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Abstract. We study the robustness under perturbations of mixing times, by studying mix-
ing times of random walks in percolation clusters inside boxes in Zd . We show that for
d ≥ 2 and p > pc(Zd), the mixing time of simple random walk on the largest cluster inside
{−n, . . . , n}d is �(n2) – thus the mixing time is robust up to a constant factor. The mix-
ing time bound utilizes the Lovàsz-Kannan average conductance method. This is the first
non-trivial application of this method which yields a tight result.

1. Introduction

An important parameter of random walks on finite graph is the mixing time of the
random walk. We refer the reader to [1] for background and many references, or to
subsection 1.2 for terminology used in this paper.

It is natural to study the robustness of the mixing time under perturbations. In
this paper we address this issue by studying the effect of random perturbations of
the underlying graph on the mixing times of simple random walk inside boxes in
Zd .

A classical way to perturb the lattice Zd is by performing super-critical perco-
lation. See [7] for introduction and many references, or subsection 1.2 for termi-
nology.

In this paper we study the mixing time of simple random walk on the largest
super-critical percolation cluster inside {−n, . . . , n}d . We show that for all d ≥ 2,
the mixing time of the random walk on the perturbed box, is up to constant, the
same as the mixing time of simple random walk on the original box.

Below we use the notationg(n) = O(f (n)) to indicate that lim sup g(n)/f (n) <

∞. We will write f (n) = �(g(n)) when g(n) = O(f (n)), and f (n) = �(f (n))

when both f (n) = O(g(n)) and g(n) = O(f (n)).

1.1. Main results

Let G = (V , E) be a finite graph with no loops. Consider a simple random walk
on G. In order to avoid periodicity of the random walk, we work with the contin-
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uous time random walk. Look at the markov semi-group generated by the matrix
(Qx,y)x∈V,y∈V where

Qx,y =





1
deg(x)

if x ∼ y,

−1 if x = y,

0 otherwise.
(1)

We denote by τ1 = τ1(G) the mixing time of the random walk in total variation,
by ϕ = ϕ(G) the Cheeger constant of the graph G (see subsection 1.2 or [1]). We
will denote by Bd(n) the graph G = (V , E) where

V = {−n, . . . , n}d ,

E = {((x1, . . . , xd), (y1, . . . , yd)) ∈ V × V :
∑d

i=1 |xi − yi | = 1}.

It is well known that τ1(Bd(n)) = �(n2) and ϕ(Bd(n)) = �(n−1).
Let pc(Zd) be the critical parameter for bond percolation in Zd (see [7] or

subsection 1.2). Fix p > pc(Zd), and denote by C = Cd(n) = Cd(n, p) the largest
cluster inside Bd(n). Thus Cd(n) is the open component of Bd(n) which has the
maximal number of edges.

The following result proves the stability of the mixing time and the Cheeger
constant under percolation:

Theorem 1.1. If d ≥ 2 and p > pc(Zd), then there exist constants 0 < c =
c(p) < C = C(p) such that

lim
n→∞ Pp[cn2 < τ1(Cd(n)) < Cn2] = 1. (2)

Similarly, if d ≥ 2 and p > pc(Zd), then there exist constants 0 < c = c(p) <

C = C(p) such that

lim
n→∞ Pp[

c

n
< ϕ(Cd(n)) <

C

n
] = 1. (3)

The upper bound on the mixing time is achieved via an estimate of a weighted
variant of the Cheeger constant which was introduced by Lovàsz and Kannan [9]. In
order to obtain tight bounds by the Lovàsz-Kannan method, we study geometrical
properties of the percolation cluster, using in particular bootstrap and renormaliza-
tion. One of the novel features of our result is that it is the first non-trivial application
of the Lovàsz-Kannan method which yields a tight result. We conclude this section
by recalling some background from percolation theory and from the theory of fi-
nite markov chains. Section 2 contains the proofs of these theorems, and Section 3
contains some remarks, conjectures and open problems.

We find it useful to use the following terminology (analogously to that used in
the theory of random graphs). Let Gn be an event describing a property of Cd(n).
We will say that the event holds asymptotically almost surely (abbreviated a.a.s.),
if limn→∞ Pp[Gn] = 1.
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1.2. Background

Bernoulli bond percolation. In Bernoulli bond percolation on Zd , the edges of Zd

are open (respectively closed) with probability p (respectively 1−p) independent-
ly. The corresponding product measure on the configurations of edges is denoted
by Pp or just P. Let C(v) be the (open) cluster of v. In other words, C(v) is the
maximal connected component of open edges in Zd containing v.

We write

θv(p) = Pp

{C(v) is infinite
}
.

Since Zd is transitive, we may write θ(p) for θv(p). If C(v) is infinite for some v,
we say that percolation occurs. We refer the reader to [7] for more background.

A particular property of super-critical percolation that we use below is the fol-
lowing

Proposition 1.2. If p > pc(Zd) then there exists p′ = p′(p, d) > 0 such that
a.a.s. the number of open edges in Cd(n) is at least p′d(2n + 1)d . Moreover, there
exists a constant c > 0 s.t. a.a.s. Cd(n) ∩ Bd(n − c log n) is the intersection of the
infinite percolation cluster with Bd(n − c log n).

Proof. Let θe(p) be the probability that an edge e belongs to the infinite cluster
(clearly the definition does not depend on the specific edge e). It is clear that since
θ(p) > 0 so does θe(p) > 0. Consider Bd(n) as a subgraph of Zd . By ergodicity
it follows that a.a.s. there are at least 0.5θe(p)d(2n + 1)d edges in Bd(n) which
belong to the infinite percolation cluster. By [2] it follows that there exists some
constant c > 0 such that a.a.s. if two edges e1, e2 ∈ Bd(n − c log n) belong to the
infinite percolation cluster, then they are connected inside Bd(n).

It remains to be shown that in Bd(n) there is at most one connected component
of size larger than 0.5θe(p)d(2n + 1)d . This follows from the fact (see e.g. [7])
that when p > pc the probability that a vertex v which is not in the infinite cluster
belongs to a connected cluster of size larger than k is bounded by exp(−αk(d−1)/d)

for some α > 0. �	

Mixing and relaxation times; Cheeger constant. We follow [1] for basic no-
tations and definitions. Consider the random walk on the graph G = (V , E) with
transition kernel (1) as a reversible markov chain. Note that π , the stationary dis-
tribution for the chain, satisfies

π(x) = deg(x)
∑

y∈Cd
n deg(y)

. (4)

where deg(y) is the degree of y in G. Similarly, the probability of an edge e, denot-
ed by Q(e), is uniform for all edges of G. For two sets A and B write Q(A, B) =∑

e=(x,y),x∈A,y∈B Q(e). Let the eigenvalues of Q (1) be 0 = λ1 > λ2 ≥ · · · . We
let the spectral gap of the random walk on G be −λ2, and the relaxation time of
the random walk be τ2 = −λ−1

2 .
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For two distribution measures µ and ν on the same discrete space. The total-
variation distance, dV (µ, ν), between µ and ν is defined as

dV (µ, ν) = 1

2

∑

x

|µ(x) − ν(x)| = sup
A

|µ(A) − ν(A)|.

Consider again the random walk on G. Denote by πt
x the distribution measure of

the walk started at x at time t . The mixing time of the random walk, τ1, is defined
as

τ1 = inf{t : sup
x,y

dV (πt
x, π

t
y) ≤ e−1}.

Usually it is harder to estimate τ1 than it is to estimate τ2. However, in general,
the following relation holds:

τ2 ≤ τ1 ≤ τ2

(

1 + 1

2
log

1

minx π(x)

)

(5)

(see e.g. [1] Lemma 23).
A geometric tool which is used in order to bound relaxation times is Cheeger

inequality. For a set A we define its conductance as

ϕA = Q(A, Ac)

π(A)π(Ac)
. (6)

Let ϕ be the Cheeger constant:

ϕ = inf
A

ϕA = inf
A:0<π(A)≤1/2

ϕA. (7)

Cheeger inequality states that

τ2 ≤ 8ϕ−2. (8)

(see e.g. [1] Theorem 40).
In [9], Lovàsz and Kannan introduced the following variant of the Cheeger

constant. For 0 < x ≤ 1/2, let

ϕ(x) = inf
A:0<π(A)≤x

ϕA. (9)

Then it is shown in [9] (see [10] where the formula in [9] is corrected to include
the second term) that:

τ1 ≤ 32
∫ 1/2

mini πi

1

xϕ2(x)
+ 8

ϕ
. (10)
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2. Mixing times

2.1. Lower bounds

We start by proving the upper bound on the Cheeger constant and the lower bound
on the mixing time.

Lemma 2.1. For all d ≥ 2 and p > pc(Zd) there exists a constant c = c(p, d) >

0 such that a.a.s. it holds for Cd(n) that if x satisfies minv π(v) ≤ x ≤ 1/2, then

ϕ(x) <
c

nx1/d
. (11)

Proof. By Proposition 1.2. there exists p′(p) such that a.a.s. there are at least
p′d(2n+1)d edges belonging toCd(n).We will prove that (11) holds for minv π(v) ≤
x ≤ q, for some constant q. By the monotonicity of ϕ in x, it then follows that by
increasing the value of c, (11) holds for all minv π(v) ≤ x ≤ 1/2. Let r be such
for all k < n/r + 1 it is possible to cover at least a (1 − p′/2) fraction of the edges
of Bd(n) by disjoint translations of Bd(k). Let k < n/r + 1. It is clear that at least
one of the translations v + Bd(k) satisfies

2

p′

(
2k + 1

2n + 1

)d

≥ π(Bd(k) + v) ≥ p′

2

(
2k + 1

2n + 1

)d

.

(the inequality on the left is satisfied by all translations).
On the other hand, since in Zd there are 2d(2k + 1)d−1 edges going out of

v + Bd(k),

Q(v + Bd(k), Cd(n) \ v + Bd(k)) ≤ 2d(2k + 1)d−1

p′d(2n + 1)d
= 2(2k + 1)d−1

p′(2n + 1)d
.

It therefore follows that

ϕv+Bd(k) ≤ 8

p′2(2k + 1)
≤ c

nπ1/d(v + Bd(k))

for some constants c. Choosing k to be the maximal such that

x ≥ 2

p′

(
2k + 1

2n + 1

)d

we obtain the required result (taking q = p′r−d/4). �	
In order to prove the lower bound on the mixing time, we will use the following

lemma. Let π be the stationary distribution for the simple random walk on the graph
G (see (4)). Let f : V → R be a function. We write π [f ] = ∑

v∈V π(v)f (v) for
the expected value of f with respect to π .

Lemma 2.2. Let G = (V , E) be a finite graph. For each v ∈ V , let Dv : V → R

be defined by Dv(x) = D(v, x) where D is the graph metric distance. Then

τ2 ≥ max
v

(
π [D2

v ] − π2[Dv]
)

.
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Proof. Take Dv as a test function in the extremal characterization of τ2 (see e.g.
[1]):

τ2 = sup

{
π [g2] − π2[g]

E(g, g)
: E(g, g) �= 0

}

,

where E is the Dirichlet form:

E(g, g) = 1

2

∑

u

∑

w �=u

π [u]Qu,w(g(u) − g(w))2,

and note that if Qu,w �= 0, then Dv(u) − Dv(w) ∈ {−1, 0, 1}. �	
Lemma 2.3. For alld ≥ 2, there exists a constant c > 0 such that limn→∞ Pp[τ1 ≥
cn2] = 1.

Proof. Without loss of generality assume that 0 belong to the largest open cluster
inside Bd(n). From [2] it follows that there exist a > 0, b > 0 such that a.a.s. if
x, y ∈ Bd(n − b log n) ∩ Cd(n), then D(x, y) ≤ a|x − y|1.

From proposition 1.2 it follows that a.a.s. there are at least c′nd vertices x with
|x|1 ≤ n/4a and at least c′nd vertices with (1−1/(8a))n ≥ |x|1 ≥ (1−1/(4a))n for
some constant c > 0. Therefore, there are at least c′nd vertices x with D0(x) ≤ n/4
and at least c′nd vertices with D0(x) ≥ 3n/4.

Applying lemma 2.2 with the function D0 it follows that a.a.s. τ2 ≥ cn2 for
some constant c > 0. Using the lower bound (5) on τ1 in terms of τ2 we achieve
the desired conclusion. �	

2.2. Bootstrap

In this subsection we show how Theorem 2.4 below implies the upper bound in
Theorem 1.1. The proof of Theorem 2.4 is given in the following subsections.

Theorem 2.4. For all d ≥ 2, and all p > pc(Zd), there exist constants c1 =
c1(d, p) > 0 and c2 = c2(d, p) > 0 such that Cd(n) satisfies a.a.s. that for sets A

such that A and Ac are connected and 1
2 ≥ π(A) ≥ c1 log

d
d−1 n

nd ,

ϕA ≥ c2

nπ1/d(A)
. (12)

We will also utilize the following lemma which has the same proof as Lemma
36 of [1].

Lemma 2.5. For all x, the minimum in (9) is obtained for a set A such that A is
connected. The minimum at (7) is obtained for a set A such that A and Ac are
connected.

For x, there exists a set A for which the value ϕ(x) is obtained and such that
A is connected. However, it may be the case that the complement of the set is not
connected. We bootstrap in the lemma below in order to prove that the estimates in
Theorem 2.4 suffice for our purposes.
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Lemma 2.6. For all d ≥ 2, and all p > pc(Zd), there exist constants c1 =
c1(d, p) > 0 and c2 = c2(d, p) > 0 such that Cd(n) satisfies a.a.s. that for all

1
2 ≥ x ≥ c1 log

d
d−1 n

nd ,

ϕ(x) ≥ c2

nx1/d
. (13)

Proof. By Lemma 2.5 the claim holds for x = 1/2. Thus by the monotonicity of
ϕ in x it follows that for any constant q > 0 by increasing the value of c2, we
obtain that a.a.s. (13) holds for all q ≤ x ≤ 1/2. We will therefore prove that

(13) holds a.a.s. for all q ≥ x ≥ c1 log
d

d−1 n

nd , where q is determined below. Assume
that A is a set for which ϕ(x) = ϕA. By Lemma 2.5 we may assume that the set
A is connected. If Cd(n)\A is connected, we are done, so we assume the con-
trary. Note that by Lemma 2.1 a.a.s. ϕA ≤ c′

nx1/d for some constant c′. In particular

Q(A, Cd(n)\A) ≤ c′x1−1/d

n
. By the assumption that Cd(n)\A is not connected we

may write Cd(n)\A as the union of disconnected components A1, . . . , Ar , where
r ≥ 2. Let i be the index for which π(Ai) is maximized. Without loss of gener-
ality we may assume that π(Ai) ≤ 1/2 (otherwise repeat the argument below for
Cd(n)\A).

Claim 2.7.

π(Ai) ≥ π(A).

Proof. Assume the contrary and that q ≤ 1/4. Note that by Lemma 2.5 a set
for which the value of ϕ is obtained is connected and has a connected comple-
ment. In particular, for some constant c′′, a.a.s. ϕ ≥ c′′/n. By the assumptions
that π(A) ≤ 1/4, and that π(Ai) < π(A) for all i, we may find a sub-collection
I ⊂ {1, . . . , r} such that if B = A ∪I Ai , then 3/4 > π(B) > 1/4. Note that
Q(B, Cd(n)\B) ≤ Q(A, Cd(n)\A). This implies that

c′′

n
≤ ϕ ≤ ϕB ≤ 8Q(A, Cd(n)\A) ≤ 8c′

n
x1−1/d ≤ 8c′

n
q1−1/d .

Thus, when q is sufficiently small, we obtain a contradiction and the proof
follows. �	
Proof of Lemma 2.6 continued. Recall that i is the index for which π(Ai) is max-
imized and let A′ be the (π ) smallest set among Ai and Cd(n)\Ai , so that π(A′) ≤
1/2. Note that A′ is connected, and has a connected complement. Moreover by claim
2.7 1 − π(A) ≥ π(A′) ≥ π(A). It follows by Theorem 2.4 that ϕA′ ≥ c2

nπ1/d (A′) .
However, this implies that

Q(A, Cd(n)\A) ≥ Q(A′, Cd(n)\A′) ≥ c2
π1−1/d(A′)(1 − π(A′))

n

≥ c2
π1−1/d(A)(1 − π(A))

n

and we obtain that



On the mixing time of a simple random walk 415

ϕA ≥ c2

nx1/d
,

as needed. �	
Proof of the upper bound in theorem 1.1. We assume that (13) holds. If the set A

satisfies π(A) ≤ c1 log
d

d−1 n

nd , then since Cd(n) is connected it follows that Q(A, Ac)

≥ 1/(2dnd) and therefore

ϕA ≥ Q(A, Ac)

π(A)
≥ 1

2dc1 log
d

d−1 n
. (14)

Since by Lemma 2.5 the set A which achieves the minimum at the definition of the
Cheeger constant (7) is connected, we obtain by (14) and (12) that

lim
n→∞ Pp[ϕ ≥ 21/dc2

n
] = 1.

Moreover, by (14) and (13) we obtain that a.a.s. for all 1
2 ≥ x ≥ c1 log

d
d−1 n

nd ,

ϕ(x) ≥ min{ 1

2dc1 log
d

d−1 n
,

c2

nx1/d
}.

Thus, by (10), we see that a.a.s.

∫ 1
2

minv π(v)

1

tϕ2(t)
dt ≤

∫ 1
2

1
2dnd

4d2c2
1 log

2d
d−1 n

t
dt +

∫ 1
2

0

n2

c2
2t

1−2/d
dt ≤ C′n2,

for C′ = C′(d, p), and therefore a.a.s.

τ1 ≤ 32
∫ 1

2

minv π(v)

1

tϕ2(t)
dt + 8

ϕ
≤ 32C′n2 + 8n

21/dc2
≤ Cn2,

for some constant C = C(d, p) as needed. �	

2.3. Upper bound for d = 2

In this subsection we present a short proof of Theorem 2.4 in the planar (d = 2)
case. An independent proof for general d ≥ 2 is given in Subsections 2.4 and 2.5
below.

The main tool in the proof will be the following large deviation result by Kesten
[8]:

Lemma 2.8. Consider i.i.d. percolation {X(e)} on the edges of Z2 where

Pp[X(e) = 0] = 1 − Pp[X(e) = 1] = p < 1/2 (= pc(Z2)).
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For two point x and y, let D(x, y) be their distance in the first passage percolation
model:

D(x, y) = min{
k∑

i=1

X(ei) : e1, . . . , ek is a path connecting x to y}.

Then, there exist constants a > 0 and b > 0 such that for all points x and y,

Pp[D(x, y) ≤ a|x − y|1] ≤ exp(−b|x − y|1),
where |(x1, y1) − (x2, y2)|1 = |x1 − x2| + |y1 − y2|.
Proof of theorem 2.4, d = 2. We will use the following dual first-passage percola-
tion model. Take Z2 and draw the dual lattice Z2∗. Each edge e of Z2 crosses a unique
edge e∗ of Z2∗. If the edge e is closed, set X(e∗) = 0; otherwise, set X(e∗) = 1.
Note that Pp[X(e∗) = 0] = 1 − p < 1/2 and we may therefore apply Lemma
2.8 to {X(e∗)}. In particular, we obtain that if c′ is large, then a.a.s. for all pairs of
points x∗ and y∗ in the dual of C2(n) such that |x∗ − y∗|1 ≥ c′ log n, we have,

D(x∗, y∗) ≥ a|x∗ − y∗|1. (15)

Let A be a connected set in C2(n) such that 1/2 ≥ t = π(A) ≥ c1 log2 n

n2 and such

that C2(n)\A is connected. B2(n)\A is the union of (Z2) disconnected components
A1, . . . , Ar where C2(n)\A ⊂ Ar . Let A′ = A∪∪r−1

i=1Ai . Then A′ and B2(n)\A′ are
both connected. Moreover by Proposition 1.2 a.a.s. both A′ and B2(n)\A′ contain
at least qtn2 vertices for some constant q.

Let γ be the boundary of A′ in B2(n). In other words, γ consists of all the edges
(x, y) such that x ∈ A′, y /∈ A′. We let γ ∗ be the path which is obtained by taking
the dual edges of the edges of γ . Since both A′ and B2(n)\A′ are connected, γ ∗ is
connected.

A set of l1 diameter g in Z2 contains at most (2g + 1)2 points. Therefore A′ has
l1 diameter at least cI

√
qtn for some constant cI > 0. In other words, there exist

two point x∗ and y∗ on γ ∗ such that |x∗ − y∗|1 ≥ cI
√

qtn. Let |γ ∗| be the number
of edges e on γ ∗ for which X(e) = 1. Taking c1 sufficiently large it follows by (15)
that a.a.s. |γ ∗| ≥ acI

√
qtn. Since 10n2Q(A, C2(n)\A) ≥ |γ ∗|, we obtain that

ϕA ≥ acI
√

qt

10nt (1 − t)
≥ c2√

tn
,

for some constant c2 = c2(d, p) > 0 as needed. �	

2.4. Upper bound for d ≥ 2 and p close to 1

We now prove the theorem for d ≥ 2 assuming that p is close to 1. For two vertices
v and w in Bd(n), a cutset separating v from w is a set B of edges of Bd(n) such
that any path in Bd(n) which connects v to w intersects B at least in one edge. A
minimal cutset separating v from w, is a cutset which has no proper subset which
is also a cutset separating v from w.

The following fact is probably well known. We refer the reader to Babson and
Benjamini [3] for a proof (in a more general setting).
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Lemma 2.9. For v, w ∈ Bd(n) the number of minimal cutsets of size m separating
v from w is bounded by c(d)m for some constant c(d).

Proof of Theorem 2.4, d ≥ 2 and p close to 1. By Proposition 1.2 a.a.s. theπ mea-
sure of a subset A ⊂ Cd(n) is up to constant the same as the number of vertices in
the set divided by (2n+ 1)d . Therefore, in order to show that (12) holds, it suffices
to show that there exist constants ĉ > 0 and ĉ1 > 0 such that a.a.s. all connected
sets A ⊂ Cd(n) such that Cd(n)\A is also connected and such that the size of |A|
is at least ĉ1 log

d
d−1 n and at most |Cd(n)|/2, satisfy that the number of open edges

going from A to Cd(n)\A is at least ĉ|A| d−1
d .

For such a set A, the set Bd(n)\A is a union of disconnected components
A1, . . . , Ar where Cd(n)\A ⊂ Ar . Fix a point v ∈ A and w ∈ Ar and look at the
set B of edges connecting A to Ar (= the set of edges connecting A∪∪r−1

i=1Ai to Ar ).
This is a minimal cutset of edges separating v from w. Moreover, since |Ar | ≥ |A|,
it follows by the isoperimetric inequality [4] that |B| ≥ cI |A| d−1

d ≥ cI ĉ
d−1
d

1 log n

for some constant cI .
It follows that in order to prove the theorem, it suffices to show that there exist

constants c1 > 0, c2 > 0 such that for all minimal cut-sets |B| of size at least
c1 log n, the number of open edges in |B| is at least c2|B|. We denote by B̃ the
subset of open edges of set B.

We will use a first moment argument. Applying large deviation estimates, we
see that if c2 > 0 is sufficiently small, and p < 1 is sufficiently large, then
Pp[|B̃| ≤ c2|B|] ≤ (c(d) + 1)−|B|.

Summing up, and using Lemma 2.9 we see that the probability that there exists
any cut-set B with |B̃| ≤ c2|B| and |B| ≥ c1 log n is bounded by

(2n + 1)2d
∑

s≥c1 log n

c(d)s(c(d) + 1)−s = o(1),

provided that c1 is sufficiently large. �	

2.5. Upper bound for d ≥ 2 and p > pc(Zd)

The proof uses renormalization and the result for p close to 1. The renormalization
will produce site percolation with high density of “good” sites. We will need the
following fact

Proposition 2.10. There exists constants p∗ < 1, a > 0 and c > 0 such that a.a.s.
for site percolation with parameter p > p∗ all connected sets A in Bd(n) of size
at least c log n have at least a|A| open sites.

Proof. It is well known that the number of connected sets of size m containing
a specified vertex v is bounded by c(d)m for some constant c(d). If p∗ < 1 is
sufficiently large, and a > 0 is sufficiently small, then for each set A, the number
of open sites in A denoted |Ã| satisfies

Pp[|Ã| ≤ a|A|] ≤ (c(d) + 1)−|A|.
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Summing over all sets, we see that the probability that there exists any connected
set of size greater than c log n for which |Ã| < a|A| is bounded by

(2n + 1)d
∑

s≥c log n

c(d)s(c(d) + 1)−s = o(1),

provided that c is sufficiently large. �	
We have proved Theorem 2.4 and therefore Lemma 2.6 for large p < 1. An

analogous proof implies the analogous result for site percolation for large p < 1.
For convenience we state this result below:

Lemma 2.11. For all d ≥ 2, there exists p∗ < 1 such that for p > p∗, there
exist constants c1 = c1(d, p) > 0 and c2 = c2(d, p) > 0 such that a.a.s. site

percolation with parameter p on Bd(n) satisfies for all 1
2 ≥ x ≥ c1 log

d
d−1 n

nd that

ϕ(x) ≥ c2

nx1/d
. (16)

Proof of Theorem 2.4 p > pc(Zd)

For v ∈ Zd , we let

QN(v) = v + Bd(N) = {w : |w − v|∞ ≤ N}.
We will slightly abuse the notation by writing QN(v) for the induced subgraph on
QN(v). We call v ∈ (NZ)d a good vertex if the following conditions hold:

• There exists an open cluster which intersects all d − 1 dimensional faces of the
box Q5N/4(v).

• All connected components of diameter more than N/10 inside the box Q5N/4(v)

intersect the above cluster.

By standard renormalization results (see Proposition 2.1 in Antal and Pisztora [2])
it follows that for any p > pc(Zd), the set of good vertices stochastically dominates
site percolation with parameter p∗(N) on (NZ)d , with limN→∞ p∗(N) = 1.

We take a connected set A in Cd(n) such that both A and Cd(n)\A are connected

and such that C log
d

d−1 n ≤ |A| ≤ |Cd(n)\A|. We will show that a.a.s. the number

of open edges between A and Cd(n) is at least c|A| d−1
d , where c and C are positive

constants to be determined later. We will thus obtain the required result.
We let A′ = {v ∈ (NZ)d : |Q5N/4(v)∩A| ≥ N/10}. Since A is connected, A′

is a connected set in (NZ)d . Moreover, it is clear that |A|/(2N)d ≤ |A′| ≤ |A|. Let
Ag be the set of good sites in A′. By Proposition 2.10 when p∗(N) is sufficiently
large, a.a.s. |Ag| ≥ a|A′| ≥ a

(2N)d
|A|.

It now follows by Lemma 2.11 that if C is sufficiently large, then a.a.s. there are

at least c′′|Ag| d−1
d ≥ c′|A| d−1

d pairs of good neighbors u and w such that u ∈ Ag

and w /∈ Ag , where c′ > 0.
We note that each such pair defines an open edge going from A ∩ QN(u) to

(Cd(n)\A) ∩ QN(w). Moreover each such edge is defined by at most 4d2 pairs

(u, w). It now follows that a.a.s. the edge boundary of A is of size at least c′
4d2 |A| d−1

d

as needed. �	



On the mixing time of a simple random walk 419

3. Further remarks

3.1. Coupling

For simple random graph models it is easy to bound from above the mixing time
by constructing explicit coupling. We give two examples below

1. Let G(n, p) be the random graph model for fixed p. It is easy to see that every

two vertices have at least p2n
2 joint neighbors with probability going to 1 as

n → ∞. Therefore, by coupling we see that supx,y DV (Pt
x , Pt

y) < (1 − p2

2 )t .
So the mixing time is �(1).

2. Consider the following perturbation of B2(n). To each vertex v of the square
attach a pipe of length Xv where Xv are independent random variables taking
the values 0, 1. As noted to us by Amir Dembo, one can use the usual reflecting
coupling on the square B2(n), in order to show that the mixing time is �(n2).
Indeed, let x and y be two vertices and consider random walks starting at x

and y. Always delay one of the walks in order that the two walks make steps in
B2(n) simultaneously. Whenever the two walks make steps in B2(n), use the
usual reflecting coupling. This example can be generalized to any dimension
and the assumption on Xv may be replaced by a weaker moment assumption.
In a previous draft of this paper, we had a more complicated result in the same
spirit.

We think it is an interesting challenge to try a variant of the last argument
showing via a coupling argument that the mixing time on Cd

n is O(n2) for all d.
One approach of implicit construction of such coupling is to use some kind of cen-
tral limit theorem in order to bring the walks closer and closer. Unfortunately the
present form of the CLT on super critical percolation cluster (De Masi et al. (1989)
[6]) provides no estimates on the convergence rate and therefore no bound on the
coupling time of Cd(n).

3.2. Final comments

1. In this note p > pc(Zd), is fixed, what is the dependence on p of the mixing
time? What is the mixing times on the critical cluster?

2. One can consider the mixing time of random walks on percolation clusters on
other graphs. With Nick Wormald (in preparation), it is shown that the mixing
time for simple random walk on G(n, c/n), c > 1 is poly-logarithmic in n.

Acknowledgement. Thanks to Oded Schramm and Prasad Tetali for helpful discussions and
to the anonymous referee for helpful suggestions.
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