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Abstract. We show that fractional Brownian motions with index in (0, 1] satisfy a re-
markable property: their squares are infinitely divisible. We also prove that a large class of
Gaussian processes are sharing this property. This property then allows the construction of
two-parameters families of processes having the additivity property of the squared Bessel
processes.

1. Introduction

The question of the infinite divisibility of squared Gaussian processes was first
raised by Lévy (1948) who conjectured that for any Gaussian vector of dimension
2 (X, Y ), the distribution of (X2, Y 2)was not infinitely divisible.Vere-Jones (1967)
proved that this conjecture was false and that actually this distribution is always
infinitely divisible. Later Griffiths (1970), Evans (1991) have shown examples of
p-dimensional Gaussian vectors for p ≥ 3, such that the corresponding vector of
the squares is not infinitely divisible. Then Griffiths (1984) (see also Bapat (1989))
established a characterization of the p-dimensional Gaussian vectors such that the
vector of the squares is infinitely divisible. Except for special examples, his crite-
rion is difficult to use since it requires the computation of all the cofactors of the
covariance matrix. In particular, till now the condition of Griffiths could not be
checked for fractional Brownian motions and p ≥ 3.

Here we solve this problem by showing that a squared fractional Brownian
motion with an index β is infinitely divisible if and only if β is in (0, 1]. This is
done in Section 2.

More generally, in Section 3, we show that the condition of Griffiths is satisfied
by a large class of Gaussian processes. These Gaussian processes are characterized
by the fact that their covariance is equal to the Green function of a transient Markov
process. We actually show that if the Green function of a transient Markov process
is symmetric, then it is the covariance of a Gaussian process with an infinitely
divisible square.
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We are then able to answer a question which is deeply connected to the property
of infinite divisibility. Indeed, Shiga and Watanabe (1973) characterized all the
two-parameters families of real-valued Markov processes (Yd,x)d,x≥0 indexed by
the same set, satisfying

Yd,b + Yd ′,b′
(law)= Yd+d ′,b+b′ (A)

for independent processes Yd,b and Yd ′,b′ .
A well-known example is given by the family of the squared Bessel processes.

The property (A) is called the additivity property. Here, we ask the following
question: is there a two-parameters family (Yd,x)d,x≥0 of non-Markovian processes
satisfying (A)?

We note that a squared Bessel process of dimension 1, is a squared Brown-
ian motion. In Section 4, we show that similarly to Brownian motion, a Gaussian
process with an infinitely divisible square can generate a two-parameter family of
processes satisfying (A). The obtained processes are Markovian if and only if the
corresponding Gaussian process is itself Markovian.

The connection, described in Section 2 and 3, between Gaussian processes and
Markov processes via their symmetric Green function has often been used to obtain
from the Gaussian process informations on the Markov process (see for example
Marcus and Rosen (1992), (1996) or Bass et al. (2000)). Here we see that it can
also be efficient as a tool to solve questions about Gaussian processes. In Section 5,
we show how to connect a Gaussian process to a Markov process with a non-sym-
metric Green function. The arguments developed in the previous sections are not, a
priori, available for this class of Gaussian processes. Nevertheless, we suspect that
it also should be possible to deduce properties of these Gaussian processes from
the associated Markov processes. To illustrate this idea, we show that Barlow’s
necessary and sufficient condition for the continuity of the local time process of a
Lévy process (Barlow (1988)), can be translated as a condition for the continuity
of a Gaussian process even when the Lévy process is not symmetric.

2. On the infinite divisibility of squared fractional Brownian motion

A fractional Brownian motion is a real-valued centered Gaussian process with a
covariance given by:

g(x, y) = |x|β + |y|β − |x − y|β

where the index β is in (0, 2).

Theorem 2.1. A squared fractional Brownian motion is infinitely divisible if and
only if its index is in (0, 1].

We will prove the above theorem by using the following criterion of Griffiths.
Indeed, in his paper, Griffiths (1984) considers a p-dimensional multivariate expo-
nential distribution with a Laplace transform

ψ(t) = [det(I +GT )]−1
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where t = (ti)1≤i≤p,G is a positive definite p×p-matrix, T is the diagonal matrix
Tii = ti , and I is the p × p-identity matrix.

He obtains the following characterization of the matrices G for which the
Laplace transform ψ is infinitely divisible, i.e. ψδ is a Laplace transform for any
δ > 0.

Theorem (Griffiths 1984). The Laplace transform ψ is infinitely divisible if and
only if for every product of k cofactors, we have

(−1)kGi1i2Gi2i3 . . . Gik−1ikGiki1 ≥ 0

for {i1, . . . , ik} any subset of {1, . . . , p}, k = 3, . . . , p.

The function
√
ψ can be viewed as the Laplace transform of a squared cen-

tered Gaussian vector with a covariance matrix G. Hence Griffiths Theorem also
provides a criterion for the infinite divisibility of squared Gaussian vectors.

Proof of Theorem 2.1. Consider a fractional Brownian motion with an index β in
(0, 1]. Multiplied by an appropriate constant, its covariance function g is then equal
to the Green function of a symmetric stable processX with an index (β + 1) killed
at its first hitting time of 0 (see for example Eisenbaum et al. (2000)).

Let (xi)1≤i≤n be a sequence of distinct real numbers. Let G be the matrix
(g(xi, xj )1≤i,j≤n. To compute the cofactors ofG we introduce the following stop-
ping time

σ = inf{t ≥ 0 : Xt ∈ {x1, x2, . . . , xn}\{X0}}.
The time σ may be infinite in that case the value of Xσ is a cemetery point. Let
(Lxt , x ∈ R, t ≥ 0) be the local time process of X. We set: bij = Exi (L

xj
σ ), and

pij = Pxi (Xσ = xj ). Note that: bij = 0 for i �= j , pii = 0 and
∑n
j=1 pij =

1 − Pxi (σ = ∞). Thanks to the Markov property we have:

g(xi, xj ) = Exi (L
xj∞) = Exi (L

xj
σ )+ Exi (σ < +∞; EXσ (L

xj∞))

= bij +
n∑

k=1

pik g(xk, xj ).

Let B and P be the matrices defined by: B = (bij )1≤i,j≤n and P = (pij )1≤i,j≤n.
The above equation can be written as: G = B + PG. Or equivalently as: B =
(I − P)G. This shows that both (I − P) and G are invertible and that:

G−1 = B−1(I − P)

This implies that the cofactors of G are given by:

Gij =
{

det(G) (bii)−1 if i = j

−det(G) pji (bjj )−1 if i �= j

Once we note that det(G) is positive, the criterion of Griffiths can immediately be
checked and we see that it is satisfied. Hence, a fractional Brownian motion with
index β in (0, 1] has an infinitely divisible square.
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Assume now that β is in (1, 2). This time we use Griffiths criterion for k =
p = 3. Indeed, let (η1, η2, η3) be a centered Gaussian vector of dimension 3 with
a covariance matrix equal to (g(xi, xj )1≤i,j≤3 where x1 = 1, x2 = 2 and x3 = 3.
The necessary and sufficient condition of Griffiths for the infinite divisibility of
(η2

1, η
2
2, η

2
3) becomes:

−Kβ(1, 2, 3)Kβ(1, 3, 2)Kβ(2, 3, 1) ≤ 0

where Kβ(x, y, z) = g(x, y)g(z, z)− g(x, z)g(y, z).
We are going to prove successively that Kβ(1, 3, 2) < 0, Kβ(1, 2, 3) > 0 and

Kβ(2, 3, 1) > 0.
We have: Kβ(1, 3, 2) = 3.2β(3β−1 + 1 − 2β). It is not difficult to see that

the function (3β−1 + 1 − 2β), defined on [1, 2], realises its minimum at a value
β0 ∈ (1, 2), is strictly decreasing on [1, β0) and strictly increasing on (β0, 2]. Since
at 1 and 2, this function takes the value 0, we obtain: Kβ(1, 3, 2) < 0 on (1, 2).

Then we have: Kβ(1, 2, 3) = 2.6β − 9β + (2β − 1)2. We first note that we
can write: Kβ(1, 2, 3) = (2β)2 + (2β − 1)2 − (3β − 2β)2. The function (y2 +
(y− 1)2 − (3β − y)2) is an increasing function of y on R+. Moreover the function
((x + 1)2 + x2 − (2x − 1)2) is a strictly positive function of x on (0, 3). Choosing
x = 3β−1, we obtain: (3β−1 + 1)2 + (3β−1)2 − (3β−1 − (1 − 3β−1))2 > 0. We
use then the previous argument according which: 3β−1 + 1 < 2β , to finally obtain:
(2β)2 + (2β − 1)2 − (3β − 2β)2 > 0.

The third expression is: Kβ(2, 3, 1) = 2β + 4β − 6β + 2.3β − 2. This can
be rewritten as: Kβ(2, 3, 1) = 2[2.22(β−1) − (3β − 2)2β−1 + 3β − 1]. We note
then that the polynomial (2x2 − (3β − 2)x + 3β − 1) has a discreminant equal to:
((3β − 1)2 − 10(3β − 1)+ 1). This discreminant is always negative for β ∈ (1, 2).
and hence Kβ(2, 3, 1) is always strictly positive.

Finally, we have obtain:

−Kβ(1, 2, 3)Kβ(1, 3, 2)Kβ(2, 3, 1) > 0.

Consequently, we have proved that squared fractional Brownian motions with index
in (1, 2) are not infinitely divisible. �	

As an immediate consequence of Theorem 2.1, we know that for β in (1, 2),
the function g can not be interpreted as a Green function. If it was so then the
arguments used for the case β ∈ (0, 1] would hold and the corresponding squared
fractional Brownian motion would be infinitely divisible.

3. A class of Gaussian processes with infinitely divisible squares

Here is a way to associate a Gaussian process with a not necessarily symmetric Mar-
kov process. Consider a transient Markov processX with a state spaceE admitting
a local time process (Lxt , x ∈ E, t ≥ 0). For any (x, y) ∈ E2, we have:

Ex(L
y
∞) < +∞

We set: g(x, y) = Ex(L
y
∞). The function g is called the Green function of X.
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Theorem 3.1. If the Green function of a transient Markov process is symmetric
then it is definite positive.

Proof. We will make use of the following property. Let a, x, y be three elements
of E, we have then:

Ea(L
x
∞L

y
∞) = g(a, x)g(x, y)+ g(a, y)g(y, x) (1)

This identity can be easily established by a direct computation, but it can also
be seen as a simple consequence of the Feynman-Kac Formula (see for example
Rogers and Williams (1994) section III.19).

Let a be an element of the state space. Assume that a is such that g(a, a) > 0.
We define the following h-transform of X.

Pa|Ft
= g(Xt , a)

g(a, a)
Pa|Ft

where Ft denotes the field generated by (Xs, 0 ≤ s ≤ t). Under Pa , the process
X starts at a and is killed at its last visit to a. Since this h-transform of X is still a
homogenous Markov process, we can use (1) to obtain:

Ea(L
x
∞L

y
∞) = g(a, x)g(x, y)+ g(a, y)g(y, x)

where g is the Green function of X under Pa . Since we have:

g(x, y) = g(x, y)
g(y, a)

g(x, a)

we obtain:

Ea(L
x
∞L

y
∞) = g(a, x)g(y, a)

g(a, a)
g(x, y)+ g(a, y)g(x, a)

g(a, a)
g(y, x) (2)

Assume now that the function g is symmetric. Let (ai)1≤i≤n be a sequence of R

and (xi)1≤i≤n a sequence of E. We set: f (xi) = ai
g(a,xi )

1{g(a,xi )}>0. We have then
thanks to (2):

∑

i,j

aiaj g(xi, xj ) = g(a, a)

2
Ea[(

∑

i

f (xi)L
xi∞)

2]

Consequently, g is definite positive. �	
Thanks to Theorem 3.1, we know that a symmetric Green function can be in-

terpreted as a covariance function. We can then use the proof of Theorem 2.1 to
obtain similarly the following theorem.

Theorem 3.2. Let X be a transient Markov process with a symmetric Green func-
tion g. Let η be a centered Gaussian process with a covariance equal to g. Then
η2 is infinitely divisible.
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4. Two-parameters families with additivity properties

Let (Yd,b)d,b≥0 be a family of random processes indexed by the same set E, and
satisfying the following additivity property

Yd,b + Yd ′,b′
(law)= Yd+d ′,b+b′ (A)

for independent processes Yd,b and Yd ′,b′ .
As an immediate consequence of the property (A), for any (d, b), the process

Yd,b is infinitely divisible. At this level, Shiga and Watanabe (1973) made use of
the Lévy-Khintchine formula for each marginal and assumed that each Yd,b was
a Markov process indexed by R+. In order to show other families satisfying (A),
we would like to obtain a family (Yd,b)d,b≥0 such that Y1,0 is a squared centered
Gaussian process.

Let (ηx)x∈E be a centered Gaussian process indexed by a topological space
E. We denote by o a fixed element of E. Assume we know that η2 is infinitely
divisible and that ηo = 0, we set then: Y1,0 = η2. If we exclude the trivial solution:
Y1,b = η2 + b, the right candidate for being Y1,b becomes (η + √

b)2. Hence
a natural question arises: Is the process (η + r)2 also infinitely divisible for any
real number r? There is no known criterion for this last property, but we have the
following lemma.

Lemma 4.1. Let (ηx)x∈E be a centered Gaussian process such that ηo = 0. We
have then:

(i) If (ηx+r)2x∈E is infinitely divisible for any real number r then for any b > 0,
there exists a process (Zb(x))x∈E independent of (ηx)x∈E such thatZb(o) = b and
for any finite subset F of E

(Zb(x)+ η2
x)x∈F

(law)= (ηx +
√
b)2x∈F (3)

(ii) If (ηx)x∈E is infinitely divisible and for any b > 0 there exists a process
(Zb(x))x∈E satisfying (3), then (ηx + √

b)2x∈E is infinitely divisible.

Proof. The proof relies on the well-known expression of the Laplace transform
of (ηx + r)2x∈F . Indeed, let x = (xi)1≤i≤n be a sequence of elements of E and
α = (αi)1≤i≤n a sequence of positive real numbers. There exist then two constants
c(α, x) and f (α, x) such that for any real r:

E(exp{−
n∑

i=1

αi
(ηxi + r)2

2
}) = c(α, x)exp{− r

2

2
f (α, x)} (4)

By the assumption of (i), we know that for anyn ∈ N
∗ the expression [c(α, x)]1/nexp

{− r2

2 f (α, x)} is still a Laplace transform in α. On the other hand, exp{− r2

2 f (α, x)}
is a continuous function of α. Consequently, when n tends to ∞ in the above ex-
pression, the limit exp{− r2

2 f (α, x)} appears as a Laplace transform in α. This
proves (i).

The sum of two independent infinitely divisible variables being infinitely divis-
ible, the proof of (ii) is immediate. �	
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Assume now that (ηx)x∈E is a centered Gaussian process with an infinitely
divisible square and such that for any b > 0 there exists a process Zb satisfying
(3). Then we can set: Y1,b = (η + √

b)2 and Y0,b = Zb. Moreover since for any
r (η + r)2 is infinitely divisible, then for any d > 0 and any b ≥ 0, there exists a
process Yd,b such that for any sequence of positive numbers (α1, α2, . . . , αn) and
any sequence of E(x1, x2, . . . , xn):

E(exp{−
n∑

i=1

αiYd,b(xi)}) = [c(α, x)]dexp{−b
2
f (α, x)}

Setting: Y0,0 = 0, we immediately check that the family (Yd,b)d,b≥0 satisfies the
additivity property (A).

The problem becomes now to find a Gaussian process η satisfying these assump-
tions. The following theorem provides a large class of such Gaussian processes.

Theorem 4.2. LetX be a recurrent Markov process with a state space E. Let o be
an element of E. Assume that the Green function ofX killed at the first hitting time
of the value o is symmetric. Let (ηx)x∈E be a centered Gaussian process with a co-
variance equal to this Green function. Then for any real r , the process (ηx + r)2x∈E
is infinitely divisible. Morover there exists a two-parameter family (Yδ,b)δ,b≥0 of
processes indexed by E such that Y1,b = (η + √

b)2 and satisfying the additivity
property (A).

Proof. Thanks to Section 3, we know that there exists a centered Gaussian process
ηwith a covariance equal to the Green function ofX killed at o and that its square is
infinitely divisible. We use then a Ray-Knight Theorem established in Eisenbaum
et al. (2000). Indeed, let (Lxt , x ∈ E, t ≥ 0) be the local time process of X, then
setting for any r > 0, τr = inf{t ≥ 0 : Lot > r}, we have

(Lxτr + η2
x

2
)x∈E

(law)= = (
(ηx + √

2r)2

2
)x∈E. (5)

Actually, this last identity has been established in Eisenbaum et al. (2000) for
strongly symmetric Markov processes. But assuming the symmetry of the Green
function is clearly sufficient to establish (5) since once the existence of η is estab-
lished, the proof relies on the Feynman Kac’s Formula.

Thanks to Lemma 4.1 and the previous remark, Theorem 4.2 is immediately
obtained. �	
Example. Let η be a fractional Brownian motion with an index β in (0, 1]. Then
we know, thanks to Theorem 4.2, that the process (η + r)2 is infinitly divisible
for any real r . Moreover there exists a family (Yd,b)d,b≥0 satisfying (A) such that
Y1,b = (η + √

b)2.

What is the link between Shiga and Watanabe’s families and those provided by
Theorem 4.3?

The intersection of the two types of families is not empty and corresponds to
the case when the process η2 is Markovian. This is exactly the case when X is a
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diffusion. If X is a Brownian motion, then η is also a Brownian motion and the
obtained family represents the squared Bessel processes. For a general diffusion,
the corresponding family is obtained by multiplying the squared Bessel processes
by a deterministic function, and making a deterministic time change.

But when X does not have continuous paths, the process (Lxτr , x ∈ E) is not
Markovian, neither the process η2. Consequently the corresponding family
(Yd,b)d,b≥0 is not a Shiga and Watanabe’s family.

5. Gaussian processes associated to non-symmetric Green functions

To enlarge the class of Gaussian processes connected to Markov processes, we have
the following theorem.

Theorem 5.1. Let X be a Markov process. Let a be a value of its state space.
Denote by gTa the Green function of X killed at Ta the first hitting time of a. Then
the function (gTa (x, y)+ gTa (y, x))(x,y)∈E2 is definite positive.

Proof. We assume first that X is recurrent. For t > 0, let τt be the stopping time
defined by: τt = inf{s ≥ 0 : Las > t}. Let T be an exponential time independent
of X, with mean θ . Then X killed at τT is still a homogenous Markov process.
Applying identity (1) of the proof of Theorem 3.1, to X killed at τT , we have:

Ea(L
x
τT
LyτT ) = Ea(L

x
τT
)Ex(L

y
τT
)+ Ea(L

y
τT
)Ey(L

x
τT
)

Making use, for example, of the proof of Lemma 12 of Bertoin ((1996), p.145), we
know that: Ea(L

y
τt ) = t , for any y. Hence we obtain:

Ea(L
y
τT
) = E(T )

then:
Ea(L

x
τT
LyτT ) = E(T )

(
Ex(L

y
τT
)+ Ey(L

x
τT
)
)

Consequently:

∑

i,j

aiaj
(
Exi (L

xj
τT )+ Exj (L

xi
τT
)
) = 1

E(T )
Ea(

∑

i

aiL
xi
τT
)2

which shows that the function (Ex(L
y
τT ) + Ey(L

x
τT
))(x,y)∈E2 is definite positive.

Note that we have:
Ex(L

y
τT
) = Ex(L

y
Ta
)+ Ea(L

y
τT
)

hence for any θ > 0, the function (Ex(L
y
Ta
) + Ey(L

x
Ta
) + 2θ)(x,y)∈E2 is definite

positive. By letting θ tend to 0 we finally obtain that (Ex(L
y
Ta
)+ Ey(L

x
Ta
))(x,y)∈E2

is definite positive.
Assume now thatX is transient. We can then associate toX a recurrent Markov

process X̂ as follows. Let (es, s > 0) denote the excursion process of X around a.
LetR(e) be the length of the excursion e. We assume that the Poisson point process
of the finite excursions of X has an infinite life time. Let nf be the restriction to
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the finite excursions of n, the Ito measure ofX. That is, for 0 < t1 < t2 < . . . < tk
and A1, . . . , Ak measurable sets of E

nf (Xt1 ∈ A1, . . . , Xtk ∈ Ak) = n(Xt1 ∈ A1, . . . , Xtk ∈ Ak,R < ∞)

= n(Xt1 ∈ A1, . . . , Xtk ∈ Ak; PXtk
(Ta < ∞))

Then X̂ is a Markov process with a law constructed from the excursion law nf (see
Ito (1970)) and possibly the drift of (τt ) if the time that X spends at a has positive
Lebesgue measure.

Let XTa be the process X killed at Ta . Let (L̂xt , x ∈ E, t ≥ 0) be the local time
process of X̂ and T̂a its first hitting time of a. Note that X̂ killed at its first hitting
time of a coincides with XTa conditionned to die at a, i.e. the h-transform of XTa ,
with h(x) = Px(Ta < ∞). Hence:

Ex(L̂
y

T̂a
) = h(y)

h(x)
gTa (x, y)

But ( 1
h2(x)

L̂xt , x ∈ Et ≥ 0) is also a local time process for X̂. Consequently thanks

to the previous remark, we know that ( gTa (x,y)+gTa (y,x)
h(x)h(y)

, (x, y) ∈ E2) is definite

positive, and so is (gTa (x, y)+ gTa (y, x), (x, y) ∈ E2). �	
Consequently there exists a centered Gaussian process with a covariance equal

to (gTa (x, y) + gTa (y, x), (x, y) ∈ E2). The arguments of the previous sections
are not available for this process but the following remark shows that it is possible
to deduce properties of this Gaussian process from the associated Markov process.

Remark 5.2. Marcus and Rosen have established (1992) an equivalence between
the continuity of the local time process of symmetric Markov processes and the
continuity of associated Gaussian processes. In the particular case of a Lévy pro-
cess, they gave a much simpler proof of this result in Marcus and Rosen (2001). A
carefull reading of this proof reveals that if gT0 is the Green function of a recurrent
symmetric Lévy process X killed at the first hitting time of 0, then X admits con-
tinuous local times if and only if the centered Gaussian process with a covariance
equal to gT0 is continuous. This last remark can also be directly done by using,
under the assumption of symmetry for X, the necessary and sufficient condition of
Barlow (1988) as it has been stated by Bertoin ((1996), p.148).

The next proposition shows that even when X is not symmetric this remark
remains true.

Proposition 5.2. LetX be a recurrent Lévy process and gT0 be the Green function
ofX killed at its first hitting time of 0. Let (ηx)x∈R be a centered Gaussian process
with a covariance given by:

E(ηxηy) = 1

2
(gT0(x, y)+ gT0(y, x)).

The process η is continuous if and only if the local time process of X admits a
continuous version.
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The proof of Proposition 5.2 consists in translating Barlow’s condition in terms
of a Gaussian process. This translation together with Theorem 5.1, allows to suspect
that Proposition 5.2 might have an extension to recurrent non symmetric Markov
processes.

Proposition 5.2 admits a version for the transient Lévy processes. In that case,
the covariance is equal to: 1

2 (gT0(x, y)+ gT0(y, x)+ f (x)f (−y)+ f (−x)f (y))
where f (x) = Px(T0 = ∞).

Proof of Proposition 5.2. Letψ be the Fourier exponent ofX1. Define the function
h on R by:

h(x) = 1

π

∫ ∞

−∞
(1 − cos(ζx))R( 1

ψ(ζ )
)dζ

Denote by h the monotone rearrangement of h. Then the local time process of X
admits a continuous version if and only if

∫

0+
h(u)du

u(log(1/u))1/2
< +∞. (6)

This is Barlow’s necessary and sufficient condition (Barlow (1988)) as it has been
formulated by Bertoin ((1996), p. 148).

In the symmetric case ψ is a real function, and it is known that:
gT0(x, y) = 1

2 (h(x)+h(y)−h(x−y)). Applying then the results of Dudley (1973)
and Fernique (1974) one can claim that (6) is a necessary and sufficient condition
for the continuity of the centered Gaussian process with a covariance equal to gT0 .

Here we are going to prove that in the general case, we have:

gT0(x, y)+ gT0(y, x) = h(x)+ h(y)− h(x − y) (7)

Once we have (7), Proposition 5.2 follows similarly from Dudley and Fernique’s
results.

We set: uα(x, y) = Ex(
∫ ∞

0 e−αtdLyt ), for (Lxt , x ∈ R, t ≥ 0) the local time
process of X. Let T0 be the first hitting time of 0 by X. We have then thanks to the
Markov property:

uα(x, y) = Ex(

∫ T0

0
e−αtdLyt )+ Ex(e

−αT0)E0(

∫ ∞

0
e−αtdLyt )

Setting: uαT0
(x, y) = Ex(

∫ T0
0 e−αtdLyt ), we obtain:

uαT0
(x, y) = uα(x, y)− Ex(e

−αT0)uα(0, y)

SinceX is a Lévy process, we have: uα(x, y) = uα(y−x). Note also that we have:
Ex(e−αT0) = uα(−x)

uα(0) .
Hence , we obtain:

uαT0
(x, y)+ uαT0

(y, x) = (uα(y − x)+ uα(x − y))− uα(−x)
uα(0)

uα(y)

− uα(−y)
uα(0)

uα(x) (8)
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But we have:

uα(0)− uα(−x)
uα(0)

uα(y) = 2uα(0)−uα(−x)−uα(y)− (1− uα(−x)
uα(0)

)(1− uα(y)

uα(0)
)

Consequently, (8) becomes:

uαT0
(x, y) + uαT0

(y, x) = (
uα(x − y)+ uα(y − x)− 2uα(0)

)

+ (2uα(0)− uα(x)− uα(−x))+ (2uα(0)− uα(y)− uα(−y))
− (1 − uα(−x)

uα(0)
)(1 − uα(y)

uα(0)
)− (1 − uα(−y)

uα(0)
)(1 − uα(x)

uα(0)
)

First we note that: limα→0
uα(−x)
uα(0) = limα→0 Ex(e−αT0) = 1. Then in order to

let α tend to 0 in the above equation, we use a consequence of an argument of
Bertoin ((1996) p.144). Indeed, he established that as α tends to 0, the expression
(2uα(0)− uα(x)− uα(−x)) converges to h(x). This gives (7).
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