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Abstract. A percolation problem on Sierpinski carpet lattices is considered. It is obtained
that the critical probability −→pc of oriented percolation is equal to 1. In contrast it was already
shown that the critical probability pc of percolation is strictly less than 1 in Kumagai [9].
This result shows a difference between fractal-like lattice and Z

d lattice.

1. Introduction

Percolation is studied as an important subject in statistical mechanics because this
is one of the simplest models which contains phase transitions of disordered media.
Percolation has close relations to disordered electrical networks, ferromagnetism,
epidemic models and so on. Percolation models were proposed by Broadbent and
Hammersley [1], and have been well studied in the last thirty years. See Grimmett
[7] to view the whole of this field.

Percolation problems had been studied mostly on Z
d lattice until recent years.

We note that Z
d lattice has translation-invariances. In this paper we consider per-

colation on fractal-like lattices. Fractal-like lattices are graphs which correspond
to fractals. All of them have a kind of self-similarity, but most of them have no
translation invariances. The Sierpinski gasket and the Sierpinski carpet are well-
known examples of fractals. The former is a finite ramified fractal (that is, it can
be disconnected by removing a finite number of points) and the latter is an infinite
ramified fractal. See Mandelbrot [12] for details of fractals. In a previous paper
[14] we have analysed percolation on the Sierpinski gasket lattice, which has no
phase transition. The non-existence of phase transition is induced by the charac-
ter of finite ramified fractals. Now we focus on the Sierpinski carpet lattice. The
Sierpinski carpet lattice is a graph which corresponds to the Sierpinski carpet.

Let us define the Sierpinski carpet on R
2 as follows. For (i, j) ∈ {0, 1, 2}2

we set an affine map �(i,j) from [0, 1]2 to [i/3, (i + 1)/3] × [j/3, (j + 1)/3]
which preserves the directions. Set T = {(i, j) ∈ {0, 1, 2}2 | (i, j) �= (1, 1)}. It
is well-known (see Falconer [6] for example) that there exists a unique nonempty
compact set K ⊂ [0, 1]2 which satisfies the equation that K = ⋃

t∈T �t (K). We
call this K the Sierpinski carpet. Let us define the graph corresponding to K . Set
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Fig. 1.1. The Sierpinski carpet lattice

Fn = ⋃
t1,t2,··· ,tn∈T �t1 ◦�t2 ◦· · ·◦�tn([0, 1]2).We note thatK can be constructed

as the limit of Fn. We write kA = {ka| a ∈ A}. Set V n = Z
2 ∩ 3nFn. We de-

note by ||x|| the Euclidean norm of x. For a vertex set W we define a bond set
E(W) = {〈u, v〉| u, v ∈ W, ||u − v|| = 1}. Here we wrote 〈u, v〉 as a bond with
endvertices u and v. Set a graph Gn = (V n,E(V n)). Note that V n and E(V n) are
increasing sequences with respect to n. Set G = ⋃∞

n=1G
n, that is G = (V ,E)

where V = ⋃∞
n=1 V

n and E = ⋃∞
n=1 E(V

n). We call this G the Sierpinski carpet
lattice. We will define a family of Sierpinski carpet lattices in Section 3.

We consider bond percolation and oriented bond percolation on G. Let 0 ≤
p ≤ 1. Each e ∈ E is declared to be open with probability p and closed with
probability 1−p independently. We denote by Pp the product measure. Next let us
consider a sequence of verticesπ = (v0, v1, · · · , vm)where vi ∈ V for 0 ≤ i ≤ m.
We say π is a path when 〈vi−1, vi〉 ∈ E for 1 ≤ i ≤ m and vi �= vj for i �= j .
We give a partial order on Z

2 such that (x1, x2) ≤ (y1, y2) if and only if x1 ≤ y1
and x2 ≤ y2. We say π is an oriented path when π is a path and vi−1 ≤ vi for
1 ≤ i ≤ m. We write u ↔ v if and only if there exists a path π with v0 = u, vm = v

and 〈vi−1, vi〉 are open for 1 ≤ i ≤ m. We denoteC(v) = {u ∈ V | v ↔ u}. We call
C(v) the open cluster containing v, and we denote byC the open cluster containing
the origin. We define θ(p) = Pp(|C| = ∞) where |C| means the number of ver-
tices in C. Set pc = inf{p| θ(p) > 0}. We write u → v if and only if there exists
an oriented path π with v0 = u, vm = v and 〈vi−1, vi〉 are open for 1 ≤ i ≤ m.
We define

−→
C (v) = {u ∈ V | v → u}, −→

C ,
−→
θ (p) and −→pc in the same way as C(v),

C, θ(p) and pc. We write pc(S.C.) and −→pc (S.C.) for pc and −→pc respectively when
we want to emphasize its dependence on the graph (the Sierpinski carpet lattice in
this case).

We explain studies of percolation on Sierpinski carpet lattices. Kumagai [9]
showed that pc < 1 for a family of Sierpinski carpet lattices (which includes the
Sierpinski carpet lattice) and studied under an assumption its critical phenomena
and uniqueness of infinite cluster for p > pc. Lü [11] gave an alternative proof
of pc < 1 using a Peierls argument. Shinoda [15] gave sufficient conditions and
necessary conditions to have pc < 1 for generalized Sierpinski carpet lattices.
Murai [13] studied an asymptotic behavior as d → ∞ of the critical probability
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of d-dimensional Sierpinski carpet lattices. Dekking and Meester [5] studied the
fractal percolation process (Mandelbrot percolation) on the Sierpinski carpet.

In this paper we study oriented percolation on Sierpinski carpet lattices. Ori-
ented percolation is significant as a model of disordered media because it has
close relations to media of semiconductors, contact processes and so on. On Z

2

we may regard this model as a one-dimensional contact process in discrete time.
See Durrett [4] and [7] for details. On Z

d (d ≥ 2), it is well-known that the criti-
cal probability pc(Zd) of percolation and that −→pc (Zd) of oriented percolation are
strictly less than 1. In particular, pc(Z2) = 1/2 has been shown by Kesten [9] and−→pc (Z2) ≤ 2/3 has been shown by Liggett [10]. We shall determine the critical
probability −→pc (S.C.) of oriented percolation on the Sierpinski carpet lattice. By
definition pc(S.C.) ≤ −→pc (S.C.) is clear. We obtain the following result.

Theorem 1.1. The critical probability −→pc (S.C.) of oriented percolation on the
Sierpinski carpet lattice is equal to 1.

This result is interesting because it shows a difference between the Sierpinski car-
pet lattice and Z

2 lattice. Theorem 1.1 says that there exists no phase transition
of oriented percolation on the Sierpinski carpet lattice, in spite of the existence
of phase transition of percolation on it. This kind of extinction of phase transition
had been shown by Chayes [2] and Chayes, Pemantle and Peres [3] in the case of
the fractal percolation process on the unit square. Theorem 1.1 says also that the
contact process will die out if p < 1 on the Sierpinski carpet lattice.

We give a proof of Theorem 1.1 in Section 2. In Section 3 we consider this
problem on a family of Sierpinski carpet lattices, and give sufficient conditions for
non-existence of phase transition.

2. Proof of main theorem

In this section we shall prove the main theorem. In this proof, events of a cross-
ing in a rectangle play important roles. For a rectangle R ⊂ R

2, we say left-right
crossing (respectively bottom-top crossing) of R exists if u → v for some u on
the left (respectively lower) side of R and some v on the right (respectively up-
per) side of R. We write LR(R) (respectively BT (R)) for the event. This event
depends on the configuration of {〈u, v〉| u, v ∈ R}. For a positive integer k, we
write xnk (p) = Pp(LR([0, k · 3n] × [0, 3n])). Note that xnk (p) is non-increasing
with respect to k. In order to show Theorem 1.1 it is enough to prove

lim
n→∞ x

n
2 (p) = 0, (2.1)

because for any n

{|−→C | = ∞} ⊂ LR([0, 2 · 3n] × [0, 3n]) ∪ BT ([0, 3n] × [0, 2 · 3n])

which implies
−→
θ (p) ≤ 2xn2 (p) by symmetry. We will use the following lemmas.

Lemma 2.1. Let p < 1. There exist k0 ≥ 1 and ϕ > 0 such that

xnk0
(p) ≤ e−3nϕ (2.2)

for any n.
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Lemma 2.2. Let k ≥ 3. For any n and p,

xn+1
k (p) ≤ 2xnk+1(p). (2.3)

Lemma 2.3. For any n and p,

xn+1
2 (p) ≤ xn2 (p)

2 + 2xn5 (p). (2.4)

Lemma 2.4. For any n and p,

xn2 (p) ≤ {
1 − (1 − p)2

n+1}2
. (2.5)

We give a proof of these lemmas one by one.

Proof of Lemma 2.1. For m ≥ 1 we define a random variable

Xnm = inf{j | there exists w such that 0 ≤ w ≤ 3n and (0, w) → (m, j)}. (2.6)

For convenience we set Xn0 = 0, and we set Xnm = ∞ if the right-hand of (2.6) is
empty. Xnm is non-decreasing with respect to m. Set Vm = ([0,m] × [0,∞)) ∩ V
andEm = E(Vm). Note thatXnm is determined by the configuration ofEm. For any
configuration ωm of Em we have

Pp(X
n
m+1 = Xnm| ωm) ≤ p, (2.7)

Pp(X
n
m+1 ≥ Xnm + 1| ωm) ≥ 1 − p. (2.8)

It is clear that
xnk (p) = Pp(X

n
k·3n ≤ 3n)

by definition. Let {Yi}i=1,2,... be the sequence of independent random variables
with P(Yi = 1) = 1 − P(Yi = 0) = 1 − p for any i. Then we have

Pp(X
n
k·3n ≤ 3n) ≤ P

(k·3n∑

i=1

Yi ≤ 3n
)

by (2.7) and (2.8). The event of right-hand side has been studied well as a
sum of independent random variables, such as random walks (see Spitzer [16] for
example). If 1/k < 1 − p then the probability decays exponentially with respect
to 3n. ��
Remark. Lemma 2.1 is true also on Z

2 lattice. In case of Z
2 lattice the conditional

probabilities in (2.7) and (2.8) are equal to p and 1 − p respectively.

Proof of Lemma 2.2. We set s = �(k−1)/2� where �x� means the greatest integer
not greater than x. Note that 2s + 1 ≤ k. We observe that

LR([0, k · 3n+1] × [0, 3n+1]) ⊂ An1 ∪ An2
where

An1 = LR([0, (3s + 2)3n] × [0, 3n]),

An2 = LR([(3s + 1)3n, (2s + 1)3n+1] × [2 · 3n, 3n+1]).

Here we used the property of G that there exists a hole with size 3n × 3n centered
at [(2s + 1)3n+1/2, 3n+1/2]. Thus xn+1

k (p) ≤ 2xn3s+2(p) follows. We note that
k + 1 ≤ 3s + 2 when k ≥ 3, and we have completed the proof. ��
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Proof of Lemma 2.3. We observe that

LR([0, 2 · 3n+1] × [0, 3n+1]) ⊂ (An3 ∩ An4) ∪ An5 ∪ An6
where

An3 = LR([0, 2 · 3n] × [0, 3n]),

An4 = LR([4 · 3n, 2 · 3n+1] × [2 · 3n, 3n+1]),

An5 = LR([0, 5 · 3n] × [0, 3n]),

An6 = LR([3n, 2 · 3n+1] × [2 · 3n, 3n+1]).

We have (2.4) immediately from this relation. ��
Proof of Lemma 2.4. Set Enm = {〈(m,w), (m + 1, w)〉| 0 ≤ w ≤ 3n} ∩ E. If
LR([0, 2 · 3n] × [0, 3n]) occurs, then at least one bond in En(3n−1)/2 must be open

and so as in En
(3n+1−1)/2

. We obtain (2.5) immediately because
∣
∣ En(3n−1)/2

∣
∣=

∣
∣En

(3n+1−1)/2

∣
∣= 2n+1. ��

We give a proof of Theorem 1.1 by using of these lemmas.

Proof of Theorem 1.1. For p < 1 we pick k0 and ϕ > 0 which satisfy (2.2). By
(2.3) we obtain

xn5 (p) ≤ 2xn−1
6 (p) ≤ · · · ≤ 2k0−5x

n−k0+5
k0

(p) ≤ 2k0−5e−3n−k0+5ϕ

for n ≥ k0 − 5. By this inequality and (2.4) we have

xn+1
2 (p) ≤ xn2 (p)

2 + ce−3nψ (2.9)

for some c < ∞ and ψ > 0. If lim infn→∞ xn2 (p) < 1 then (2.1) follows
because limn→∞ ce−3nψ = 0. Suppose that limn→∞ xn2 (p) = 1. Pick N such
that xn2 (p) ≥ 1/2 for any n > N . By (2.9) and (2.5) we have

xn+1
2 (p) ≤ xn2 (p)

3/2{xn2 (p)
1/2 + 23/2ce−3nψ}

≤ xn2 (p)
3/2{1 − (1 − p)2

n+1 + 23/2ce−3nψ}

for n > N . So we can pickN ′ such that xn+1
2 (p) < xn2 (p)

3/2 for any n > N ′. This
contradicts to limn→∞ xn2 (p) = 1. ��

3. On generalized Sierpinski carpet lattices

In this section we consider oriented percolation on a family of Sierpinski carpet
lattices in Z

d , d ≥ 2. Let a and b be positive integers. We write L = 2a + b. For
i = (i1, i2, . . . , id) ∈ {0, 1, . . . , L − 1}d we set an affine map �i from [0, 1]d to
[i1/L, (i1 +1)/L]× [i2/L, (i2 +1)/L]×· · ·× [id/L, (id +1)/L] which preserves
the directions. Set

T da,b =
{
(i1, i2, . . . , id) ∈ {0, 1, . . . , L− 1}d

∣
∣
∣
∣
∣ {j | a ≤ ij ≤ a + b − 1} ∣∣≤ 1

}
.
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0

Fig. 3.1. The graph of G2
2,2

We take the unique nonempty compact set Kd
a,b ⊂ [0, 1]d which satisfies the

equation that Kd
a,b = ⋃

i∈T da,b �i(K
d
a,b). We note that Kd

1,1 is called d-dimensional

Menger sponge (see [12] for example). Set Fd,na,b = ⋃
i1,i2,··· ,in∈T da,b �i1 ◦�i2 ◦ · · · ◦

�in([0, 1]d). Set V d,na,b = Z
d ∩ LnFd,na,b and Gd,na,b = (V

d,n
a,b , E(V

d,n
a,b )). We define a

graph Gda,b = ⋃∞
n=1G

d,n
a,b , that is Gda,b = (V da,b, E

d
a,b) where V da,b = ⋃∞

n=1 V
d,n
a,b

and Eda,b = ⋃∞
n=1 E(V

d,n
a,b ). As an example, the graph of G2

2,2 is illustrated in
Figure 3.1.

We consider bond percolation and oriented bond percolation on Gda,b. We give

a partial order on Z
d such that (x1, x2, . . . , xd) ≤ (y1, y2, . . . , yd) if and only if

xi ≤ yi for 1 ≤ i ≤ d . We define θda,b(p), pc(G
d
a,b),

−→
θ d
a,b(p) and −→pc (Gda,b) in

a similar fashion as in Section 1. In case of percolation, pc(Gda,b) < 1 has been
shown for all a and b in [9]. In contrast we obtain two theorems in case of oriented
percolation.

Theorem 3.1. Let d = 2 and a ≤ b. Then −→pc (G2
a,b) = 1.

Theorem 3.2. Let 2 ≤ d ≤ b. Then −→pc (Gd1,b) = 1.

Theorem 3.1 says that on two-dimensional Sierpinski carpet lattices if the ratio of
its hole in T 2

a,b is not smaller than 1/32 then there is no phase transition. Theorem
3.2 says that for any d ≥ 2 there exist d-dimensional Sierpinski carpet lattices on
which there is no phase transition. We do not know whether −→pc (Gda,b) = 1 for all
d,a and b or not.

Remark. We may define generalized Sierpinski carpet lattices in a different man-
ner. Set L = 3 and T dsc = {0, 1, 2}d \ {(1, 1, . . . , 1)}. Let Kd

sc be the unique
nonempty compact set which satisfies the equation that Kd

sc = ⋃
i∈T dsc �i(K

d
sc).

Kd
sc is called d-dimensional Sierpinski carpet. BothKd

1,1 andKd
sc are a generaliza-

tion of the Sierpinski carpet in d dimensions. Let Gdsc be the graph corresponding
to Kd

sc. We note that Gdsc contains Z
d−1 lattice as a subgraph, and we observe that−→pc (Gdsc) ≤ −→pc (Zd−1) < 1 when d ≥ 3.
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For a rectangleR = [s1, t1]×[s2, t2]×· · ·×[sn, tn] ⊂ R
d we denote byLR(R)

the event {u → v for some u, v ∈ R with u1 = s1, v1 = t1} where u1 and v1 mean
the first coordinate of u and v respectively. Set xnk,l(p) = Pp(LR([0, kLn] ×
[0, lLn]d−1)). We notice that xnk,l(p) depends on d, a and b but we omit to write
them. Note that xnk,l(p) is non-increasing with respect to k and non-decreasing with
respect to l.

First we shall prove Theorem 3.1. Recall that d = 2 and a ≤ b in this case. It
is enough to show that

lim
n→∞ x

n
a+b,a(p) = 0. (3.1)

We have already shown this theorem in case of a = b = 1 in Section 2. Also in
case of a = 1 and b ≥ 2 we can prove (3.1) in exactly the same way. Hereafter we
assume that 2 ≤ a ≤ b. We will use the following lemmas.

Lemma 3.3. Let p < 1. There exist k0 ≥ 1 and ϕ > 0 such that

xnk0,2a(p) ≤ e−Lnϕ (3.2)

for any n.

Lemma 3.4. (i) Let k ≥ 2a + 3. For any n and p,

xn+1
k,a (p) ≤ 2axnk+1,a(p). (3.3)

(ii) Let k ≥ 4a + 2. For any n and p,

xn+1
k,2a(p) ≤ 2xn3a+2b,a(p)+ (2a − 1)xnk+1,2a(p). (3.4)

Lemma 3.5. For any n and p,

xn+1
a+b,a(p) ≤ xna+b,a(p)

2 + 2
{
xn3a+2b,a(p)+ (a − 1)xn4a+3b,2a(p)

}
. (3.5)

Lemma 3.6. For any n and p,

xna+b,a(p) ≤ {
1 − (1 − p)(2a)

n+1}a+b
. (3.6)

Lemma 3.3 and Lemma 3.6 are obtained in exactly the same way as Lemma 2.1
and Lemma 2.4 respectively. We give a proof of Lemma 3.4 and Lemma 3.5 briefly.

Proof of Lemma 3.4. Let α1 = ��(k − 1)/a�/2� and α2 = �(k − 1)/a�. Note that
2α1 + (a − 1)α2 + 1 ≤ k. We have the following relation:

LR([0, kLn+1] × [0, aLn+1]) ⊂
a⋃

j=0

Bnj

where

Bn0 = LR([0, (α1L+ a + b)Ln] × [0, aLn]),

Bnj = LR([(α1L+ (j − 1)α2L+ a)Ln, (α1L+ jα2L+ a + b)Ln]

× [(jL− a)Ln, (jL+ a)Ln]) for 1 ≤ j ≤ a − 1,

Bna = LR([(α1L+ (a − 1)α2L+ a)Ln, (2α1 + (a − 1)α2 + 1)Ln+1]

× [(aL− a)Ln, aLn+1]).
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Thus we obtain

xn+1
k,a (p) ≤ 2xnα1L+a+b,a(p)+ (a − 1)xnα2L+b,2a(p).

We note that xnk,2l (p) ≤ 2xn�k/2�,l(p) holds for any k and l. So we have

xn+1
k,a (p) ≤ 2xnα1L+a+b,a(p)+ 2(a − 1)xn�(α2L+b)/2�,a(p).

We note that α1L+a+b ≥ �(α2L+b)/2� holds for any k, a and b by the definition
of α1 and α2. If k ≥ 2a + 3 then �(α2L+ b)/2� ≥ k + 1 because

⌊
α2L+ b

2

⌋

− (k + 1) ≥ 1

2

{⌊
k − 1

a

⌋

L+ b − 1

}

− (k + 1)

≥ k − a

2a
L+ b − 1

2
− (k + 1)

= bk − 2a2 − 3a

2a

and a ≤ b. Thus we have proved (3.3). Let us prove (3.4) in a similar fashion.
Let β1 = ��(k − 1)/(2a)�/2� and β2 = �(k − 1)/(2a)�. Note that 2β1 + (2a −
1)β2 + 1 ≤ k. We obtain

xn+1
k,2a(p) ≤ 2xnβ1L+a+b,a(p)+ (2a − 1)xnβ2L+b,2a(p).

We observe that k ≥ 4a+ 1 implies β1 ≥ 1 and bk ≥ 4a2 + 2a implies β2L+ b ≥
k + 1. Thus we have obtained (3.4). ��
Proof of Lemma 3.5. Let γ = �(a + b − 2)/(a − 1)�. We have

xn+1
a+b,a(p) ≤ xna+b,a(p)

2 + 2
{
xn3a+2b,a(p)+ (a − 1)xnγL+b,2a(p)

}
.

We observe that a ≤ b implies γ ≥ 2, and we have obtained (3.5) similarly to the
proof of Lemma 2.3. ��
Proof of Theorem 3.1. Let p < 1. If we prove that there exist c < ∞ and ψ > 0
such that

xn3a+2b,a(p)+ (a − 1)xn4a+3b,2a(p) ≤ ce−Lnψ, (3.7)

then by (3.5) and (3.6) we can prove (3.1) in the same way as the proof of Theorem
1.1 in Section 2. Let us prove (3.7). Let k0 and ϕ > 0 satisfy (3.2). By using (3.3)
repeatedly we have

xn3a+2b,a(p) ≤ (2a)qxn−qk0,a
(p) ≤ (2a)qxn−qk0,2a

(p) ≤ (2a)qe−Ln−qϕ (3.8)

where q = k0 − 3a− 2b. We have also xn4a+3b,2a(p) ≤ c
′
e−Lnϕ′

for some c
′
< ∞

and ϕ
′
> 0 in the same way by (3.4),(3.2) and (3.8). ��
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We turn to prove Theorem 3.2. Recall that d ≥ 2, a = 1 andL = 2+b ≥ d+2
in this case. It is enough to show that limn→∞ xn1+b,1(p) = 0. Theorem 3.2 follows
immediately from the following two lemmas.

Lemma 3.7. Let p < 1. There exist k0 ≥ 1 and ϕ > 0 such that

xnk0,1(p) ≤ e−Lnϕ (3.9)

for any n.

Lemma 3.8. Let k ≥ d + 1. For any n and p,

xn+1
k,1 (p) ≤ d! xnk+1,1(p).

Proof of Lemma 3.7. Recall that Gd,n1,b = Gd1,b ∩ [0, Ln]d , and we regard Gd1,b ∩
([0, kLn] × [0, Ln]d−1) as a subset of [0, kLn] × G

d−1,n
1,b . We denote by 
 the

set of the oriented paths on Gd−1,n
1,b starting at the origin. For π ∈ 
 we define

H(π) = {v ∈ V da,b| 0 ≤ v1 ≤ kLn and (v2, v3, . . . , vd) is a vertex of π}. We have

LR([0, kLn] × [0, Ln]d−1)

=
⋃

π∈

{u → v in H(π) for some u, v with u1 = 0, v1 = kLn}.

Note that the length of π ∈ 
 is not more than (d− 1)Ln. The number of the paths
in 
 is not more than d(d−1)Ln . We have

xnk,1(p) ≤ d(d−1)LnP
(kLn∑

i=1

Yi ≤ (d − 1)Ln
)

where Yi is the random variable defined in the proof of Lemma 2.1. We can pick k0

sufficiently large to satisfyP(
∑k0L

n

i=1 Yi ≤ (d−1)Ln) ≤ e−Lnϕ and e−ϕ < d−(d−1).
Then (3.9) follows. ��
Proof of Lemma 3.8. Let � be the set of the oriented paths from (0, 0, . . . , 0) to
(1, 1, . . . , 1) on Z

d−1: that is, ξ = (ξ1, ξ2, . . . , ξd) ∈ � if and only if ξ1 =
(0, 0, . . . , 0), ξd = (1, 1, . . . , 1) and ξ i ≤ ξ i+1 for 1 ≤ i ≤ d − 1 with respect
to the partial order on Z

d−1. We write A + x = {a + x| a ∈ A}. For ξ ∈ � we
set Rξ,i = [0, Ln]d−1 + (L − 1)Lnξ i . Let s = �(k − 1)/d�. Note that s ≥ 1 and
ds + 1 ≤ k. We observe that

LR([0, kLn+1] × [0, Ln+1]d−1) ⊂
⋃

ξ∈�

( d⋃

i=1

Aξ,i

)

where Aξ,i = LR([((i − 1)sL+ 1)Ln, (isL+ 1 + b)Ln] × Rξ,i).We have

xn+1
k,1 (p) ≤ (d − 1)! · d · xnsL+b,1(p) = d!xnsL+b,1(p)
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because the number of the paths in� equals (d−1)!. Let us prove that sL+b ≥ k+1
to complete this proof. If k ≥ 3d/2 then

sL+ b − (k + 1) =
⌊
k − 1

d

⌋

L+ b − (k + 1)

≥ k − d

d
L+ b − (k + 1)

= (b + 2 − d)k − 3d

d

≥ 2k − 3d

d
≥ 0.

Suppose that d + 1 ≤ k < 3d/2. Then s = 1, and sL+ b = 2b + 2 ≥ 2d + 2 ≥
k + 1. ��
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