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Abstract. We show that an i.i.d. uniformly colored scenery on Z observed along a random
walk path with bounded jumps can still be reconstructed if there are some errors in the ob-
servations. We assume the random walk is recurrent and can reach every point with positive
probability. At time k, the random walker observes the color at her present location with
probability 1 — § and an error Y, with probability 6. The errors Y, k > 0, are assumed to be
stationary and ergodic and independent of scenery and random walk. If the number of colors
is strictly larger than the number of possible jumps for the random walk and § is sufficiently
small, then almost all sceneries can be almost surely reconstructed up to translations and
reflections.

1. Introduction and result

We call a coloring of the integers Z with colors from the set C := {1,2,... ,C} a
scenery. Let (Sk; k € Np) be a recurrent random walk on Z. At time k the random
walker observes the color £(Sx) at her current location. Given the color record
x = (E(Sk); k € Np), can we almost surely reconstruct the scenery & without
knowing the random walk path? This problem is called scenery reconstruction
problem. In general, one can only hope to reconstruct the scenery up to equiva-
lence, where we call two sceneries & and &' equivalent and write & ~ &' if £ is
obtained from &’ by a translation and/or reflection.

Early work on the scenery reconstruction problem was done by Kesten in [14].
He proved that a single defect in a 4-color random scenery can be detected if the
scenery is i.i.d. uniformly colored. Reconstruction of typical 2-color sceneries was
proved by Matzinger in his Ph.D. thesis [23] (see also [25] and [24]): Almost all
i.i.d. uniformly colored sceneries observed along a simple random walk path (with
holding) can be almost surely reconstructed. In [15], Kesten noticed that the proof
in [23] heavily relies on the skip-freeness of the random walk. In [22], Léwe, Matz-
inger, and Merkl showed that scenery reconstruction is possible for random walks
with bounded jumps if there are sufficiently many colors.
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In this article, we prove that scenery reconstruction still works if the obser-
vations are seen with certain random errors. We make the same assumptions on
scenery and random walk as in [22]: The random walk can reach every integer with
positive probability and is recurrent with bounded jumps, and there are strictly more
colors than possible single steps for the random walk. To keep the exposition as
easy as possible, we assume in addition that for the random walk maximal jump
length to the left and maximal jump length to the right are equal; we believe that
the results of this paper remain true without this assumption. At time k the random
walker observes color £(Sj) with probability 1 — §, whereas she observes an error
Yy with probability §. If the errors are independent of scenery and random walk,
the occurences of errors are i.i.d. Bernoulli with parameter § and Yy, k > 0, is
stationary and ergodic, then for all § sufficiently small, almost all sceneries can be
almost surely reconstructed up to translations and reflections.

More precisely, we consider the following setup: Let 6 €]0, 1[. Let u be a prob-
ability measure over Z with finite support M. With respect to a probability measure
Ps,let S = (Sk; k € Np) be a random walk starting at the origin with independent
wu-distributed increments. We assume that E[S;] = 0 and M has greatest common
divisor 1; hence S is recurrent and can reach every z € Z with positive probability.
Let & = (&; k € Z) be a family of i.i.d. random variables, uniformly distributed
over C. Let X := (Xi; k € Np) be a sequence of i.i.d. random variables taking val-
ues in {0, 1}, Bernoulli distributed with parameter §, and let Y := (¥y; k € Ny) be
a sequence of random variables taking values in C which is stationary and ergodic
under Ps. We assume that (§, S, X, Y) are independent. The scenery observed with
errors along the random walk path is the process ¥ := (yk; k € Np) defined by
Xk = xx = £(Sp) if X; = 0 and y; := Y if X; = 1. Our main theorem reads as
follows:

Theorem 1.1. If |C| > | M|, then there exists 8 > 0 and a map A : CNo —»
CZ which is measurable with respect to the canonical sigma algebras, such that
Ps (A(x) ~ &) = 1 forall § €]0, §;[.

If § = 0, there are no errors in the observations. In this case, the assertion of
Theorem 1.1 was proved by Lowe, Matzinger, and Merkl in [22].

Closely related coin tossing problems have been investigated by Harris and
Keane [7], Levin, Pemantle, and Peres [18], and Levin and Peres [17]. The present
paper has to a large extend been motivated by their work and a question of Peres
who asked for generalizations of the existing random coin tossing results for the
case of many biased coins.

Let x' := ( X,i; k € Np) be a coin tossing record, obtained in one of the fol-
lowing ways: a) a (two-sided) fair coin is tossed i.i.d., or b) at renewal times of a
renewal process a coin with bias 6 is tossed and at all other times a fair coin. Can
we almost surely determine from x’ whether we are in case a) or b)?

Let u,, denote the probability of a renewal at time n. Harris and Keane in [7]
showed that if Y 0%, u2 = oo then we can almost surely determine how x’ was
produced, whereas this is not possible if Y -, u% < oo and 0 is small enough.
Levin, Pemantle, and Peres in [18] showed that to distinguish between a) and b)
not only the square-summability of (u,) but also 0 is relevant. They proved that
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for some renewal sequence (u,) there is a phase transition: There exists a critical
parameter 6, such that for |#] > 6, we can almost surely distinguish between a)
and b), whereas for |#| < 6, this is not possible.

The problem we address in this paper can be seen as a generalization of the
following coin tossing problem: We have C different coins y1, y»2, ... , yc eachone
with C different faces 1, 2, ... , C. Coin y; has distribution u; which gives proba-
bility 1 —§+6/ C to face i and probability 6/ C to each remaining face. Forallz € Z
we choose i.i.d. uniformly among y1, y», ... , Yc acoin £(z). Let (Sk; k € Np) be
a random walk on Z fulfilling the conditions described above, independent of ¢.
We generate a coin tossing record x' := (XIQ; k € Np) by tossing the coin ¢ (Sk)
at location Sy at time k. Then x’ has the same distribution as ¥ defined above, if
we choose Yy i.i.d. uniformly distributed over C. Theorem 1.1 implies that we can
almost surely determine ¢ up to equivalence from the coin tossing record yx’, as
long as § is small enough.

Research on random sceneries started by work by Keane and den Hollander
([13] and [5]) who studied ergodic properties of a color record seen along a random
walk. Their questions were motivated among others by the work of Kalikow [12]
in ergodic theory. More recently, den Hollander, Steif [4], and Heicklen, Hoffman,
Rudolph [8] contributed to this area.

A preform of the scenery reconstruction problem is the scenery distinguish-
ing problem (for a description of the problem see [15]) which started with the
question whether any two non-equivalent sceneries can be distinguished. This
question was asked by Benjamini and independently by den Hollander and
Keane. The problem has been investigated by Benjamini and Kesten in [2] and [14].
Howard in [11], [10], [9] also contributed to this area. Recently, Lindenstrauss
[19] showed the existence of uncountably many sceneries which cannot be recon-
structed.

Lowe and Matzinger [21] proved that two-dimensional sceneries can be recon-
structed if there are enough colors. In the case of a 2-color scenery and simple
random walk with holding, the authors ([27], see also [26]) showed that the recon-
struction can be done in polynomial time. By a result of Lowe and Matzinger [20],
reconstruction is possible in many cases even if the scenery is noti.i.d., but has some
correlations. In [16], Lenstra and Matzinger showed that scenery reconstruction is
still possible if the random walk might jump more than distance 1 with very small
probability and the tail of the jump distribution decays sufficiently fast.

The exposition is organized as follows. In Section 2, we introduce some notation
and we formally describe our setup. Section 3 describes the structure of the proof of
Theorem 1.1: By an ergodicity argument, it suffices to find a partial reconstruction
algorithm A’ which reconstructs correctly with probability > 1/2. To construct A’,
we build partial reconstruction algorithms .A™, m > 1, which reconstruct bigger
and bigger pieces of scenery around the origin. Section 4 contains the proofs of
the theorems from Section 3. The core of the reconstruction is an algorithm Alg”
which reconstructs a finite piece of scenery around the origin given as input finitely
many observations, stopping times, and a small piece of scenery which has been
reconstructed earlier. Section 5 contains the definition of Alg”. In Section 6, we
show that Alg" fulfills its task with high probability.
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2. Notation and setup

In this section, we collect frequently used notation.

Sets and functions. The cardinality of a set D is denoted by |D|. We write f|D
for the restriction of a function f to a set D. For a sequence S = (s;;i € I) we
write |S| := || for the number of components of S. If s; is an entry of S, we write
s; € §; sometimes we write s(i) instead of s;. For events By, k > 1, we write
liminfy_, o By 1= U3, ﬂ,‘:‘;n By, for the event that all but finitely many By ’s occur.

Integers and integer intervals. N denotes the set of natural numbers; by defi-
nition, 0 ¢ N. We set Ny := N U {0}. If x € R, we denote by | x| the largest
integer < x. Unless explicitly stated otherwise, intervals are taken over the inte-
gers,e.g. [a,b]={ne€Z:a<n<b},la,bl={neZ:a<n<b}.

Sceneries. We fix C > 2, and denote by C := {1, ..., C} the set of colors. A scen-
ery is an element of CZ. A piece of scenery is an element of C’ for a subset I of
Z; here I need not be an integer interval. The cardinality of the set / is called the
length of the piece of scenery. We denote by (1); the piece of scenery in C! which
is identically equal to 1. For I = {i1,i2,...,ix} C Z withi] < ip < ... < ik
and a piece of scenery & € C! we define £_, to be the piece of scenery & read from
left to right and £ _ to be & read from right to left: £, := (§(i;); j € [1,k]) and

§ = (E(ik—j+1); J € [1, kD).

Equivalence of sceneries. Let v € C! and ' € C! " be two pieces of sceneries.
We say that v and ¥’ are equivalent and write ¥ ~ ' iff I and I’ have the same
length and there exists a € Z and b € {—1, 1} such that for all kK € I we have that
a+bk € I'and Y = ¥, ;- We call ¢ and o' strongly equivalent and write
Y =y if I’ =a+ I forsomea € Zand Yy = V¥, forall k € 1. We say
occurs in ' and write ¥ T ' if = '|J for some J C I'. We write v < ¢ if
Y ~ '|J for some J C I'. If the subset J is unique, we write ¥ < ¥’.

Random walks, random sceneries, and random errors. Let u be a probability
measure on Z with finite support M. We assume that |M| < |C|, i.e. the number
of colors is strictly larger than the number of possible jumps of the random walk.
We assume max M = | min M|, and we write L := max M for the maximal jump
length of the random walk. Let 25 € ZNo denote the set of all paths with jump sizes
Sk+1 — Sk € M for all k € Ny. We denote by Qy the distribution on (Qz)NU of a
random walk (Sk; k € Np) starting at x with i.i.d. increments distributed according
to w. We assume that Zke M ku(k) = 0 and M has greatest common divisor 1,
consequently the random walk is recurrent and can reach every integer with positive
probability.

The scenery & := (&; k € Z) is i.i.d. with & uniformly distributed on C. Let
X := (X; k € Np) be a sequence of i.i.d. Bernoulli random variables with values
in {0, 1}. If X; = 0, then at time k the random walk observes color &(Sy), whereas
if X = 1 an error occurs in the observations at time k: the random walker observes
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Y, where Y := (Yi; k € Np) is a sequence of random variables taking values in
C. We assume that (¢, S, X, Y) are independent and realized as canonical projec-
tionson 2 := (CZ, Q», {0, I}NO, CNO) with the product o -algebra generated by the
canonical projections and probability measures Ps , := 2L @0, ® B(5®N° ® A,
8 € [0, 1], x € Z; here v denotes the uniform distribution on C, B the Bernoulli
distribution with parameter § on {0, 1} and A a probability measure on ™0 such that
the left-shift is measure-preserving and ergodic with respect to A. We abbreviate
Ps:= Pspand P := Py.

We call x := (xr := £(Sk); k € Np) the scenery observed along the random
walk path; sometimes we write £ o S instead of y. We define x := (yx; k € Np),
the scenery observed with errors along the random walk path, by

-~ ) xe X =0,
=Ny, if X = 1.

For a fixed scenery & € C% we set P; =68 ® 0 ® B?NO ® A, where 6
denotes the Dirac measure at £. Thus Pf is the canonical version of the conditional

probability Ps(-|&). We use Pf and Ps(-|§) as synonyms; i.e. we never work with
a different version of the conditional probability Ps(-|£).

Admissible paths. Let I = [i, i2] be an integer interval. We call a path R € 7!
admissible if Riy1 — R; € M foralli € [i1,ip — 1]. We call R(i;) the starting
point, R (i) the endpoint, and || the length of R.

Words. We call the elements of C* := U, cN,C" words. If w € C", we say that w
has length n and write |w| = n.

Ladder intervals, ladder paths, and ladder words. A ladder interval is a set of
the form 7 N(a+ LZ) with abounded interval I and amoduloclassa+LZ € Z/LZ.
Let I be a ladder interval. We call a path R of length | /| which traverses I from left
to right or from right to left a ladder path or a straight crossing of 1. The ladder
words of a scenery & over [ are (§]1)_, and (§|]) .

Filtration and shift. We define a filtration over Q: G := (G,,;; n € Ng) with G,, :=
o (Xk; k € [0, n]) is the natural filtration of the observations with errors. We define
the shift 6 : CNo — CNo_ > (- +1).

2.1. Conventions about constants

All constants keep their meaning throughout the whole article. Unless otherwise
stated, they depend only on C and u. Constants «, y, €, &, c1, ¢2, and ny play a
special role in the constructions below; we state here how they are chosen. All other
constants are denoted by ¢;, i > 3, §;, ;1,1 > 1.

e We choose y > 0.
e We choose ¢ €]1, %[ and € €]0, e™¥*[ with

M .= min {1/30, £;/90, [InC — Incy — In(C — 1)]/(901n C)},

where g7 is as in Lemma 6.7.
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e We choose ¢ € N to be a multiple of 36 with ¢; > 27/[InC — Inc¢; — In(C —
1) — 90z In C1].

e Wesete :=ce.

e We choose @« > max{y,1+y —[3ci Inumin]/In2}, where we abbreviate
Mmin := min{u (i) : i € M}.

e Finally we choose n; € N, n; > min{25, c3}, large enough that 2" > clLZL“/EJ
foralln > ny and £2(n1) + 2e3(n1)) /% + anozz cqe”"m < 1/2 holds, where
c3 is defined in Theorem 3.5, &> (n1) in Lemma 4.3, e3(n;) in Theorem 3.3, and
c4 and ¢s in Lemma 4.4.

3. The structure of the reconstruction

In order to prove Theorem 1.1, we reduce the problem of reconstructing the scenery
successively to simpler problems. Theorems 3.1 and 3.2 below show that it suffices
to find algorithms which do only partial reconstructions. Proofs are postponed to
later sections: Sections 5 and 6 are dedicated to the proof of Theorem 3.5, all other
statements of this section are proved in Section 4. Our first theorem states that it
suffices to find a reconstruction algorithm A" which reconstructs correctly with
probability > 1/2:

Theorem 3.1. If there exist 8, > 0 and a measurable map A’ : CN0 —> CZ such
that Ps (A’(f() ~ f;‘) > 1/2 for all § €]0, §1[, then there exists a measurable map
A CNo — CZ guch that Ps (A(x) ~ &) = 1 forall § €10, 8;[.

The idea is to apply the reconstruction algorithm A’ to all the shifted observa-
tions 6’ (%), i > 0. By the hypothesis and an ergodicity argument, as k tends to
infinity the proportion of sceneries A’ (0’ (x)) for i € [0, k[ which are equivalent
to £ is strictly bigger than the proportion of sceneries which are not equivalent to
&. Therefore we are able to reconstruct the scenery.

We build the algorithm 4" required by Theorem 3.1 by putting together a hi-
erarchy of partial reconstruction algorithms A™, m > 1. The algorithm A™ tries
to reconstruct a piece of scenery around the origin of length of order 2" with
(n,; m € N) recursively defined as follows: We choose | as in Section 2.1, and
we set for m > 1

Ny = 20/l (3.1)

Definition 3.1. For m > 1 and a measurable map f : CNo — ¢[=32"".3.2""] 0
define

reconst £ = {EI=2"",2""] < f(X) < E|[—4-2", 42"}, (3.2)

E:Zconst,f is the event that the reconstruction procedure f reconstructs correctly
a piece of scenery of length of order 2" around the origin. Note that any finite piece
of scenery occurs somewhere with probability 1 because the scenery is i.i.d. uni-
formly colored. Therefore it is crucial to reconstruct a piece of scenery around the
origin.



Reconstructing a random scenery observed with random errors 545

Theorem 3.2. Suppose there exist 1 > 0 and a sequence of measurable maps
A cNo s ¢I=32"32" gy > 1) such that for all § €10, 8;[

lim inf Bl am = 1minf (Elton an 0 Edente) Ps = a.s., (3.3)

m— 0o m— 00 center

where E™tl .= {Am+l()~()|[—3 S 2Mm 3. 0m] = Am()Z)}. Suppose further that

center

Py (U (Eltoons, Am)c> <1/2 forall§ €10, 8] (3.4)

m=1

Then there exists a measurable map A’ : CN0 — C% such that Ps (A'(X) ~ &) >
1/2 for all § €]0, &1[.

In the following, we explain how we construct maps 4™ satisfying the assump-
tions of Theorem 3.2. The task of A! is to reconstruct a piece of scenery of length of
order 2"! around the origin with high probability. It is shown by Lowe, Matzinger,
and Merkl in [22] that the whole scenery can be reconstructed with probability
one in case there are no errors in the observations. They only prove existence of
a reconstruction procedure, but do not explicitly construct an algorithm. In [28]
we construct an algorithm which even works in polynomial time: A finite piece of
scenery around the origin can be reconstructed with high probability from finitely
many error-free observations; the number of observations needed is polynomial in
the length of the piece of scenery which is reconstructed. We prove:

Theorem 3.3. For infinitely many n € N there exists a measurable map
initial * clo22™ [, el=32"32" gyep thar
C
esn) i= P ({61272 = Al (x110.2-2271) < gl1—4-2",4-211]")

satisfies lim,_, 5 €3(n) = 0.

As an immediate consequence of Theorem 3.3 a piece of scenery around the
origin can be reconstructed with high probability even if there are errors in the
observations. As long as the probability § to see an error at a particular time is
sufficiently small, the probability to see no errors in the first 2 - 212%” observations
is close to 1. The following corollary makes this precise:

Corollary 3.1. Let Aj ..., and £3(n) be as in Theorem 3.3. There exist 5(n) > 0

such that for all 6 €]0, 62(n)[
Py ({&11-2", 271 = Al (7110, 2 220) < €l1—4 27,4 211}") < 263,

We will choose A! := Ainnliﬁal. The maps A™, m > 2, will be defined induc-
tively. Given a partial reconstruction algorithm .A” we define stopping times which
tell us when the random walker is in some sense “close” to the origin: We compare

A" (x) with A™(0'(x)), i.e. we compare the output of A™ if the input consists of
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the observations collected by the random walker starting at the origin and the ob-
servations starting at time 7. If both outputs agree up to equivalence on a sufficiently
large subpiece, then with a high chance, the random walker is — on an appropriate
scale — close to the origin.

The stopping times constructed from A™ are used to reconstruct a piece of
scenery around the origin of length of order 2"+! which is much larger than the
piece of scenery reconstructed by A™; recall our choice of n,, (3.1). Whenever the
stopping times indicate that the random walk is “close” to the origin, we collect
significant parts of the observations of length c1n,,. If we have sufficiently many
stopping times, the random walk will walk over the same piece of scenery over and
over again. This allows us to filter out the errors in the observations. Once this is
done, the obtained words are put together like in a puzzle game. The words are used
to extend the piece of scenery of length of order 2" which has been reconstructed
by A™.

Formally we define stopping times in the following way:

Definition 3.2. Form € N and a measurable map f : CNo — CL=32""32" ] iy
the property that f(}) depends only on %[0, 2 - 212" [, we define

'IF’”“( ) = {t e [0,212mm+1 — 2. 212“”'"[ c3w e =" 2" such that}
w = f(X)and w < f(O' (X))

Lett(1) < t(2) < --- be the elements of ']I‘mH()Z) arranged in increasing order.
We define the sequence T}”H(f() = (TmH(x) k> 1) by

Tm+l( )= 12 2%t ) 4 2. 2120 f0 D2tk < ‘Tr}lﬂ 5
212emm otherwise.

Tm+l (%) is a sequence of G-adapted stopping times with values in [O 212“”"'“]

the stopping times depend only on x| [ 0, 2120mm+1 [ We define the event that a se-
quence of stopping times fulfils the task of stopping the random walk “close” to
the origin (on a rather rough scale).

Definition 3.3. Forn € N and a sequence T = (ti; k > 1) of G-adapted stopping

times we define the event Esmp

oan

) {rG0 <2 IS@GO = 2" 730 +2- 2™ < 0@ for j < k}.
k=1

The next theorem states that given an appropriate partial reconstruction algo-
rithm f, the stopping times TJ’Z"H fulfil their task with a high probability. By the
definition of 7!, we stop at time 7 +2 - 2'2%m iff (%) and f(6'(X)) agree on a
large enough subpiece. Therefore, for the stopping times to stop the random walk
close to the origin, it is necessary that f()) is a correctly reconstructed piece of
scenery around the origin. Since we apply f often to obtain enough stopping times,
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we need that given a scenery &, there is a high enough chance for the random walk on
& to be stopped correctly, i.e. f must reconstruct correctly with high enough prob-
ability conditional on £. This is why we need the event [P5 [Er’gconst’ gl E] > %} in
the following theorem.

Theorem 3.4. Let m > 1, and let f : CNo — Cl=32"32""1 be 4 measurable
map with the property that f (%) depends only on %[0, 2 - 212%™ [ We have for all
§ €]0, 1]

Npnt1, Tf+] 1 .
Ps ((Ereconst f \ Estop Ny Ps [E;’;const,f | E] = 5 < e il

The next theorem shows that there exist partial reconstruction algorithms Alg"
(the reader should think of n = n,,) with the following properties: Given stopping
times which stop the random walk close to the origin, finitely many observations
with errors and a small piece of scenery i close to the origin, Alg" reconstructs
with high probability a piece of scenery around the origin of length of order 2". If
the reconstruction is succesful, the output of Alg” contains ¢ in the middle. The
reader should think of ¥ as a piece of scenery that has been reconstructed before.

Theorem 3.5. For all n € N there exists a measurable map

Alg" : [0 212<;m]N % 62-212“" % U cl—knknl _, o[-32"32"]
k>ciL
with the following property: There exist constants c3, 63, cs, c7 > 0 such that for
alln > c¢3, § €]0, é3[ and for any sequence t = (t; k > 1) of G-adapted stopping
times with values in [0, 212%]

—c7n
Ps ( Stop \ Ereconstruct) = cee )

Where Erecomtruct

For all ¥ € Cl=knknl \ith k > L and /S §|[—2”,2”] we have
g|[—2",2"] 2 Alg"(x, x1[0,2- 212" [ y) < E|[—4-2",4-2"]. '

Furthermore if £][—2",2"] < Alg"(z, x|[0,2- 212", ¥) < &[[—4-2",4 . 2"]
holds, ¥ € Cl7knknl with k > ¢|L, ¥ =< &|[-2",2"] and &|[-2",2"] #
(1)[—27 277, then we conclude that Alg" (z, X | [O, 2. 212“”[, ) |[—kn, kn] = .

To motivate the allowed range for the abstract arguments t in this theorem,
recall that the T}C"k( %)’s in Definition 3.2 take their values in [0, 212" ]. We are
now able to define A™, m > 1, which fulfill the requirements of Theorem 3.2.
Definition 3.4. We define A" : CNo — ¢[=32"".32""] qnd sequences T" ! =
(Tkm“; k> 1) recursively for m > 1 in the following way:

o Al(3) :=
Theorem 3.3,

innlitial (X|[O 2. 12an [) with ny as in Section 2.1 and Alnmal as in
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o TFl(%):= T;\",QLI()Z) with T"5 as in Definition 3.2,
o AMTL(%) = Alg"m+1 (T™ (%), X1[0,2 - 21201 [ A™ (%)) with Alg"™+! as

in Theorem 3.5.

Theorem 3.6. There exists 81 > 0 such that the sequence (A™; m € N) defined in
Definition 3.4 fulfils (3.3) and (3.4) for all § €]0, &1[.

All theorems of this section together yield the proof of our main theorem:

Proof of Theorem 1.1. By Theorem 3.6, the assumptions of Theorem 3.2 are satis-
fied. Hence the assumptions of Theorem 3.1 are satisfied and Theorem 1.1 follows.
O

4. Proofs

In this section, we prove the statements from Section 3 with the exception of The-
orem 3.5 which will be proved in Sections 5 and 6.

Lemma 4.1. The shift ® : Q — ,
€ 8 X. V)~ EC+SM), SC+ D=8, X(+D,Y(+1)
is measure-preserving and ergodic with respect to Ps for all § €]0, 1[.

Proof. Let § €]0, 1[. By assumption, Y, k > 0, is stationary and ergodic under
Ps. Xy, k > 0, is i.i.d., hence stationary and ergodic under Ps. By Lemma 4.1 of
[22], (¢, 8) — (E(-+ S(1)), S(- + 1) — S(1)) is measure-preserving and ergodic
with respect to P. The claim follows from these three observations and the fact that
(&, S, X, Y) are independent. m|

Proof of Theorem 3.1. Let 8; and A’ : CN0 — CZ be as in the hypothesis of the
theorem, and let § €]0, §1[. We define for k € N measurable maps A;c - cNo _, cZ
as follows: If there exists j € [0, k[ such that

)

i e t0.4t: @ o0 ~ 407 ol | > [[i € 10k @ GO 2 A0 ()

then let jjo be the smallest j with this property, and define A} () := A'(070(%)).
Otherwise define A (X) to be the constant scenery (1) jc7. Finally we define A :
cNo _, cZ by

limy_, oo Aj () if this limit exists pointwise,

AGO = {(1)]-62 else.

As a limit of measurable maps, A is measurable. For k € N we define

lk71 .
zi:= Y 1A ) ~ gl

i=0
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here 1B denotes the indicator function of the event B. It follows from Lemma 4.1
that the sequence I{A/ O% () ~ & }, k > 0, is stationary and ergodic because it
can be written as a measurable function of the sequence ek &,8,X,Y), k> 0;
note that £ &~ &(- 4 Si). Hence we can use the ergodic theorem and our assumption
to obtain Ps-almost surely:

lim Z = Py (A~ €) > 1/2. “.1)

Note that if Z; > 1/2, then A;{()Z) =~ £. By (4.1) there exists a.s. a (random) ko
such that Z; > 1/2 for all k > ko, and hence A; (¥) = A;CO()Z) A &; recall that we
chose the smallest possible jo in the definition of Aj. Thus a.s. A(X) ~ &. O

Proof of Theorem 3.2. We say a sequence ({™; m € N) of pieces of sceneries con-
verges pointwise to a scenery ¢ if liminf,,_, o domain(¢”) = Z, and for every
z € Z there is m, > 0 such that ¢ (z) = ¢{(z) forallm > m;.

Let §; and A™ be as in the hypothesis of the theorem, and let § €]0, §;[. We
set A'(}) := lim;,— 00 A™(¥) if this limit exists pointwise on Z; otherwise we set
A'(X) := (1) jez. Being a pointwise limit of measurable maps, A’ : cNo 5 CZ g

1 m .__ m
measurable. We abbreviate E™ := E reconst, Am” and define the events

mi= {EI=2, 2] < E|[—4 - 2 4 2

We claim:
1. liminf,,  Ef, holds Ps-as.,
2. If the event (liminf,,— o0 E7f,) N (i E™ holds, then A'(¥) ~ §.

Together with the assumption Ps [U;’fz | (E ”’)C] < 1/2 these two statements imply
that Ps (A’ (x)~é& ) > 1/2 which yields the claim of the theorem.

Proof of claim 1. We show for any integer intervals Iy # I with [I{| = |I2|
P ~§|h) <2- 701, (4.2)

First we define f; : [0, |Ij|[— I for j = 1, 2 to be the unique translation which
maps [0, |/;|[ onto /;. An argument similar to the proof of (6.26) below shows that
there exists a subset J C [0, |/;|[ of cardinality |J| > |/;]/3 with fi(J)N f2(J) =
@. Since &, k € Z, are i.i.d. with a uniform distribution, we conclude

PEIL =&lhL) < PEIAU) =Elf2(0) =Cc V< 7l

Since |1} ~ &|I, means &[] = &|I, or §|1} = (§]1)< with (§]1) denoting
the piece of scenery obtained from &I, by reflection, estimate (4.2) follows.

We apply (4.2) for I} = [—2"=,2"=] and all integer intervals I C [—4 -
2Mtm+1 4 . Qtmt1 [ £ I, of length |I1| = |I2| = 2 - 2" 4 1; there are not more
than 8 - 2"m+1 choices for I,. We obtain

P ((Efh)S) <8-2mm+1.2. C@2"HD/3 < 1692 =223

which is summable over m; recall C > 2 and (3.1). Hence by the Borel-Cantelli
lemma (E75,)¢ occurs Ps-a.s. only finitely many times; this proves claim 1.
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Proof of claim 2. By the assumption of this claim, there is a (random) M such that
the events E{;, and E™ hold for all m > M. By the assumption of Theorem 3.2, M

can be chosen in such a way that E™! holds for all m > M, too. Consequently,

AL [=3 -2, 3.2 ] = A™ (%) for all m > M and it follows that
A GOll—k, k] = A" GOk, k] 4.3)

for all kK > 1 and all m large enough. In particular, lim,,_, oo A™ (}) exists.
Since E™ and E7}, hold, A™(x) =<1 &|[—4-2"",4-2""]. Hence there exists a
unique map h™ : Z — Z of the form x +— a,, +b,,x witha,, € Zand b,, € {—1, 1}
that maps A" () onto a subpiece of &|[—4 - 2"m 4 .2"n] Tt follows from (4.3) that

K™ is independent of m and maps A’()) to &. This finishes the proof of claim 2.
O

Proof of Theorem 3.3. By Theorem 1.1 of [28], we know that there exists 8 > 0 and
for infinitely many n € N there exists a measurable map A : C [0.207 42212,

c[=52"52"] guch that lim,_, oo P ([E®]°) = 0, where

ini
Epi={e1[=2 207 | < Ay (xlt0, 207 +2 - 2" ) <1 [-10- 2,10 - 27] )

Small modifications in the proof of Theorem 1.1 in [28] prove our claim. We

remark that alternatively, we could work directly with the maps Af; from [28]

without adjusting the constants; all proofs in the remainder of the article go through,
but the notation becomes more cumbersome. O

Proof of Corollary 3.1. We estimate the probability under consideration by inter-
secting with the event By := {X; = 0 forall k € [0, 2 -2'>*"[} that there are no
errors in the first 2 - 212" observations: For any § > 0 we have

1= Py (£11-2"2"1 = Ay (71102 2'27) < £][—4-2",4.2"])
1= Py ({811-2" 271 = A (7110, 2-2127) < £1-272, 2421} 1 By )
= 1= 80P (£I1-2", 2" = Al (x110.2-2'27) = g[[-2"42, 27+

=1-8m)(1 —e3(n))

with 8(n) := (1 —8)22"" and &3 (n) as in Theorem 3.3. We choose 8, (1) > 0 such
that the last expression is bounded above by 2¢3(n) for all § €]0, 6, (n)[. O

IA

Proof of Theorem 3.4. The proof is very similar to the proof of Theorem 3.11 in
section 7 of [22] (Our Theorem 3.4 is the analogon of their Theorem 3.11 for our set-
ting). The errors in the observations do not require adaptations of their arguments;
note that the errors are independent of scenery and random walk and occurences
of errors are i.i.d. Bernoulli. O

The remainder of this section is dedicated to the proof of Theorem 3.6. Through-
out we assume A, m > 1, are asin Definition 3.4, and we set 8| := min{83, 52 (n1)}
with 83 as in Theorem 3.5 and 8, (n1) as in Corollary 3.1. We set for m > 1

E™ .= E" (4.4)

reconst, A *
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Definition 4.1. For § €10, 81[ we define events of sceneries

ol
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where e3(ny) is as in Theorem 3.3 and cg and cy are as in Theorem 3.5.

Note the similarity between these events and the bounds in Corollary 3.1, The-
orems 3.4 and 3.5. The following lemma provides a link between bounds with and
without conditioning on the scenery &:

Lemma 4.2 ([22], Lemma 4.6). Let A be an event, r > 0, and let Q be a proba-
bility measure on Q. If Q(A) < r?, then Q (Q(A|€) > r) <r.

Lemma 4.3. For all n € N there exist eo(n) > 0 with lim,_, o &2(n) = 0 such
that Ps (& ¢ B°) < ex(n)) for all § €]0, ;.

Proof. Let§ €]0, §1[. Using Corollary 3.1 and Lemma 4.2 for Q = Ps, we obtain

Ps (& ¢ BY) < es(nn))"/2. (4.5)

An application of Theorem 3.4 with f = A" yields for m > 2

Ps ((E'” YE) 0 {P [ 1|g]>%}> <o,

An application of Lemma 4.2 with Q = P; yields

o]

P ¢ <)y em/P<emm (4.6)

m=2

for some constant cg > 0, recall our choice of n,, (3.1). Let m > 2, and recall
the definition of the event Ereconstruct from Theorem 3.5. By Definition 3.4, we
have that A" (%) = Alg" (T™(x), XI[0,2 - 212" [ ) with ¢ = A" ().
By our choice of ny, (|¢| — 1)/2 = 3. 2"~ > cin, L. If E™=! holds, then
U <& [—2”’", 2"'"]. Hence the inclusion

A.7)

stop stop reconstruct

E" 0 (B \E") € Epy "\ Epe
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holds. Together with Theorem 3.5 the last inclusion implies

stop stop reconstruct

P (E’"_l n (E"’"T \ E’”)) < P (E’"’T'" \ Em T ) < cge— T

Another application of Lemma 4.2 yields for some constant cg > 0

o0
Py (§ ¢ B3) < ) (ce)Pe 72 < gmoom, (4.8)

m=2

The claim of the lemma follows from (4.5), (4.6), and (4.8); recall e3(n) — 0 as
n — oo. O

Lemma 4.4. For all § €10, 81[, &€ € % and m > 2 the following holds for some
constants c4, c5 > 0:

Py(E™ 11 8) = 1 — 2e3(m)'? = 05 cue5m > 1, 4.9)
Ps(E™=1\ E™ | &) < cqe™5"m, (4.10)

Proof. Let 8 €]0,8;[ and & € E°. We prove (4.9) and (4.10) simultaneously by

induction over m: For m = 2 it follows from £ € E‘f

PE 19 =1-R[(E") 18] 21— Qam)' P =172 @1

recall our choice of n from Section 2.1. Thus (4.9) holds for m = 2.
Suppose (4.9) holds for some m > 2. Then we have

PLE"I\ E"I€) < Py [ (E" I\ E™) 0 By | €]+ Py [ B\ By €]

stop stop

< (cg) Ve 4 emm/? <y (4.12)

for some constants c4, c5 > 0; for the first term we used & € E‘g and for the second
)

term we used & € E7 and our induction hypothesis (4.9). Using (4.12) and our
induction hypothesis (4.9) we obtain

Ps(E™ | ) = Ps(E" ™" | £) — Ps(E" ™'\ E" | §)

v

m
1
1—2 1/2 _ —Cshg —:
(2e3(n1)) ;me >3

for the last inequality we used our choice of n1. This completes the induction step.
O

Proof of Theorem 3.6. Let § €]0, §1[; recall our choice 61 = min{ds, 52(n1)}.
By Theorem 3.5 we know that whenever the events E”~!' and E™ hold and
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§|[_2nm’ 2nm] # (1)[_2nm’2nm], then Em

center

lation (3.3) holds. Using Lemma 4.3 we have

Ps (U<E’”>°) <Ps(E¢E)+Ps ({s e &%)n U(E’")C)
m=1

m=1
o0
< ex(ny) +/ Ps LJ(E'")c
ez \,2

To bound the integrand, we use Lemma 4.4: For all £ € 2% and k > 1, we obtain

k
Ps ( U E™
m=1

holds. Since Ps-a.s. & # (1)z, re-

S) dPs. (4.13)

k+1

s) = P (BN 16)+ D PoE" ™\ E" | ©)
m=2

k+1
< ez + ) caem 5, (4.14)

m=2

and taking limits as k — 0o, we conclude

Ps (U (E™)°
m=1

Together with (4.13) the last estimate yields (3.4):

S) =< (283(}11))1/2 + Z cpe” s,

m=2

o 00 1
Ps <YE_=J1(Em)C) < &2(n1) + Qez(n)'> + Z cpe” M < 3 (4.15)

m=2

for the last inequality we used that n1 is chosen as in Section 2.1. O
5. The key algorithm of the reconstruction

In this section, we define algorithms Alg” for which Theorem 3.5 holds. We fix
n e N.
For two words w, w” € C* of the same length we define their distance

d(w, w") := |{k € [1, [wl] : we # wi}l; (S.D

d(w, w') is the number of places where w and w’ disagree. Clearly, d is a metric.

When the random walk observes a piece of scenery and § is small, the observa-
tions with errors differ “typically” from the errorfree observations in only a small
proportion of the letters because the probability to see an error at a particular time
is small under Ps. Since the random walk observes a given piece of scenery very
often, we are able to filter out the errors using a majority rule f*.

The following notions will be used in this context. For w = wyw, ... w, € C"
we define Cut(w) := wy ... wy—1; Cut(w) is obtained from w by cutting off the
first and the last letter.
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Definition 5.1. Let W = (w;;1 < j < K) € €™k be a vector consisting of K
words of length cin. Fori € [1, cin] we define f; (W), the favorite letter at position
i, to be the element in C which most of the first 2¥" words in W have at position i.
If there is no unique letter with this property, then we define the favorite letter to
be the smallest one. Formally, we set

fiW) =k iff
e (127w = k)| = max {7 € [1.2] ) = )|

and k is the smallest element in C satisfying the last equality; here w (i) denotes the

i letter of the word w ;. We set f(W) := fi(W) f2(W) ... fe;n(W). Furthermore,
we define f*(W) :=

CUt(f(W)), if K > 27" and max;efi,2vn] d(cut(wj), Cut(f(W))) <en
(—=D[1.¢yn—2], otherwise.

f*(W) equals the word Cut(f(W)) which is composed of the favorite letters iff
the vector W has sufficiently many components and each of the first 2¥" words
in W differs from f(W) in not more than en letters. In the proof of Lemma 6.9
below it will be essential that we use Cut( f(W)) and not f (W) in the definition of
f*(W). Note that —1 ¢ C so that (—1)[y,¢,»—2; differs from all words w € con=2,

The algorithm Alg” which will be defined below takes input data
N on
re [o, 212“”] e andy e J clhnh, (5.2)
k>c|L

First we define the set of all observations of length 3cin which are collected
within a time horizon of length 2%" after a time 7, k € [1,2%"]:

Definition 5.2. We define Collection’ (z, n) :=
[(wl, wy, w3) € (CC'”)3 23k € [1, 2] such that wiwows E [Tk, T + 22”[] )

The set PrePuzzle” (z, n) contains only (wy, wa, w3) € Collection”(z, n)
with the following property: If (w], w), w}) € Collection”(r, n) and w} and w}
are “not too different” from w; and wj3 respectively, then w) is “not too different”
from w,. Formally:

Definition 5.3. We define PrePuzzl€' (t, n) :=

(w1, wp, w3) € Collection’ (t, n) : If (w), wj, wy) € Collection' (z, n) with
d(wy, wy) < 2en and d(w3, wy) < 2en, then d(wy, w)) < 2en.

Definition 5.4. For an element (w1, wo, w3) € PrePuzzle’ (t, n) we denote by
S?’n(wl, wy, w3) the sequence of (random) times s € U,%Z’l [‘L’k, T + 221 — 3cln]
such that wiwywy := n|[s, s + 3cin[ € PrePuzzle" (t, n), d(w, w}) < 2en, and
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d(ws, wg) < 2en; we assume that the elements of the sequence S?,n(wl, wo, W3)
are arranged in increasing order. We define

Listf’n(wl, wy, w3) = <n|[s +cin,s +2cin[;s € S;”n(un, wy, w3)>

to be the sequence with components n|[s + cin,s + 2cin[ indexed by the set
S‘?’rl(w] , W2, w3)~ We set

PuzzleLists' (t, ) := {Listﬁn(w1, wo, w3) : (wy, wa, w3)ePrePuzzle' (t, r))} )
Clearly, w; € Listﬁ’n(wl, w7, w3). Note that List’;,n(wl, wy, w3) is a sequence,
and not a set. If by coincidence observations n|[s + c1n, s + 2c¢1n[ coincide for two
different values of s, we want to keep them both. The components of List? " (wy, woy,
w3) are close to wy in d-distance for (wy, wy, w3) € PrePuzzle” (z, n).

Definition 5.5. We define Puzzle' (t,n) := { f*(W) : W € PuzzleLists" (z, n)}.

Puzzle" (7, n) is the set of all words of length ¢c;n — 2 which are obtained by
the majority rule f* from the lists in PuzzleLists" (z, n). We use the words in
Puzzle™ (z, n) like the pieces in a puzzle game to reconstruct a piece of scenery.
We want the piece of scenery reconstructed by Alg” to contain in the middle the
piece of scenery ¢ from the input data of the algorithm.

Definition 5.6. For v € Cl=Fk"l ywe define SolutionPiece (z, n, ) :=
w e CI732"32) | [—kn, kn] = ¥ and for all ladder intervals

1 C [-3-2"3-2" with |I| = cin — 2 we have (w|l)_. €
Puzzlé' (t, n)

We will see in the proof of Lemma 6.4 below that under appropriate conditions,
there is precisely one element in SolutionPiece” (z, n, ¥).

Definition 5.7. We define

Alg" [0, 212an]N % CMIM « U cl—knkn] _, o[-3-2".3.2"]
k>c|L

as follows: If SolutionPiec€” (t, n, V) is not empty, then we define Alg" (t, n, V)
to be its lexicographically smallest element. Otherwise we define Alg" (t, n, V) to
be the constant scenery (1)[—3.21 3.0n].

6. The key algorithm reconstructs correctly

In this section, we prove Theorem 3.5. Throughout we fix n € N. We assume that
7 € [0, 2'2*"N s a sequence of G-adapted stopping times. Recall that & was chosen
in Section 2.1.
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6.1. Definition of the key events

In this subsection, we collect the definitions of all the “basic” events which we
will need to prove the correctness of Alg”. The event Bglirpaths holds if the ran-
dom walk traverses all paths of length 3cn in the region where we want to do the
reconstruction. Bf, ... makes sure that there are not too many mistakes in the
words in Collection” (z, ). By, j4er aisr gives a lower bound for the d-distance of
two different ladder words in the neighborhood of the origin. Bg{aﬁority garanties
that the majority decision f* is not corrupted by the errors in the observations.
If B))ide out DOIds, then we can distinguish ladder words from the region where
we want to reconstruct from observations which are read further outside. Bg,
implies that there are “signal words” which can be read only left from a certain
point z € Z or only right from a certain z € Z; this event allows us to reconstruct
all ladder words in a region around the origin. B;};ght often SUArantees that certain
ladder paths are traversed often enough.

We arranged the definitions of the events in alphabetical order so that the reader
can easily find them while following the proofs in the next two subsections. We
suggest to have a quick look at the definitions, and then to skip ahead to the next

subsection and look up definitions when needed.

Definition 6.1. For z € Z and n such that cyn € N, we denote by w; _, , the
ladder word of length c1n starting at 7 read from left to right, and by w;  , the
word w; _, , read from right to left:

Wz 0= E@+kL); k€ [0,cinD- and wz« pi= Wz ).
Note that w;_(¢;n—1)L,—,x 15 the ladder word of length cin ending at z.
Definition 6.2. We define

For any admissible piece of path R € 7193l with starting point
B:ﬁ;aths = 3in [—7 22m0T 2”] there existst € U/%le [Tk, Tx 422" —3cyn] such
that R(i) = S(t + i) foralli € [0, 3c1n[

Definition 6.3. We define

t
. 12
By mistakes ‘= E Xy <enforallt € [cln—1,2~2 “"[
k=t—cin+1

Definition 6.4. We define

Vzi,zo € [-8-2",8-2"] and Vi,iy € {<+,—} with}

B! = ; .
fadder dift ") (21, 41) # (22, i) we have d(Wz, iy n/3, Wey,ipn/3) = 108

Definition 6.5. Let I denote the set of ladder intervals I < [—7 S2M7 - 2"] of
length cin. For wi, w3 € C'"" and I € I}, we denote by S,f,?m = (sl.b; i> 1)

(S,f,in = (sl.l“; i> 1>)the sequence of all times s € U%:ll [Tk, T 22 — 3c1n]
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such that S|[s +cin, s + 2cn[ is a straight crossing from left to right (right to left)
of  andd(x|[s + (@ — )cin, s +icin[, w;) < 2¢en fori = 1, 3. We assume that
the components of Sy v, and S,LTwS are arranged in increasing order. We define

n,t . n,t,l_ n,t,l— .
Bmajority = ﬂ ﬂ (Bmaj (wy, w3) N Bmaj (wy, w3)) with
wy,w3eC1" [€L;
If‘sj)f,w > 2 then Vj e [1,cin — 1 the
following holds: Y7 X 1., <22

.71 .
Bﬁ,; 7 (wy, w3) =

+cin+j

and Br':l’afj’[“(w1, w3) defined analogously.

Definition 6.6. We define B”

outside out =

Vz € [—5 225 2"], for any admissible piece of path

R e ([-2L-2%",2L - 22"\ [—6-2", 6- 2" [0-c1n/2l gpg ¢ .
Vi € {<, =} we have that d(§ o R, w; ; ns2) > 3én

Definition 6.7. We define B,

n —
recogn straight *

For any admissible piece of path Ry € [—7 -2",7 - 2"10¢%L which is not a
ladder path there exists an admissible piece of path R, € [—8-2", 8 .2"](0.cinl
with R2(0) = R1(0), Ra(cin — 1) = Ri(cin — 1) and d(§ o R1, £ o Ry) > S5¢n

Definition 6.8. We define

snignals = gign,l,—> N Bﬁgn,r,—) N Bs’,lign,lx— N Bgign,r,<— with
Vz € [-6-2",6 - 2"] and for any admissible piece of path
B;’ign L =1Re[-2L- 221 2L . 22m0cinlyyish R(ein — 1) > z we have § |

thatd(é oR, wz—(qn—l)L,—),n) > Sen

Vz € [—6-2",6-2"] and for any admissible piece of path
Bsnign,r,ﬁ = I R e [—2L .22 2L . 22n|0.cinl ypippy R(0) < z we have that
d(oR,w; ) = 5en

Yz € [—6-2",6-2"] and for any admissible piece of path
fenp = {Rel-2L- 22n 2, . 22 (0.cinl yyish R(0) > 7z we have that

d(E o R, Wy (cjn—1)L,<,n) = 5¢en

Vz € [—6-2",6-2"] and for any admissible piece of path
Senr = {Re[-2L- 220 2L . 22mM0cinlyith R(cin — 1) < z we have

thatd(& o R, w; ) > 5¢n

Definition 6.9. We denote the collection of ladder intervals 1 C [—6 226 - 2”]
of length 3c\n by Jr. For I € Ji, we denote by S_, (I) (S— (1)) the sequence
of all times s € Ule[rk, T 4 22" — 3cyn] such that S|[s, s + 3cin[ is a straight
crossing from left to right (right to left) of 1; we assume that the components of
S_. (1) and S (1) are arranged in increasing order. We define

Bsnt’rzightoften = ﬂ {|S—> (D=2 and |S—(I)| > 2yn}.
IeJr
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6.2. Combinatorics

In this subsection, we prove that Alg” reconstructs correctly in the sense that the
event E[L. e holds, under the assumption that EStOID and all the “basic” events
defined in the previous subsection hold. We abbreviate

7" :=z;[0,2-212“"[.

The task is split in four parts: Lemma 6.1 states a property of the elements in
the set PrePuzzle”(t, x). Lemma 6.2 shows that all words in Puzzle”(z, x")
which are observed while the random walk is approximately in the region of the
scenery which we want to reconstruct, are ladder words. Lemma 6.3 states that
Puzzle™ (z, x™) contains all the ladder words we need. Finally Lemma 6.4 shows
that the reconstruction works.

Definition 6.10. We say (w1, wy, w3) € Collection” (z, x") is read while the ran-
dom walk is walking on J C Z if there exists t € Uzzl [Tk, 7 + 221 — 3cln] such
that S(t + j) € J forall j € [0, 3cin[ and wiwaws = x|[¢, t + 3cin[. If we know
the time t, we say that (w1, wp, w3) is read during [t, t + 3cinl[.

Definition 6.11. We define Epreladder =

If (wy, wy, w3) € PrePuzzle" (t, ™) and there exists t € U,%Zl [k, Tk + 22" —
3cin] such that (w1, wa, w3) is read during [t, t + 3cin[ while the random walk
is walking on [—7 20T 2"], then S|[t 4+ c1n, t 4+ 2c1n[ is a ladder path.

Lemma 6.1. Foralln € N the following holds:

EMT ) B"

pre ladder N By, few mistakes N By,

all paths recogn straight*

Bn

few mistakes’

Proof. Suppose the events Ballpaths’ and B” hold. Let

(w1, wp, w3) € PrePuzzle"(z, x™), and suppose there exists ¢ € Ukzl[rk, T +
221 _ 3¢1n] such that the triple (wy, wo, w3) is read during [t, r 4+ 3¢ n[ while the
random walk is walking on [—7 - 2,7 - 2"].

Let R;(j) :== S+ (i — )eyn + j) for j € [0,cin[ and i = 1,2, 3. Then
|R;(j)| <7-2"forall j € [0, cin[ and

recogn stralght

doRj,wj)) <en fori=1,2,3 (6.1)

because B/
Since B”"

8 - 2](0-c1nl with the same starting and endpoint as R, and

holds. We have to show that R» is a ladder path. Suppose not.
holds, there exists an admissible piece of path Ré e[—-8.2",

few mistakes

recogn straight

d(§ o Ry, & o R)) > 5en. (6.2)

Since Ball paths
with starting point in [—7 2nT . 2"], there exists ¢’ € U%O:l[l’k, % 4+ 22 — 3cqn]

holds and the concatenation R R} R3 is an admissible piece of path



Reconstructing a random scenery observed with random errors 559

such that R{ Ré R3(i) = S(¢'+1i) foralli € [0, 3cin[. Using the triangle inequality,
we obtain

d(wa, x|[t' +cin, t’ 4+ 2cin)) = d(wa, x|[t' + cin, t' + 2cin]) — en
=d(wy, €0 R)) —en
>dEo Ry, EoR)) —d(wy, & o Ry) —en
> S5en —en — en = 3¢n; (6.3)

for the first inequality we used that B, ... holds, and for the last inequality

we used (6.2) and (6.1). The fact that Bf,, ... holds together with inequality
(6.1) yields

dwy, xI[t',t" + cin]) < d(wy, x|[',t" + cinl) + en
=d(wi, & o Ry) +en < 2en.

By the same argument, d (w3, X |[t' + 2c1n, t' 4+ 3c1n[) < 2en. Together with (6.3)
this contradicts (wy, wp, w3) € PrePuzzle”(z, x). Hence R; is a ladder path.
O

Definition 6.12. We define

f* (Listﬁj,, (wy, wy, w3)> e con—2 . (w1, wa, w3) €

~ PrePuzzlg" (t, x™) and  I(w], wy, wy) €
Puzzlei (v, X") := | PrePuzzle’ (. §") such that d(wy,w|) < 2en, |
d(wsz, wy) < 2en and (w}, w), w}) is read while the
random walk is walking on 7.\ [—6 22"6 - 2"].

Puzzl€s(z, x") := Puzzle" (z, x") \ [Puzzle] (z, ") U {(=Dp1.c;n-21}] -
Note that Puzzle} (z, x"), i = 1, 2, together with {(—1)[1,“”_2]}, form a partition
of the set Puzzle" (r, ™). If we are given an element of Puzzle" (z, ), we cannot

decide to which set of the partition it belongs. Nevertheless the sets Puzzle (z, x"),
i = 1,2, will be useful in the following.

Definition 6.13. We define

o _ |If wy € Puzzl€;(z, "), then wy < &|[—7-2",7-2"]
onlyladder *™ | 0w, is a ladder word ’

Let c19 > 0 be chosen in such a way that for all n > cjg
3cinl < 2", (6.4)

Lemma 6.2. For all n > cyg the following holds:

n,t n,t n n n,t
E only ladder 2 Epre ladder N Bfew mistakes N Bladder diff NB majority *
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n,t n n
Proof. Let n > cj9, and suppose the events Epre ladder> Bfew mistakes® Bladder diff

and B:f]’;jority hold. Let (w1, wy, w3) € PrePuzzle"(z, ") and abbreviate W :=
List’;’in(u)l, wy, w3). Suppose f*(W) e Puzzles(r, x"). Letw), € W.Then there
exist w}, wj such that (w}, w, wj) € PrePuzzle” (¢, "), d(wi, w}) < 2en, and
d(ws, w/3) < 2¢n. By definition of Puzzle’; (z, x"), at least once the random walk
isin [—6 26 2”] while it reads (w7}, w}, w}). Since the random walk jumps at
most a distance of L in each step, it can move in 3cin steps at most a distance of
3cinL < 2".Hence (w), w), w}) is observed while the random walk is walking on
[-7-2",7-2"]. Using that ngetladder holds, we obtain that w) is observed while
the random walk is walking on a ladder word. Since Bf’ew mistakes N0lds, there exists

aladder word Wy < &|[—7-2",7-2"] such that
d(wh, y) < en. (6.5)

Suppose w) € W. Then by the above argument, there exists a ladder word w, <
g][=7-2",7-2"] such that

d(wy, W) < en. (6.6)

Since (wy, wp, w3) € PrePuzzle"(z, x"), we have that d(w), wz) < 2en and
d(wy, wh) < 2en. Hence

d(wh, wy) < 4en. (6.7)
Using the triangle inequality, (6.5), (6.7) and (6.6) we obtain

d(Wa, W) < d(Wa, wh) + d(wh, wh) + d(wy, W)
< en—+4en + en = 6¢n. (6.8)

If Wy # W, then it follows from B! .. i that d(W2, w2) > 10en, which contra-
dicts (6.8). Hence Wy = w».

We have shown that any w), € W is observed while the random walk reads
the ladder word w,. Hence for j € [0, cin[, w5(j) equals w(j) or an error in
the observations. Since by assumption, f*(W) # (—1)1,c;n—2], W has at least
2Y" components; recall the definition of f* (Definition 5.1). An application of

B::{a?l (w1, w3) with I equal to the ladder interval underlying W, shows that more

than half of the first 2¥”* words in W have j th jetter equal to (). Consequently,
f(W) = Wy, and since B holds, f*(W) = Cut(wy). |

few mistakes
Definition 6.14. We define E:flrladder =

{Vze[-5-2",5-2"] : Cut(w.  »), Cut(w, ,) € Puzzle"(t, ")} .
Lemma 6.3. For all n > cyg the following holds:

n,t n,t n n,t n
Eall ladder 2 Ball paths N Bfew mistakes N Bmajority N Bsignals
N E®T

NB

n,t
straight often stop*
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n,t

Proof. Let n > cjp and z € [—5 -2m5 2”]. Suppose the events B paths>
B! BT and E’'" hold. We will prove that

B! B!
few mistakes®> ““majority> “signals® *straight often’ stop
Cut(w; _, ) € Puzzle"(z, ™). The proof for w; ., is similar. We define

W) = Wz—cinL,—,n, W2 =Wz 5 pn, W3 = Wzicinl,—n-

Clearly, wiwows is the ladder word of length 3¢n starting at z — c¢yn L and ending
at z + (2cin — 1)L. We define R : [0,3cin[— Z by R(i) = z —cinL + iL.
Then R is a ladder path with starting point z — cinL > —6 - 2" and endpoint
z+ Qcin — 1)L < 6 - 2" by our choice of z and n; recall (6.4). Furthermore
£ o R = wiwows. Since B;° . holds, there exists ¢ € Uf:l[rk, 7 + 22 — 3¢1n]

all paths
such that R = S|[t, t + 3cin[. We set

Wie =%t + G — Dewn, t +icin[  fori =1,2,3. (6.9)

Since B;’t’r;ght often N01ds, there are at least 27" different #’s with this property. Fix .

Clearly, (w; ¢, w2, w3,) € Collection” (z, ™). We want to show (W ;, Wa;, W3,;)
€ PrePuzzle" (z, ™). The word w; , differs from w; only by errors in the obser-

. ) "
vations. Since B, misiakes N0IAS,

d(w;, w; ;) <en fori=1,2,3. (6.10)

Suppose (w}, wj, wj) € Collection” (z, x") and d(w;, W;;) < 2en fori =1,3.
Then there exists t’ € U,%:] [, % + 2% — 3¢yn] such that wiwywy = x|t ¢ +
3cn[. Using (6.10) and the triangle inequality, we obtain

d(w}, w;) < dw}, Wi)+dW,, w;) <dw, Wi,)+en <3en fori=1,3.

Weset I} :=[t/,t' +cin[, Iz ;== [t' + 2c1n, t’ + 3cin][. Since B

few mistakes

holds,

d(§ oS|I, wi) <d(& o S|, w)) +dw], w)

<en+d(w), w;) <4en fori=1,3. (6.11)
Since Eg’t’orp holds, |S(tx)| < 2",andforalli € [0, 22, |S(tr+i)] <27 +L.2% <
2L - 2" because each jump of the random walk has length < L. Hence we can
use that Bs”ignglﬁ holds for w1 = w;—¢;nr,—.n (note that |z — L| < 6 -2") and
S|I, to conclude from (6.11) that S(t' 4+ cyn — 1) < z — L. Similarly, we can use
that Bg’ign,nﬁ holds for w3 = W;4¢nL,—,n (note that |z + cinL| < 6-2") and
S|I5 to conclude that S(z" + 2c¢in) > z + cinL. The only path of length cjn + 2
from z — L to z 4+ cynL is the ladder path which visits precisely the points z + i L,
0 <i <cin— 1. Hence wé is observed with errors by the random walk walking

on the ladder word w,. Using the fact that B, .. .. holds and (6.10), we obtain
d(wh, Wa,;) < d(wh, wp) +d(wy, Wa,) < en + en = 2en.
Consequently, (W; ,, W2, w3,) € PrePuzzle” (z, ™). We set

W= LiStZ,in (@l,t, /w\2,t» &)\3,1)-
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Clearly, W € PuzzleLists" (z, x"). Consider w; ; for s # t. Recall that there are
at least 27" — 1 different s with this property. By the triangle inequality and (6.10),
dWi 5, Wiy) < dWis, wi) + d(w;, w;;) < 2en fori = 1,2, 3. Consequently,
(W15, W5, W3,5) € W, and we conclude that W has at least 2¥" components.
Suppose w/, € W. Then there exist w), w} with d(w}, w; ;) < 2enfori =1,3
and (w}, wy, wj) € PrePuzzle"(z, x"). We have shown above (after (6.10)) that
under these conditions, wé must be observed while the random walk reads the
ladder word wy. In particular, for j € [0, cin[, w5(j) = wa(j) or w5(j) is an
error in the observations. Since B,’;’ag'l(@l,t, ws) holds for the ladder interval
I ={z+iL;i € [0, cin[}, in more than half of the words in W the jth letter equals
wz(j). Consequently, the j th jetter of f (W) equals wy(j), and we have proved that
Cut(wy) € Puzzle"(z, x™). ]
Recall the definition of E’:* from Theorem 3.5.

reconstruct

Lemma 6.4. For all n > c1g with cyg as in (6.4) the following holds:

n,t n,t n,t n n
Ereconstruct 2 E only ladder NE all ladder nB few mistakes nB ladder diff
NB;, N Egy

outside out stop*

n,t n,t n
Proof. Let n > cyp, and suppose all the events Eonly ladder Eallladder> Bladder diff>

n n nt [—kn.kn]
Biew mistakes® Boutside our 214 Estop hold. Let y € C for some k > ¢ L, and

suppose ¥ < §&| [—2", 2"]. There exist a € [—2”, 2”] and b € {—1, 1} such that
for all j € [—kn, kn]

Y (j)=E&@+bj) and a-+bje[-2"2"]. (6.12)

We show w = (§(a +bj); j € [-3-2",3-2"]) € SolutionPiece” (z, ", ¥):
By (6.12), v = w|[—kn, kn]. Let I < [-3 -2",3 - 2"] be a ladder interval of
length cin — 2. The image of I under the map j +— a + bj is a ladder interval
which is contained in [—4 Lo 4. 2"] because |a| < 2". Since Ejjj|,qer DOIdS,
(w|I)— € Puzzle”(z, x"). Consequently, w € SolutionPiece” (z, x", ¥), and in
particular, SolutionPiece” (z, x", ¥) is not empty.

It remains to show that £[[—-2",2"] < w =< &|[—4 - 2",4 - 2"] for any ele-
ment w € SolutionPiece” (t, x", ¥). Let w € SolutionPiece”(t, x", ¥). Then
w|[—kn, kn] = , and it follows from (6.12) that for all j € [—kn, kn]

w(j) = §(a +bj). (6.13)

Suppose we prove (6.13) for all j € [—3-2",3-2"]. Then we know there is
precisely one element in SolutionPiece” (z, 3", ¥). Since ¥ < &|[—2", 2"], there
are more than 2 - 2" letters to the left and to the right of ¢ in w, and consequently
&|[-2",2"] < w. On the other hand, in w, there are less than 3 - 2" letters to the
left and to the right of . Hence w < &|[—4 - 2",4 - 2"].

Thus, to finish the proof, it suffices to verify (6.13) forall j € [-3-2",3-2"].
We have already seen that (6.13) holds for all j € [—kn, kn]. Suppose we know
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that (6.13) holds for all j € [—s, 5] for some s € [kn, 3.2% — 1]. We set

wy = (w|l)- with [ ;= (—s — 1 +iL;i € [0,c1n —2]),
wy = (w|l) with I, .= +1+@G—cin+3)L;i €[0,c1n —2[);

note that I; denotes the ladder interval of length cjn — 2 which contains —s — 1
as leftmost point, and /- denotes the ladder interval of length cin — 2 which con-
tains s + 1 as rightmost point. The words w; and w, are well defined because
cinL < || = 2kn + 1. Since w € SolutionPiece” (z, x", ¥), we have w;, w, €
Puzzle” (z, ™). Note that w; and w, have both precisely ¢;n — 3 points in common
with w|[—s, s]; w; extends w|[—s, s] one letter to the left, and w, extends w|[—s, 5]
one letter to the right.

Suppose w; € Puzzle!(z, ). Then we have w; = f*(W) for some W =
LiSt’;,X" (w1, w2, w3) and there exists (w, w), wy) € PrePuzzle” (¢, x") such that
d(w;, w}) < 2en, fori = 1,3 and (w], w), w}) is read while the random walk is
walking on Z \ [—6 26 - 2”]. Thus, there exists ¢ € U,%le [tk, T + 22 _ 3c1n]
such that [S(r 4+ j)| > 6-2" for all j € [0,3cin[ and w) = x|J with J =
[t + cin, t + 2cin[. Using that E:t’ofp holds, we know that |S(t;)| < 2" for all k.
Since the random walk jumps a distance < L in each step, it follows that |S(r+j)| <
2" 4 L -22 < 2L -2*forall j € [0,3cn[. Foraword w = wiw, ... w, € C"
of length m > cin/2, we define Last(w) := wpu—¢;n/241 - - - Wnm to be the word
consisting of the last ¢;n/2 letters of w. Let z € [—5 L2n 5. 2"] andi € {«, —>}.

3 n n 1
Since By, mistakes 19 Byiside out NO1d, we obtain

d(Last(Cut(w?)), w;,in/2) = d(Last(Cut(x|J)), wz,in/2) (6.14)
> d(Last(Cut(x|J)), w; ;n/2) —en > 3en — en = 2¢en.

By definition of f*(W), d(Cut(f(W)), Cut(w)) < en for all w € W. Hence
d(Last(wy), Last(Cut(w}))) < en. (6.15)
Combining (6.14) and (6.15), we obtain

d(Last(w;), wz,in2) > d(Last(Cut(w?)), win/2)
—d(Last(w;), Last(Cut(w})))
> 2en — &n = &n. (6.16)

Recall that wy is a ladder word of w of length cin — 2 and the cin — 3 right-most
letters of w; overlap with w|[—s, s]. Using that (6.13) holds for all j € [—s, 5]
together with [a| < 2" and |s| < 32", yields Last(w;) < &|[—4 - 2", 4 - 2"]. This
contradicts (6.16), which implies that Last(w;) is different from any ladder word
of £|[—4 - 2",4 - 2"]. We conclude w; € Puzzle;(z, ™). Since Egﬁfyladder holds,
w; < €| [—7 20T 2”], and wy is a ladder word of &.

Suppose (6.13) does not hold for j = —s — 1. Let I; ¢ denote the image of I;
under the map j — a-+bj.Then&|l; ¢ # w;; more precisely, £|1; ¢ and w; disagree
in precisely one point, namely the leftmost point & (a+b(—s—1)) # w;(0). Thus we
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found two ladder words of length cjn —2 in £|[—7-2", 7-2"*] which disagree in pre-
cisely one point. Consequently, there exist z, 7’ € [—8 228 - 2"], i,i' € {«,—}
with (z, i) # (z/,i’) such that §|I; ¢ = Cut(w_; ) and w; = Cut(w, ;7 ,). Conse-
quently, there existzy, zo € [—8-2"7, 8-2"],i1, i» € {«, >} with (zy, i1) # (22, i2)
such that the two ladder words consisting of the last c¢in/3 letters of &£|1; ¢ and
w; respectively, equal wy, ;; n/3, Wy,ir,n/3, T€SPectively. Since By, gife DOldS,
Wz, ,ij.n/3 7 Wzy,ir,n/3 Which is a contradiction. We conclude that (6.13) holds for
j=—s—1

To see that (6.13) holds for j = s + 1, one applies the above argument with w
defined by w(j) := w(—j) for j € [-3-2",3-2"]inplace of w. By the induction
principle, (6.13) holds for all j e [—3 22" 3. 2”]. O

6.3. The basic events have high probabilities

In this subsection, we prove that the events B” defined in Subsection 6.1 have a
probability which is exponentially small in 7. For some events B” this is only true
under the assumption that EJ. holds, i.e. if the stopping times stop correctly. We
treat the events from Subsection 6.1 in alphabetical order.

Recall that unless otherwise stated, constants depend only on the distribution of
the random walk increments and the number of colors of the scenery. In particular,
the constants ¢; in this section do not depend on 7.

Lemma 6.5. There exists a constant c11 > 0 such that for alln > cyy,

p (E:'[;)T;) \ B:l’lrpalhs) = e
Proof. We have P(So = S2 = 0) > 0 because the random walk has a positive
probability to make first a step of maximal length L to the right and then a step of
maximal length L to the left. Hence 2 divides the period of the random walk, and
the period must be 1 or 2. Therefore there exists c12 > 0 such that for all n > c¢q»
and for all x, z € [~7-2",7-2"], the random walk starting at x can reach z with
positive probability in 22~ or 22"~ 1 + 1 steps:

P, (S(ZZ"_I) —zor S 4 1) = z) 0. 6.17)

We denote by R the set of all admissible pieces of path R e ZI03¢1"l with
starting point in [—7 2m0T - 2"]. For R € R and ¢ € Ny, we define the event

E(t,R) :=={S(t+i) = R(i) Vi € [0,3cin[ or
S(t+141i) = R@) Vi € [0, 3cn[}.
Let n > max{cj2, ci0} with cjg as in (6.4), and let k € [1, 2“"]. We set ., =
7% + 22"~ 1 and we define random variables Y; (R) as follows: If |S(zx)| < 2" and

E(tx n, R) does not hold, then we set Yk(R) = 0. Otherwise we set Y;(R) = 1.

Using the definitions of E;* and B we see that

stop all paths ’

pan

E:lt’otp :llrpdths = U Estop ZYk(R) =0¢ C U Epen(R) (6.18)

ReR k=1 ReR
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with

M
En(R) := [{[Su| 2" %1 +2-2" < o, Yi(R) =0}
k=1

for M € [1, 2“‘"]. Let R € R. Since n > cyp, we have 3cinL < 2" by (6.4).
Hence ty , + 1+ 3cinLl = o + 1+ 221 4 3einl < 1 + 2%, Consequently,
{te+2-2°" < 51 }NE(tkn, R) € Fry, s here Fy := o (S;, Xi5 i € [0, k) denotes
the natural filtration of random walk and observations with errors. Using the strong
Markov property at time 7,7, we obtain

PLEM(R)] = P [Ey-1(R) 0| [Sey | = 2%, 21 +2" < tar, Y (R) = 0} ]
< PEv—1(R)N{IS (ta)| < 2"} N E(tp.0, R)]

= P[Eu-1(R) 0 {IS @] = 2") P (EQY R
= PLEM—1(R)] | _max  PLEQ™L R,

An induction argument yields

207!
P (Ezen (R)) 5[ [mglgczanx(E(Zz"‘l,R)”)] : (6.19)

To estimate the right-hand side of (6.19), let b € N be minimal and let 7 € N
be maximal such that P(S; — Sp € b + hZ) = 1. We set 02 := E[(S] — So)?],
and L,, := {(mb+hy)//m : y € Z}. By the local central limit theorem ([6], page
132, Theorem (5.2)),

vm Sm 1 y?
—P|—==y]— expl—==])|=0

h m V2mo? 202
We apply this with m € {221, 22"=1 4 1}, y := (Ry — x)/+/m and Ry equal to
the starting point of R. Note that |[Rg| < 7 - 2" so that |Ry — x|/+/m < 16 for all
X € [—211’ zn]. Hence miny [y 21], peR €XP (—%) > 0. We conclude that
there exist constants ¢;3 > 0 and ¢4 > max{ci2, cio} such that for all n > ¢4

lim sup
m—0oQ yEEm

min P, (S@¥7) = Ryor @+ 1) = Ro)
x€[-2"2"],ReER

, SRy Ry—x S@* 14 Ry —x
= min P = or =
x€[-2",2"],RER \/22}1—1 \/22n—1 \/22}171 +1 \/22;171 41
> 327" (6.20)

We set tmin := min{u(j) : j € M}, recall that u is the distribution of the random
walk increments Siy+1 — Si. The probability that the random walk starting at R
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follows the path R for the next 3cin — 1 steps is bounded below by /L?Ifilnn_l. Thus,
(6.20) yields

min  P(EQP L R) = 2l = o527
L. v (E( )) Z €132 fipiy 527" Minin

with ¢15 = c13 /L;ﬁln. Combining the last inequality with (6.18) and (6.19), we
obtain

2(1”
n,t n,t — 3cin
P (Estop \ Ball paths) = IRl (1 —c152 aniln )

< (142" + DIMP " exp (2 In (1= 1527yt ) )

HMmin

(6.21)

Note that choosing a path in R one has 14 - 2" + 1 possible starting points and
[supp(u)| = | M| possibilities for each step of the path. Using the estimate In(1 —
x) < —x, we obtain

min

6.21) < 2n+4|M|3C1n exp [_Clsz(a—l)n 3C_1n] — 2)1+4|M|361n exp [_Clsecl6n]

and the last expression is < e~" for all n sufficiently large because c16 = (@ —
1)In2 + 3¢y In min > 0 by our choice of «. O

Lemma 6.6. There exist 54 > O such that for alln € N and § €]0, 84

P‘S ((B?ew mistakes)c) =< e .

Proof. Using Definition 6.3 and our convention € = c1& we obtain

t
n ¢ _ _
(Bfewmistakes) = U E Xk > cieén g . (6.22)
te[cin—1,2.2120n[ | k=t—cin+1

Recall that Xy, k > 0, are i.i.d. Bernoulli random variables with parameter §
under Ps. Hence Es [} j_,_.,nt1 Xk] = c18n. By the large deviation principle
(see e.g. [3]), we have for all § €]0, [

t
Ps Z Xi > c1én | <exp (=I5 — 8)cin) (6.23)
k=t—cin+1

with rate function

1—x X
Is(x) = (1 —x)log (m) + x log <5> ,x €]0, 11. (6.24)

Combining (6.22) with (6.23) we obtain for all § €]0, &[

Ps ((Bfy mistakes)) < €xp ([1 4+ 12an]In2 — I5(z — 8)cin) .
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Since

lim 15 — 8) = lim (1 —  + ) log | —— 10| + & —$)log | =2 | = +
smp 21 T O = IR e aIg | T ETOR| T T
there exists 4 €]0, g[ such that [14+12a]In2—I5(¢ —8)c; < —1forall § €]0, 84].
The assertion of the lemma follows. O

We will need the following lemma in the proofs of Lemmas 6.8, 6.10, and 6.13.

Lemma 6.7. There exist €1, c17(¢') > 0 such that for all m with com € N, ¢’ €
10, &1, w € C%"L and for any admissible piece of path R € ZI%" the follow-
ing holds:

P (A o R w) < cré'm) < ci7(e)) ()" max P(( 0 R)J = wlJ),

where the maximum is taken over all subsets J C [0, cym[ with cardinality |J| =
cym — |c1€'m] and c is as in Section 2.1.

Proof. Let m be such that cym € N, let w € cl0.ciml and let R € ZI%c1ml be an
admissible piece of path. If d(&§ o R, w) < c1&'m, then cym — |c18'm] letters of
& o R and w agree. Since there are (Lccl‘;,"m J) possibilities of choosing cym — [c1&'m ]
out of c¢;m letters, we have

com

P (d(éE oR,w) < cls’m) < <Lc18/mj

)mlaxP((é o R)|J = wlJ),

where the maximum is taken over all subsets J C [0, cym[ with cardinality cym —
Lc1&’m]. By Stirling’s formula ([1], p.24, formula (3.9)) we have for k € N, k! =
2k H1/2=k+0K) with 6 (k) €]0, 1] and limy o 8 (k) = 0. Thus

< C”/n ) < c17(ehg (M)ﬂm
Lc1e'm] cim

with ¢(x) = x (1 — x)~=) and some constant c17(g’) > 0 independent of m.
Note that ¢ is continuous at 0 with ¢(0) = 1, and recall that ¢, €]1, C/(C — 1)][.
There exists &1 such that ¢(x) < c¢; for all x €]0, ¢1[. Note that |c;&'m]|/(cim) <
¢’. The claim follows. |

Lemma 6.8. There exists a constant c1g > 0 such that for alln € N
P ((Bjder aifr)) < c1se™".
Proof. Let
J = {(Zl’il’zz’iZ) € ([-8-2".8-2"] x {<—,—>})2 (21, i1) # (Zz,iz)].
By Definition 6.4,

(Blodder aitr)” = U {d(wz,.i1.n/3s Wey.ip.ny3) < 10en}. (6.25)

(z1,01,22,i2)€T
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Let (z1,i1,22,12) € J.Fork = 1,2 we set oy := +1if i =—, 0o == —1if
ix =<, and we set fi(j) := zx + oxjL for j € [0, cyn/3[. First we prove that
there exists a subset J C [0, c1n/3[ of cardinality |J| > c1n/9 such that

AW N fH(0) =0. (6.26)

We distinguish two cases. Case z1 = z»: By assumption, i # i>. Hence 01 # 03,
and we conclude that (6.26) is satisfied for J =]0, cin/3[.

Case z1 # z2: We show by induction over k € [1, c¢;n/9] that there exists J
with |J| > k such that (6.26) holds. For k = 1 the set J = {0} has the required
property. Suppose there exists J’ with |J'| = k € [1, cin/9 — 1] such that (6.26)
holds. The sets J/ := f;(J'), i = 1,2, have cardinality |J/| = |J'| < cin/9 — L.
We set

Ji={j €l0,cin/3l: fi() € J1U 3, () & i, and f1(j) # fo())} .

Then |J| > cin/3 — |J{U Ll = Il =1 =cin/3 —=3(cin/9 — 1) — 1 = 2; note
that there exists at least one j with f1(j) # f2(j). In particular J is not empty.
Let j € J,and set J := J' U {j}. Since fi(j) & J|, we have |J| = |J/| + 1. It
follows from f1(j) & J; U {f2(j)} that fi(j) & f2(J). Similarly, it follows from
H() & Jl’ U{f1(j)} that f,(j) & f1(J), and we have proved that (6.26) holds for
J. By the induction principle, (6.26) holds for a set J C [0, c1n/3[ of cardinality
|J| =cin/9.

Let J C [0, cin/3[ with |J| = c1n/9 such that (6.26) holds. Then the words
Wy, ipn/3 fk(J), kK = 1,2, are independent. Note that P(§; = &) = 1/C for
k # k. We use Lemma 6.7 with m :=n/9, ¢’ := 90¢/c| and R equal to the ladder
path underlying w;, ;, »/3 to obtain

P(d(wzl,il,n/& wzz,iz,n/3) < 10en)
< P (dwzyiyny3 f1(), ey i s3] f2(J)) < 10en)
< ¢17(90e /c1) ()P cLH0en]=en/9, (6.27)

Since the intersection in (6.25) is taken over 4(16 - 2" + 1)? possible pairs (z1, i1),
(z2, i2), it follows from (6.27) that

P((B! 44er aist)S) < 4(16 - 2" 4 1)2¢17(90g /1) ()12 CL10enI=e1n /9,

Note that C110n] < exp (10enIn C). Let c1g > 0 be chosen in such a way that
4(16 - 2" + 1)2%¢17(90g /1) < c182%". Then

P((Blndd dff)c) < Clseﬂ[z In2+10¢ In C+(C| /9)[1n Cz*ll’l C]]
aaaer ar — °

Since 2In2 + 10eIn C + (¢1/9)[Inc2 —In C] < —1 by our choice of € and ¢y, the
claim follows. o

Lemma 6.9. There exist constants c19,85 > 0 such that for all n > c19 and

8 €10, 8s[
Py ((BLI i) ) <
s (( majority) ) e .
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Proof. Recall the notation from Definition 6.5. Let w, w3 € C'", I € 7. Let
ri, i > 1, denote all the times s € U%‘le [rk +en, T + 2% — 201n] such that
S|[ri, ri + cin[ is a straight crossing of I from left to right. Clearly, the intervals
[ri, i + cin[, i > 1, are pairwise disjoint. Let H := o (r;, 7;; i > 1). Since S and
X are independent, we know that conditioned on H, the random variables X, ;,
i >1,j €[0, cin[, are i.i.d. Bernoulli with parameter § under Ps.

We obtain the random variables silﬁ +cin,i > 1, from r;, i > 1, by check-
ing whether d(x|[r; + (k — 2)cin, ri + (k — Den[, wy) < 2en for k = 1, 3.
Since at time r; + c¢jn — 1 the random walk is at the right endpoint of / and
at time ;4 at the left endpoint of 1, the time interval [r; + c¢jn — 1, ri+1] has
length > cin. Consequently, the time intervals [r;, r; + cin[, [rit+1, riq1 + c1n
have a distance > cjn — 2 from each other. Since &, S, Y are independent of X,
we conclude that %|[s/~ + kein, s/~ + (k + Denl, k = 0,2,i > 1, is in-
dependent of G(Xsib +cln+j;j € [1,cyn — 1[,i > 1). Hence conditioned on

Hoi= o (s/ +cm i Zlls + ke, s~ + (4 Denlsi = 1,k =0,2) the
random variables X/, Feintjo j €11, cin — 1], are i.i.d. Bernoulli with parameter
S under Ps.

By the large deviation principle (see e.g. [3]), we have for all 6 €]0, 1/2[ and

n € N Ps-almost surely on the set {lSl{)T,ml > 27’”}

ovn
Ps | Y Xsmentj =272\ H | < exp(—I5(1/2 — $)2") (6.28)
i=1

with rate function 5 given by (6.24). Since

lim I5(1/2 —8) = lim(1/2 4+ §)1 1/2+9 1/2 —8)1 1/2_8—
5%5</—>—5%</+>og[1 5}+</—)og[ ; }_+oo,

there exists 65 > O such that Is(1/2 — §) > 1 for all § €]0, §5[. It follows from
(6.28) that for all § €]0, 85 Ps-almost surely on the set [IS,{KWI > 27’”}

ovn
Ps wacmﬂ > 2" /2| 'H | < exp(-2""). (6.29)

i=1

Consequently, Ps (lelnl Xgireintj = 21’"/2) < exp (—27"). By Definition 6.5,
Bt =Bl NBIL_ with

majority maj,— maj, <

n,7 _ n,t,l-
Bris= () [ Bug = (wiws)

wy,w3eC" IeZy

n,t,l_
maj
oyn

either [S] 7.1 < 27" or [SL7,,| = 27" and Y i) X 1o
’ ’ = i

and B _ defined analogously. The event B

maj, <

(w1, w3) holds if and only if

tent) < 2" /2 for all
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j €ll, cin—1[. Thus, if B-® e (w1, w3) does not hold, then | S~

maj wi, w3

there exists j € [1, cyn — 1[ such that Zi:l X - > 2Y"/2. Hence

| > 2Y" and

+cin+j
e oyn
L yn
Bri]c U U U {8l 22" X X = 5
wi,w3eC1™ [€Zy jell,cin—1[ i=l

Since there are less than 14 - 2" ladder intervals in Z; , it follows that

Py (B ~)") = 14-27ainC™ exp (<277

maj,—

We choose ¢19 > 0 large enough that 14 - 2" ¢ nC>“1" exp (—2"") < ™" /2 for all
n > cj9. The claim follows. O

Lemma 6.10. There exist constants cag, c21 > 0 such that for all n > c19 (with
cloasin (6.4))

P ((B(r)lutside om)c) < C216’_020n,
Proof. We set

(A R):R € ([—2L-2%", 2L - 27"\ [—6-2", 6-2"])[0-c17/2] admissible
" | piece of path, z € [-5:2",5-2"],i € {«, >}

By Definition 6.6,
(Bgutside Out)c = U {d(é o R, wzinpn) < 35"} )
(z,i,R)eJ
and consequently,
P (( gutside out)c) = |J| max P (d(%— °R, wz,i,n/Z) < 38”) : (6'30)
(z,i,R)eT

Let (z,i,R) € J, and let n > c19. The piece of scenery & o R depends only
on &|[-2L - 220 2f, . 22 \ [—6 2216 - 2”], whereas w; ; /2 depends only on
EI[-5-2" —cnL/2,5-2" 4+ cinL/2]. Since n > cjg, cynL/2 < 2" by (6.4),
and therefore w; ; /> depends only on &[[—6 - 2", 6 - 2"]. Since the scenery £ is
i.i.d. uniformly colored, § o R and wy ; »/2 are independentand P(§; = &) = 1/C
for j # j'. Thus

P (E(R(J)) = weinpn(j) VjeJ)=cenl—an/2

for any subset J C [0, ¢;n/2[ with cardinality |J| = c1n/2 — [3en]. Applying
Lemma 6.7 with ¢’ = 6¢/c| and m = n/2, we obtain

P (d(& o R, wyinp) < 3en) < ci7(6e/c1)(cr) > Beni=an/2 - (6.31)
The cardinality of | 7| satisfies

|7] <2(10-2" 4+ DAL - 22" (C — 1)1"/? (6.32)
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for the following reason: There are 10 - 2" + 1 possible values for z, 2 possible
values for i and at most 4L - 22" possible starting points for R. An admissible piece
of path has at each step at most |[M| < C — 1 possible steps; recall that there are
strictly more colors than possible steps for the random walk. Hence the number of
possible paths R is bounded by 4L - 22" (C — 1)<1"/2,
Clearly, Ccl3enl < ¢BenInC) We choose ¢p; > 0 such that ¢17(6¢/c1)2(10 -
"4 1)4L - 2% < ¢y1 - 23", Combining (6.30), (6.31), and (6.32), we obtain

2
n(31n2+43¢1n C) <C2(C - 1)>Cw/ _

P(( gutside out)c) < 1€ C

Finally, we set ¢20 1= — (3102 43¢ In C + (c1/2)In (G2, and the claim
follows because cpg > 0 by our choice of ¢ and c;. O

We will need the following lemma in the proof of Lemma 6.12.

Lemma 6.11. There exists cyy such that for all n > ¢y and for any admissible
piece of path R € 710l yith R(0) < R(cin — 1) there exists an admissible piece
of path R € 721917l gych that R(0) = R(0), R(cin — 1) = R(cin — 1), and the
first cin/3 steps of R are steps of maximal length L to the right.

Proof. Let R € 791"l be an admissible piece of path. We set x := R(0), y :=
R(cin — 1); note x < y.

Suppose R contains at least c1n/3 steps of maximal length L to the right. Then
we define R € Z!I%¢1"l to be the admissible piece of path starting at x and ending
at y obtained from R by permuting the order of the steps in such a way that all the
steps of maximal length L to the right are at the beginning.

If R contains less than cn/3 steps of maximal length L to the right, then

2 2
L1y <emr - 22

y—xf(%—l)L—{— (6.33)
In this case, let Ry € Z!%1l denote the path which starts at x and goes with
maximum steps to the right until it reaches the interval ]y — L, y]. In other words,
R1(0) = x, Ri(ty — 1) €]y — L, y], and for all s € [0,#; — 1[ we have that
Ri(s +1) — Ri(s) = L. Let y' := R(t; — 1) be the endpoint of R;. We have
(t1 — L <y — x and using (6.33), we obtain

2cin

3L

As we noticed already in the proof of Lemma 6.5, the random walk has period 1
or 2. Thus there exists ¢3 such that for all z €]y — L, y] there exists an admissible
piece of path of length < ¢»3 starting at z and ending at y. If furthermore the random
walk is aperiodic, then c3 can be chosen in such a way that for all z €]y — L, y]
there exist admissible pieces of path of even and odd length < c¢p3 starting at z

y—Xx
n < T—l—lfcln— + 1. (6.34)

and ending at y. We choose ¢ such that min {C”’ 2, 2§1L" — 2} > 3 for all

n = c.
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Case 1. The random walk is periodic (with period 2). Let R3 € Z!%! be an admis-
sible piece of path starting at y’, ending at y with 73 < ¢»3. The concatenation R R3
is an admissible piece of path starting at x, ending at y of length #{ + 3 < cjn — 1
by (6.34). By assumption, R also starts at x and ends at y. Thus by periodicity
we have that [ := |R| — |R1R3| > 0 is even. Let R, be the admissible piece
of path starting and ending at y’ which makes first //2 steps of length L to the
right and then /2 steps of length L to the left. We set R := R R,R3. We have
|[R1R2| = cin —c3 > 24 2c1n/3. Since all steps of R and half of the steps of R»
are maximum steps to the right, R contains at least ¢1n/3 steps of maximal length
L at the beginning. By construction, R starts at x and ends at y.

Case 2. The random walk is aperiodic. Let R3 € Z[%[ be an admissible piece of

path starting at y’, ending at y of length 73 < c33. We may assume that 3 is even iff
cin —tyiseven. Thencin — t; — 3 i_s even, and we can define R, as before. The
same argument as above shows that R := R Ry R3 fulfills the claim. m]

Lemma 6.12. There exists cy4 such that for alln > cya

c
n —n.
P (( recognstraight) ) =cige

c18 is specified in Lemma 6.8.

Proof. Let ¢4 := max {c10, c22} with ¢ as in Lemma 6.11, and let n > cp4. We
will show that the following inclusion holds:

n n
Bladder diff - Brecogn straight (6.35)

The claim follows then from Lemma 6.8.

Suppose the event B[ ;.. 4 holds. Let Ry € [—7 22mT 2”][0’6”1[ be an
admissible piece of path which is not a ladder path. We set x := R;(0) and y :=
Ri(cin — 1). We have to show that there exists an admissible piece of path R, €
[-8-2",8. 2"][0’C1"[ with starting point x, endpoint y,andd (o Ry, EoRp) > Sen.
We assume that x < y. The case x > y is reduced to this case by considering the
reversed path k — Ri(cin — 1 — k). By Lemma 6.11 applied to R, there exists
an admissible piece of path Rz € ZI[%¢1"l such that R3(0) = x, R3(cin — 1) = y
and the first c;n/3 steps of R3 are steps of maximal length L to the right. Since
y —x # (cin — 1)L, at least one step of R3 is not a step of maximum length to
the right. We construct an admissible piece of path R4 by permuting the steps of
R3. We set R4(0) := x. The first step of Ry is the first step of R3 which is not
a step of maximum length to the right. Formally we set j := min{i € [1, cin[:
R3(i) — R3(i — 1) # L}, and define

R3(i), ifi € [0, cin[\[1, j]

Ra() = { Ryl — 1)+ Rs(j) — Ry(j — 1), ifi € [1, jI.

Clearly, R4 is an admissible piece of path of length cin with R4(0) = x and
R4(cin — 1) = y. Using that R4 jumps in each step at most a distance of L, we
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obtain that |R4(i)| < |R4(0)| + cinL = x +cinL < 8-2" foralli € [0, cin[
because cinL < 2" for n > cy¢9. The same is true for R3.

Since Rz starts with c¢jn/3 steps of maximum length L to the right, we have
that & o R3|[1,c1n/3] = Wy4L,— /3, and by definition of R4, we have & o
R4|[1, c1n/3] = wyr 5 /3 With x" = x + R3(j) — R3(j — 1). By construction,
R3(j) — R3(j — 1) # L so that x + L # x'. Since R3 and R4 take only values in
[—8 .2 8. 2"], we have that x + L, x’" € [—8 .2 8. 2"]. Using that B} 4. gife
holds, yields d(wx+4L,—,n/3, Wx',— n/3) = 10en, and by the triangle inequality, we
get that £ o Ry cannot have a distance smaller than Sen to both £ o R3 and £ o R4.
Hence there exists i € {3, 4} such that d(¢§ o Ry, & o R;) > 5en. Let R := R; in

_— n
the definition of Brecogn straight" |
Lemma 6.13. There exist constants ca5, co6 > 0 such that for alln € N
n ¢ —Co6n
p (( signals) ) = 2s5¢ :
Proof. We show that there exist ¢5, co¢ > 0 such that for all n
¢ €5 _
P((Binr) ) = e, (636)
Analogously, one proves statements for ngn’ly_), Bs”ignyl’(_, and Bgign’m_. The
claim follows from these four inequalities and the definition of BS"ignals. We set

R = {(z, R):ze[-6-2"6-2"], R e [-2L - 2%, 2L - 22] 1! admissi-} .
ble piece of path with R(0) < z

By Definition 6.8,

( :ign,r,a)c = U {d(é oR,w; ) < 58”} . (6.37)

(z,R)ER

Let (z, R) € R.By Definition6.1, w, _, , (k) = §(z+kL).Notethat R(k) < z+kL

for all k € [0, c1n[: For k = O this is true by assumption. Suppose R(k) < z + kL

holds for some k € [0, cjn — 1[. Since the maximal jump length of R is L, we

obtain R(k+ 1) < R(k) + L < z+ (k + 1)L, and the claim follows by induction.
We prove by induction over the cardinality of J, that

P((Eo RN =wyuld)=C7! (6.38)

forany J C [0, cyn[: For J = {j} weuse that§(R(j)) and w; —, ,(j) = &(z+jL)
are independent because R(j) < z+ jL. Suppose (6.38) holds for any J C [0, cin[
with |J| = k for some k € [1,cin — 1[. Let J' C [0, cyn[ with |J/| = k + 1, and
let j := max J'. Then &(z + jL) is independent of £(z + j'L), j' € J'\ {j}, and
of £(R(j")), j' € J/, because R(j’) < z+ j'L < z+ jL.Hence

P((Eo R =w, o alJ)=CT'P(E 0 RN\ {j} = wynld \ i}
= NG = clV'].
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for the second but last equality with used the induction hypothesis. We use Lemma
6.7 with ¢’ := 5¢ and m := n to obtain

P (d(& o R, w; s ») < Sen) < c17(5e/c1)(cp) 1" Clenl=en, (6.39)

It is easy to see that the cardinality of R is bounded by (12 - 2" 4+ 1)(4L - 2*" +
1)(C — ). Combining this with (6.37) and (6.39), we obtain

c C -1 cin
P ((Blans.-)") = enSe/en2. 274 nap 22 et (2D T
We choose 25 such that ¢17(5e/c1)(12 - 2" + 1)(4L - 22" + 1) < 523" /4 for all

n € N. Then
P (( n )C) < %en[slnzﬁalnq <02(C - D)””_

sign,r,—

C
We set cr6 1= — (3 In2+5¢InC +c¢;In (%)) Since ¢3¢ > 0 by our choice
of ¢ and ¢y, the claim follows. O

Lemma 6.14. There exists a constant c7 > 0 such that for all n > c¢y7

n,t n,t —n
P (Estop \ Bstraightoften) =e .

Proof. Recall Definition 6.9. We will show for all n sufficiently large,

PEGN| () {Is=i=2} ) | <e/2. (6.40)
IeJy

A similar consideration shows that the same estimate is true if we replace S—, (1)
by S (I), and the claim then follows from the definition of Bs"t’r;ight often* Since the
proof is very similar to the proof of Lemma 6.5, we will omitt some of the details.

Let I € J1.We denote by R’ the ladderpath in Z!%-3¢1"l which traverses I from
left to right. For t € Ny we define the event E(¢, [) :=

[S(t +i)=RI() Vi €[0,3cin[ or St + 1 +1i) = R (i) ¥i €0, 3c1n[] .

Letn > cjg with ¢jg asin (6.4), and let k € [1, 2‘"’]. Wesetty , 1= 1 +22=1 and
we define random variables Y; (1) as follows: If |S(tx)| < 2" and E(f », I) does
not hold, then we set Y (/) = 0. Otherwise we set Y3 (/) = 1. By Definition 6.9,
we have

2(1"
Efg \ | () {Isoi=2) ) < | EGpn D v <2
IeJL IeJL k=1

vn ./.2(afy)n

c J UYEimn > V() =07 . (6.41)

17 j=1 k=(j—1)2@=rin41
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Using the strong Markov property and induction (see the proof of Lemma 6.5, in
particular (6.19), for a similar argument) we obtain forn > cjgpandm, M € [1 , 2"‘”]
withm < M

M - M—m+1
n,T = n— c
P (Esmp N {k_gm Yi(Il) = 0}) < [xe[—%%)fé-zn] P A(EQT ) )i| .
(6.42)

By the local central limit theorem, there exist constants c27, cog > 0 such that for
all n > ¢y

i P(S@MTh =zorS@M T 4 D =2) z 2 (643
rozeloan gam ( ) =zorS( +1)=2z)=cxp (6.43)

The probability that the random walk starting at x makes 3cin — 1 consecutive
steps of maximum length to the right equals £ (L)3"~!. Since all intervals in 77,
are contained in [—6 - 2", 6 - 2], we obtain

min_ min P (EQ*7' 1) > 827" w(L)>1" ! = 027" (L)
xe[-2"2"11eJy,

with ¢p9 := 28 M(L)’]. Combining the last inequality with (6.42), we obtain

n,t - —n 3cin M—m+1
P Egop N Z i) =0¢ | < (1 — 2927 " (L) ) . (6.44)
k=m

From (6.41) and (6.44) it follows that

Sla—yn
PLEGA | () Sa DIz 2 | | < 20 [ ep7npuryen]
IeJr

< 24 exp 2@ n [ = 927" (L) ||

< 24+[1+y]nexp[_czgz[a—l—y]nM(L)3cliz:| < 24+[1+y]n exp [_0296630}1] Se—n/z

for all n sufficiently large because c30 = (¢ — 1 — y)In2 + 3¢y Inu(L) > 0 by
our choice of «. |

6.4. Alg" reconstructs with high probability

Proof of Theorem 3.5. Suppose &|[—2",2"] =< Alg"(r, x|[0,2-2"%"[,y) =
g|[—4-2",4.2"]. Assume ¥ € CI7F kMl with k > ¢/, ¥ < &][—2",2"], and
assume &|[—2",2"] # (1)[—2» 7). Then Alg" (7, ][0, 2 - 212" [, y)|[—kn, kn]
= 9 by the definition of Alg” (Definition 5.7) and the definition of SolutionPiece”
(Definition 5.6).
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In order to show that Alg” reconstructs with high probability, we combine Lem-

mas 6.4, 6.3, 6.2, and 6.1 to obtain

n,t n,t n,t n,t n c n c
Estop \ Ereconstruct - (Estop \ B all paths) U (Bfew mista.kes) U (Bladder diff)

c c
n,t n < n
U (B majority) U ( outside out) U ( signals)

c
n n,t n,t
U ( recogn straight) U (Estop \ B straight often) .

The claim follows from Lemmas 6.5, 6.6, 6.8, 6.9, 6.10, 6.12, 6.13, and 6.14. 0O
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