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Abstract. Let X1, X2, ... be independent random variables and a a positive real number. For
the sake of illustration, suppose A is the event that |Xi+1 + ... + Xj | ≥ a for some integers
0 ≤ i < j < ∞. For each k ≥ 2 we upper-bound the probability that A occurs k or more
times, i.e. that A occurs on k or more disjoint intervals, in terms of P(A), the probability
that A occurs at least once.

More generally, let X = (X1, X2, ...) ∈ � = ∏
j≥1 �j be a random element in a product

probability space (�, B, P = ⊗j≥1Pj ). We are interested in events A ∈ B that are (at most
contable) unions of finite-dimensional cylinders. We term such sets sequentially searchable.
Let L(A) denote the (random) number of disjoint intervals (i, j ] such that the value of
X(i,j ] = (Xi+1, ..., Xj ) ensures that X ∈ A. By definition, for sequentially searchable A,
P(A) ≡ P(L(A) ≥ 1) = P(N− ln(P (Ac)) ≥ 1), where Nγ denotes a Poisson random variable
with some parameter γ > 0. Without further assumptions we prove that, if 0 < P(A) < 1,
then P(L(A) ≥ k) < P (N− ln(P (Ac)) ≥ k) for all integers k ≥ 2.

An application to sums of independent Banach space random elements in l∞ is given
showing how to extend our theorem to situations having dependent components.

1. Introduction

Let X1, X2, ..., Xn be independent symmetric random elements taking values in a
Banach space (B, ‖.‖). Suppose that ‖Xj‖∞ ≤ 1 for all j ≥ 1. Let Sn =∑n

j=1 Xj

and S∗
n = max1≤k≤n ‖∑k

j=1 Xj‖ and introduce stopping times Ti, i = 0, 1, ...

where T0 = 0 and

Tj+1 = inf{k ∈ (Tj , n] : ‖Sk − STj
‖ ≥ a}
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for all j ≥ 0, where here and throughout the paper we will use the convention
inf ∅ = ∞. Using T1, T2 Hoffmann-Jørgensen (1974) derived the famous inequal-
ity

P(S∗
n ≥ 2a + 1) ≤ 2P 2(S∗

n ≥ a).

Setting

L = sup{m ≥ 0 : Tm < ∞}

extends the Hoffmann-Jørgensen inequality to upper-bounds of P(S∗
n ≥ ka+k−1)

in terms of P(L ≥ k), i.e.,

P(S∗
n ≥ ka + k − 1) ≤ P(L ≥ k) ≤ 2k−1P k(S∗

n ≥ a).

In Klass and Nowicki (2000) a much improved upper-bound of P(L ≥ k) was
obtained, to wit

P(L ≥ k) ≤ γ k−1

k!
(− ln(1 − λ∗))k,

where λ∗ = P(S∗
n ≥ a) and γ = 1 if the Xi are non-negative or γ = 2 if the Xi

are symmetric.
The bound of 1

k! (− ln(1 − λ∗))k suggested to us the possible presence of a
tail probability of a hidden Poisson variable. Nevertheless, the factor 2k−1 in the
symmetric case seemed strange.

To find the concealed Poisson variable we modify the definition of λ∗. We
consider λ = P(

⋃
0≤i<j≤n{‖Sj − Si‖ ≥ a}). Notice that for both non-negative

and symmetric random variables λ is at most γ λ∗ and these two quantities can
be arbitrarily close. Defining the Tj ’s and L as before, we can now investigate
P(L ≥ k) in terms of this λ. We write L as L(X1, X2, ..., Xn) since it depends on
these components.

Letting n → ∞ produces a natural regenerative setting primed for an induc-
tive argument: Once n → ∞ and T1 has been obtained, the event now
denoted {L(X1, X2, ...) ≥ k} depends only on the occurrence of the event
{L(X1+T1 , X2+T1 , ...) ≥ k − 1 | T1}. Then, assuming the probability of this
event to be upper-bounded by the relevant Poisson random variable, the proba-
bility P(L ≥ k) also turns out to be Poisson bounded.

Writing the event in this manner transports us into a much more general context.
What counts is only that we have constructed events depending on disjoint intervals
of the Xj ’s, that the Xj ’s are independent, that we are given the numerical value
of the chance that one or more intervals produces an occurrence of an event (or
so-called “signal”), and want to know how to upperbound the chance that such a
signal occurs at least k times.
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2. Results in the independent setting

Let (�j , Bj , Pj )j≥1 be a sequence of probability spaces and let (�, B, P ) de-
note the usual product measure space. Elements of � will be denoted by X =
(X1, X2, ...) (the Xj are thus independent, taking values in �j according to prob-
ability measure Pj ). For 0 ≤ i < j < ∞, put X(i,j ] = (Xi+1, ..., Xj ) (which is
measurable with respect to B(i,j ] = Bi+1 ⊗ · · · ⊗ Bj ).

We say that A ∈ B is sequentially searchable if it is an (at most countable)
union of finite-dimensional cylinders. These are the sets that can be determined
by inspection of X(i,j ] for some 1 ≤ i < j < ∞. (Recall that cylinder sets
are obtained by taking finite intersections of B-measurable sets generated by the
σ -field of the individual component random variables Xi . Thus, they are generated
by finite intersections of sets of the form {x ∈ R∞ : xi ∈ V } for real valued Borel
measurable sets V ⊂ R.)

Note that not all A ∈ B are sequentially searchable. For example if Pj (Xj =
0) = pj , then the singleton A = {(0, 0, . . . )} is not sequentially searchable (and
has probability

∏
j≥1 pj that can be arbitrary). On the other hand, for any measur-

able set Ã ∈ B and ε > 0 there is a sequentially searchable set A such that the
probability of the symmetric difference of these two sets is less than ε.

To each searchable set and i < j , we associate the maximal σ(Xi+1, . . . , Xj )-
measurable cylinder A∞

(i,j ] contained in A. In other words, A∞
(i,j ] is the largest event

depending on the values of (Xi+1, . . . , Xj ) such that observing the values of these
j − i variables ensures that X ∈ A. When (i, j ] ⊂ (i′, j ′], then A∞

(i,j ] ⊂ A∞
(i′,j ′].

We will also use the finite-dimensional projection of A∞
(i,j ]

A(i,j ] = {x(i,j ] : x ∈ A∞
(i,j ]}.

Note that A(i,j ] ∈ B(i,j ] and A∞
(i,j ] = {x ∈ B : x(i,j ] ∈ A(i,j ]}. Clearly

A =
⋃

0≤i<j<∞
A∞

(i,j ].

Given the single quantity λ(A) := P(A), we wish to upper-bound (for each
k ≥ 2) the probability that there are k or more disjoint intervals (i, j ] such that
A∞

(i,j ] occurs.
Set τ0 = 0 and define inductively (for all m ≥ 0)

τm+1 = min{k > τm : A∞
(τm,k] occurs}

and put
L ≡ L(A) = sup{m : τm < ∞}.

In terms of random variables

τm+1 = min{k > τm : X(i,k] ∈ A(i,k] for some τm ≤ i < k}.

We intend to prove the following theorem:
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Theorem 1. With the definitions and assumptions given above, suppose 0 < λ(A)

< 1 and put γ = − ln(1 − λ). Then for every integer k ≥ 0,

P(L ≥ k) ≤ P(Nγ ≥ k)

with strict inequality for every k ≥ 2, where Nγ denotes a Poisson random variable
with parameter γ > 0.

Equivalently, if the event {L ≥ 1} has probability upper-bounded by P(Nu ≥ 1),
the probability of the event {L ≥ k} is then strictly upper-bounded by P(Nu ≥ k)

for all integers k ≥ 2.
Let us note that this theorem is sharp: For each 0 < λ < 1, the stated inequality

cannot be improved by replacing P(Nγ ≥ k) by akP (Nγ ≥ k) + bk for any se-
quence of constants ak and bk independent of the distribution of X and the subset
A of B: Suppose for instance that (N (t), t ≥ 0) is a standard Poisson process so
that in particular P(N (γ ) = 0) = λ. For all n ≥ 1, define the random vector
Xn = (Xn,1, . . . , Xn,n) by

Xn,i = 1{N (iγ /n)=N ((i−1)γ /n)}.

Clearly, for each fixed n, the variables Xn,1, . . . , Xn,n are independent. Let A =
{N (γ ) = 0} so that A = An = {∃i ∈ {1, . . . , n} : Xn,i ≥ 1} and L(An)

is the number of intervals (iγ /n, (i + 1)γ /n] where N increases. Clearly, when
n → ∞, the events {L(An) ≥ k} converge (up to negligible sets) to {N (γ ) ≥ k}.
Hence,

lim
n→∞ P(L(An) ≥ k) = P(Nγ ≥ k).

Proof of the theorem. The exact distribution of L is determined by the quantities

q(i,j ] = P(A∞
(i,j ] \ A∞

(i,j−1]) = P(A∞
(i,j ]) − P(A∞

(i,j−1]).

In terms of random variables, q(i,j ] is the probability that the smallest j ′ in (i, j ]
for which X(i′,j ′] ∈ A(i′,j ′] for some i ≤ i′ < j ′ is j ′ = j . Thus

P(L ≥ k)

=
∑

0=i0<i1<...<ik<∞
P(τ1 = i1, ..., τk = ik)

=
∑

0=i0<i1<...<ik<∞
P(τ1 = i1)P (τ2 = i2 | τ1 = i1)...P (τk = ik | τk−1 = ik−1)

(since P(τj = ij | τ1 = i1, ..., τj−1 = ij−1) = P(τj = ij | τj−1 = ij−1))

=
∑

0=i0<i1<...<ik<∞
q(i0,i1]q(i1,i2]...q(ik−1,ik]

(since P(τj = ij | τj−1 = ij−1) = q(ij−1,ij ]).

The right hand side above expresses the tail probability of L in terms of infinitely
many unknowns q(i,j ]. With regard to these infinitely many unknowns, we have as-
sumed that only one piece of information is given, namely λ, which is expressible
as λ =∑∞

j=1 q(0,j ].
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We prove our theorem by induction. The case k = 0 is trivial. The case k = 1
holds since our choice of λ clearly shows that

P(N− ln(1−λ) ≥ 1) = λ = P(L ≥ 1).

Suppose now that the result holds for k − 1.
Introduce L(i) where L = L(0) and L(i) denotes the generic L variable defined

on the random vector (Xi+1, Xi+2, ...) using the same fixed set A. Thus

P(L ≥ k) =
∞∑

i=1

q(0,i]P(L(i) ≥ k − 1). (1)

Inserting the inductive hypothesis

P(L(i) ≥ k − 1) ≤ P(N− ln(1−λ>i) ≥ k − 1),

where

λ>i ≡ P(L(i) ≥ 1) =
∞∑

j=i+1

q(i,j ],

into (1) we obtain

P(L ≥ k) ≤
∞∑

i=1

q(0,i]P(N− ln(1−λ>i) ≥ k − 1).

Upperbounding λ>i in terms of the partial sums of q(0,j ] provides further simpli-
fication. To obtain it let λ0 = 0 and λi =∑i

j=1 q(0,j ] and observe that

λ − λi = P(A \ A∞
(0,i]) ≥ P({A∞

(0,i]}c ∩ {L(i) ≥ 1}) = (1 − λi)λ>i,

the latter equality holding by independence. Since q(0,i] = λi −λi−1, and since tail
probabilities of the form P(Nγ ≥ j) are increasing in γ , it follows for k ≥ 2 that

P(L ≥ k) ≤
∞∑

i=1

(λi − λi−1)P (N− ln(1− λ−λi
1−λi

)
≥ k − 1)

<

∞∑

i=1

∫ λi

λi−1

P(Nln((1−y)/(1−λ)) ≥ k − 1)dy

=
∫ λ

0
P(Nln((1−y)/(1−λ)) ≥ k − 1)dy.

To evaluate the latter-most integral we notice that, for a Poisson process (Nt , t ≥ 0),

P(Nt ≥ k) =
∫ t

0
e−sP (Nt−s ≥ k − 1)ds

for all k ≥ 1. Letting t = − ln(1−λ) and y = 1−e−s , a change of variables yields

P(N− ln(1−λ) ≥ k) =
∫ λ

0
P(Nln((1−y)/(1−λ)) ≥ k − 1)dy.
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Hence
P(L ≥ k) < P (N− ln(1−λ) ≥ k).

��
Let X1, X2, . . . be independent real valued random variables such that Sn = X1 +
... + Xn converges to a finite valued random variable S almost surely. For 0 ≤
i < j < ∞ let S(i,j ] ≡ Sj − Si = Xi+1 + ... + Xj and for any real a > 0 let
λ ≡ λ(a) = P(

⋃
0≤i<j<∞{S(i,j ] ≥ a}).

The following is then an immediate corollary of Theorem 1:

Corollary 2. In addition to the preceding conditions and notations, suppose that
the Xj ’s are real taking values not exceeding 1. Then, for every integer k ≥ 1 and
every positive real a,

P( max
1≤j<∞

Sj ≥ ka + (k − 1)) ≤ P(L ≥ k) ≤ P(N− ln(1−λ) ≥ k) (2)

where Nλ denotes a Poisson variable with parameter λ > 0.

The distribution inequalities of Theorem 1 also imply an infinitude of expecta-
tion inequalities such as:

Corollary 3. 1 − λ(A) is smaller than the following quantities (for all a > 0):

exp(−EL(A)) and (E exp(aL(A)))−1/(exp(a)−1).

Proof. One just has to compare EL(A) and E exp(aL(A)) with the corresponding
quantities for the Poisson variable Nγ . ��
Corollary 4. Theorem 1 extends to an independent increment process in continu-
ous time as long as its corresponding filtrations are right continuous.

3. Generalization to dependent sequences

Though formally Theorem 1 holds only for product spaces with independent co-
ordinates, its application can be substantially extended. For instance, well-known
results on tangent and conditionally independent sequences can allow us to approx-
imate a probability in question in terms of a mixture of independent variables. We
illustrate this with a Banach space result from l∞ wherein the random variables,
although not necessarily their components, are independent.

Let (B, ‖.‖) denote l∞. Let {−→Xj = (Xj1, Xj2, ...)} be a sequence of indepen-
dent random variables on B. Then, let F0 be the trivial σ -field and, for k ≥ 1, Fk

denote the σ -field generated by {Xjk : j ≥ 1} and Fk−1, and let F∞ = ∨∞
k=1 Fk .

Since the kth component random variables X1k, X2k, ... are independent, then
according to Kwapień and Woyczyński (1989), conditional on F∞, there exist (pos-
sibly by enlarging the probability space) mutually independent X̃jk for all j, k ≥ 1
such that for each k ≥ 1

L(X̃1k, X̃2k, ... | F∞) = L(X1k, X2k, ... | Fk−1).
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Take any sequence of reals ajk which is Fk−1-measurable and let S(i,j ],k = Xi+1,k+
... + Xj,k , S̃(i,j ],k = X̃i+1,k + ... + X̃j,k , T(i,j ],k = S(i,j ],k − a(i,j ],k and T̃(i,j ],k =
S̃(i,j ] − a(i,j ],k , where a(i,j ],k = ai+1,k + ... + aj,k . For example, we could set
ajk = 0 or ajk = E(Xj,k | Fk−1). Let an be any constant such that

ỹn(an) ≡ P(
⋃

k

⋃

0≤i<j≤n

{T̃(i,j ],k ≥ an} | F∞) < 1 a.s. (3)

Let τ0,k = 0. Having defined τ0,k, τ1,k, ..., τq,k , let

τq+1,k

=
{

min{j ∈ (τq,k, n] : T(i,j ],k ≥ an for some τq,k ≤ i < j} if such j exists

τq+1,k = ∞ otherwise.

Let Lk = max{q ≥ 0 : τq,k < ∞} and define L̃k as above. Observe that Lk ≤ n

and P(Lk ≥ j | Fk−1) = P(L̃k ≥ j | Fk−1) = P(L̃k ≥ j | F∞) for all k, j ≥ 1.
Hence, setting λ̃n,k(an) = P(L̃k ≥ 1 | F∞)

P (

∞⋃

k=1

{Lk ≥ q}) ≤ 2P(

∞⋃

k=1

{L̃k ≥ q})

(by a result of Hitczenko (1994), see also Kwapień and Woyczyński (1989))

≤ 2E

∞∑

k=1

P(L̃k ≥ q | F∞)

≤ 2E

∞∑

k=1

P(N− ln(1−λ̃n,k(an)) ≥ q) (by Theorem 1)

= 2E

∞∑

k=1

λ̃n,k(an)
P (N− ln(1−λ̃n,k(an)) ≥ q)

λ̃n,k(an)

≤ 2E max
j≥1

P(N− ln(1−λ̃n,j (an)) ≥ q)

λ̃n,j (an)

∞∑

k=1

λ̃n,k(an).

(4)

Also note that
∞∑

k=1

λ̃n,k(an) ≤ − ln
∞∏

k=1

(1 − λ̃n,k(an)) = − ln(1 − ỹn(an)).

Therefore,

P

( ∞⋃

k=1

Lk ≥ q}
)

≤ −2E

((

max
j≥1

P(N− ln(1−λ̃n,j (an)) ≥ q)

λ̃n,j (an)

)

ln(1 − ỹn(an))

)

.

Thus we have obtained the upper bound stipulated in Theorem 5 (below) for the
probability of q or more norm exceedances of a given level in terms of the probabil-
ity of at least a single such norm exceedance and the largest of the componentwise
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ratios of the single-component conditional exceedance probabilities for q or more
instances relative to one or more.

Moreover (3) could be extended by letting an depend upon k as well as n.
Furthermore (4) could be alternatively upper-bounded in a variety of ways, mul-
tiplying and dividing by (λ̃n,k(an))

1/p followed by an application of Hölder’s in-
equality.

Theorem 5. Let
−→
X j = (Xj1, Xj2, ...) be independent random elements taking

values in l∞. Let ajk be reals which are Fk−1-measurable as previously described.
Let V1 ≥ V2 ≥ ... ≥ Vq−1 denote the q−1 largest order statistics from supk≥1 X1k ,
supk≥1 X2k ,..., supk≥1 Xnk where Xjk = Xjk − ajk . Suppose an satisfies (3).
Then

P



 max
1≤r≤n

sup
k≥1

r∑

j=1

Xjk ≥ qan +
q−1∑

j=1

Vj



 ≤ min{P (N− ln(1−λn(an)) ≥ q
)
,

− 2E

((

sup
j≥1

P(N− ln(1−λ̃n,j (an)) ≥ q)

λ̃n,j (an)

)

ln(1 − ỹn(an))

)

} (5)

where

λn(an) = P

( ⋃

0≤i<j≤n

⋃

k≥1

{Xi+1,k + ... + Xj,k − a(i,j ],k ≥ an}
)

,

λ̃n,k(an) = P




⋃

0≤i<j≤n

{X̃i+1,k + ... + X̃j,k − a(i,j ],k ≥ an} | Fk−1





= P




⋃

0≤i<j≤n

{X̃i+1,k + ... + X̃j,k − a(i,j ],k ≥ an} | F∞





and ỹn(an) is defined as in (3). Moreover, if the components are independent, the
factor of 2 can be dropped.

Remark 6. When there is no “overshoot” beyond an, the order statistics Vj , whose
use was first suggested by Talagrand (1989), may be deleted. Not only is the right
hand side in (5) often much smaller than the Hoffman-Jørgensen bound, it can be
much smaller than our improvement P(N− ln(1−λn(an)) ≥ q), which is obtained by
direct application of Theorem 1 along the lines of Corollary 2. ��

The degree to which Theorem 5 can improve upon the Hoffman-Jørgensen in-
equality beyond the first part of the right hand side of (5) is perhaps best illustrated
by the following family of examples, where (for simplicity) we assume indepen-
dence of components. For this family of examples the upper-bound obtained from
Theorem 5 is essentially sharp: It produces the exact asymptotic value of the tail
probability in question.
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Example 7. Take positive integers n and gn and a real γn > 0. For 1 ≤ j ≤ n let
Xj = (Xj1, Xj2, ...) where Xjk ∼ Nγn for 1 ≤ k ≤ gn and Xjk ≡ 0 for k > gn.
Further, assume that limn→∞ gn(nγn)

q = 0 whenever q ≥ 1 is used below. Direct
calculations yield

P(‖Sn‖ ≥ q) ∼
{

1 − exp(−nγngn) if q = 1

gn
(nγn)q

q! if q ≥ 2.

This follows since

P(‖Sn‖ ≥ 1) = 1 − (P (Sn1 = 0))gn = 1 − exp(−nγngn)

and, for q ≥ 2,

P(‖Sn‖ ≥ q) = 1 − (1 − P(Sn1 ≥ q))gn ∼ gn

(nγn)
q

q!
.

If we approximate P(‖Sn‖ ≥ q) by Theorem 1 “directly” as in Corollary 2, we
learn only that

P(‖Sn‖ ≥ q) ≤ P(N− ln(1−P(‖Sn‖=0)) ≥ q),

which is asymptotic to

(exp(−nγngn))

∞∑

j=q

(nγngn)
j

j !
.

If lim supn→∞ nγngn is positive this upper-bound does not tend to zero for any
q ≥ 2 despite the fact that the true probability is asymptotic to gn(nγn)q

q! , which by
assumption tends to 0 as n → ∞.

Using the second upper-bound in Theorem 5 and noting that we have restricted
attention to the independent case:

− ln(1 − ỹn(an)) = − ln P(‖Sn‖ = 0) = nγngn

and

sup
j≥1

P(N− ln(1−λ̃n,j (an)) ≥ q)

λ̃n,j (an)
∼ (nγn)

q−1

q!
.

Multiplying these two quantities gives the RHS of (5) in the independent case.
Indeed, this result is asymptotically identical to the true probability.
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