. Recall that in the above argument, π can be any path from
v0 to u0 with k(ui, π) ≥ 3 for all i ∈ {0, 1, . . . , n}. We can choose π in such a
way that

auj0 ,ej0+1 + k(ej0+1, π) > max
{
auj ,ej

+ k(ej , π); j ∈ U1
}
.

This contradicts (5.21), and we conclude U1 = ∅. Since for any two vertices in a
2-edge-connected block there exists a cycle in the block containing both vertices,
the first part of the lemma follows.

Suppose cv(3) �= 0 for all vertices v contained in a 2-edge-connected block B.
Let c = (u0, e1, u1, e2, . . . , en, un) be a cycle in B. A similar argument as above
shows that

m−1∏
l=0

ϕ̃1(l) =
m−1∏
l=0

ϕ̃2(l) (5.22)

with ϕ̃1(l) := ∏n
j=1

[
auj−1,ej

+ kej
+ l
]
, ϕ̃2(l) := ∏n

j=1

[
auj ,ej

+ kej
+ l
]
.Again,

ϕ̃i > 0 on N0, i = 1, 2, and it follows from (5.22) that ϕ̃1(l) = ϕ̃2(l) for all l ≥ 0.
Consequently ϕ̃1 and ϕ̃2 are identical, in particular they have the same zeros. Since
ke = k(e, π), e ∈ E, and π was an arbitrary path from v0 to u0 with k(ui, π) ≥ 3
for all i ∈ {0, 1, . . . , n}, we conclude that auj−1,ej

= auj ,ej
for 1 ≤ j ≤ n. Since

any edge in a 2-edge-connected block B is contained in a cycle in B, the second
part of the lemma follows. 
�
Proof of Theorem 2.1. Let Z be a nearest-neighbor random walk satisfying
Assumptions 1.2–1.5. Using Lemmas 5.5–5.7 together withAssumption 1.5 we con-
clude that the conditional probabilities P(Yn+1 = e, Xn+1 = v|Zn, kn(Xn) ≥ 3)

agree with the corresponding conditional probabilities for modified edge-reinforced
random walk. We remark that this statement is trivial if degree(v) = 1. 
�
Proof of Theorem 1.2. A modified edge-reinforced random walk on a 2-edge-con-
nected graph is either a non-reinforced or an edge-reinforced random walk. Hence
Theorem 1.2 is an immediate consequence of Theorem 2.1. 
�
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