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Abstract. In [9], it was shown that if U is a random n × n unitary matrix, then for any
p ≥ n, the eigenvalues of Up are i.i.d. uniform; similar results were also shown for general
compact Lie groups. We study what happens when p < n instead. For the classical groups,
we find that we can describe the eigenvalue distribution of Up in terms of the eigenvalue
distributions of smaller classical groups; the earlier result is then a special case. The proofs
rely on the fact that a certain subgroup of the Weyl group is itself a Weyl group. We generalize
this fact, and use it to study the power-map problem for general compact Lie groups.

In [9], it was shown that if a (uniformly) random n× n unitary matrix U is raised
to a power p ≥ n, the eigenvalues of the resulting matrix are (exactly) inde-
pendently distributed; this despite the rather complicated dependence between the
eigenvalues of U itself. Our purpose in the present note is to extend this result to
the case p < n. We find that the eigenvalue distribution of Up can in that case
be described in terms of a union of p independent distributions, each of which is
itself the eigenvalue distribution of a random unitary matrix. More precisely, we
have:

U(n)p ∼
⊕

0≤i<p
U

(⌈
n− i

p

⌉)
. (1)

That is, if we take the pth power of a uniformly distributed element of U(n), the
resulting eigenvalue distribution is the same as if we took the union of the eigen-
values of p independent matrices. For p ≥ n, this reduces to the earlier result, since
then we have

U(n)p ∼
⊕

0≤i<n
U(1)⊕

⊕

n≤i<p
U(0), (2)

the latter component being trivial. Similarly, the eigenvalue distribution of a power
of a random orthogonal or symplectic matrix can also be described as a union of
eigenvalue distributions.
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Images of eigenvalue distributions under power maps 523

After showing these results, we then consider the case of more general compact
Lie groups, especially since the above independence result extends to this case.
It turns out in general that the eigenvalue density after raising to a power can be
expressed in terms of a certain parabolic subgroup of an associated affine Weyl
group. (See [2], [7], and [8] for definitions and results for affine Weyl groups.) As
a special case, we find that for a simple compact Lie group G, the eigenvalues of
Gp are (essentially) independent whenever p is greater than the Coxeter number
of G, thus refining the result of [9].

1. The classical groups

We first consider the general problem of, given an eigenvalue distribution, deter-
mining the distribution of powers of the eigenvalues. We let λ1 through λn denote
complex numbers of norm 1, and define

dT :=
∏

0≤k<n

dλk

2πiλk
, (3)

so that dT is the uniform density on the unit torus T . The following lemma is
straightforward:

Lemma 1.1. Let π(λ) be a Laurent polynomial in the variables λj such that

π(λ)dT (4)

is a probability density on the unit torus. Then for any (monic) Laurent monomial
µ(λ),

∫

T

π(λ)µ(λ)dT (5)

is equal to the coefficient of µ(λ) in π(λ).

The following “Main Lemma” is crucial to our later results:

Lemma 1.2. Fix an integer p ≥ 1. With π(λ) as above, the joint density of the
random variables λpj is given by

π(p)(λ1/p)dT , (6)

where π(p)(λ) is the sum of the p-divisible monomials of π(λ); that is, monomials
in which each exponent is a multiple of p.

Proof. Since the torus is a compact set, it suffices to show that all joint moments
agree. In other words, we need to show that if µ(λ) is a monic Laurent monomial,
then

∫

T

µ(λ)π(p)(λ1/p)dT =
∫

T

µ(λp)π(λ)dT . (7)

But this follows immediately from Lemma 1.1. ��
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We now obtain the power-map theorem for the unitary group:

Theorem 1.3. For any integers n, p ≥ 1,

U(n)p ∼
⊕

0≤i<p
U

(⌈
n− i

p

⌉)
; (8)

that is to say that the following two eigenvalue distributions are the same:

eig(Up) ∼ ∪0≤i<p eig(Ui), (9)

where U is a uniform random element of U(n), and for 0 ≤ i < pUi is an inde-

pendent uniform random element of U
(⌈

n−i
p

⌉)
.

Proof. Recall [10] that the eigenvalue distribution of U(n) is given by the density

1

n!

∑

π1,π2∈Sn
σ (π2π

−1
1 )

∏

0≤k<n
λ
π1(k)−π2(k)
k dT . (10)

Equivalently, if we view Sn as acting on the eigenvalues as

π · λi = λπ−1(i), (11)

we have the density

1

n!

∑

π ′∈Sn
π ′ ·




∑

π∈Sn
σ (π)

∏

0≤k<n
λ
k−π(k)
k



 . (12)

By the Main Lemma, we must extract the p-divisible monomials. Clearly, the
action of π ′ preserves divisibility, so we may restrict our attention to

q(λ) =
∑

π∈Sn
σ (π)

∏

0≤k<n
λ
k−π(k)
k . (13)

A monomial here is p-divisible if and only if

π(k) ≡ k (mod p), ∀0 ≤ k < n. (14)

Given such a permutation, and given a congruence class i mod p, we can define a
new permutation π(i) ∈ S� n−i

p
 by

π(i)(k) = π(pk + i)− i

p
. (15)

Then the permutation π is determined by the permutations π(i), and we have

σ(π) =
∏

0≤i<p
σ (π(i)) (16)

∏

0≤k<n
λ
k−π(k)
k =

∏

0≤i<p

∏

0≤k<
⌈
n−i
p

⌉
λ
pk−pπ(i)(k)
pk+i . (17)
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It follows that q(p)(λ1/p) factors:

q(p)(λ1/p) =
∏

0≤i<p




∑

π∈S� n−ip 

σ(π)
∏

0≤k<� n−i
p


λ
k−π(k)
pk+i



 . (18)

Since each factor has the form associated to the density of the unitary group of
dimension �n−i

p
, the result follows. ��

Remark 1. This could also be derived from the Toeplitz determinant factorization
of [5, Eq. 38], much as in the derivation of Theorem 1.7 below from the results of
[11].

Remark 2. Diaconis (personal communication) observes that the above result im-
mediately implies (via the central limit theorem) that if n, h → ∞, n/h → m ≥ 1,
the random variable Tr(Uh) converges in distribution toN(0, h); similar comments
apply to the orthogonal and symplectic group cases. For h fixed, such normal con-
vergence was shown in [4].

As a special case, we recover a result of [9]:

Corollary 1.4. Fix an integer n ≥ 1, and let U be a random element of U(n). For
any integer p ≥ n, the eigenvalues of Up are i.i.d. uniform.

Proof. Indeed, by the theorem,

U(n)p ∼
⊕

0≤i<p
U

(⌈
n− i

p

⌉)
=

⊕

0≤i<n
U(1)⊕

⊕

n≤i<p
U(0). (19)

But this is precisely the desired result. ��

For the orthogonal group, the situation is somewhat more complicated, both
because the orthogonal group is not connected, and because random orthogonal
matrices are sometimes forced to have eigenvalues ±1. There are essentially four
cases, depending on whether the dimension is even or odd, and on whether the
determinant is 1 or −1.

Theorem 1.5. Fix integers n ≥ 1, p ≥ 1. Then we have the following identities of
eigenvalue distributions. For p odd:

O±(2n)p ∼ O±(2n0)⊕
⊕

0≤i<(p−1)/2

ReU

(⌈
2(n− n0 − i)

p − 1

⌉)
. (20)

O±(2n+ 1)p ∼
⊕

0≤i<(p−1)/2

ReU

(⌈
2(n− n1 − i)

p − 1

⌉)
⊕O±(2n1 + 1). (21)
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For p even:

O±(2n)p ∼ O±(2n0)⊕
⊕

0≤i<(p−2)/2

ReU

(⌈
2(n− n0 − n1 − i)

p − 2

⌉)

⊕O∓(2n1 + 1). (22)

O±(2n+ 1)p ∼
⊕

0≤i<p/2
ReU

(⌈
2(n− i)

p

⌉)
. (23)

Here n0 = � n
p
, n1 = �n−�p/2�

p
, O±(n) represents the coset of O(n) with deter-

minant ±1, ReU(n) represents the image of U(n) in the natural representation in
O(2n), and eigenvalues ±1 should be ignored.

Proof. Again, referring to [10], the eigenvalue density for a random orthogonal
matrix is (up to an overall constant, and ignoring fixed eigenvalues) given by

∑

ρ′∈Bn
ρ′ ·




∑

ρ∈Bn
σ (ρ)λδ−ρ·δ



 dT (24)

where Bn is the hyperoctahedral group (signed permutations), σ is a certain char-
acter of Bn, δ is a vector in Z[1/2]n, acted on in the obvious way by Bn, and we
define

λv =
∏

0≤k<n
λ
vk
k . (25)

The ingredients σ and δ are determined as follows:

O+(2n) : δ = (0, 1, 2 . . . n− 1), σ = σ1 (26)

O−(2n+ 2) : δ = (1, 2, 3 . . . n), σ = σ2 (27)

O+(2n+ 1) : δ = (1/2, 3/2, . . . n− 1/2), σ = σ2 (28)

O−(2n+ 1) : δ = (1/2, 3/2, . . . n− 1/2), σ = σ1 (29)

where σ1 is the composition of the sign character of Sn with the natural projection
Bn → Sn, and σ2 is the natural sign character of Bn.

Consider a signed permutation ρ with ρ · δ ≡ δ (mod p). Consider ρ as a
permutation of

S = {−n, 1 − n, · · · − 2,−1, 1, 2, . . . n− 1, n}, (30)

and define δ(x) for x ∈ S by δ(k) = δk , δ(−k) = −δk . (Thus, for instance, for
O+(2n), δ(k) = k − sgn(k).) Then ρ must preserve the partition of S induced by
δ(x) mod p. The action of ρ on an individual piece of the partition is either as Sm,
if δ(x) �≡ δ(−x) mod p, or as Bm if δ(x) ≡ δ(−x) mod p. Thus, the p-divisible
part of the inner sum

∑

ρ∈Bn
σ (ρ)λδ−ρ·δ (31)
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factors; we obtain one Sm-type factor for each pair {i mod p,−i mod p} with
i �= −i mod p, and one Bm-type factor for each i mod p with i ≡ −i mod p; the
corresponding character is simply the restriction of the original character.

The Sm-type factor corresponding to ±i mod p becomes a unitary group den-
sity once we replace the eigenvalues corresponding to those x for which δ(x) =
−i mod p by their reciprocals; since the eigenvalues come in conjugate pairs, this
does not change the effective density. The dimension of the unitary group is then
given by the number of values 1 ≤ k ≤ n such that δk mod p ∈ {±i}. Equivalently,
these numbers are given by:

O±(2n): The number of values 1 ≤ k ≤ n − 1 such that k mod p ∈ {i, p − i}
(i ∈ Z, 1 ≤ i < �p2 ).
O±(2n+1): The number of values 1 ≤ k ≤ n such that k mod p ∈ {i+1, p−i}
(i ∈ Z, 0 ≤ i < �p−1

2 ).

The nature and dimension of theBn factors follows from a similar computation;
we thus deduce the following identities. For p odd:

O±(2n)p ∼ O±
(

2

⌈
n

p

⌉)
⊕

⊕

1≤i≤(p−1)/2

ReU

(⌈
n− i

p

⌉
+

⌈
n+ i

p

⌉
− 1

)
.

(32)

O±(2n+ 1)p ∼
⊕

0≤i<(p−1)/2

ReU

(⌈
n− i

p

⌉
+

⌈
n+ 1 + i

p

⌉
− 1

)

⊕O±
(

2

⌈
n− (p − 1)/2

p

⌉
+ 1

)
. (33)

For p even:

O±(2n)p ∼ O±
(

2

⌈
n

p

⌉)
⊕

⊕

1≤i<p/2
ReU

(⌈
n− i

p

⌉
+

⌈
n+ i

p

⌉
− 1

)

⊕O∓
(

2

⌈
n− p/2

p

⌉
+ 1

)
. (34)

O±(2n+ 1)p ∼
⊕

0≤i<p/2
ReU

(⌈
n− i

p

⌉
+

⌈
n+ 1 + i

p

⌉
− 1

)
. (35)

The theorem then follows by straightforward �-manipulation. ��
Remark. Since

Sp(2n) ∼ O−(2n+ 2), (36)

ignoring the ±1 eigenvalues, this result also tells us the images of Sp(2n) under
power maps.

Corollary 1.6. Fix an integer n ≥ 1, and let U be a random element of O±(n).
For any integer p ≥ n− 1, the eigenvalues other than ±1 of Up are i.i.d. uniform
conjugate pairs. Similarly, if U is a random element of Sp(2n) and p ≥ 2n + 1,
then the eigenvalues of Up are i.i.d. uniform conjugate pairs.
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Proof. It suffices to observe that the conclusion is true wheneverO±(n)p is equiv-
alent to a union of cosets O±(m) for m ≤ 2 and Re(U(m)) for m ≤ 1. By a
case-by-case analysis, this holds whenever p ≥ n− 1. ��

Given the appearance of Re(U(n)) above, it is appropriate to mention the fol-
lowing relation:

Theorem 1.7. For any n ≥ 0,

Re(U(n)) ∼ O+(n+ 1)⊕O−(n+ 1), (37)

ignoring eigenvalues ±1.

Proof. We claim that it suffices to prove

g(1)g(−1)
∫

U∈U(n)
det(g(U)) det(g(U))

=
∫

O∈O+(n+1)
det(g(O))

∫

O∈O−(n+1)
det(g(O)), (38)

where g(z) is an arbitrary function on the unit circle. Indeed, we may take g to have
the form

g(z) =
∏

1≤i≤m
(1 − xiz), (39)

at which point comparing coefficients of the xi tells us that all joint moments of the
polynomials (1 − λ2) det(1 − λU) and det(1 − λO1) det(1 − λO2) agree, where
U ∈ U(n), O1 ∈ O+(n+ 1), O2 ∈ O−(n+ 1) are uniform and independent. But
this implies the desired result.

To prove (38), one can express the integrals as determinants (see, e.g., Theo-
rems 2.1 and 2.2 of [1]) then use the main lemma of [11]. An alternate proof, given
as Corollary 2.4 of [1], involves expressing the integrals in terms of orthogonal
polynomials on the unit circle. ��

Remark. It is possible to give similar proofs of the other results of this section;
in particular, one uses the fact that the orthogonal polynomials with respect to a
weight g(zp) are simply related to the orthogonal polynomials with respect to g(z).
However, it is unclear how to apply this approach to nonclassical groups, just as it
is unclear how to apply the other approach to prove this result.

2. Congruential subgroups of Weyl groups

For the unitary and orthogonal groups, the key observation was that an appropriate
subgroup of the Weyl group turned out to be itself a product of Weyl groups. More
precisely, we were given a Weyl group W acting on a real vector space R

n with a
positive semidefinite inner product (that is, W is the reflection group associated to
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a root system R in that space), a discrete subgroup (lattice) � ⊂ R
n preserved by

W , and a vector v ∈ R
n, and considered the group

Wv+� := {ρ : ρ ∈ W |ρ(v)− v ∈ �}. (40)

For instance, for O+(2n+ 1), we had

v = (1/2, 3/2, . . . (n− 1)/2), (41)

� = pZ
n. (42)

Equivalently, we could divide v and� by p, thus making� equal to the root lattice
of O+(2n+ 1). This suggests that we should first study Wv+� when� is the root
lattice of W (that is, the lattice spanned by the root system of W ).

Theorem 2.1. Let W be a Weyl group acting on R
n, and let �a be the root lattice

of W . Then for any vector v ∈ R�a , Wv+�a is the Weyl group generated by the
roots of W it contains.

Proof. The key observation is that an element ρ ∈ W is in Wv+�a if and only if
there exists a translation tλ ∈ �a such that

t−1
λ (ρ(v)) = v. (43)

Thus instead of considering the stabilizer in W of the translate v + �, we can
consider the stabilizer in W+ := W � �a of the vector v; we have a canonical
isomorphism between Wv+�a and (W+)v .

Since �a is the root lattice of W , W+ is an affine Weyl group. But then we
can apply proposition V.3.3.2 of [2] to conclude that (W+)v is generated by the
reflections of W+ that fix v. The theorem follows immediately. ��
Remark. The reader is cautioned that unlessW is simply-laced, this is not the usual
affine Weyl group associated to W . Indeed, to obtain the usual group, we must re-
place the root lattice with the lattice spanned by the vectors 2v/〈v, v〉 for v ranging
over the roots of W (i.e., the lattice of vectors v ∈ R�a such that 〈v,w〉 ∈ Z for
all weightsw). In particular, the additional simple root ofW+ is the negative of the
highest short root, not the negative of the highest long root as one might expect.

Corollary 2.2. With W , v, �a and W+ as above, Wv+�a is isomorphic to a finite
parabolic subgroup of W+.

Proof. Indeed, for any choice of chamber of W+ containing v, the reflections that
fix v consist precisely of those boundary hyperplanes containing v, and are thus
simple reflections with respect to that chamber. ��

It will be helpful to refine the above result somewhat. Fix a fundamental cham-
ber C ofW . We then choose the fundamental chamber C+ ofW+ to be the unique
chamber such that 0 ∈ C+ ⊂ C. For the parabolic subgroups Wv+�a for v ∈ C+,
we take as fundamental chamber the convex cone generated by C+ − v; note that
for v = 0, this recovers C. (For general v, we have only a bijection between the
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chambers of Wv+�a and those chambers of W+ containing v) The corresponding
simple roots thus form a subset of the simple roots of W+. We recall the notation
of [8]: given an element ρ ∈ W+, Dρ is the element t−ρ(0)ρ which, since it fixes
0, is in W .

Lemma 2.3. There exists an element ρ ∈ W+ such that ρ(v) is in the fundamen-
tal chamber of W+ and (Dρ)(v) is in the fundamental chamber of Wρ(v)+�a ∼=
Wv+�a . The resulting points ρ(v) and (Dρ)(v) are then independent of ρ.

Proof. Certainly, there exists an element ρ0 ∈ W+ such that ρ0(v) is in the fun-
damental chamber ofW+; the point ρ0(v) is then independent of the choice of ρ0.
The remaining freedom in the choice of ρ0 is simply that we can apply any element
of (W+)ρ0(v). Since

D((W+)ρ0(v)) = Wρ0(v)+�a (44)

there exists an element ρ1 of (W+)ρ0(v) such that

(Dρ1)(Dρ0)(v) (45)

is in the fundamental chamber ofWρ0(v)+�a , and again the resulting point is unique.
Taking ρ = ρ1ρ0, we are done. ��
Remark. Note that if the lowest-dimensional facet ofC+ containing ρ(v) also con-
tains 0, then the induced fundamental chamber of Wρ(v)+�a is simply the unique
chamber containing C. On the other hand, if that facet does not contain 0, then the
induced fundamental chamber will in fact be disjoint from C.

Given the point v, we define new points v and ṽ by

v := ρ(v) and ṽ := (Dρ)(v), (46)

with ρ as above. Note that ṽ − v ∈ �a .
If � is not the root lattice, then W �� is in general no longer an affine Weyl

group, so the above results do not apply. We can, however, slightly extend the class
of lattices we consider. We say that � is a “subweight” lattice of W if it contains
the roots of W , and satisfies

2〈�, r〉
|r|2 ⊂ Z (47)

for all roots r; equivalently,W acts trivially on�/�a (equation (47) states this for
the reflections of W ). In the case � ⊂ R�a , this simply says that � contains the
root lattice and is contained in the weight lattice of W . We have:

Lemma 2.4. Let � be a subweight lattice of W contained in R�a . Then for each
coset of (W � �)/W+, there exists a unique representative that preserves the
fundamental chamber of W+, giving an injection from �/�a into the group of
automorphisms of the Dynkin diagram of W+.
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Proof. Since for ρ ∈ W , v ∈ �, we have ρ(v) − v ∈ �a , it follows that W � �

normalizes W+. The lemma then follows from the discussion in Section VI.4.3 of
[2]. ��

This gives the following result.

Theorem 2.5. Let � be a subweight lattice of W , and define �0 := � ∩ (R�a).
Then for any vector v ∈ R�,

Wv+�a �Wv+�; (48)

the quotient is isomorphic to the subgroup of �0/�a such that the corresponding
transformations of the fundamental chamber preserve v.

Proof. The main complication is the fact that R�a might not equal R�. If not,
let V be the orthogonal complement of R�a in R�, and write v = v0 + v1 with
v0 ∈ R�a and v1 ∈ V . Then we can write

ρ(v)− v = ρ(v0)− v0 ∈ R�a; (49)

W acts trivially on v1 since v1 is orthogonal to the roots ofW . Thus ρ(v)− v ∈ �
if and only if ρ(v)− v ∈ �0.

Since�0 is itself a subweight lattice, we may therefore assume that� ⊂ R�a ,
and thus �0 = �. Furthermore, since the desired result is invariant under conju-
gation by W+, we may assume that v = v. Fix a coset of W+ in W � �, and let
ψ be the representative of that coset that preserves the fundamental chamber. If
ψ(v) = v, then ψ clearly normalizes (W+)v , and

(W ��)v ∩ ψW+ = ψ(W+)v. (50)

On the other hand, if ψ(v) �= v then

(W ×�)v ∩ ψW+ = 0. (51)

The result follows. ��
Thus given v, the group Wv+� can essentially be read off by inspection.

3. General compact Lie groups

LetG be a connected compact Lie group with Lie algebra g, and choose a maximal
torus T with associated Cartan subalgebra t. Define a lattice�G inside t∗ to be the
dual of the kernel of the exponential map exp : t → T ; that is, �G is the set of all
v ∈ t∗ such that v(x) = 0 whenever exp(x) = 1. The irreducible characters of T
are thus in one-to-one correspondence with the vectors of�G; in particular, from a
basis of�G, we obtain a set of n characters λi of T such that for any representation
R of G, the eigenvalues of a matrix in R(T ) are given by appropriate (monic)
Laurent monomials in the λi . Since every element of G can be conjugated into T ,
the characters λi can be thought of as “eigenvalue generators”. Given v ∈ �G, we
denote the associated character of T by λv .
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By proposition 6.6 of [6], g is the direct sum of its center z and a semisimple Lie
subalgebra g0 = [g, g]. Denoting the commutator subgroup ofG byG′, we thus find
that the natural map Z(G)0 ×G′ → G is surjective, with discrete, central, kernel.
The same is then still true if we replaceG′ by its simply connected covering group H̃ .
In other words,G is the quotient of a groupG+ := U(1)k×H̃ by a discrete subgroup
of its center. The corresponding projection (�G

+
)∗ = T (G+) → T (G) = (�G)∗

thus induces an imbedding of �G in �G
+

. Now, the roots of G are by definition
characters of T (G), so correspond to elements of �G; similarly, the Weyl group
W of G acts on T (G), so by duality on �G. Both structures are respected by the
projection G+ → G; since �G

+ = Z
k ×�H̃ , and �H̃ is the weight lattice of W ,

we conclude that �G is a subweight lattice of W .
Now, the density of the eigenvalue distribution (the distribution of the eigen-

value generators) ofG (with respect to Haar measure) has the form f (λ)dT where

f (λ) ∝
∑

ρ′∈W
ρ′ ·




∑

ρ∈W
σ(ρ)λδ−ρδ



 , (52)

where δ is the Weyl vector of W , i.e. half the sum of the positive roots. We thus
find that

f (p)(λ1/p) ∝
∑

ρ′∈W
ρ′ ·




∑

ρ∈Wδ/p+�G
σ(ρ)λ(δ−ρδ)/p



 (53)

=
∑

ρ′∈W
ρ′ ·




∑

ρ∈W(p)

σ (ρ)λδ̃/p−ρδ̃/p


 . (54)

∝
∑

ρ′∈W
ρ′ ·




∑

ρ1,ρ2∈W(p)

σ (ρ1ρ
−1
2 )λρ1 δ̃/p−ρ2 δ̃/p



 , (55)

where we define

W(p) := Wδ̃/p+�G. (56)

The inner sum thus looks roughly like the eigenvalue density of some different
Lie group. For it to actually be an eigenvalue density (or rather, for our methods to
prove it an eigenvalue density1), we need three things to happen. First, we need�G

to be a subweight lattice ofW(p); luckily, this is trivial, since every root ofW(p) is
a root of W . Second, we need

W(p) = Wδ̃/p+�a , (57)

so that the stabilizer is actually a Weyl group. Finally, we need the projection of
δ̃/p to the root space of W(p) to be equal to the Weyl vector of W(p).

1 In particular, we observe that O+(2n)p and Sp(2n)p violate these conditions!
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These last two conditions are, unfortunately, not always satisfied, although we
can at least readily determine when they are; see for instance Section 5 below. One
partial result is:

Theorem 3.1. The center of G is connected if and only if �0 = �a . Thus if the
center of G is connected (in particular if G is adjoint), then

W(p) = Wδ̃/p+�a , (58)

and W(p) is a Weyl group.

Proof. Writing G = G+/Z as above, we observe that G has connected center
if and only if for every element z ∈ Z(H̃ ), there exists some element of Z that
projects to z. Dualizing, this is precisely the requirement that �0 = �a . ��

Thus, at least in the connected center case, the only obstacle is the third condi-
tion. That this is, indeed, a problem can be seen from the tables of Section 5; this
is the main obstacle to a truly satisfying result in general.

Similar remarks hold ifG is not connected. Indeed, much of the structure theory
can be extended to this case (see [9] and [3]2). A (pointed) connected component of
a compact Lie group is specified by a quadruple (G0, a, o, z), where G0 is a con-
nected compact Lie group and a ∈ Aut(G0), o ∈ Z

+, z ∈ G0 are such that ao is the
inner automorphism of conjugation by z, with za = z; here za denotes the image
of z under a. This corresponds to a pair (C, x ∈ C) where C is a component of G,
[〈C〉 : G] = o, x induces a onG0, and xo = z. Two quadruples specify isomorphic
components if they are related by a combination of the following transformations:

(G0, a, o, z) → (G0, t
−1at, o, zt ), (59)

(G0, a, o, z) → (G0, ga, o, zgg
aga

2 · · · gao−1
), (60)

where t is an automorphism of G0 and g ∈ G0. In particular, we may always
arrange for a to have finite order dividing o (making z central). Once we have
chosen such an a, we find that the nature and density of the eigenvalue generators
for the component are independent of o and z; thus for our purposes we need only
consider the (split) case z = 1, a of order o, corresponding to a component of a
semidirect product. Using the classification of simple Lie groups, one readily ob-
tains the following irreducible local possibilities, each indexed by a positive integer
n:

• nU : G0 = U(1)φ(n), a satisfies the cyclotomic polynomial of order n (acting
on the Lie algebra).

• nH : G0 = Hn, with H simple; a acts as a cyclic shift.
• nA

(2)
m : G0 = (SU(m + 1))n; a acts as a cyclic shift, twisted by the outer

automorphism of SU(m+ 1).

2 The author was unaware of the results in [3] when writing [9], and thus most of the
structural results of [9] had already appeared (with different proofs) in [3], with the notable
exceptions of the density formula and the independence result (see below).
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• nD
(2)
m : G0 = (S̃O(2m))n; a acts as a cyclic shift, twisted by the (classical)

outer automorphism of S̃O(2m).
• nE

(2)
6 :G0 = (E6)

n; a acts as a cyclic shift, twisted by the outer automorphism
of E6.

• nD
(3)
4 : G0 = (S̃O(8))n; a acts as a cyclic shift, twisted by the triality auto-

morphism of S̃O(8).

The case nU is essentially trivial; either n = 1, in which case the (single) ei-
genvalue generator is uniformly distributed, or n > 1, in which case there are no
eigenvalue generators (because the eigenvalues are constant over the component).
In the other cases, if we let fX(λ) denote the density for 1X, then the density for
nX is given by fX(λn). This implies:

Corollary 3.2. LetX either denote a simply connected, compact, simple Lie group
or one of A(2)m , D(2)m , E(2)6 , or D(3)4 . Then for all positive integers n and p, the
eigenvalue density of (nX)p is given by

f (λn/ gcd(n,p)), (61)

where f is the density for (1X)p/ gcd(n,p).

Thus it suffices to consider the five “interesting” cases with n = 1. In each case,
we find that the density has the expected form corresponding to an appropriate Weyl
group (keeping the same Weyl vector), but using a different lattice in place of the
root lattice. The effective Weyl group and �G are given as follows:

• A
(2)
2m−1:W = Bm.�G = (1/2)Dm whenG0 has even fundamental group, and

(1/2)Zm when G0 has odd fundamental group.
• A

(2)
2m: W = Cm. �G = (1/2)Zm.

• D
(2)
m : W = Cm−1. �G = Zm−1 for the adjoint and orthogonal groups, and

�G = C⊥
m−1 otherwise.

• E
(2)
6 : W = F4. �G = F⊥

4 .

• D
(3)
4 : W = G2. �G = G⊥

2 .

In each case, if we define�a to be the lattice corresponding to the adjoint group,
we find that W ��a is an affine Weyl group, and the above results carry over. We
observe the following relations in the adjoint case:

nA
(2)
2m ∼ 2nD

(2)
m+1 ∼ 2nCm. (62)

4. Independence results

In [9], it was shown that for any connected component C of any compact Lie group
G, there exists a threshold P such that for any p > P and any representation ofG,
we have the relation

Cp ∼ U(1)r (63)

on the eigenvalue generators; that is, the eigenvalue generators of Cp are inde-
pendent and uniform. Using the above considerations, we can now give an explicit
value to the threshold:
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Theorem 4.1. Let G be a connected compact Lie group, let h be the maximum
Coxeter number of the simple factors of W(G), and let r be the rank of G. Then

p > h �⇒ Gp ∼ U(1)r (64)

and conversely

Gp ∼ U(1)r �⇒ p ≥ h. (65)

If the center of G is connected, then Gh ∼ U(1)r .

Proof. The key observation is that δ is not stabilized by any element ofW . Conse-
quently, the sum

∑

ρ∈W(p)

σ (ρ)λδ−ρ(δ) (66)

is equal to 1 precisely when the group W(p) is trivial. If the sum is 1, then clearly
Gp ∼ U(1)r ; conversely, if Gp ∼ U(1)r , then the sum must equal 1.

It thus remains to consider the groupW(p).Aside from diagram automorphisms,
W(p) is the product of the groups corresponding to the simple factors ofG; we may
thus assume thatG is simple. In this case, we can explicitly verify that when p < h,
W(p) is nonempty (it is straightforward for the classical groups, and a short compu-
tation for the exceptional groups). For p ≥ h, we have the following lemma (from
Prop. 7.3 of [8]):

Lemma 4.2. LetW be a simple (finite) Weyl group, and letW+ = W ��a . If h is
the Coxeter number and δ the Weyl vector ofW , then δ/h is the centroid of the fun-
damental chamber ofW+, and is thus invariant under all diagram automorphisms
of W+.

Thus whenp ≥ h, δ/p is strictly in the interior ofW+, so any nontrivial element
of W(p) must come from a diagram automorphism; since this is impossible when
the center ofG is connected, we obtain the desired result for p = h. When p > h,
δ/p treats the highest root of W+ differently from the other roots, so any diagram
automorphism preserving δ/p must preserve the highest root. But this precludes
the diagram automorphisms corresponding to the cosets of the root lattice in the
weight lattice, giving the desired result. ��

A similar result holds in the disconnected case (with an appropriate definition
of Coxeter number), with p replaced by p/ gcd(p, n), except for nA(2)m and nE

(2)
6 ,

whenpmust be replaced byp/ gcd(p, 2n), and for nD(3)4 , whenpmust be replaced
by p/ gcd(p, 3n).

Thus for instance, we find that

E8(n)
p ∼ U(1)8 (67)

precisely when p ≥ 30. Similarly,

SU(n)p ∼ U(1)n−1 (68)

precisely when p > n, since SU(n) is not adjoint (and we readily verify thatW(n)

has n elements in this case); this threshold was incorrectly given as n− 1 in [9].
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5. Tables

We conclude the paper by giving a table of δ̃/p and δ/p (for 1 ≤ p ≤ h) for
the exceptional groups; from this, it is straightforward to read off the appropriate
power-relations.

We again caution the reader that the standard conventions for affine Weyl groups
are based on the dual of the weight lattice, not the root lattice as occurs above. In
particular, the extended root is the negative of the highest short root in the connected
group cases.

The table for each group begins with the name of the group and the affine Dyn-
kin diagram; here the node labelled i corresponds to root ri . Each line then gives
δ̃/p and δ/p for p ranging from 1 to the Coxeter number. An entry k in position i
of line p indicates that

2〈δ̃/p, ri〉
|ri |2 = k, (69)

2〈δ/p, ri〉
|ri |2 = −δi0, (70)

while an entry k indicates that

2〈δ̃/p, ri〉
|ri |2 = 1/p − k, (71)

2〈δ/p, ri〉
|ri |2 = 1/p − δi0. (72)

The Dynkin diagram of W(p) is then read off as the subdiagram spanned by the
indices without bars, and the projection of δ̃/p to the root space of W(p) is a Weyl
vector precisely when all of those indices are 1. Finally, in light of Theorem 2.5,
we append an asterisk when δ/p is symmetric under a diagram transformation of
the affine Weyl group.

Thus, for instance, in the table for G2, we have

0 − 1 <≡ 2, (73)

indicating that r1 is the short simple root, r2 is the long simple root, and r0 =
−(2r1 + r2) is the negative of the highest short root. The entry p = 2 : (2, 3, 1)
indicates that

2〈δ̃/2, ri〉
|ri |2 = (2, 1/2 − 3, 1) (74)

2〈δ/2, ri〉
|ri |2 = (−1, 1/2, 0), (75)

and thus

δ̃/2 = −2r1 − r2/2, δ/2 = r1 + r2/2 (76)
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(Note that the induced fundamental chamber forWδ/2+�a consists of those vectors
v such that 〈r0, v〉, 〈r2, v〉 ≥ 0.)

We remark that it is not at all clear why this encoding scheme should happen
to work!

• G2 0−1<≡2

p = 1 : ( 6 1 1 )
p = 2 : ( 2 3 1 )
p = 3 : ( 0 2 1 )
p = 4 : ( 0 1 1 )
p = 5 : ( 1 1 0 )
p = 6 : ( 1 0 0 )
• F4 0−1−2⇐3−4

p = 1 : (12 1 1 1 1 )
p = 2 : ( 2 6 1 1 1 )
p = 3 : ( 1 2 4 1 1 )
p = 4 : ( 0 1 3 1 1 )
p = 5 : ( 1 1 2 1 1 )
p = 6 : ( 1 1 2 1 0 )
p = 7 : ( 0 1 1 1 1 )
p = 8 : ( 0 0 1 1 1 )
p = 9 : ( 0 0 1 1 0 )
p = 10 : ( 0 1 1 0 0 )
p = 11 : ( 1 1 0 0 0 )
p = 12 : ( 1 0 0 0 0 )

• E6

0|
1|

2− 3− 6 −5 −4

p = 1: (12 1 1 1 1 1 1 )
p = 2: ( 2 6 1 1 1 1 1 )
p = 3: ( 1 2 1 1 1 1 4 )∗
p = 4: ( 0 1 1 1 1 1 3 )
p = 5: ( 1 1 1 1 1 1 2 )
p = 6: ( 1 1 0 1 0 1 2 )∗
p = 7: ( 0 1 1 1 1 1 1 )
p = 8: ( 0 0 1 1 1 1 1 )
p = 9: ( 0 0 0 1 0 1 1 )∗
p = 10: ( 0 1 0 0 0 0 1 )
p = 11: ( 1 1 0 0 0 0 0 )
p = 12: ( 1 0 0 0 0 0 0 )∗

• E7
4|

0− 1− 2− 3 −5 −6 −7
p = 1 : ( 1 1 1 1 1 1 1 18 )
p = 2 : ( 1 1 1 1 9 1 1 2 )∗
p = 3 : ( 1 1 1 1 1 6 2 1 )
p = 4 : ( 3 1 1 1 1 4 1 1 )

p = 5 : ( 1 1 1 3 1 1 1 2 )
p = 6 : ( 1 1 1 3 1 1 1 0 )∗
p = 7 : ( 1 1 1 2 1 1 1 2 )
p = 8 : ( 1 1 1 2 1 1 1 0 )
p = 9 : ( 1 1 1 2 1 1 0 0 )
p = 10 : ( 1 1 1 1 1 1 1 0 )∗
p = 11 : ( 0 1 1 1 0 1 1 1 )
p = 12 : ( 0 0 1 1 0 1 1 1 )
p = 13 : ( 0 0 0 1 1 1 1 0 )
p = 14 : ( 0 0 0 1 1 1 0 0 )∗
p = 15 : ( 0 0 1 1 0 0 0 0 )
p = 16 : ( 0 1 1 0 0 0 0 0 )
p = 17 : ( 1 1 0 0 0 0 0 0 )
p = 18 : ( 1 0 0 0 0 0 0 0 )∗

• E8
6|

0− 1− 2− 3− 4− 5 −7 −8

p = 1 : (30 1 1 1 1 1 1 1 1 )
p = 2 : ( 2 1 1 1 1 1 1 1 15 )
p = 3 : ( 1 1 1 1 1 1 10 1 2 )
p = 4 : ( 2 1 1 7 1 1 1 1 1 )
p = 5 : ( 1 1 1 2 6 1 1 1 1 )
p = 6 : ( 0 1 1 1 5 1 1 1 1 )
p = 7 : ( 1 2 1 1 4 1 1 1 1 )
p = 8 : ( 2 3 1 1 1 3 1 1 1 )
p = 9 : ( 0 2 1 1 1 3 1 1 1 )
p = 10 : ( 0 1 1 1 1 3 1 1 1 )
p = 11 : ( 1 1 2 1 1 2 1 1 1 )
p = 12 : ( 1 1 2 1 1 2 1 1 0 )
p = 13 : ( 0 1 1 1 1 2 1 1 1 )
p = 14 : ( 0 0 1 1 1 2 1 1 1 )
p = 15 : ( 0 0 1 1 1 2 1 1 0 )
p = 16 : ( 0 1 1 1 1 1 1 1 1 )
p = 17 : ( 1 1 1 1 1 1 0 1 1 )
p = 18 : ( 1 1 1 1 1 1 0 1 0 )
p = 19 : ( 0 1 1 1 1 1 1 0 0 )
p = 20 : ( 0 0 1 1 1 1 1 0 0 )
p = 21 : ( 0 0 0 1 1 1 0 1 0 )
p = 22 : ( 0 0 0 0 1 1 0 1 1 )
p = 23 : ( 0 0 0 0 0 1 1 1 1 )
p = 24 : ( 0 0 0 0 0 1 1 1 0 )
p = 25 : ( 0 0 0 0 1 1 0 0 0 )
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p = 26 : ( 0 0 0 1 1 0 0 0 0 )
p = 27 : ( 0 0 1 1 0 0 0 0 0 )
p = 28 : ( 0 1 1 0 0 0 0 0 0 )
p = 29 : ( 1 1 0 0 0 0 0 0 0 )
p = 30 : ( 1 0 0 0 0 0 0 0 0 )
• (D

(3)
4 )3 0−1≡>2

p = 1 : ( 1 2 6 )
p = 2 : ( 0 1 3 )
p = 3 : ( 1 1 0 )
p = 4 : ( 1 0 0 )

• (E
(2)
6 )2 0−1−2⇒3−4

p = 1 : ( 2 1 1 2 12 )
p = 2 : ( 1 1 2 6 2 )
p = 3 : ( 0 1 1 4 2 )
p = 4 : ( 2 1 1 2 0 )
p = 5 : ( 0 1 1 2 2 )
p = 6 : ( 0 0 1 2 0 )
p = 7 : ( 0 1 1 0 0 )
p = 8 : ( 1 1 0 0 0 )
p = 9 : ( 1 0 0 0 0 )
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