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Abstract. Subordination of a killed Brownian motion in a bounded domain D ⊂ R
d via an

α/2-stable subordinator gives a process Zt whose infinitesimal generator is −(−�|D)α/2,
the fractional power of the negative Dirichlet Laplacian. In this paper we study the properties
of the process Zt in a Lipschitz domain D by comparing the process with the rotationally
invariant α-stable process killed upon exiting D. We show that these processes have com-
parable killing measures, prove the intrinsic ultracontractivity of the semigroup of Zt , and,
in the case when D is a bounded C1,1 domain, obtain bounds on the Green function and the
jumping kernel of Zt .

1. Introduction

Let Xt be a d-dimensional Brownian motion in R
d and let Tt be an α/2-stable

subordinator starting at zero, 0 < α < 2. It is well known that Yt = XTt is a ro-
tationally invariant α-stable process whose generator is −(−�)α/2, the fractional
power of the negative Laplacian. The potential theory corresponding to the process
Y is the Riesz potential theory of order α.

Suppose that D is a domain in R
d , that is, an open connected subset of R

d . We
can kill the process Y upon exiting D. The killed process YD has been extensively
studied in the last five years and various deep properties have been obtained. For
instance, when D is a bounded C1,1 domain, sharp estimates on the Green function
of YD were established in [5] and [15], while the intrinsic ultracontractivity of the
semigroup corresponding to YD was proved in [4], [6] and [16].
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Potential theory of subordinate killed brownian motion in a domain 579

Let �|D be the Dirichlet Laplacian in D. The fractional power −(−�|D)α/2

of the negative Dirichlet Laplacian is a very useful object in analysis and partial
differential equations, see, for instance, [22] and [18]. There is a Markov process
Z corresponding to −(−�|D)α/2 which can be obtained as follows: We first kill
the Brownian motion X at τD , the first exit time of X from the domain D, and
then we subordinate the killed Brownian motion using the α/2-stable subordinator
Tt . Note that in comparison with YD the order of killing and subordination has
been reversed. The difference between the processes YD and Z can be explained
as follows: Look at a path of the Brownian motion in R

d , and put a mark on it at
all the times given by the subordinator Tt . In this way we observe a trajectory of
the process Y . The corresponding trajectory of Z is given by all the marks on the
Brownian path prior to τD . There is the first mark on the Brownian path following
the exit time τD . If this mark happens to be in D, the process Y has not been killed
yet, and the mark corresponds to a point on the trajectory of YD , but not to a point
on the trajectory of Z. If, on the other hand, the first mark on the Brownian path
following the exit time τD happens to be in Dc, then trajectories of Z and YD are
equal.

Despite its importance, the process Z has not been studied much. In [12], a
relation between the harmonic functions of Z and the classical harmonic functions
in D was established. In [14] (see also [10]) the domain of the Dirichlet form of Z

was identified when D is a bounded smooth domain and α �= 1.
In this paper we study the process Z and some of its potential-theoretic prop-

erties. One way to understand the process Z is to describe its killing and jumping
measures. It turns out that, at least when D is Lipschitz, the killing measure is com-
parable with the killing measure of the process YD . This fact, shown in Sections
2 and 3 of the paper, follows from an analysis of the lifetimes of processes Z and
YD . In order to do that, we have to give a precise description of both processes in
terms of the underlying Brownian motion Xt and the subordinator Tt . The process
Z, being a symmetric Markov process, has an associated Dirichlet form. By using
the comparability of killing measures of Z and YD , we show that the corresponding
Dirichlet forms are also comparable. This fact is then used in Section 4 to prove the
intrinsic ultracontractivity of the semigroup corresponding to Z. As a consequence
of this result we derive a lower bound on the Green function of Z in terms of the
first eigenfunction of the Dirichlet Laplacian �|D . In the last section we derive
upper bounds on the Green function of Z for C1,1 domains. These bounds may not
be sharp, but they show that the behaviors of the Green functions of Z and YD are
very different. In the same vein we obtain bounds for the jump kernel of Z which
confirm that the jump kernel vanishes near the boundary of D.

2. Subordinate killed Brownian motion

Let X1 = (�1, F1, F1
t , X1

t , θ
1
t , P

1
x) be a d-dimensional Brownian motion in R

d ,
and let T 2 = (�2, G2, T 2

t , P
2) be an α/2-stable subordinator starting at zero,

0 < α < 2. We will consider both processes on the product space � = �1 × �2.
Thus we set F = F1 ×G2, Ft = F1

t ×G2, and Px = P
1
x ×P

2. Moreover, we define
Xt(ω) = X1

t (ω
1), Tt (ω) = T 2

t (ω2), and θt (ω) = θ1
t (ω1), where ω = (ω1, ω2) ∈
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�. Then X = (�, F, Ft , Xt , θt , Px) is a d-dimensional Ft -Brownian motion, and
T = (�, G, Tt , Px) is an α/2-stable subordinator starting at zero, independent of
X for every Px . From now on, all processes and random variables will be defined
on �.

Let At = inf{s > 0 : Ts ≥ t} be the inverse of T . Since (Tt ) is strictly
increasing, (At ) is continuous. Further, ATt = t and TAs− ≤ s ≤ TAs .

We define a process Y subordinate to X by Yt = XTt . It is well known that Y is

a rotationally invariant α-stable process in R
d . If µ

α/2
t is the distribution of Tt (i.e.,

(µ
α/2
t , t ≥ 0) is the one-sided α/2-stable convolution semigroup), and (Pt , t ≥ 0)

the semigroup corresponding to the Brownian motion X, then for any nonnegative
Borel function f on R

d , Ex(f (Yt )) = Ex(f (XTt )) = Ex(
∫ ∞

0 f (Xs) µ
α/2
t (ds)) =

∫ ∞
0 Psf (x)µ

α/2
t (ds).

Let D ⊂ R
d be a bounded domain, and let τY

D = inf{t > 0 : Yt /∈ D} be the
exit time of Y from D. The process Y killed upon exiting D is defined by

YD
t =

{
Yt , t < τY

D

∂, t ≥ τY
D

=
{

XTt , t < τY
D

∂, t ≥ τY
D

where ∂ is an isolated point serving as a cemetery.
Let τD = inf{t > 0 : Xt /∈ D} be the exit time of X from D. The Brownian

motion killed upon exiting D is defined as

XD
t =

{
Xt, t < τD

∂, t ≥ τD

We define now the subordinate killed Brownian motion as the process obtained
by subordinating XD via the α/2-stable subordinator Tt . More precisely, let Zt =
(XD)Tt , t ≥ 0. Then

Zt =
{

XTt , Tt < τD

∂, Tt ≥ τD
=

{
XTt , t < AτD

∂, t ≥ AτD

where the last equality follows from the fact {Tt < τD} = {t < AτD
}. Note that

AτD
is the lifetime of the process Z. Moreover, it holds that AτD

≤ τY
D . Indeed, if

s < AτD
, then Ts < τD , implying that Ys = XTs ∈ D. Hence, s < τY

D . Therefore,
the lifetime of Z is less than or equal to the lifetime of YD .

On the next page is a very rough picture illustrating the differences between the
processes Z and YD . In this picture the curve is a Brownian path, the points on the
path marked by the little crosses, circles and squares represent a trajectory of Y ,
the points on the path marked by the little crosses and circles represent a trajectory
of YD , and the points on the path marked by the little crosses represent a trajectory
of Z.

We compare now the semigroups corresponding to YD and Z. For any nonneg-
ative Borel function f on D, let

Qtf (x) = Ex[f (YD
t )] = Ex[f (Yt ), t < τY

D] = Ex[f (XTt ), t < τY
D]

Rtf (x) = Ex[f (Zt )] = Ex[f (XD)Tt ] = Ex[f (XTt ), t < AτD
]
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x

x

D

o

x

x

o

Fig. 1. trajectories of Z and Y D .

Since AτD
≤ τY

D , it follows that Rtf (x) ≤ Qtf (x) for all t ≥ 0.
The following result will be needed in order to compare the killing functions

of the processes Z and YD .

Proposition 2.1. Suppose that there exists C ∈ (0, 1) such that Px(Xt ∈ D) ≤ C

for every t > 0 and every x ∈ ∂D. Then

(1 − C)(1 − Rt1(x)) ≤ 1 − Qt1(x) ≤ 1 − Rt1(x) (2.1)

for every t > 0 and every x ∈ D.

Proof. Let τ 1
D(ω1) = inf{t > 0, X1

t (ω
1) /∈ D}, i.e., τ 1

D(ω1) = τD(ω). Then
F1

τ 1
D

× G2 ⊂ FτD
. Indeed, for A1 ∈ F1

τ 1
D

and A2 ∈ G2, (A1 × A2) ∩ {τD ≤ t} =
(A1 ∩ {τ 1

D ≤ t}) × A2 ∈ F1
t × G = Ft . Thus, A1 × A2 ∈ FτD

. Since such sets
generate Fτ 1

D
× G2, the claim follows.

We want to show that TAτD
is Fτ 1

D
× G2- measurable. Note first that τD and

Tt , t ≥ 0, are Fτ 1
D

× G2-measurable. Therefore, {Tt < τD} ∈ Fτ 1
D

× G2. Since

{AτD
> t} = {Tt < τD}, it follows that {AτD

> t} is Fτ 1
D

×G2-measurable. Clearly,

As is F0 × G2 ⊂ Fτ 1
D

× G2-measurable. Therefore, {TAτD
≥ s} = {As ≥ AτD

} ∈
Fτ 1

D
× G2.

For any nonnegative Borel function f on R
d , let Nt(x, f ) = Ex(f (Xt )). Since

τD and TAτD
are Fτ 1

D
× G2 -measurable, and TAτD

= τD + (TAτD
− τD), by an

extended version of the strong Markov property (see [2], pp. 43–44),
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Ex[1D(XTAτD
)|FτD

] = Ex[1D(XτD+(TAτD
−τD))|FτD

] = NTAτD
−τD

(XτD
, 1D) a.s.

(2.2)

By using the assumption of the proposition, we get Nt(y, 1D) = Py(Xt ∈ D) ≤
C for every t > 0 and every y ∈ ∂D. From (2.2) we obtain that Px(XTAτD

∈
D|FτD

) ≤ C a.s. for every x ∈ D. Since F1
τ 1
D

× G2 ⊂ FτD
, it follows that

Px(XTAτD
|F1

τ 1
D

× G2) ≤ C a.s. Further,

Px(AτD
≤ t < τY

D) ≤ Px(AτD
≤ t, AτD

< τY
D)

= Px(AτD
≤ t, XTAτD

∈ D)

= Px[Px(AτD
≤ t, XTAτD

∈ D|F1
τ 1
D

× G2)]

= Ex[1(AτD
≤t)Px(XTAτD

∈ D|F1
τ 1
D

× G2)]

≤ CPx(AτD
≤ t) .

It follows that

Px(AτD
≤ t) = Px(τ

Y
D ≤ t) + Px(AτD

≤ t < τY
D)

≤ Px(τ
Y
D ≤ t) + CPx(AτD

≤ t) ,

hence

Px(AτD
≤ t) = Px(τ

Y
D ≤ t) + Px(AτD

≤ t < τY
D)

≤ Px(τ
Y
D ≤ t) + CPx(AτD

≤ t) .

Since Px(AτD
≤ t) = 1 − Rt1(x) and Px(τ

Y
D ≤ t) = 1 − Qt1(x), (2.1)

follows. �	
A domain D ⊂ R

d is said to satisfy an exterior cone condition if there exist a
cone K with vertex at the origin and a positive constant r0, such that for each point
x ∈ ∂D, there exist a translation and a rotation taking the cone K into a cone Kx

with the vertex at x such that

Kx ∩ B(x, r0) ⊂ Dc ∩ B(x, r0) .

Here B(x, r0) denotes the ball of radius r0 centered at x. We show now that the
condition in Proposition 2.1 is true for a bounded domain D ⊂ R

d satisfying an
exterior cone condition. Let Kx(r0) = Kx ∩ B(x, r0) and K(r0) = K ∩ B(0, r0).
Then we have for each x ∈ ∂D,

Px(Xt /∈ D) ≥ Px(Xt ∈ Kx(r0)) = P0(Xt ∈ K(r0)) .

By scaling,

P0(Xt ∈ K(r0)) = P0(X1 ∈ 1√
t
K(r0)) ≥ P0(X1 ∈ K(r0)) =: C1 ∈ (0, 1)
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for every t ∈ (0, 1], where for any ρ > 0, ρK(r0) is defined to be the set {ρx : x ∈
K(r0)}. The last two displays show that Px(Xt /∈ D) ≥ C1, for every t ∈ (0, 1]
and every x ∈ ∂D. Since D is bounded, there exists R > 0 such that for every
x ∈ ∂D, D ⊂ B(x, R). Hence,

Px(Xt /∈ D) ≥ P0(|Xt | > R) ≥ P0(|X1| > R) =: C2 ∈ (0, 1)

for every t ≥ 1 and every x ∈ ∂D. Let C = 1 − min{C1, C2}. Then C ∈ (0, 1) and
Px(Xt ∈ D) ≤ C for every t > 0 and every x ∈ ∂D.

It is well known (see [4], for instance) that the transition semigroup Qt cor-
responding to the killed stable process has a density with respect to the Lebesgue
measure. Let q(t, x, y) be this density. Let r(t, x, y) be the density of Rt and let
pD(t, x, y) be the transition density of the killed Brownian motion XD . The density
r(t, x, y) is given by the formula

r(t, x, y) =
∫ ∞

0
pD(s, x, y) µ

α/2
t (ds) , (2.3)

where (µ
α/2
t , t ≥ 0) is the one-sided α/2-stable convolution semigroup. Let

GD(x, y) and GY
D(x, y) denote the Green functions of Z and YD respectively.

The Green function of Z is given by

GD(x, y) =
∫ ∞

0
r(t, x, y) dt = 1

	(α/2)

∫ ∞

0
pD(t, x, y)tα/2−1 dt . (2.4)

Proposition 2.2. Let D be a bounded domain in R
d .

(i) The transition density r(t, x, y) of Z is jointly continuous in (x, y) for each
fixed t . Further, r(t, x, y) ≤ q(t, x, y) for all t > 0 and all (x, y) ∈ D × D.

(ii) When d ≥ 2 or α ≤ 1 = d , the Green function GD(x, y) is finite and con-
tinuous on D × D \ {(x, x), x ∈ D}. When α > 1 = d, the Green function
GD(x, y) is finite and continuous on D × D. Further, GD(x, y) ≤ GY

D(x, y)

on D × D.

Proof. (i) Note that pD(s, x, y) ≤ (2πs)−d/2 exp{−|x − y|2/2s} ≤ (2πs)−d/2

for all x, y ∈ D. It follows from the asymptotic behavior near zero of the den-
sity of µ

α/2
t given in [20] that the integral

∫ ∞
0 s−d/2µ

α/2
t (ds) is finite. So the

continuity of r(t, ·, ·) follows from the dominated convergence theorem. Since
Rtf (x) ≤ Qtf (x) for every x ∈ D and every nonnegative Borel function f , we
get r(t, x, y) ≤ q(t, x, y) for all y ∈ D \ N(x) with N(x) having zero Lebesgue
measure. By continuity, the inequality holds for all x, y ∈ D .

(ii) The fact that GD(x, y) ≤ GY
D(x, y) follows immediately from r(t, x, y) ≤

q(t, x, y). We now prove the continuity of GD by treating three cases separately.
(a) The case when d ≥ 2 or when α < 1 = d. Let x, y ∈ D, |x − y| > 2η > 0.
Let (xn, yn) be a sequence in D × D converging to (x, y) such that |xn − yn| > η.
Note that,

pD(t, xn, yn)t
−1+α/2 ≤ (2πt)−d/2 exp{−|xn − yn|2/2t}t−1+α/2

≤ c1t
−d/2+α/2−1 exp{−η2/2t}
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which is integrable on (0, ∞). The continuity now follows from the dominated con-
vergence theorem. (b) The case when α = 1 = d. Let x, y ∈ D, |x −y| > 2η > 0.
Let (xn, yn) be a sequence in D × D converging to (x, y) such that |xn − yn| > η.
Using the intrinsic ultracontractivity of the killed Brownian semigroup on a bound-
ed interval and Theorem 4.2.5 of [8], we know that there exists a T > 0 such that
for any t ≥ T ,

pD(t, x, y) ≤ 3

2
e−λ0t φ0(x)φ0(y), x, y ∈ D,

where −λ0 < 0 and φ0 are the first eigenvalue and eigenfunction of the Dirichlet
Laplacian in D respectively. Thus in this case, the functions pD(t, xn, yn)t

α/2−1 =
pD(t, xn, yn)t

−1/2 is dominated by the function

g(t) =
{

c1t
−1 exp{−η2/2t}, t ≤ T

c2t
−1e−λ0t , t ≥ T

which is integrable on (0, ∞). Now we can repeat the argument in the first case to
arrive at the claimed continuity. (c) The case when α > 1 = d. In this case, the
family of functions {pD(t, ·, ·)tα/2−1 : x, y ∈ D} is dominated by the function

h(t) =
{

c1t
−3/2+α/2, t ≤ T

c2t
−3/2+α/2e−λ0t , t ≥ T

which is integrable on (0, ∞). The continuity now follows from the dominated
convergence theorem. �	

3. The Dirichlet form of the subordinate killed Brownian motion

Recall that Y is a rotationally invariant α-stable process in R
d with α ∈ (0, 2). It

is well known that the Dirichlet form (EY , F) associated with Y is given by

EY (u, v) = 1

2
A(d, −α)

∫

Rd

∫

Rd

(u(x) − u(y))(v(x) − v(y))

|x − y|d+α
dxdy

F =
{

u ∈ L2(Rd) :
∫

Rd

∫

Rd

(u(x) − u(y))2

|x − y|d+α
dxdy < ∞

}

,

where

A(d, −α) = α	(d+α
2 )

21−α πd/2 	(1 − α
2 )

.

It follows from Remark 4 in Section 2.5.1 of [21] that F is the same as the space
Wα/2,2(Rd).

Recall that, for any s ∈ R, the classical Bessel potential space Hs(Rd) is defined
to be

Hs(Rd) = {u ∈ S′(Rd) :
∫

Rd

(1 + |ξ |2)s |û(ξ)|2dξ < ∞},

where S′(Rd) stands for the space of tempered distributions on R
d and û stands

for the Fourier transform of u. Using Fourier analysis, one can easily show (cf.
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Example 1.4.1 of [11]) that the spaces Wα/2,2(Rd) and Hα/2(Rd) are the same.
Hence we have F = Wα/2,2(Rd) = Hα/2(Rd).

In this section we assume that D is a bounded domain in R
d . The Dirichlet

space on L2(D, dx) of the killed rotationally invariant α-stable process YD is
(EY , H

α/2
0 (D)) (cf. Theorem 4.4.3 of [11]), where

H
α/2
0 (D) = {f ∈ Hα/2(Rd) : f = 0 q.e. on Dc}.

Here q.e. is the abbreviation for quasi-everywhere with respect to the Riesz ca-
pacity determined by (EY , Wα/2,2(Rd)) (cf. [11]). The space H

α/2
0 (D) can also

be characterized as the EY -closure of C∞
0 (D), the space of smooth functions with

compact support in D. For u ∈ H
α/2
0 (D),

EY (u, v) =
∫

D

∫

D

(u(x) − u(y))(v(x) − v(y))J Y (x, y) dxdy

+
∫

D

u(x)v(x)κY (x)dx,

where

JY (x, y) = 1

2
A(d, −α)|x − y|−(d+α) (3.1)

κY (x) = A(d, −α)

∫

Dc

1

|x − y|d+α
dy (3.2)

are the densities of the jumping and killing measures of YD .
Recall that Z is the process obtained by subordinating the killed Brownian

motion on D with the one-sided α/2-stable process. Z is a symmetric Markov
process and so there is a Dirichlet form (E, D(E)) associated with Z. It follows
further from Theorem 1.18.10 of [21] that the domain D(E) of E is the complex
interpolation space [L2(D), H 1

0 (D)]α/2. It follows from Proposition 2.2 of [7] that,

when D is a bounded Lipschitz domain, [L2(D), H 1
0 (D)]α/2 = H

α/2
0 (D). Recall

that Hilbert spaces are identified if they coincide in the set theoretical sense and if
they have equivalent norms. Therefore, there exists a constant C such that for any
u ∈ H

α/2
0 (D),

C−1(EY (u, u) + (u, u)) ≤ E(u, u) + (u, u) ≤ C(EY (u, u) + (u, u)).

One immediate consequence of the comparability above is that for a Borel sub-
set A of D, A is polar for Z is equivalent to that A is polar for the killed rotationally
invariant α-stable process YD , which in turn is equivalent to that A is polar for the
rotationally invariant α-stable process Y .

Let P D
t be the transition semigroup corresponding to the Brownian motion

killed upon exiting D and recall that the corresponding transition density is de-
noted by pD(t, x, y). It follows from [3] and [17] (see also [13]) that the jumping
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measure J (dx, dy) and the killing measure κ(dx) of the process Z have densities
J (x, y) and κ(x) given by the following formulae respectively:

J (x, y) =
∫ ∞

0
pD(t, x, y) ν(dt) (3.3)

κ(x) =
∫ ∞

0
(1 − P D

t 1(x)) ν(dt) (3.4)

Here

ν(dt) = α/2

	(1 − α/2)
t−α/2−1 dt

is the Lévy measure of the α/2-stable subordinator.
It is easy to see from (3.3) that J (x, y) ≤ JY (x, y) for every x, y ∈ D. Now we

are going to compare κ(x) with κY (x). To do that we are going to use the following
simple result.

Lemma 3.1. Let (Xt , Px) be a d-dimensional Brownian motion, and let τD be the
exit time of X from D. Then

κ(x) = 1

	(1 − α/2)
Ex(τ

−α/2
D ) (3.5)

for every x ∈ R
d .

Proof. Let F denote the Px-distribution function of τD . Note that 1 − P D
t 1(x) =

Px(τD ≤ t) = F(t). By using (3.4)

κ(x) = α/2

	(1 − α/2)

∫ ∞

0
F(t)t−α/2−1 dt

= α/2

	(1 − α/2)

∫ ∞

0

∫ ∞

s

t−α/2−1 dt dF (s)

= 1

	(1 − α/2)

∫ ∞

0
s−α/2 dF(s) = 1

	(1 − α/2)
Ex(τ

−α/2
D )

�	
It was proved in [12] that x → Ex(τ

−α/2
D ) is continuous, hence κ is a contin-

uous function. We will use this fact in the next result.

Proposition 3.2. Suppose that there exists C ∈ (0, 1) such that Px(Xt ∈ D) ≤ C

for every t > 0 and every x ∈ ∂D. Then

(1 − C)κ(x) ≤ κY (x) ≤ κ(x), for every x ∈ D . (3.6)

Proof. By the proof of Lemma 4.5.2 in [11], there exists a sequence tn ↓ 0 such
that

lim
tn→0

1

tn

∫

D

f (x)(1 − Rtn1(x)) dx =
∫

D

f (x)κ(x) dx

lim
tn→0

1

tn

∫

D

f (x)(1 − Qtn1(x)) dx =
∫

D

f (x)κY (x) dx
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for every f ∈ C0(D). By Proposition 2.1 this implies that
∫

D

f (x)(1 − C)κ(x) dx ≤
∫

D

f (x)κY (x) dx ≤
∫

D

f (x)κ(x) dx ,

for every nonnegative f ∈ C0(D). Since both κ and κY are continuous, the last
relation implies that

(1 − C)κ(x) ≤ κY (x) ≤ κ(x) , x ∈ D .

�	
Remark 3.3. Let δ(x) be the distance between x and ∂D. When D is a bounded
Lipschitz domain, it follows easily from (3.2) that there exists a positive constant
C1 such that

C−1
1 (δ(x))−α ≤ κY (x) ≤ C1(δ(x))−α .

By using this and Proposition 3.2 it follows that there exists a constant C2 such that

C−1
2 (δ(x))−α ≤ κ(x) ≤ C2(δ(x))−α .

4. Intrinsic ultracontractivity

In this section we assume that D is a bounded Lipschitz domain and Z is the subordi-
nate killed Brownian motion on D. The generator of Z is −(−�|D)α/2, where �|D
is the Dirichlet Laplacian in D. It is well known that if {−λk, k = 0, 1, . . . } are the
eigenvalues of �|D written in decreasing order and each repeated according to its
multiplicity, and if {φk, k = 0, 1, . . . } are the corresponding eigenfunctions, then
{−(λk)

α/2, k = 0, 1, . . . } are the eigenvalues of −(−�|D)α/2 written in decreasing
order and each repeated according to its multiplicity, and {φk, k = 0, 1, . . . } are
the corresponding eigenfunctions.

Similar to Theorem 4.1 of [4], we have the following result.

Theorem 4.1. For any η > 0 and f ∈ H
α/2
0 (D) ∩ L∞(D, dx), we have

∫

D

f 2 log |f |dx ≤ ηE(f, f ) + β(η)‖f ‖2
2 + ‖f ‖2

2 log ‖f ‖2,

with

β(η) = − d

2α
log η + c

for some constant c > 0.

Proof. It follows from Proposition 2.2 that r(t, x, y) ≤ q(t, x, y), hence there ex-
ists a c > 0 such that r(t, x, y) ≤ ct−d/α . Now we can repeat the proof of Theorem
4.1 of [4] to arrive at the conclusion. �	

The following lemma appears on p.71 of [14]. The key ingredient in the proof
there is an inequality (inequality (4.1) of [14]) proved in [19]. We include an ele-
mentary proof based on the behavior of the killing function of Z.
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Lemma 4.2. There exists a constant C1 > 0 such that

C−1
1 EY (u, u) ≤ E(u, u) ≤ C1EY (u, u), u ∈ H

α/2
0 (D).

Proof. Recall that the killing measures of Z and YD have densities κ and κY re-
spectively, which are both of the order δ(x)−α . This implies that there is a constant
c1 such that

∫

D

u2(x) dx ≤ c1

∫

D

u2(x)κ(x) dx (4.1)

From the last section we know that there exists a constant c2 > 0 such that

c−1
2 (EY (u, u)+(u, u)) ≤ E(u, u)+(u, u) ≤ c2(EY (u, u)+(u, u)), u ∈ H

α/2
0 (D).

Therefore the 1-norms are equivalent to the 0-norms for both forms. Thus there is
a constant C1 such that

C−1
1 EY (u, u) ≤ E(u, u) ≤ C1EY (u, u), u ∈ H

α/2
0 (D).

�	
Recall that for any domain D in R

d , the quasi–hyperbolic distance between any
two points x1 and x2 in D is defined by

ρD(x1, x2) = inf
γ

∫

γ

ds

δ(x)

where the infimum is taken over all rectifiable curves γ joining x1 to x2 in D and
δ(x) is the Euclidean distance between x and ∂D. Fix a point x0 ∈ D which we
call the center of D and we may assume without loss of generality that δ(x0) = 1.

Lemma 4.3. There is a constant C2 = C2(D) > 0 such that for any β > 0
∫

D

(ρD(x0, x))βu2(x)dx ≤ C2E(u, u), u ∈ H
α/2
0 (D)

Proof. It follows from Lemma 3.2 of [6] that there is a constant c = c(D) > 0
such that for any β > 0

∫

D

(ρD(x0, x))βu2(x)dx ≤ cEY (u, u), u ∈ H
α/2
0 (D).

Now the result follows from Lemma 4.2. �	
Repeating the argument of Theorem 3.3 of [6](see also [1]), we get

Theorem 4.4. For any ε > 0 and any σ > 0 we have
∫

D

f 2 log
1

φ0
dx ≤ εE(f, f ) + β(ε)‖f ‖2

2, f ∈ H
α/2
0 (D)

with

β(ε) = C3ε
−σ + C4

for some positive constants C3 and C4.

Combining Theorems 4.1 and 4.4 we get
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Theorem 4.5. For any ε > 0 and any σ > 0 we have
∫

D

f 2 log
|f |
ϕ0

dx ≤ ηE(f, f ) + β(η)‖f ‖2
2 + ‖f ‖2

2 log ‖f ‖2

for all f ∈ H
α/2
0 (D) ∩ L∞(D, dx), with

β(ε) = − d

2α
log ε + C5ε

−σ + C6

for some positive constants C5 and C6.

Using this and Corollary 2.2.8 of [8] we immediately get

Theorem 4.6. The semigroup corresponding to the subordinate killed Brownian
motion Z is intrinsic ultracontractive.

Here is an immediate corollary of the intrinsic ultracontractivity. Recall that the
Green function of the process Z is given by the formula (2.4).

Corollary 4.7. There exists a constant C8 such that for all x, y ∈ D,

GD(x, y) ≥ C8φ0(x)φ0(y),

J (x, y) ≥ C8φ0(x)φ0(y).

Proof. The first inequality follows immediately from the intrinsic ultracontractivity
and Theorem 4.2.5 of [8]. Now we show the second inequality. Since the semigroup
of the killed Brownian motion in D is intrinsic ultracontractive, Theorem 4.2.5 of
[8] implies that there exists T > 1 such that for all t ≥ T ,

pD(t, x, y) ≥ 1

2
e−λ0t φ0(x)φ0(y), xy ∈ D.

Thus

J (x, y) = c1

∫ ∞

0
pD(t, x, y)t−α/2−1dt

≥ c1

2

∫ ∞

T

e−λ0t φ0(x)φ0(y)dt

= c2φ0(x)φ0(y).

�	
Note that these lower bounds of GD and J are of no use when x, y are away

from the boundary. The next result gives lower bound when x and y are away from
the boundary and it does not need the Lipschitz assumption.

Proposition 4.8. For any bounded domain D in R
d , there exists a constant C9 =

C9(α, d) such that if x, y ∈ D satisfy |x − y| ≤ max{δ(x)/2, δ(y)/2}, then

GD(x, y) ≥ C9|x − y|α−d , (4.2)

J (x, y) ≥ C9|x − y|−α−d . (4.3)
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Proof. We prove the first inequality. The second is proved in the same way. Let
x, y ∈ D such that |x −y| ≤ max{δ(x)/2, δ(y)/2}. By using (2.4) and the formula
for the transition density of the killed Brownian motion XD , we get that

GD(x, y) = 1

	(α/2)

∫ ∞

0
p(s, x, y)sα/2−1 ds

− 1

	(α/2)
Ex

∫ ∞

τD

p(s, XτD
, y)sα/2−1 ds, (4.4)

where p(s, x, y) denotes the transition density of the Brownian motion X. Since
|XτD

− y| ≥ δ(y) for each y ∈ D, we obtain the estimate

1

	(α/2)
Ex

∫ ∞

τD

p(s, XτD
, y)sα/2−1 ds

≤ (2π)−d/2

	(α/2)

∫ ∞

0
s−d/2+α/2−1 exp{−δ(y)2)/2s} ds

≤ c1δ(y)α−d

≤ c1 2α−d |x − y|α−d .

The estimate (4.2) follows from (4.4) and the last display. �	

5. Upper bounds on the Green function and the jumping kernel

For any bounded domain D in Rd , we have seen that

GD(x, y) ≤ GY
D(x, y), J (x, y) ≤ JY (x, y), x, y ∈ D.

Recall that GY
D and JY are the Green function and jumping function of YD respec-

tively. These estimates are not useful near the boundary of D. Now we are going
to derive estimates that are useful near the boundary when D is a bounded C1,1

domain.

Theorem 5.1. Suppose that D is a bounded C1,1 domain in Rd . Then there exists
a constant C1 such that for all x, y ∈ D,

GD(x, y) ≤ C1
φ0(x)φ0(y)

|x − y|d+2−α
,

J (x, y) ≤ C1
φ0(x)φ0(y)

|x − y|d+2+α
.

Proof. The proof of these two inequalities are very similar. We only give the proof
of the first. It is well known that when D is a bounded C1,1 domain, there exists a
constant c1 such that

c−1
1 δ(x) ≤ φ0(x) ≤ c1δ(x), x ∈ D.
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Now we can repeat the proof of Theorem 4.6.9 of [8] to get that the density pD of
the killed Brownian motion on D satisfies the following estimate

pD(t, x, y) ≤ c2t
−(d+2)/2φ0(x)φ0(y)e− |x−y|2

6t , t > 0, x, y ∈ D,

where c2 is some constant independent of t, x, and y. Now using (2.4) we get that

GD(x, y) ≤ c2φ0(x)φ0(y)

∫ ∞

0
t−(d+2)/2e− |x−y|2

6t tα/2−1dt

≤ c3
φ0(x)φ0(y)

|x − y|d+2−α
.

�	

Remark 5.2. If we only assume that D is a bounded Lipschitz domain, then we can
get a similar upper bound for GD with d + 2 replaced by some number µ ≥ d,
where µ depends on the Lipschitz characteristics of D.

Remark 5.3. The estimates in the theorem above can also be written as

GD(x, y) ≤ C2
δ(x)δ(y)

|x − y|d+2−α
, x, y ∈ D

J(x, y) ≤ C2
δ(x)δ(y)

|x − y|d+2+α
, x, y ∈ D,

for some positive constant C2.

Summarizing our estimates on the Green function and the jumping kernel, we
have the following:

Theorem 5.4. Suppose that D is a bounded C1,1 domain in Rd . Then there exist
positive constants C3 and C4 such that for all x, y ∈ D,

C3δ(x)δ(y) ≤ GD(x, y) ≤ C4 min(
1

|x − y|d−α
,

δ(x)δ(y)

|x − y|d+2−α
),

C3δ(x)δ(y) ≤ J (x, y) ≤ C4 min(
1

|x − y|d+α
,

δ(x)δ(y)

|x − y|d+2+α
)

Comparing the estimates on the Green function of Z with the estimates on the
Green function of YD obtained in [5] and [15], we see that their boundary behaviors
are different.
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