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Abstract. Friendly walkers is a stochastic model obtained from independent one-dimen-
sional simple random walks {Skj }j≥0, k = 1, 2, . . . , d by introducing “non-crossing condi-
tion”: S1

j ≤ S2
j ≤ . . . ≤ Sdj , j = 1, 2, . . . , n and “reward for collisions” characterized by

parameters β2, . . . , βd ≥ 0. Here, the reward for collisions is described as follows. If, at
a given time n, a site in Z is occupied by exactly m ≥ 2 walkers, then the site increases
the probabilistic weight for the walkers by multiplicative factor exp(βm) ≥ 1. We study the
localization transition of this model in terms of the positivity of the free energy and describe
the location and the shape of the critical surface in the (d − 1)-dimensional space for the
parameters (β2, . . . , βd).
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1. Introduction

1.1. The model

Friendly walkers is a stochastic model studied in connection with the Domany-
Kinzel model, directed percolation, wetting and various other models; See [2, 5,
7] and references therein. Roughly speaking, the d-friendly walkers (of the length
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n) is obtained from independent one-dimensional simple random walks {Skj }j≥0,
k = 1, 2, . . . , d by introducing the following additional rules:

• Non-crossing condition; the walkers are conditioned to preserve the order S1
j ≤

S2
j ≤ . . . ≤ Sdj , j = 1, 2, . . . , n. This restriction makes the walkers repel each

other to avoid violating the order.
• Reward for collisions; We introduce an attractive interaction among the walkers

characterized by parameters β2, . . . , βd ≥ 0 as follows. If, at a given time n,
a site in Z is occupied by exactly m ≥ 2 walkers, then the site increases the
probabilistic weight for the walkers by multiplicative factor exp(βm) ≥ 1.

The localization transition we will be discussing in this paper is the consequence
of the above two competing effects.

To give a precise definition of this model, we start by introducing a d-dimen-
sional random walk (Sj , P xd ) such that the coordinates {Skj }j≥0, k = 1, 2, . . . , d,
are independent simple random walks on Z. To be consistent with the non-crossing
condition and to ensure the possibility of collisions for d ≥ 2, we always take the
starting point x from the set;

Z
d
≤

def.= {x = (xk)dk=1 ∈ Z
d ; x

k+1 − xk

2
∈ N, j = 1, . . . , d}, (1.1)

where N = {0, 1, 2, . . . }. For d = 1, we agree with the convention: Z
1≤ = Z

1. We
will refer to the number d as the “dimension” of the model.

The reward for collisions is described by a parameter β = (β2, β3, . . . , βd) ∈
[0,∞)d−1 and the parameter comes into play with the random walk (Sj , P xd ) as
follows. We define the multiplicity of a site z ∈ Z for a state x ∈ Z

d by

m(x, z) = �{1 ≤ k ≤ d : xk = z}. (1.2)

Fig. 1. An example of 3-friendly walkers.
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We then define

χj =
∑

z∈Z : m(Sj ,z)≥2

βm(Sj ,z), (1.3)

Ln =
n−1∑

j=0

χj , n ≥ 1, (1.4)

zn,d(β) = exp(Ln)1{Sj ∈ Z
d
≤, j = 1, 2, . . . , n}, n ≥ 1, (1.5)

z0,d (β) = 1, (1.6)

where 1{· · · } denotes the indicator function.
In this paper, we are concerned with the existence and the the positivity of the

free energy:

ψd(β) = lim
n→∞

1

n
lnZxn,d(β),

where Zxn,d(β) is the partition function

Zxn,d(β) = Pxd [zn,d(β)]. (1.7)

Note that zn,1 ≡ 1 for d = 1 and hence trivially, ψ1 ≡ 0. We sometimes drop
parameters d and β from the notations, if it does not generate confusion.

Definition 1.1. The system is said to be localized if ψd(β) > 0 and delocalized if
ψd(β) = 0.

Plausibility of this terminology might be explained as follows. Consider a proba-
bility measure µxn, x ∈ Z

d≤, defined by

µxn(dω) = 1

Zxn,d(β)
P xd [zn,d(β) : dω]. (1.8)

We look at the paths under this probability measure. Then, as is usual the case with
models in statistical mechanics, we see competition of energy (= −Ln, in this case)
and entropy.

• The entropy is maximized when the walkers travel separately as they would do if
β2 = . . . = βd = 0, with only a small number of collisions which can be ignored
in a macroscopic scale. In this case, the “width” Sj+1

n − S
j
n , 1 ≤ j ≤ d − 1,

should diverge as n ↗ ∞ (delocalization). On the other hand, this strategy does
not let the walkers pick up much reward, and therefore, can be optimal only when
βk’s are small so that the gain in entropy makes up the loss in energy.

• The strategy for walkers to minimize the energy (i.e., maximize the reward) is
to travel together, so that they can collect as much reward as possible. In this
case, the “width” of the group of walkers should remain small as n ↗ ∞ (local-
ization). On the other hand, this strategy lowers the entropy considerably, and
therefore, can be optimal only when βk’s are large so that the gain in energy
exceeds the loss in entropy.
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Then problem now is to determine which strategy becomes “typical” depending
on the choice of βk’s. The answer to this question is believed to be given by the
positivity of the free energy mentioned above. In fact, it is known [3, 4] for d = 2
that

ψ2(β2) =
{

0, if β2 ≤ ln 4
3 ,

ln{ eβ2

4 (1 +
√

eβ2

eβ2 −1
)} > 0, if β2 > ln 4

3 .
(1.9)

The corresponding pathwise descriptions are obtained by Isozaki and Yoshida [4]
as follows;

• For β2 ≤ ln(4/3), the width (S2
j − S1

j )
n
j=1 diverges like

√
n, and, if properly

scaled (i.e., divided by
√
n), converges to Brownian meander if β2 < ln(4/3)

and to reflecting Brownian motion if β2 = ln(4/3).
• For β2 > ln(4/3), the profile of the width (S2

j − S1
j )
n
j=1 remains bounded and

converges to an exponentially mixing Markov chain.

For higher dimensions, we have a set of thermodynamic parameters (β2, . . . , βd),
so that we should have a critical surface in [0,∞)d−1 as the boundary between the
delocalization and localization region. In this paper, we describe the shape and
the location of the critical surface (Theorem 1.2) by studying how the free energy
depends on the parameters (Theorem 1.1). In some situation, the information we
obtain on the critical surface is good enough to determine exactly when localization
occurs, e.g., in d = 3 (cf. Figure2) and in Corollary 1.1 below.

Remark 1.1. Consider the measure µn without the reward for collisions, i.e., β2 =
. . . = βd = 0. In this setting, Katori and Tanemura [6] recently proved a func-
tional central limit theorem for the process (Sj )1≤j≤n for arbitrary d ≥ 2 with the
non-intersecting Brownian motion as the scaling limit. We expect the same limit
theorem for all β in the interior of the delocalized region.

Remark 1.2. Our original formulation of the friendly walkers was based on a
d-dimensional random walk conditioned to stay above diagonal. We remark that
the model can be reformulated in terms of a (d − 1)-dimensional nearest neigh-
bor random walk conditioned to stay in the first quadrant N

d−1. Define a map
ϒd : R

d −→ R
d−1 by

ϒd(y
1, y2, . . . , yd) =

(
y2 − y1

2
,
y3 − y2

2
, . . . ,

yd+1 − yd

2

)
.

Then (ϒdSj )j≥1 is a (d − 1)-dimensional nearest neighbor random walk. The
non-crossing condition reads:

ϒdSj ∈ N
d−1, j = 1, 2, . . . , n. (1.10)

In this way, the friendly walkers model can be translated into a random walk in the
first quadrant with attractive interactions with the boundary ∂Nd−1 = ∪d−1

i=1 {x ∈
N
d−1 ; xi = 0}.
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1.2. Main results

For d ≥ 2 and n ≥ 1, a vector k = (ku)
n
u=1 ∈ {1, 2, . . . , d}n is said to be a parti-

tion of d with length n, if
∑

1≤u≤n ku = d . The length of a partition k is denoted
by n(k). In particular, the number d in itself can be considered as a partition of d
with n(d) = 1. For a partition k of d , we introduce an event

�n,k =
n(k)⋂

α=1

{
Sin = Si

′
n if

α−1∑

u=1

ku + 1 ≤ i ≤ i′ ≤
α∑

u=1

ku

}
. (1.11)

In particular, �n,d = {S1
n = S2

n = . . . = Sdn }.
Theorem 1.1. Let d ≥ 2 and β = (β2, β3, . . . , βd) ∈ [0,∞)d−1.

(a) The following limit exists and is independent of a partition k of d and an initial
configuration x ∈ Z

d≤;

ψd(β) = lim
n→∞

1

n
lnPxd [zn,d(β) : �n,k]. (1.12)

In particular,

ψd(β) = lim
n→∞

1

n
lnZxn,d(β). (1.13)

(b) It holds for any partition k of d that

ψd(β) ≥
n(k)∑

α=1

ψkα (β2, β3, . . . , βkα ). (1.14)

Although ψk , 1 ≤ k ≤ d are functions of (β2, β3, . . . , βk), we often regard them
as functions of β = (β2, β3, . . . , βd).

Inequality (1.14) is the main point in this paper. It enables us to describe the
shape and location of the critical surface as follows. Let η be the first hitting time
to the diagonal set;

η = inf{n ≥ 1 : Sn ∈ Z
d
diag.}, (1.15)

where Z
d
diag. = {x ∈ Z

d x1 = x2 = . . . = xd}. We then introduce the following
power series in s ∈ [0, 1];

Ŵs,d(β2, . . . , βd−1) =
∑

n≥1

snP 0
d [zn,d(β2, . . . , βd−1, 0) : η = n] ∈ (0,∞].

(1.16)

Theorem 1.2. For d ≥ 2, define a concave, decreasing function βcrit
d : [0,∞)d−2

−→ [−∞,∞) by

βcrit
d (β2, . . . , βd−1) =

{
ln 4

3 , if d = 2,
− ln

(
Ŵ1,d (β2, . . . , βd−1)

) ∈ [−∞,∞), if d ≥ 3.
(1.17)

Then, it enjoys the following properties;
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(a)

βcrit
d (β∗

2 , . . . , β
∗
d−1) ≥ β∗

d , where β∗
d = ln

2d

d + 1
> 0. (1.18)

(b) ψd(β2, . . . , βd) > 0 if and only if βd > βcrit
d (β2, . . . , βd−1).

(c) ψd(β2, . . . , βd) > 0 if βk > βcrit
k (β2, . . . , βk−1) for some k = 2, . . . , d.

Remark 1.3. The important point here is not just the existence of the localization
transition, but the precise information on the location and the shape of the critical
surface. In fact, it is not difficult to prove by a simple perturbative argument that, if
all βk’s are small (resp. large), thenψd(β) = 0 (resp.ψd(β) > 0). The argument of
this kind, however, does not seem to provide any precise information on the critical
surface.

Remark 1.4. The meaning of β∗
d can best be explained by the following identity

whose proof is elementary:

P
(x1,... ,xd )
d {S1 ∈ Z

d
≤} =

∏

z∈Zd

m(x, z)+ 1

2m(x,z)
. (1.19)

We see from (1.19) that, in Zn with β = (β∗
k )
d
k=2, the amount of the mass anni-

hilated by non-crossing restriction is exactly compensated by the creation due to
Ln.

Remark 1.5. Part (a) of the above theorem can be made more precise;

βcrit
d (β∗

2 , . . . , β
∗
d−1)

{= β∗
d , if d = 2, 3,

> β∗
d , if d ≥ 4.

The proof is based on the following observation. If β = (β∗
k )
d
k=2, then the process

(ϒdSj )j≥1 referred to in Remark 1.2 is a reversible Markov chain under the mea-
sure (1.8). It is not difficult to see that the Markov chain is recurrent for d = 2, 3
and is transient for d ≥ 4.

Consider now a special case βk = (k−1)β2, k = 2, . . . , d, in which the reward for
a collision is propotional to the multiplicity. This is in fact the “friendly walkers”
in the sense of [5] (with p = exp(−β2) and τ = 1 in notations there), for which
we have the following.

Corollary 1.1.

ψd (β2, 2β2, . . . , (d − 1)β2) > 0 if and only if β2 > ln(4/3). (1.20)

Proof. The “if” part follows immediately from Theorem 1.2 (c). Suppose that
β2 ≤ β∗

2 . Since β∗
k > (k − 1)β∗

2 ≥ (k − 1)β2, we see that

βcrit
d (β2, 2β2, . . . , (d − 2)β2) ≥ βcrit

d (β∗
2 , . . . , β

∗
d−1)

≥ β∗
d

> (d − 1)β2,

and hence that ψd (β2, 2β2, . . . , (d − 1)β2) = 0 by Theorem 1.2(b). �
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βcrit
3 (β2)

ln2

β2

β3

ln 4
3

de
lo

ca
liz

ed

Fig. 2. The delocalized phase for 3-friendly walkers.

2. Proof of Theorems

2.1. Proof of Theorem 1.1(a)

Since 1 = ∑
k 1�n,k , (1.13) follows from (1.12). To prove (1.12), we will use the

following notations;

Zxn,d(A) = Pxd [zn,d : A], for an event A,

Z
x,y
n,d = Pxd [zn,d : Sn = y], for y ∈ Z

d≤.

Step 1. We first prove that lim
n→∞

1

n
lnZ0

n,d(�n,d) exists. Note first thatZxn,d(�n,d) =
Z0
n,d(�n,d) for any x ∈ Z

d
diag.. We use this to show that n �→ Z0

n,d(�n,d) is super-
multiplicative; for any m, n ≥ 1,

Z0
m+n,d(�m+n,d) ≥

∑

y∈Z
d
diag.

Z
0,y
m,dZ

y
n,d(�n,d)

= Z0
m,d(�m,d)Z

0
n,d(�n,d).

Step 2. We next show that

lim
n→∞

(
1

n
lnZxn,d(�n,k)− 1

n
lnZ0

n,d(�n,k)

)
= 0, (2.1)

for any x ∈ Z
d≤. Note first that

Rxm
def.= {z ∈ Z

d
≤ ; Zx,zm,d > 0} � 0 for some m ≥ 1.
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If n > m, we have

Zxn,d(�n,k) =
∑

z∈Rxm
Zx,zm Zzn−m,d(�n−m,k)

≥
(

min
z∈Rxm

Z
x,z
m,d

)
Z0
n−m,d(�n−m,k).

This, together with the similar argument with the role of x and 0 exchanged, proves
(2.1).

Step 3. Lastly, we show that for any partition k of d,

lim
n→∞

1

n
lnZ0

n,d(�n,k) = lim
n→∞

1

n
lnZ0

n,d(�n,d).

Since �n,k ⊃ �n,d , it is enough to prove that

lim
n→∞

1

n
lnZ0

n,d = lim
n→∞

1

n
lnZ0

n,d(�n,d). (2.2)

Clearly, lim inf
n→∞

1

n
lnZ0

n,d ≥ lim
n→∞

1

n
lnZ0

n,d(�n,d). We have on the other hand that

Z0
2n,d(�2n,d) ≥ Z0

2n,d(S2n = 0)

≥ max
y∈Z

d≤
Z

0,y
n,dZ

y
n,d(Sn = 0)

≥ e−βd max
y∈Z

d≤
(Z

0,y
n,d)

2

≥ e−βd n−2d(Z0
n,d)

2,

which implies lim sup
n→∞

1

n
lnZ0

n,d ≤ lim
n→∞

1

n
lnZ0

n,d(�n,d). �


2.2. Proof of Theorem 1.1(b)

Some details of the proof may look complicated at first sight. So we will first
sketch the outline. We divide the d walkers S1· , . . . , Sd· into n(k) groups {Si· }i∈Iαk ,

α = 1, . . . , n(k), where Iαk =
{∑α−1

u=1 ku + j
}kα
j=1

. We want to factorize the ex-

pectation P 0
d [zn,d(β) : �n,k] into a product of contributions from these groups to

get a lower bound of the form
∏n(k)
α=1 exp(nψkα ) in a certain asymptotic sense. We

will implement the factorization by restricting the expectation to an event that for
� ≤ j ≤ n (� large enough), each group {Sij }i∈Iαk , 1 ≤ α ≤ n(k), stays within dis-

tance jγ (1/2 < γ < 1) from a certain number Rαj which satisfies Rαj � Rα+1
j so

that any two walkers in different groups do not collide for � ≤ j ≤ n. This restric-
tion suppresses the interaction between different groups and leads to the desired
lower bound with the help of Lemma 2.2 below.
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Let us now go into the detail of the proof. We will use the following notation
in what follows;

��,n(I, {aj }, {bj }) = {|Sij − aj | < bj , � ≤ j ≤ n, i ∈ I },
for sequences {aj }, {bj }, � ≥ 1, and a subset I ⊂ Id ≡ {1, 2, . . . , d}. We start with
the following technical lemma.

Lemma 2.1. Let {aj }j≥1 ⊂ N be such that a0 = 0 and aj − aj−1 ∈ {0, 1}. Then,

Pd [zn,d : �0,n(Id , {aj }, {bj }) ∩�n,d ]

≥
(

2−d
)an

Pd [zn−an,d : �0,n−an(Id, {0}, {bj }) ∩�n−an,d ], (2.3)

for any increasing positive sequence {bj }j≥1.

Proof. Let {tj }j≥1 = {1 ≤ j ≤ n ; aj − aj−1 = 0}. We define a random walk U
by

Uj = (St1 − St1−1)+ . . .+ (Stj − Stj−1).

On an event defined by

�n = {Sj − Sj−1 = (1, 1, . . . , 1) if 1 ≤ j ≤ n and aj − aj−1 = 1},
we have

Sj = Uj−aj + aj (1, 1, . . . , 1), 1 ≤ j ≤ n.

Therefore,

zn,d [S] ≥ zn−an,d [U ] on �n,

�n,d ∩�n = {U1
n−an = U2

n−an = . . . = Udn−an} ∩�n,
�0,n(Id , {aj }, {bj }) ∩�n = {|Uij−aj | < bj , 1 ≤ j ≤ n, i ∈ Id} ∩�n

⊃ {|Uij | < bj , 1 ≤ j ≤ n− an, i ∈ Id} ∩�n.
Since U is independent of �n and has the same law as S, (2.3) follows from the
observation above. �


We will use the following lemma whose proof is given in Section 2.4.

Lemma 2.2. For any d ≥ 2, β ∈ [0,∞)d−1 and γ > 1
2 ,

lim
�→∞

lim
n→∞

1

n
lnP 0

d

[
zn,d(β) : �n,d ∩�0,n

(
Id, {0}, {(j + �)γ })] = ψd(β). (2.4)

Proof of Theorem 1.1(b). We introduce sequences {Rαj }j≥0, α = 1, 2, . . . , n(k) of
N such that

R1
j ≡ 0, Rα0 ≡ 0, Rαj+1 − Rαj ∈ {0, 1}, 1 ≤ α ≤ n(k), j ≥ 1

Rαj+1 − Rαj ≤ Rα+1
j+1 − Rα+1

j , 1 ≤ α ≤ n(k)− 1, j ≥ 1

2jγ + 2 ≤ Rα+1
j − Rαj ≤ 2jγ + 3, j ≥ L, 1 ≤ α ≤ n(k)− 1,
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for some L ≥ 1 and γ ∈ ( 1
2 , 1). Note that for j ≥ L and 1 ≤ α < α′ ≤ n(k),

|Rαj | ≤ (α − 1)(2jγ + 3), (2.5)

{z ∈ Z : |Rαj − z| < jγ + 1} ∩ {z ∈ Z : |Rα′
j − z| < jγ + 1} = ∅. (2.6)

Then by the Markov property, we have

P 0
d [zn,d(β) : �n,k]

≥ P 0
d



zn,d(β) : �n,k ∩
n(k)⋂

α=1

��,n

(
Iαk , {Rαj }, {jγ + 1}

)




= P 0
d

[
z�,d(β)P

S�
d

[
zn−�,d(β) :

�n−�,k ∩
n(k)⋂

α=1

�0,n−�
(
Iαk , {Rαj+�}, {(j + �)γ + 1}

) ]]
.

By (2.6) and independence of {Si}, i = 1, 2, . . . , d, for � ≥ L

Pxd



zn−�,d(β) : �n−�,k ∩
n(k)⋂

α=1

�0,n−�
(
Iαk , {Rαj+�}, {(j + �)γ + 1}

)




=
n(k)∏

α=1

P
�αkx

kα

[
zn−�,kα (β) : �n−�,kα ∩�0,n−�

(
Ikα , {Rαj+�}, {(j + �)γ + 1}

)]
,

where �αkx = (xi)i∈Iαk ∈ Z
kα . For any � > L we can take y ∈ Z

d≤ such that

P 0
d [S� = y] > 0 and

�αky = (Rα� , R
α
� , . . . , R

α
� ) or (Rα� + 1, Rα� + 1, . . . , Rα� + 1), (2.7)

1 ≤ α ≤ n(k). Hence

P 0
d [zn,d(β) : �n,k] ≥ P 0

d [z�,d(β) : S� = y]

×
n(k)∏

α=1

P
�αky

kα

[
zn−�,kα (β) : �n−�,kα ∩�0,n−�

(
Ikα , {Rαj+�}, {(j + �)γ + 1}

)]
,

where we regard zn,kα as a function of β = (β2, β3, . . . , βd), although it is that of
(β2, β3, . . . , βkα ). By shifting the space by −�αky1, from (2.7) we have

P
�αky

kα

[
zn−�,kα (β) : �n−�,kα ∩�0,n−�

(
Ikα , {Rαj+�}, {(j + �)γ + 1}

)]

≥ P 0
kα

[
zn−�,kα (β) : �n−�,kα ∩�0,n−�

(
Ikα , {Rα�+j,�}, {(j + �)γ }

)]
, (2.8)
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where Rαn,� = Rαn − Rα� . By (2.3), applied to aj = Rα�+j,�, we see that the last
displayed expectation is bounded from below by

(
2−d

)Rαn,�
P 0
kα

[
zn−�−Rαn,�,kα (β) :

�n−�−Rαn,�,kα ∩�0,n−�−Rαn,�
(
Ikα , {0}, {(j + �)γ })

]
.

Since Rαn,�/n → 0, n → ∞ by (2.5) and γ < 1, we have

lim inf
n→∞

1

n
lnP 0

d [zn,d(β) : �n,k]

≥
n(k)∑

α=1

lim inf
n→∞

1

n
lnP 0

kα

[
zn,kα (β) : �n,kα ∩�0,n

(
Ikα , {0}, {(j + �)γ })] ,

for any � > L. Therefore, (1.14) follows from Lemma 2.2. �


2.3. Proof of Theorem 1.2

We first show the following expansion formula for the generating function of
P 0
d [zn,d(β) : �n,d ], n ≥ 1.

Lemma 2.3.

∑

n≥1

snP 0
d [zn,d(β) : �n,d ] =

∑

m≥1

[eβd Ŵs,d (β)]
m, (2.9)

where Ŵs,d(β) is defined by (1.16). In particular, ψd(β) is characterized by the
relation;

exp (−ψd(β)) = sup{s : eβd Ŵs,d (β) < 1}. (2.10)

Proof. We set

η0 ≡ 0 and ηj = inf{k > ηj−1 : Sk ∈ Z
d
diag.}, j ≥ 1. (2.11)

We then see that if x ∈ Z
d
diag., then

Wn(β)
def.= Pxd [zn,d(β2, β3, . . . , βd−1, 0) : η1 = n]

does not depend on x. Therefore, by the Markov property,
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P 0
d [zn,d(β) : �n,d ]

=
n∑

m=1

∑

0=i0<i1<···<im−1<im=n
P 0
d [zn(β) : η1 = i1, η2 = i2, . . . , ηm = im]

=
n∑

m=1

eβdm
∑

0=i0<i1<···<im−1<im=n

×
m∏

k=1

P 0
d [zik−ik−1(β2, . . . , βd−1, 0) : η1 = ik − ik−1]

=
n∑

m=1

eβdm
∑

j1,j2,...,jm≥1
j1+j2+···+jm=n

Wj1(β)Wj2(β) . . .Wjm(β).

The desired equality (2.9) is now immediately obtained by computing the gener-
ating function of the right-hand-side. By Theorem 1.1, exp(−ψd) gives the radius
of convergence of the power series on the left-hand-side of (2.9). We therefore see
(2.10) from (2.9). �

Proof of Theorem 1.2. (b): By (2.10), the positivity of ψd(β) is equivalent to that

Ŵs(β) > exp (−βd) for some s < 1. (2.12)

On the other hand, we have by monotone convergence theorem that

lim
s↗1

Ŵs(β) = Ŵ1(β) = exp
(
−βcrit

d (β2, . . . , βd−1)
)
. (2.13)

If βd > βcrit
d (β2, . . . , βd−1), then we see from (2.13) that (2.12) holds. Conversely,

if (2.12) holds true, then Ŵ1(β) > exp(−βd), and henceβd > βcrit
d (β2, . . . , βd−1).

(a): It is not difficult to see from (1.19) that

Zxn(β
∗
2 , . . . , β

∗
d ) = Zx1 (β

∗
2 , . . . , β

∗
d ), n ≥ 1,

and hence that ψd(β∗
2 , . . . , β

∗
d ) = 0. We therefore have β∗

d ≤ βcrit
d (β∗

2 , . . . , β
∗
d−1)

by part (b).
(c): This follows from part (b) and (1.14).

�


2.4. Proof of Lemma 2.2

We first introduce an event

�n,M = �n,d ∩ {ηm − ηm−1 ≤ M, 0 ≤ m ≤ τn}, (2.14)

where ηm, m ≥ 0 are stopping times defined by (2.11) and

τn(S) = max{m : ηm ≤ n}. (2.15)

We will use the following lemma which relates ψd(β) with P 0
d [zn,d(β) : �n,M ].
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Lemma 2.4.

ψd(β) = lim
M→∞

lim
n→∞

1

n
lnP 0

d [zn,d(β) : �n,M ]. (2.16)

Proof. The first limit (inn) on the right-hand-side exists by the superadditivity while
the second one (in M) by monotonicity. To identify the limit, take any c < ψd(β).
Then, by Lemma 2.3, we can take a positive integer M = M(c) such that

M(c)∑

n=1

e−cnP 0
d [zn,d(β2, β3, . . . , βd−1, 0) : η1 = n]eβd ≥ 1.

By the same procedure to show Lemma 2.3 we have

lim
n→∞

1

n
lnP 0

d [zn,d(β) : �n,M ] ≥ c.

This proves (2.16). �

Proof of Lemma 2.2. We write �0,n,� = �0,n(Id , {0}, (j + �)γ ) for simplicity.
By Lemma 2.4, our task is reduced to proving the following statement: for given
M > 0, there exists a constant L(M) such that if � > L(M), then

P 0
d [zn,d(β) : �n ∩�0,n,�] ≥ 1

2
P 0
d [zn,d(β) : �n,M ], n ≥ 1. (2.17)

Proof of (2.17). First we introduce spaces of d-dimensional finite paths W(n),
W+(n), n ≥ 1 defined by

W(n) = {w = {wj }nj=1 : |wij − wij−1| = 1, 1 ≤ j ≤ n, 1 ≤ i ≤ d,

w0, wn ∈ Z
d
diag.},

W+(n) = {w ∈ W(n) : w0 = 0, wj �∈ Z
d
diag., 1 ≤ j ≤ n− 1}.

For w′ ∈ W(n1) and w′′ ∈ W(n2), n1, n2 ≥ 1, w′ · w′′ represent the path in
W(n1 + n2) defined by

(w′ · w′′)j =
{
w′
j , if 0 ≤ j ≤ n1,

w′
n1

+ w′′
j−n1

− w′′
0 , if n1 ≤ j ≤ n1 + n2.

Recall that we have defined stopping times ηm by (2.11) and suppose that Sn = 0.
Then we define w(m) ∈ W+(ηm − ηm−1), 1 ≤ m ≤ τn as

w(m)j = Sηm−1+j − Sηm−1 , 0 ≤ j ≤ ηm − ηm−1.

It is clear that Sj = (w(1) · w(2) · · ·w(τn))j , for 0 ≤ j ≤ n. We introduce a map
r from W+(n) to W+(n) defined by

(rw)j = wn−j − wn, 0 ≤ j ≤ n, w ∈ W+(n).

For ξ = (ξm) ∈∏m≥1{−1,+1}, we define Sξ inductively by
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Fig. 3. Examples of w and rw.

S
ξ
j =






S
ξ
ηm−1 + w(m)j−ηm−1 , if ηm−1 ≤ j ≤ ηm, ξm = 1, 1 ≤ m ≤ τn,

S
ξ
ηm−1 + (rw(m))j−ηm−1 , if ηm−1 ≤ j ≤ ηm, ξm = −1, 1 ≤ m ≤ τn,

S
ξ
n + Sj − Sn, if j > n.

Now, let ξ1, ξ2, . . . be i.i.d. random variable on a probability space (�,G,Q)
such that Q(ξm = ±1) = 1/2. Note that zn(β)[S·] = zn(β)[S

ξ
· ] and that S ∈

�n,M ⇐⇒ Sξ ∈ �n,M . We therefore have that

P 0
d [zn,d(β) : �n ∩�0,n,�] ≥ P 0

d [zn,d(β) : �n,M ∩�0,n,�]

=
∫
Q(dξ)P 0

d [zn,d(β) : �n,M ∩ {Sξ ∈ �0,n,�}].

In what follows, we will assume that �γ > 4M . We define Um(S) = Sdηm for
m = 1, . . . , τn. We then see that

�n,M ⊂
n⋂

j=1

d⋂

α=1

{|(Sξ )αj − Uτj (S
ξ )| ≤ M}.

and hence that

τn⋂

m=1

{|Um(Sξ )| ≤ (m+ �)γ −M} ∩�n,M ⊂ {Sξ ∈ �0,n,�} ∩�n,M.

This implies that
∫
Q(dξ)P 0

d [zn,d(β) : �n,M ∩ {Sξ ∈ �0,n,�}] ≥ P 0
d [zn,d(β)ρ�(S) : �n,M ],

(2.18)
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Fig. 4. Examples of S and Sξ , in the case that τn = 3, ξ1 = 1, ξ2 = −1 and ξ3 = 1.

where

ρ�(S) = Q

(
τn⋂

m=1

{|Um(Sξ )| ≤ (m+ �)γ −M}
)
.

Since
Um(S

ξ )− Um−1(S
ξ ) = (Um(S)− Um−1(S)) ξi,

the process (Um(Sξ ))
τn
m=1 is of independent increments bounded by M . We can

therefore use Azuma’s inequality [1, page85] together with observation (m+�)γ −
M ≥ (mγ ∨ �γ )/2 and |Um(Sξ )| ≤ mM to conclude that

1 − ρ�(S) ≤
τn∑

m=1

Q{|Um(Sξ )| > (m+ �)γ −M}

≤
τn∑

m=[�γ /2M]

Q{|Um(Sξ )| > mγ /2}

≤
∑

m≥[�γ /2M]

exp
(
−m2γ−1/8

)

≤ 1/2,

if � is large enough. We now obtain (2.4) by plugging this into (2.18). �


3. Remarks

By the free energies we define the following regions;

D0 = {β ∈ [0,∞)d−1 : ψd(β) = 0},
Dd = {β ∈ [0,∞)d−1 : ψd(β) > ψk(β), for any partition k �= d of d},
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where ψk = ∑n(k)
i=1 ψki . We call D0 the delocalized phase in accordance with

Definition 1.1 and Dd the completely localized phase. For a partition k �= d of d,
we define intermediate phase Dk as the interior of

{β ∈ [0,∞)d−1 \ D0 : ψd(β) = ψk(β)}.
It is a very interesting problem to study the phases Dk, k �= d.

In the case d = 3, there is one intermediate phase D(2,1) = D(1,2). We call the
region the phase of 2-walkers collision. D(2,1) �= ∅ if and only if

∂

∂β3
ψ3(β2, β3) = 0, (3.1)

for some β2 > βcrit
2 and β3 ≥ 0. We expect the condition holds for (β2, β3) in a

small neighborhood of (βcrit
2 , 0).

In the case d = 4, there are two intermediate phases D(2,2), D(3,1) = D(1,3).
D(2,2) �= ∅ if and only if

∂

∂β3
ψ4(β2, β3, β4) = ∂

∂β4
ψ4(β2, β3, β4) = 0, (3.2)

for some β2 > βcrit
2 and β3, β4 ≥ 0. D(3,1) �= ∅ if and only if

∂

∂β2
ψ4(β2, β3, β4) = ∂

∂β4
ψ4(β2, β3, β4) = 0, (3.3)

for some (β2, β3, β4) with ψ3(β2, β3) > 2ψ2(β2) and β4 ≥ 0. We also expect that
the condition (3.2) holds for (β2, 0, 0) ∈ D(2,2), for sufficiently large β2, and the
condition (3.3) holds for (0, β3, β4) in a small neighborhood of (0, βcrit

3 (0), 0).
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