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Abstract. It is well known that the independence of two linear forms with nonzero coef-
ficients of independent random variables implies that the random variables are Gaussian
(the Skitovich-Darmois theorem). The analogous result holds true for two linear forms of
independent random vectors with nonsingular matrices as coefficients (the Ghurye-Olkin
theorem). In this paper we give the complete description of locally compact Abelian groups
X for which the independence of two linear forms of independent random variables with
values in X having distributions with nonvanishing characteristic functions (coefficients
of the forms are topological automorphisms of X) implies that the random variables are
Gaussian.

1. Introduction

Let X be a locally compact Abelian separable metric group, Y = X∗ be its char-
acter group, (x, y) be the value of a character y ∈ Y on an element x ∈ X.
Denote by M1(X) the convolution semigroup of probability distributions on X.
For µ ∈ M1(X) denote by µ̂(y) = ∫

X
(x, y)dµ(x) its characteristic function.

A distributionµ ∈ M1(X) is called Gaussian ([15]) if its characteristic function
can be represented in the form

µ̂(y) = (x, y) exp{−ϕ(y)},
where x ∈ X and ϕ(y) is a continuous nonnegative function satisfying the equation

ϕ(y1 + y2)+ ϕ(y1 − y2) = 2[ϕ(y1)+ ϕ(y2)], y1, y2 ∈ Y. (1)

Denote by �(X) the set of Gaussian distributions on X. Let Aut(X) be the
set of topological automorphisms of X. Consider the linear forms L1 = α1(ξ1)+
· · · + αn(ξn) and L2 = β1(ξ1)+ · · · + βn(ξn), n ≥ 2, where αj , βj ∈ Aut(X), ξj
are independent random variables with values in X and with distributions µj such
that their characteristic functions µ̂j (y) do not vanish. We shall suppose that this
condition on µ̂j (y) holds true in the course of the whole article.
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By the classical theorem of Skitovich-Darmois on the real line X = R the
independence of L1 and L2 implies that all µj ∈ �(X) ([1], [16]). The analogous
result for the group X = R

m,m ≥ 2 was proved by Ghurye and Olkin ([9]).
Their proof was simplified by Zinger (see [11, Ch. 3], where one can find var-
ious generalizations). The corresponding result for the a-adic solenoids �a was
proved by the author in ([6]). Note that some analogs of the Bernstein theorem
(L1 = ξ1 + ξ2, L2 = ξ1 − ξ2) and the Skitovich-Darmois theorem were consid-
ered in non-Abelian case too. Namely, for Lie groups, quantum groups, symmetric
spaces (see [8], [12]–[14]).

It should be observed that for the group X = R
m, m ≥ 1 the independence

of L1 and L2 implies that all characteristic functions µ̂j (y) do not vanish ([11,
Ch. 3]). For an arbitrary group X this implication, generally, not necessary is true.

The aim of this article is to find the solution of the following problems.

Problem 1. To describe all locally compact Abelian groupsX possessing the prop-
erty: if ξj are independent random variables with values inX having the distributions
µj with nonvanishing characteristic functions and αj , βj are arbitrary topological
automorphisms of X, then the independence of L1 = α1(ξ1) + · · · + αn(ξn) and
L2 = β1(ξ1)+ · · · + βn(ξn) implies that all µj ∈ �(X).
Problem 2. To describe all locally compact Abelian groupsX possessing the prop-
erty: there exist αj , βj ∈ Aut(X) (not all αjβj−1 are equal) such that if ξj are
independent random variables with values in X having the distributions µj with
nonvanishing characteristic functions, then the independence of L1 = α1(ξ1) +
· · · + αn(ξn) and L2 = β1(ξ1)+ · · · + βn(ξn) implies that all µj ∈ �(X).

At first agree about the notation. If H is a subgroup of Y , then denote by
A(X,H) = {x ∈ X : (x, y) = 1 for all y ∈ H } its annihilator. Denote by
CX the connected component of zero of X. Denote by X1 ≈ X2 a topological
isomorphism of groups X1 and X2. If δ : X1 → X2 is a continuous homomor-
phism, then the conjugate homomorphism δ̃ : Y2 → Y1 is defined by the formula
(x1, δ̃(y2)) = (δ(x1), y2) for all x1 ∈ X1, y2 ∈ Y2. Denote by IX the identity
automorphism of X. Denote by T , resp. Z, resp. Z(2) the circle group, resp. the
group of integers, resp. the residue group modulo 2.

We shall use some results of the structure theory for locally compact Abelian
groups and the duality theory (see [10]).

Denote by Ex the degenerate distribution concentrated at a point x ∈ X. For
µ ∈ M1(X), we define the distribution µ̄ ∈ M1(X) by the formula µ̄(E) = µ(−E)
for all Borel sets E ⊂ X. Observe that ˆ̄µ(y) = µ̂(y). Denote by σ(µ) the support
of µ ∈ M1(X). It is useful to remark that if H is a closed subgroup of Y and
µ̂(y) ≡ 1, y ∈ H , then σ(µ) ⊂ A(X,H).

Letψ(y) be an arbitrary function on Y and h ∈ Y . Denote by
h the difference
operator


hψ(y) = ψ(y + h)− ψ(y), y ∈ Y.
It is convenient for us to formulate the following simple and well-known result

as a lemma.
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Lemma 1. Let G be a Borel subgroup of X, µ ∈ M1(X), µ = µ1 ∗ µ2, µj ∈
M1(X) and µ concentrated on G. Then one can choose shifts µ′j = µj ∗ Exj of
µj such that µ = µ′1 ∗ µ′2 and µ′j concentrated on G.

2. Solution of Problem 1

Pass to the solution of Problem 1. We need 2 lemmas for this.

Lemma 2 (The group analog of the Cramer theorem ([2], see also [7, § 5])). If
a group X contains no subgroup topologically isomorphic to T , µ ∈ �(X) and
µ = µ1 ∗ µ2, µj ∈ M1(X), then µj ∈ �(X), j = 1, 2.

Lemma 3 (The group analog of the Marcinkiewicz theorem ([4], see also [7,
Appendix 1])). If a group X contains no subgroup topologically isomorphic to
T , µ ∈ M1(X) and the characteristic function µ̂(y) can be represented in the
form µ̂(y) = exp{−ψ(y)}, where ψ(y) is a continuous nonnegative function
satisfying for some m the equation


m+1
h ψ(y) = 0

for all y, h ∈ Y and ψ(0) = 0, then µ ∈ �(X).

Theorem 1. LetX be a locally compact Abelian groupX containing no subgroup
topologically isomorphic to T . Let ξj , j = 1, 2, ..., n, n ≥ 2 be independent
random variables with values in X and with distributions µj such that their char-
acteristic functions µ̂j (y) do not vanish. Let αj , βj be arbitrary topological auto-
morphisms ofX. Then the independence of linear formsL1 = α1(ξ1)+· · ·+αn(ξn)
and L2 = β1(ξ1) + · · · + βn(ξn) implies that all µj ∈ �(X).

The results of the articles [1], [16], [9] and [6] follow immediately from this
theorem.

Proof of Theorem 1. Observe first that ifµ is the distribution of a random variable ξ
with values inX andα ∈ Aut(X), then the characteristic function of the distribution
α(ξ) is equal to µ̂(α̃(y)). Therefore putting ζj = αj (ξj ) and taking into account (1)
we reduce the proof to the case when L1 and L2 have the form L1 = ξ1+ · · · + ξn
and L2 = δ1(ξ1)+ · · · + δn(ξn), δj ∈ Aut(X), j = 1, 2, ..., n, n ≥ 2.

The condition of the independence of L1 and L2 can be written in the form

E[(L1, u)(L2, v)] = E[(L1, u)]E[(L2, v)], u, v ∈ Y,

or
n∏

j=1

µ̂j (u+ δ̃j (v)) =
n∏

j=1

µ̂j (u)

n∏

j=1

µ̂j (δ̃j (v)), u, v ∈ Y, (2)

where µ̂j (y) = E[(ξj , y)].



94 G.M. Feldman

Observe now that the characteristic functions of distributions νj = µj ∗ µ̄j
also satisfy equation (2) and ν̂j (y) = |µ̂j (y)|2 > 0 for all y ∈ Y . If we prove
that all νj ∈ �(X), then µj ∈ �(X) by Lemma 2. Therefore we can assume that
µ̂j (y) > 0 for all y ∈ Y, j = 1, 2, ..., n.

We shall modify slightly the classical proof of the Skitovich-Darmois theorem.
Put ψj (y) = − ln µ̂j (y). It follows from (2) that

n∑

j=1

ψj (u+ δ̃j (v)) = A(u)+ B(v), u, v ∈ Y, (3)

where

A(u) =
n∑

j=1

ψj (u), B(v) =
n∑

j=1

ψj (δ̃j (v)).

Let k1 be an arbitrary element of Y . Set h1 = −δ̃n(k1), then h1 + δ̃n(k1) = 0.
Give in (3) the increments h1 and k1 of u and v respectively. Subtracting (3) from
the received equation we obtain

n−1∑

j=1


l1j ψj (u+ δ̃j (v)) = 
h1A(u)+
k1B(v), u, v ∈ Y, (4)

where l1j = h1 + δ̃j (k1) = (δ̃j − δ̃n)(k1), j = 1, 2, ..., n − 1. Observe that the
left-hand side of this equation does not contain the function ψn. Let k2 be an arbi-
trary element of Y . Set h2 = −δ̃n−1(k2), then h2+ δ̃n−1(k2) = 0. Let us give u and
v in (4) the increments h2 and k2 respectively. Subtracting (4) from the received
equation we obtain

n−2∑

j=1


l2j 
l1j ψj (u+ δ̃j (v)) = 
h2
h1A(u)+
k2
k1B(v), u, v ∈ Y,

where l2j = h2+ δ̃j (k2) = (δ̃j − δ̃n−1)(k2), j = 1, 2, ..., n−2.The left-hand side
of this equation contains neither the function ψn nor ψn−1. Reasoning similarly
we sequentially exclude the functions ψn, ψn−1, ..., ψ2 from the left-hand side of
equation (3) and come to the equation


ln−1,1
ln−2,1 ...
l11ψ1(u+ δ̃1(v))

= 
hn−1
hn−2 ...
h1A(u)+
kn−1
kn−2 ...
k1B(v), u, v ∈ Y, (5)

where km are arbitrary elements of Y, hm = −δ̃n−m+1(km), m = 1, 2, ..., n − 1
and lmj = hm + δ̃j (km) = (δ̃j − δ̃n−m+1)(km), j = 1, 2, ..., n − m. Substituting
v = 0 in (5) and subtracting the received equation from (5) we obtain


ln−1,1
ln−2,1 ...
l11 [ψ1(u+ δ̃1(v))− ψ1(u)]
= 
kn−1
kn−2 ...
k1B(v)−
kn−1
kn−2 ...
k1B(0), u, v ∈ Y. (6)



A characterization of the Gaussian distribution on Abelian groups 95

Give an increment kn of v in (6), where kn is an arbitrary element of Y and
subtract (6) from the received equation. We have


ln−1,1
ln−2,1 ...
l11 [ψ1(u+ δ̃1(v)+ δ̃1(kn))− ψ1(u+ δ̃1(v))]
= 
kn
kn−1 ...
k1B(v), u, v ∈ Y. (7)

It should be noted that u, v and kj , j = 1, 2, ..., n in (7) are arbitrary elements of
Y . For this reason, substituting u = −δ̃1(v), k1 = ... = kn = k in (7) we obtain
that B(v) satisfies the equation


nkB(v) = d(k), v, k ∈ Y.

It follows from this that


n+1
k B(v) = 0, v, k ∈ Y. (8)

Denote by γj the distribution on the group X with the characteristic function
γ̂j = µ̂j (δ̃j (y)), i.e. γj = δj (µj ), j = 1, 2, , ..., n. Set γ = γ1 ∗ ... ∗ γn and
observe that

γ̂ (y) = exp{−B(y)}, y ∈ Y.
It follows from (8) and Lemma 3 that γ ∈ �(X), hence γj ∈ �(X) by Lemma 2
and then µj ∈ �(X), j = 1, 2, ..., n. Theorem 1 is proved.

Remark 1. If a group X contains a subgroup topologically isomorphic to T , then
the statement of Theorem 1 is not valid. This results from the following fact ([3]):
there exist independent random variables ξ1 and ξ2 with values in the group T and
with distributions µ1 and µ2 with nonvanishing characteristic functions such that
the linear formsL1 = ξ1+ξ2 andL2 = ξ1−ξ2 are independent butµ1, µ2 	∈ �(T )
(compare below with Proposition 1).

Remark 2. It is interesting to observe that it may be considered another group an-
alog of the Skitovich-Darmois theorem, namely when coefficients of linear forms
are integers. For n ∈ Z define a homomorphism fn : X → X by the formula
fn(x) = nx. Put X(n) = fn(X). A set of integers {aj } is called admissible for
X if X(aj ) 	= {0} for all j . Let ξj , j = 1, 2, ..., n be random variables with val-
ues in X. The admissibility of the set {aj }nj=1 when considering the linear form
L = a1ξ1+· · ·+anξn is a group analog of the condition aj 	= 0, j = 1, 2, ..., n for
the caseX = R. In [5] (see also [7, §10]) the following result was proved (compare
with Theorem 1).

Let ξj , j = 1, 2, ..., n, n ≥ 2 be independent random variables with values in
X and with distributions µj such that their characteristic functions µ̂j (y) do not
vanish. Let {aj }nj=1 and {bj }nj=1 be admissible sets of integers forX. The indepen-
dence of linear forms L1 = a1ξ1+ · · ·+ anξn and L2 = b1ξ1+ · · ·+ bnξn implies
that all µj ∈ �(X) if and only if either X is a torsion free group or X(p) = {0},
where p is a prime number (in the latter case all µj are degenerate distributions).
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Remark 3. Let ξj , j = 1, 2, ..., n, n ≥ 2 be independent random variables with
values in a group X and with distributions µj such that their characteristic func-
tions µ̂j (y) do not vanish, αj , βj ∈ Aut(X). The independence of linear forms
L1 = α1(ξ1)+ · · · + αn(ξn) and L2 = β1(ξ1)+ · · · + βn(ξn) implies that one can
choose shifts µ′j = µj ∗ Exj of the distributions µj such that σ(µ′j ) ⊂ CX, j =
1, 2, ..., n. In order to prove this set νj = µj ∗ µ̄j , ψj (y) = − ln ν̂j (y), B(y) =∑n
j=1 ψj (α̃

−1
j β̃j (y)). Denote by Y0 the subgroup of compact elements of Y . It

follows from the proof of Theorem 1 that the function B(y) satisfies equation (8).
This implies that B(y) ≡ 0, where y ∈ Y0 ([4]). Taking into account that the
subgroup Y0 is invariant with respect to any α̃ ∈ Aut(Y ) it follows from this that
all ψj (y) ≡ 0, y ∈ Y0. It means that ν̂j (y) ≡ 1, y ∈ Y0 and then σ(νj ) ⊂
A(X, Y0), j = 1, 2, ..., n. The required assertion follows from A(X, Y0) = CX
([10, §24]) and Lemma 1.

3. Solution of Problem 2

We pass now to the solution of Problem 2. We need the following lemmas.

Lemma 4. If X 	= {0} and X 	≈ Z(2), then there exists α ∈ Aut(X) such that
α 	= IX.

Proof. If not all nonzero elements of X have order 2, then set α = −IX. If all
nonzero elements of X have the order 2 then by the structure theorem for such
groups ([10, §25]) we have

X ≈ (Z(2))M + (Z(2))N∗ ,

where M and N are cardinal numbers, the group (Z(2))M is considered in Tycho-
noff topology and the group (Z(2))N

∗
is considered in discrete topology. It follows

from this, that X can be represented in the form X = X1 + X2 + X3, where
X1 ≈ X2 ≈ Z(2). Set α(x1, x2, x3) = (x2, x1, x3), xj ∈ Xj , j = 1, 2, 3. Lemma
4 is proved.

Lemma 5. Let X = T 2. Then there exist the automorphisms α1, α2 ∈ Aut(X),
α1 	= α2 such that if ξ1, ξ2 are independent random variables with values in X
and with distributions µ1, µ2 with nonvanishing characteristic functions and the
linear forms L1 = ξ1 + ξ2 and L2 = α1(ξ1) + α2(ξ2) are independent, then
µ1, µ2 ∈ �(X).

Proof. Since Y ≈ Z
2 we denote elements of Y by y = (m, n), m, n ∈ Z. It is well

known that each automorphism α ∈ Aut(X) is assigned to a matrix with integer

elements α ←→
(
a b

c d

)

, where |ad − bc| = 1 and α operates on X in the

following way

α(z,w) = (zawc, zbwd), x = (z, w) ∈ X, |z| = |w| = 1.
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The conjugate automorphism α̃ ∈ Aut(Y ) has the form α̃(m, n) = (am+bn, cm+
dn), y = (m, n) ∈ Y ([10, §26]). We check that

α1 ←→
(

1 0
1 1

)

, α2 ←→
(

0 1
1 0

)

(9)

are the required automorphisms.
Suppose thatL1 = ξ1+ξ2 andL2 = α1(ξ1)+α2(ξ2) are independent. Consider

equation (2) which takes the form

µ̂1(u+ α̃1(v))µ̂2(u+ α̃2(v))

= µ̂1(u) µ̂2(u)µ̂1(α̃1(v))µ̂2(α̃2(v)), u, v ∈ Y. (10)

Put νj = µj ∗ µ̄j , then ν̂j (y) = |µ̂j (y)|2 > 0, y ∈ Y . The characteristic func-
tions ν̂j (y) satisfy equation (10) too. Setψj (y) = − ln ν̂j (y), j = 1, 2. Reasoning
as in the proof of Theorem 1 we obtain that the function ψ1(y) satisfies equation
(6) which has the form


l11 [ψ1(u+ α̃1(v))− ψ1(u)] = 
k1B(v)−
k1B(0), u, v ∈ Y, (11)

where k1 is an arbitrary element of Y and l11 = (α̃1 − α̃2)(k1). Observe that
(α̃1−α̃2) ∈ Aut(Y ). Let l be an arbitrary element ofY . Put in (11)v = α̃−1

1 (l), l11 =
l . We have


2
l ψ1(u) = d(l), u, l ∈ Y,

and hence

3
l ψ1(u) = 0, u, l ∈ Y. (12)

It follows from (12) that ψ1(y) = ψ1(m, n) is a polynomial, generally, with com-
plex coefficients of degree ≤ 2. Taking into account that ψ1(y) ≥ 0, ψ1(−y) =
ψ1(y) for all y ∈ Y and ψ1(0) = 0, we have the representation

ψ1(m, n) = a11m
2 + 2a12mn+ a22n

2 = < Ay, y >,

where y = (m, n) ∈ Y,A = (aij )2i,j=1 is a symmetric positive semidefinite matrix

and < . , . > is the scalar product in R
2. Reasoning similarly we obtain ψ2(y) =

< By, y >, where B = (bij )2i,j=1 is a symmetric positive semidefinite matrix.
Substituting the obtained expressions for ψj (y) into (10) we find

< Au, α̃1(v) > + < Aα̃1(v), u > + < Bu, α̃2(v) >

+ < Bα̃2(v), u > = 0, u, v ∈ Y.
It follows from this that

< u, (Aα̃1 + Bα̃2)v >= 0, u, v ∈ Y,
hence we arrive at the matrix equation

Aα̃1 + Bα̃2 = 0. (13)
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It follows from (9) and (13) that elements aij , bij satisfy the system of equations





a11 + b12 = 0,
a11 + a12 + b11 = 0,
a12 + b22 = 0,
a12 + a22 + b12 = 0.

(14)

On the other hand taking into account thatA andB are symmetric positive semidef-
inite matrices we obtain that elements aij and bij satisfy the system of inequalities

{
a11 ≥ 0, a22 ≥ 0, b11 ≥ 0, b22 ≥ 0,
a2

12 ≤ a11a22, b2
12 ≤ b11b22.

(15)

Set a11 = p, a22 = q. It follows from (14) and (15) that
p

q
= 3−√5

2
= t0,

and (14) finally implies

A = q
(

t0 t0 − 1
t0 − 1 1

)

, B = q
(

1− 2t0 −t0
−t0 1− t0

)

,

where q ≥ 0.
A future reasoning we shall give for µ1 only. It is similarly for µ2. It follows

from the form of the matrix A the representation

ν̃1(m, n) = exp{−q(√t0m− n)2}, y = (m, n) ∈ Y.
(It should be observed that the obtained characteristic functions ν̂1(y) and ν̂2(y) sat-
isfy equation (10), hence the linear forms L1 = ξ1+ ξ2 and L2 = α1(ξ1)+α2(ξ2),
where ξ1, ξ2 are independent random variables with values in X and with distri-
butions ν1, ν2, are independent.)

Consider the Gaussian distribution N on the group R with the characteristic
function N̂(s) = exp{−qs2}. Let π : Y → R

∗ ≈ R be the homomorphism
π(m, n) = √t0m− n. It is easy to see that ν1 = π̃(N), where π̃ : R→ X = T 2.
Since

√
t0 is an irrational number, the image π(Y ) is everywhere dense in R

∗ and
for this reason π̃ is a monomorphism ([10, §24]). The distribution ν1 concentrated
on the Borel subgroup G = π̃(R) ⊂ T 2. By Lemma 1 the distributions µ1 and µ̄1
can be replaced on their shifts µ′1 and µ̄′1 such that

ν1 = µ′1 ∗ µ̄′1 (16)

and the distributionsµ′1 and µ̄′1 are concentrated onG. Since π̃ is a monomorphism,
(16) implies that

N = N1 ∗N2,

where N1 = π̃−1(µ′1). It follows from the classical Cramer theorem of decom-
position of the Gaussian distribution on the real line R that N1 ∈ �(R), but then
µ′1 = π̃(N1) ∈ �(X) and for this reason µ1 ∈ �(X). (It is not difficult to check
that the characteristic function µ̂1(y) has the form

µ̂1(m, n) = exp{−(q/2)(√t0m− n)2 + i(tm+ sn)}, y = (m, n) ∈ Y ).
Lemma 5 is proved.
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Theorem 2. LetX 	≈ T andX 	≈ T +Z(2). Then exist the automorphisms δ1, δ2 ∈
Aut(X), δ1 	= δ2 such that if ξ1, ξ2 are independent random variables with values
inX and with distributions µ1, µ2 with nonvanishing characteristic functions and
the linear forms L1 = ξ1 + ξ2 and L2 = δ1(ξ1) + δ2(ξ2) are independent, then
µ1, µ2 ∈ �(X)

Proof. The following 3 cases are possible.
1. The group X contains no subgroup topologically isomorphic to T .
In this case the independence of any formsL1 andL2 implies that allµj ∈ �(X)

by Theorem 1.
2. The group X contains a subgroup G1 ≈ T and contains no subgroup topo-

logically isomorphic to T 2.
The subgroup G1 is a topological direct summand in X ([10, §24]) i.e. X =

G1+G2, where the subgroupG2 contains no subgroup topologically isomorphic to
T . Under the conditions of Theorem 2G2 	= {0} andG2 	≈ Z(2). By Lemma 4 there
exists an automorphism α ∈ Aut(G2) such that α 	= IG2 . Check that δ1 = IX and
δ2 ∈ Aut(X), δ2(g1, g2) = (g1, α(g2)) are the required automorphisms. Really,
let L1 = ξ1 + ξ2 and L2 = ξ1 + δ2(ξ2) be independent. Equation (2) in this case
has the form

µ̂1(u+ v)µ̂2(u+ δ̃2(v))

= µ̂1(u)µ̂2(u)µ̂1(v)µ̂2(δ̃2(v)), u, v ∈ Y. (17)

Since X = G1 + G2, then Y = H1 + H2, where Hj ≈ G∗j , j = 1, 2. Taking

into account that δ̃2(y) = y for all y ∈ H1, the restriction of equation (17) on the
subgroup H1 has the form

µ̂1(u+ v)µ̂2(u+ v) = µ̂1(u)µ̂2(u)µ̂1(v)µ̂2(v), u, v ∈ H1.

Hence, the restriction of the function f (y) = µ̂1(y)µ̂2(y) on H1 is a character of
the group H1. It means that the restrictions of the functions µ̂j (y) on H1 are also
characters of H1, j = 1, 2. This implies that there exist elements x1, x2 ∈ G1
such that the characteristic functions of the distributions µ′j = µj ∗Exj satisfy the
condition µ̂′j (y) ≡ 1, y ∈ H1, j = 1, 2. For this reason σ(µ′j ) ⊂ A(X,H1) = G2.
The characteristic functions µ̂′j (y) also satisfy equation (17). Observe now that

δ̃2(y) = α̃(y) for all y ∈ H2 and consider the restriction of equation (17) for the
characteristic functions µ̂′j (y) on H2. Since H2 ≈ G∗2, applying Theorem 1 to the
group G2 and to the linear forms L1 = ξ ′1 + ξ ′2 and L2 = ξ ′1 + α(ξ ′2), where ξ ′j
are independent random variables with values in G2 and with distributions µ′j , we
obtain µ′j ∈ �(G2) and hence µj ∈ �(X), j = 1, 2.

3. The group X contains a subgroup G2 ≈ T 2.
The subgroup G2 is a topologically direct summand in X ([10, §24]), i.e. X =

G1 +G2. Retaining the notation of the case 2 we observe that if α1 and α2 are the
automorphisms constructed in Lemma 5 (which can be regarded as automorphisms
of G2), then δj ∈ Aut(X), δj (g1, g2) = (g1, αj (g2)), j = 1, 2 are the required
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automorphisms. The proof is in the complete analogy of the case 2. We only use
Lemma 5 instead of Theorem 1 in the final part of the proof.

Theorem 2 is sharp. Namely, the following result takes place.

Proposition 1. Let eitherX = T orX = T +Z(2) and let αj , βj ∈ Aut(X), j =
1, 2, ..., n, n ≥ 2 be arbitrary automorphisms such that not all αjβj−1 are equal.
Then there exist independent random variables ξj with values inX and with distri-
butions µj with nonvanishing characteristic functions µ̂j (y) such that the linear
formsL1 = α1(ξ1)+· · ·+αn(ξn) andL2 = β1(ξ1)+· · ·+βn(ξn) are independent
but all µj 	∈ �(X).

Proof. It is easy to see that Aut(X) = {IX,−IX}. Hence, we can restrict ourselves
to the caseX = T . Then Y ≈ Z. Without loss of generality we can assume that L1
andL2 have the formL1 = ξ1+· · ·+ξn andL2 = ξ1+· · ·+ξm−ξm+1−· · ·−ξn, 1 ≤
m < n. Denote elements of Y by k and consider the functions

f (k) =






exp{−ak
2

m
}, k = 2p,

exp{−ak
2 − 1

m
}, k = 2p + 1,

g(k) =






exp{− ak2

n−m }, k = 2p,

exp{−ak
2 + 1

n−m }, k = 2p + 1

on Y . If a > 0 is large enough, then

ρ(eit ) =
∞∑

k=−∞
f (k)e−ikt > 0, τ (eit ) =

∞∑

k=−∞
g(k)e−ikt > 0.

Thus f (k) and g(k) are the characteristic functions of some distributions µ, ν ∈
M1(X). Let ξj be independent random variables with values in X and with distri-
butions µj = µ, j = 1, 2, ...m and µj = ν, j = m+ 1,m+ 2, ..., n. We see that
the characteristic functions µ̂j (y) satisfy the equation

m∏

j=1

µ̂j (u+ v)
n∏

j=m+1

µ̂j (u− v) =
n∏

j=1

µ̂j (u)

m∏

j=1

µ̂j (v)

×
n∏

j=m+1

µ̂j (−v), u, v ∈ Y.

Taking into account (2) this implies that L1 and L2 are independent, but all µj 	∈
�(X).

Theorem 2 and Proposition 1 give the complete solution of Problem 2.
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Remark 4. LetX be a group the same as in Theorem 2 and suppose thatX satisfies
the conditions:

(i) CX 	= {0},
(ii) CX 	≈ T .
Then the automorphisms δ1, δ2 ∈ Aut(X) which exist by Theorem 2 may be

chosen in such a manner that the following statement is true:
(I) There exist nondegenerate distributions µ1, µ2 ∈ �(X) such that if ξ1 and

ξ2 are independent random variables with values inX and with distributionsµ1 and
µ2, then the linear forms L1 = ξ1 + ξ2 and L2 = δ1(ξ1)+ δ2(ξ2) are independent.

In order to prove this we use the scheme of the proof of Theorem 2 and make
more precisely the choice of the automorphisms δ1 and δ2 in Theorem 2 in such a
way that (I) is valid. Consider the same 3 cases.

1. The group X contains no subgroup topologically isomorphic to T .
Observe that if CX 	= {0}, then there exist a nondegenerate distribution γ ∈

�(X) ([15]). It follows from (1) that its characteristic function γ̂ (y) satisfies the
equation

γ̂ (u+ v)γ̂ (u− v) = γ̂ (u)2γ̂ (v)γ̂ (−v), u, v ∈ Y.
Taking into account (2) it means that if ξ1 and ξ2 are independent identically dis-
tributed random variables with values in X and with distribution γ , then the linear
forms L1 = ξ1 + ξ2 and L2 = ξ1 − ξ2 are independent.

Put δ1 = IX, δ2 = −IX and µ1 = µ2 = γ , where γ is a nondegenerate
Gaussian distribution on X.

2. The group X contains a subgroup G1 ≈ T and contains no subgroup topo-
logically isomorphic to T 2.

The subgroup G1 is a topological direct summand in X ([10, §24]) i.e. X =
G1 +G2, where the subgroup G2 contains no subgroup topologically isomorphic
to T . It follows from (ii) that CG2 	= {0}. Taking into account the reasoning given
above in case 1, we can put δ1 = IX, δ2 ∈ Aut(X), δ2(g1, g2) = (g1,−g2), and
µ1 = µ2 = γ , where γ is a nondegenerate Gaussian distribution on G2.

3. The group X contains a subgroup G2 ≈ T 2.
The automorphisms δ1 and δ2 which were constructed in case 3 of the proof of

Theorem 2 have the required property.
On the other hand if either CX = {0} or CX ≈ T , then as appears from Remark

2 and Proposition 1 it is impossible to choose automorphisms δ1, δ2 ∈ Aut(X) in
Theorem 2 in such a manner that (I) is fulfilled.
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