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Abstract. We consider a random sequence of calls between nodes in a complete network
with link capacities. Each call first tries the direct link. If that link is saturated, then the
‘first-fit dynamic alternative routing algorithm’ sequentially selects up to d random two-link
alternative routes, and assigns the call to the first route with spare capacity on each link, if
there is such a route. The ‘balanced dynamic alternative routing algorithm’ simultaneously
selects d random two-link alternative routes; and the call is accepted on a route minimising
the maximum of the loads on its two links, provided neither of these two links is saturated.

We determine the capacities needed for these algorithms to route calls successfully,
and find that the second ‘balanced’ algorithm requires a much smaller capacity. Our results
strengthen and extend the discrete-time results presented in [10].

1. Introduction

Let us first consider briefly a version of the ‘online load-balancing problem’. Here
there is a set of servers each with the same capacity, and a random sequence of
jobs. Each job may be allocated to any server, and takes up unit capacity. One allo-
cation strategy is as follows: when a job arrives, sequentially select up to d random
servers, and allocate the job to the first server with spare capacity, if there is one.
Another strategy is simultaneously to select d random servers, and allocate the job
to a server with most spare capacity, if there is one. It is well known that the latter
‘balanced allocation’ strategy requires much smaller capacity to allocate most jobs
successfully, see [3, 5, 6, 12].

In this paper, we investigate a related problem in a more complicated setting,
namely the online routing of a random sequence of calls in a network, and find a
similar conclusion. Initial results on this subject were presented in [10]: here we
give strengthened results with full proofs. We naturally build to some extent on
ideas from [10], which itself builds on the work mentioned above on balanced allo-
cations. An earlier version of what follows can be found in [9]. This last reference
also investigates the technical difficulties (involving infinite dimensional spaces) in
the methods used in [10] for analysing the continuous-time model proposed there:
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the continuous-time results stated in [10] should, at least in the meantime, be taken
as merely indicating the way things may work.

The model we consider here is as follows. There are n nodes, each pair of which
may wish to communicate. A call is an unordered pair {u, v} of distinct nodes, that
is an edge of the complete graph Kn on these nodes. For each of the N = (

n
2

)
un-

ordered pairs {u, v} of distinct nodes, there is a direct link, also denoted by {u, v},
with capacity D1 = D1(n). This direct link is used as long as it has available ca-
pacity. There are also two indirect links, denoted by uv and vu, each with capacity
D2 = D2(n). The indirect link uv may be used when for some w a call {u, w} finds
its direct link saturated, and we seek an alternative route via node v. Similarly vu

may be used for alternative routes for calls {v, w} via u.
We are given a sequence of calls x1, x2, . . . , xM one at a time. For each call in

turn, we must choose a route (either a direct link or an alternative two-link route
via an intermediate node) if this is possible, before seeing later calls. These routes
cannot be changed later, and calls do not end. The aim is to minimise the number
of calls that fail to be routed successfully. Thus we are considering a static online
discrete time routing problem.

We assume that the calls are independent random variables X1, X2, . . . , XM ,
where each Xj is uniformly distributed over the edges of Kn. We consider the case
when M = N = (

n
2

)
, so that there is on average one call per edge (see also Section 7

below). Let d be a positive integer (think of d as 2). A general dynamic alterna-
tive routing algorithm GDAR operates as follows. For each call {u, v} in turn, the
call is routed on the direct link if possible; and otherwise d nodes w1, . . . , wd

are selected uniformly at random with replacement from V \ {u, v} and the call
is routed via one of these nodes if possible, along the two corresponding indirect
links. The first-fit dynamic alternative routing algorithm FDAR is the version when
we always choose the first possible alternative route. The balanced dynamic al-
ternative routing algorithm BDAR is the version when we choose an alternative
route which minimises the maximum of the current loads on its two indirect links,
if possible. Implementations of such techniques include the Dynamic Alternative
Routing (DAR) algorithm used by British Telecommunications [7], and AT&T’s
Dynamic Non-Hierarchical Routing (DNHR) algorithm [2].

We state three theorems. The first theorem sets the scene: it concerns the case
when we do not have indirect links with their own capacities. If the direct link
for a call is saturated, then we seek up to d alternative two-link routes as with a
general dynamic alternative routing algorithm GDAR, except that these alternative
routes must also use ‘direct’ links. When d = 0, we simply route along direct links
whenever possible, and never use alternative routes. We use log to mean natural
logarithm, and ‘with high probability’ to mean ‘with probability → 1 as n → ∞’.
Given two sequences of numbers, an and bn, we write an ∼ bn if an/bn → 1 as
n → ∞.

Theorem 1.1. Let α > 0, let each direct link {u, v} have capacity D ∼ α
log n

log log n
,

and suppose that there are no indirect links. Let d be a non-negative integer.
Suppose that each call is routed along its direct link whenever possible, and
otherwise seeks up to d alternative routes.
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(a) If α(d + 1) > 2 then, whatever version of GDAR we use, with high probability
all M calls are successful.

(b) If α(d + 1) < 2, and 0 < δ < 2 − α(d + 1) then, whatever version of GDAR
we use, with high probability at least nδ calls fail.

Thus when we do not have separate indirect links, we need capacity of order
log n/ log log n on the links in order to achieve good communication. We shall
see that when we reserve separate capacity for indirect links, we do much better.
We assume that direct and indirect links have separate capacities D1 and D2 re-
spectively, as discussed earlier. Theorem 1.2 shows roughly that, with the first-fit

dynamic alternative routing algorithm FDAR, we need capacities of order
√

log n
log log n

on the links in order to achieve good communication; and that FDAR is about as
bad as any version of GDAR.

Theorem 1.2. Let α1, α2 > 0, and suppose that Di = Di(n) ∼ αi

√
log n

log log n
for

i = 1, 2. Let d be a positive integer.

(a) If α1α2d > 4 and we use any GDAR algorithm, then with high probability all
M calls are routed successfully.

(b) Let α1α2d < 4, and let 0 < δ < 2 − α1α2d
2 . If we use the FDAR algorithm,

then with high probability at least nδ calls fail.

Theorem 1.3 shows that the balanced method BDAR succeeds with much small-
er capacities. It says that, as long as the capacity D1 on the direct links is of order
log log n, there is a tight threshold value close to log log n/ log d for good com-
munication with BDAR; and that BDAR is as good as any GDAR algorithm. (See
also Section 7 below.) We state the theorem in a precise form. We use log(3) n to
denote log log log n and similarly log(4) n denotes log(log(3) n). The proof is based
on ideas in [4].

Theorem 1.3. Let d ≥ 2 be an integer.

(a) Let D1 = �(log log n). Then there is a constant c such that if D2 = D2(n) ≥
1

log d
(log log n − log(3) n − log(4) n) + c and we use the BDAR algorithm, then

with high probability all M calls are routed successfully.
(b) Let D1 = O(log log n) and let δ > 0. Then there is a constant c such that the

following holds. If D2 ≤ 1
log d

(log log n − log(3) n − log(4) n) − c and we use

any GDAR algorithm, then with high probability at least n2−δ calls fail.

The plan of the paper is as follows. In the next section we present some pre-
liminary general results concerning things like balls and bins. Then there is a brief
section where we introduce some notation. After that we prove Theorem 1.1, then
Theorem 1.2, and then Theorem 1.3. Finally we discuss some related results, in-
cluding one involving a more general network model.

2. Preliminary results

It is convenient for our later proofs to collect together here several stochastic com-
parison results, some of which are ‘folk knowledge’. Let us start with an elemen-
tary inequality concerning the moments of the binomial distribution. For n ∈ N
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and 0 ≤ p ≤ 1, let B(n, p) denote a binomially distributed random variable with
parameters n and p.

Lemma 2.1. Let d be a positive integer, and let Z ∼ B(n, p). Then

E[Zd ] ≤ dd max{np, (np)d}.
Proof. For j = 1, . . . , d let Pj be the set of partitions of {1, . . . , d} into j non-
empty blocks. Then

∑d
j=1 |Pj | is the total number of partitions of {1, . . . , d},

which is at most dd . Given a partition π of {1, . . . , d}, let S(π) denote the set of
d-tuples i = (i1, . . . , id) ∈ {1, . . . , n}d such that is = it if and only if s and t

are in the same block of π . Let X1, . . . , Xn be independent identically distributed
binary random variables, with each Pr(Xi = 1) = p. Let n(j) denote the j -term
product n(n − 1) · · · (n − j + 1). Then

E[Zd ] = E[(
n∑

i=1

Xi)
d ]

=
d∑

j=1

∑

π∈Pj

∑

i∈S(π)

E[
d∏

k=1

Xik ]

=
d∑

j=1

|Pj | n(j)p
j .

Hence

E[Zd ] ≤
d∑

j=1

|Pj | (np)j ≤ dd max{np, (np)d},

as required. ��
The next result may be proved by standard coupling methods. It has previously

been used in related applications – see for instance [3, 12]. We shall use it to deduce
a minor extension, which will be convenient for us later.

Lemma 2.2. Let φ0 ⊆ φ1 ⊆ . . . ⊆ φn be a filter, let Y1, Y2, . . . , Yn be binary
random variables such that each Yt is φt -measurable, and let St = ∑t

i=1 Yi . Let
0 ≤ p ≤ 1 and let k be a positive integer. If Pr(Yt = 1|φt−1) ≤ p for each time
t = 1, . . . , n, then

Pr(Sn ≥ k) ≤ Pr(B(n, p) ≥ k).

Similarly, if Pr(Yt = 1|φt−1) ≥ p for each time t = 1, . . . , n, then

Pr(Sn < k) ≤ Pr(B(n, p) < k).

The next result is an extension of Lemma 2.2.
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Lemma 2.3. Let φ0 ⊆ φ1 ⊆ . . . ⊆ φn be a filter, let Y1, Y2, . . . , Yn be binary
random variables such that each Yt is φt -measurable, and let St = ∑t

i=1 Yi . Let
E0, E1, . . . , En−1 be events where Et ∈ φt for t = 0, . . . , n − 1, and let E be an
event with E ⊆ ∩tEt . Let 0 ≤ p ≤ 1 and let k be a positive integer.

(a) If for each t = 1, . . . , n

Pr(Yt = 1|φt−1) ≤ p on Et−1 ∧ (St−1 < k)

(whatever else happened before time t , if Et−1 holds and St−1 < k then the prob-
ability that Yt = 1 is at most p) then

Pr((Sn ≥ k) ∧ E) ≤ Pr(B(n, p) ≥ k).

(b) If for each t = 1, . . . , n

Pr(Yt = 1|φt−1) ≥ p on Et−1 ∧ (St−1 < k)

then

Pr((Sn < k) ∧ E) ≤ Pr(B(n, p) < k).

Proof. Let At denote the event Et ∧ (St < k).
(a) For each t = 1, . . . , n, let Ỹt = min{Yt , IAt−1}, and let S̃t = ∑t

i=1 Ỹi . Then
Pr(Ỹt = 1|φt−1) ≤ p, since by assumption it is at most p on At−1, and it equals 0
on At−1. Hence by Lemma 2.2

Pr((Sn ≥ k) ∧ E) = Pr((S̃n ≥ k) ∧ E) ≤ Pr(S̃n ≥ k) ≤ Pr(B(n, p) ≥ k).

(b) Now, for each t = 1, . . . , n, let Ỹt = max{Yt , 1 − IAt−1}, and let S̃t =
∑t

i=1 Ỹi . Then Pr(Ỹt = 1|φt−1) ≥ p, since by assumption it is at least p on At−1,
and it equals 1 on At−1. Hence by Lemma 2.2 as above

Pr((Sn < k) ∧ E) = Pr((S̃n < k) ∧ E) ≤ Pr(S̃n < k) ≤ Pr(B(n, p) < k). ��
The next three lemmas involve balls and bins. Suppose that m balls are thrown

independently into n bins, all with the same distribution (not necessarily uniform).
We may compare the loads (numbers of balls) in the bins to independent Poisson
random variables. Special cases of the following result can be found in [12] (the
exact original source is unclear). A subset A of N

n is called an up-set if x ∈ A and
y ≥ x (component by component) implies that y ∈ A. Similarly, A is a down-set if
x ∈ A and 0 ≤ y ≤ x implies that y ∈ A.

Lemma 2.4. Let m and n be positive integers, and let Z1, . . . , Zm be independent
identically distributed random variables, taking values in {1, . . . , n}. Let L(i) be
the (final) load in bin i, that is L(i) = |{t : Zt = i}|. Let Y (1), . . . , Y (n) be in-
dependent random variables where Y (i) ∼ Po(E(L(i))). Write L for (L(1), . . . ,

L(n)) and Y for (Y (1), . . . , Y (n)). Then for any up-set or down-set A in N
n,

Pr(L ∈ A) ≤ 2 Pr(Y ∈ A).
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Proof. Let Y = ∑
i Y (i). Then Y ∼ Po(m), and so Pr(Y ≥ m) ≥ 1/2 and

Pr(Y ≤ m) ≥ 1/2, see [8]. Now use the standard fact that the joint distribution
of the Y (i) given Y = m is exactly that of the L(i). Hence, if A is an up-set and
k ≥ m, then

Pr(Y ∈ A|Y = k) ≥ Pr(Y ∈ A|Y = m) = Pr(L ∈ A),

and so

Pr(Y ∈ A) ≥
∑

k≥m

Pr(Y ∈ A|Y = k)Pr(Y = k) ≥ Pr(L ∈ A)Pr(Y ≥ m).

There is a similar proof when A is a down-set. ��
From the last lemma and Lemma 2.1 we obtain:

Lemma 2.5. Let m, n and D be positive integers. Throw m balls uniformly at
random into n bins, and let Y be the number of bins with at least D balls. Let
p = Pr(Po(m

n
) ≥ D), and let Z ∼ B(n, p). Then for any k,

Pr(Y ≤ k) ≤ 2 Pr(Z ≤ k)

and

Pr(Y ≥ k) ≤ 2 Pr(Z ≥ k);
and for any positive integer d ,

E(Y d) ≤ 2 E(Zd) ≤ 2dd max{np, (np)d}.
Proof. The first two inequalities follow immediately from Lemma 2.4. By the sec-
ond of them, Pr(Y d ≥ k) ≤ 2 Pr(Zd ≥ k) for all k, and so

E(Y d) =
∑

k≥1

Pr(Y d ≥ k) ≤ 2
∑

k≥1

Pr(Zd ≥ k) = 2 E(Zd).

Now we may use Lemma 2.1 to complete the proof. ��
We need a generalised balls-and-bins result that will handle the case when the

balls are nearly uniformly distributed over the bins, but the probabilities may vary
a little depending on the previous history. In particular, the balls can be ‘rejected’
with some small probability, depending on the previous history, or conversely there
may be ‘bonus balls’.

Lemma 2.6. Let m and n be positive integers, and let S be a set of size n. Let
φ0 ⊆ φ1 ⊆ . . . ⊆ φm be a filter, and let Z1, . . . , Zm be random variables, where
each Zt is φt -measurable. Let E0, . . . , Em−1 be events such that Et ∈ φt for each
t = 0, . . . , m − 1, and let E be an event with E ⊆ ∩m−1

t=0 Et .
For each i ∈ S, let Lt(i) be the load in bin i at time t , that is Lt(i) = |{s ∈

{1, . . . , t} : Zs = i}|; and let L be the load vector (Lm(i) : i ∈ S). (The
random variables Zt may take values outside S, but we are interested only in
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the bins i ∈ S.) We compare L with the load vector L̂ = (L̂m̂(i) : i ∈ S) in a
balls-and-bins experiment where we throw m̂ balls independently and uniformly at
random into the n bins i ∈ S. Let D be a positive integer. Let

X̂ = |{i ∈ S : L̂m̂(i) ≥ D}| =
∑

i∈S

I
L̂m̂(i)≥D

.

Let 0 ≤ p ≤ 1.
(a) Assume that

Pr(Zt = i|φt−1) ≤ p/n on Et−1,

for each t = 1, . . . , m and each i ∈ S. Let X = ∑
i∈S ILm(i)≥D. Then for any k

Pr(X ≥ k) ≤ Pr(X̂ ≥ k) + Pr(E) + Pr(B(m, p) > m̂). (1)

(b) For each t = 1, . . . , m and i ∈ S let Yt (i) be a non-negative φt -measurable
random variable; and let

L+
t (i) =

t∑

s=1

(IZs=i + Ys(i)) = Lt(i) +
t∑

s=1

Ys(i).

(The Yt (i) correspond to ‘bonus balls’ in bin i.) Assume that

Pr(Zt = i|φt−1) ≥ p/n on Et−1 ∧ (L+
t−1(i) < D),

for each t = 1, . . . , m and each i ∈ S. Let X+ = ∑
i∈S IL+

m(i)≥D. Then for any k

Pr(X+ ≥ k) ≥ Pr(X̂ ≥ k) − Pr(E) − Pr(B(m, p) < m̂). (2)

Proof. We may assume that S is the set {1, . . . , n}, say. Let us prove part (b): part
(a) may be proved in a similar way. We use a coupling approach which is mainly
standard, to ‘tidy up’ the random variables Zt , in four steps. First, without loss of
generality, there are φt -measurable random variables Z

(1)
t such that for each i ∈ S

if (Z
(1)
t = i) ∧ Et−1 then Zt = i, (3)

and

Pr(Z(1)
t = i|φt−1) ≥ p/n on L+

t−1(i) < D.

Next, without loss of generality, there are φt -measurable random variables Z
(2)
t

such that for each i ∈ S

if Z
(2)
t = i then Z

(1)
t = i, (4)

and

Pr(Z(2)
t = i|φt−1) = p/n on L+

t−1(i) < D.
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Now we define random variables Z
(3)
t . We spell out one way of doing this as the

step is not quite standard. We may assume that there exists a φt -measurable random
linear order πt on S, where πt is independent of φt−1 and Z

(2)
t , and πt is uniformly

distributed over the n! linear orders on S. Let Ft = {i ∈ S : Lt(i) ≥ D}. (The letter
F is for full.) On (Z

(2)
t ∈ S\Ft−1) we let Z(3)

t = Z
(2)
t . On (Z

(2)
t �∈ S)∧(Ft−1 = ∅)

we let Z
(3)
t = 0. Otherwise, we let Z

(3)
t be the first bin i ∈ Ft−1 under the order

πt . Note that
Pr(Z(3)

t = 0|φt−1) ≤ 1 − p.

It is easy to check that for each i ∈ S

if (Z
(3)
t = i) ∧ (L+

t−1(i) < D) then Z
(2)
t = i, (5)

and

Pr(Z(3)
t = i|φt−1) ≥ p/n.

Finally, without loss of generality, there are φt -measurable random variables Z
(4)
t ,

taking values in S ∪ {0}, such that for each i ∈ S

if Z
(4)
t = i then Z

(3)
t = i, (6)

and

Pr(Z(4)
t = i|φt−1) = p/n. (7)

Observe that, by (3), (4), (5) and (6), for each i ∈ S,

if (Z
(4)
t = i) ∧ (L+

t−1(i) < D) ∧ E then Zt = i,

and so

if (L(4)
m (i) ≥ D) ∧ E then L+

m(i) ≥ D.

Hence

Pr(X+ ≥ k) ≥ Pr((X(4) ≥ k) ∧ E) ≥ Pr(X(4) ≥ k) − Pr(Ē).

By (7), the random variables Z
(4)
t are independent, and the distribution of X(4) is

exactly the same as if we choose B(m, p) balls and then throw them uniformly at
random into the n bins. Thus

Pr(X(4) ≥ k) ≥ Pr(X̂ ≥ k) − Pr(B(m, p) < m̂),

and (2) follows. ��
We shall frequently appeal to the following large deviations result, which is

related to the standard Chernoff bounds, see for example [1]. (It also follows for
example from Theorem 2.3 in [11].)
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Lemma 2.7. Let n ∈ N, let 0 ≤ p ≤ 1 and let µ = np. Then

Pr(|B(n, p) − µ| ≥ εµ) ≤ 2e−ε2µ/3 for each 0 ≤ ε ≤ 1, (8)

and

Pr(B(n, p) ≥ eµ) ≤ e−µ. (9)

From the latter inequality, it follows that if k is a positive integer and 0 ≤ p ≤ 1,
and b satisfies b ≥ ekp and b ≥ 2e log n, then

Pr(B(k, p) ≥ b) ≤ n−2. (10)

Finally, for the proof of Theorem 1.1, we use the following version of Tala-
grand’s inequality, see for example Theorem 4.3 in [11]. (In the notation in [11],
the function h below is a (c2r)-configuration function.)

Lemma 2.8. Let X = (X1, X2, . . . ) be a finite family of independent random vari-
ables, where the random variable Xj takes values in a set �j . Let � = ∏

j �j .
Let c and r be positive constants, and suppose that the non-negative real-valued

function h on � satisfies the following two conditions for each x ∈ �.

• Changing the value of a co-ordinate xj can change the value of h(x) by at most
c.

• If h(x) = s, then there is a set of at most rs co-ordinates such that h(x′) ≥ s for
any x′ ∈ � which agrees with x on these co-ordinates.

Let m be a median of the random variable Z = h(X). For each x ≥ 0

P(Z ≥ m + x) ≤ 2 exp

(
− x2

4c2r(m + x)

)
. (11)

3. Some notation

We shall need quite a lot of notation. For convenience we collect the basic notation
here. The letter ‘L’ will indicate ‘load’, S will indicate a set of ‘saturated’ links,
and S will be the size of set S. The letter t will stand for ‘time’, that is the number
of calls considered so far, and will be used as a subscript.

Given distinct nodes u and v, Lt({u, v}) denotes the load on the direct link
{u, v} at time t , that is the number of calls amongst the first t calls that are routed
along that link. Similarly, Lt(uv) denotes the load on the indirect link uv at time t .

Given a node v, Sdir
t (at v) denotes the set of direct links {v, w} incident with v

which are saturated at time t , that is, are such that Lt({v, w}) = D1 (or Lt({v, w}) =
D in the absence of indirect links); andSdir

t (at v) = |Sdir
t (at v)|. Similarly,S ind

t (at v)

denotes the set of indirect links vx for calls at v which are saturated at time t , that is,
are such that Lt(vx) = D2; and S ind

t (at v) = |S ind
t (at v)|. Also, S ind

t (via x) denotes
the set of indirect links vx for calls at some node v which are saturated at time t ;
and S ind

t (via x) = |S ind
t (via x)|.



466 M.J. Luczak et al.

From the above ‘local’ sets, we may define ‘global’ sets Sdir
t and S ind

t as fol-
lows. Let Sdir

t = ∪vSdir
t (at v), the set of all direct links saturated at time t , and

Sdir
t = |Sdir

t |; and let S ind
t = ∪vS ind

t (at v), the set of all indirect links saturated at
time t , and S ind

t = |S ind
t |.

We let φt denote the sigma-field generated by all events up to time t . We defined
‘with high probability’ above to mean ‘with probability → 1 as n → ∞’. It is con-
venient to use ‘with very high probability ’ to mean ‘with probability 1−e−�(log2 n)

as n → ∞’.
We may assume that, for each time t , whether or not the direct link for call Xt

is saturated, we make d choices of possible intermediate node for an alternative
route.

4. Proof of Theorem 1.1

For the proof of Theorem 1.1 we use two lemmas. The first gives bounds on the
probability that the call Xt at time t fails (that is, fails to be routed successful-
ly), conditional on the previous history of the process, in terms of the quantities
Sdir

t−1(at v) and Sdir
t−1. Note that since there are no indirect links here, Sdir

t (at v) is
the total number of links at v which are saturated at time t , and similarly for Sdir

t .
In the proof of the upper bound, part (a) of the theorem, there are three cases.

The case d = 0 is easy. For the case d = 1, we need to consider both Sdir
t−1 and

�t−1 = maxv Sdir
t−1(at v). For the case d ≥ 2, we need consider only �t−1.We show

that with very high probability, �N/n is at most about n−α , and so the probability
that a given call fails is at most about n−α(d+1).

In the proof of the lower bound, part (b) of the theorem, we show that with very
high probability at time N/2 at least about n2−α links are saturated, and then for
t > N/2 the probability that call Xt fails is at least about n−α(d+1).

Lemma 4.1. Let d be a positive integer. For each time t ,

Pr(Xt fails |φt−1) ≤ 2d

Nnd

∑

v

(
Sdir

t−1(at v)
)d+1

(12)

if n ≥ 4d, and

Pr(Xt fails |φt−1) ≥ (
(2Sdir

t−1 − n)+

n2 )d+1. (13)

Proof. Consider some time t , and temporarily let dv denote Sdir
t−1(at v). Then

Pr(Xt fails |φt−1) ≤ 1

N

∑

{u,v}∈Sdir
t−1

(
du + dv − 2

n − 2

)d

≤ 2d−1

N(n − 2)d

∑

{u,v}∈Sdir
t−1

(
(du − 1)d + (dv − 1)d

)

≤ 2d−1

N(n − 2)d

∑

v

dd+1
v .
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In the second inequality above, we used the fact that the function f (x) = xd is
convex, and so (x + y)d ≤ 2d−1(xd + yd). For the third inequality, note that in
counting by edges we count the term (dv −1)d exactly dv times. Further, (1− 2

n
)d ≥

1 − 2d
n

≥ 1
2 if n ≥ 4d , and then (n − 2)d ≥ 1

2nd . Thus we obtain (12).
Now we consider (13). Let W = {v ∈ V : dv ≥ 1}. We may assume that W

is non-empty. Note that the function f (x) = xd+1 is convex, and so by Jensen’s
inequality

|W |−1
∑

v∈W

(dv − 1)d+1 ≥
(

|W |−1
∑

v∈W

(dv − 1)

)d+1

=
(
|W |−1(2Sdir

t−1 − |W |)
)d+1

.

Thus

Pr(Xt fails|φt−1) ≥ 1

N

∑

{u,v}∈Sdir
t−1

(
max{du − 1, dv − 1}

n

)d

≥ n−(d+2)
∑

{u,v}∈Sdir
t−1

(
(du − 1)d + (dv − 1)d

)

≥ n−(d+2)
∑

v∈W

(dv − 1)d+1

≥ n−(d+2) |W |−d
(
2Sdir

t−1 − |W |)d+1

≥
(

2Sdir
t−1 − |W |

n2

)d+1

.

which yields (13). ��
Lemma 4.2. Let d be a positive integer, let α > 2

d+1 , and let δ > 0. Let �t =
maxv{Sdir

t (at v)}. Then with very high probability,

�N ≤ n(1−α)++δ and Sdir
N ≤ n(2−α)++δ.

Proof. We shall consider the ‘superprocess’, which counts up every time a link
is mentioned, not just if it is used. Thus at each time t , there are 2d + 1 links
mentioned, including multiplicities, and all are counted. Within this proof, we use
Lt({u, v}), Sdir

t (at v) and so on to refer to the superprocess.
Fix distinct nodes u and v. Then

Pr(Xt ∩ {u, v} �= ∅) = 1 −
(

n − 2

2

)
/

(
n

2

)
≤ 4/n.

Let A0 be the event that |{t : Xt ∩ {u, v} �= ∅}| ≤ 3n. Then by inequality (8) in
Lemma 2.7,

Pr(A0) ≤ Pr(B(N, 4/n) > 3n) = e−�(n). (14)
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Let T be a fixed set of at most 3n times. Let A(T ) be the event that {t : Xt ∩{u, v} �=
∅} = T . Condition on the event A(T ). Think of d + 1 trials for each time t ∈ T ,
which may or may not mention the link {u, v}. For each trial, conditional on all
previous trials, the probability that the link {u, v} is mentioned is either 0 or 1

2n−3

or 1
n−2 , and so is at most 1

n−2 . Hence in the superprocess, the load on that link is

stochastically at most B(3n(d + 1), 1
n−2 ). Thus

Pr(LN({u, v}) ≥ D|A(T )) ≤
(

3n(d + 1)

D

)(
1

n − 2

)D

≤
(

3e(d + 1)n

D

1

n − 2

)D

= e−(1+o(1))D log D

= n−α+o(1).

Since this holds uniformly for each T ,

Pr(LN({u, v}) ≥ D|A0) ≤ n−α+o(1),

and then by (14) we may drop the conditioning, to obtain

Pr(LN({u, v}) ≥ D) ≤ n−α+o(1).

It follows that E(Sdir
N (at v)) ≤ n(1−α)+o(1) and E(Sdir

N ) ≤ n(2−α)+o(1).
We may think of the loads as being determined by N independent trials, where

each trial specifies Xt and the d choices of possible intermediate node. Since the
expected value of Sdir

N (at v) is at most n(1−α)+o(1), the median m must also satisfy

m ≤ n(1−α)+o(1). So m ≤ 1
2n(1−α)++δ for n sufficiently large. We can use the

Talagrand inequality Lemma 2.8, with c = 2d + 1 and r = D. This gives

Pr(Sdir
N (at v) ≥ m + x) ≤ 2 exp

(
− x2

4(2d + 1)2D(m + x)

)
.

Now take x as 1
2n(1−α)++δ , so that x ≥ m for n sufficiently large. Then

Pr(Sdir
N (at v) ≥ 2x) ≤ 2 exp

(
− x2

4(2d + 1)2D(2x)

)

= 2 exp

(
− x

8(2d + 1)2D

)

= exp
(
−�(n(1−α)++δ/ log n)

)
.

Thus Sdir
N (at v) ≤ n(1−α)++δ with very high probability, and so this holds also for

�N .
We may handle the total number of saturated links Sdir

N in a similar way. Since
the expected value is at most n(2−α)+o(1), the median m must also satisfy m ≤
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n(2−α)+o(1). So m ≤ 1
2n(2−α)++δ for n sufficiently large. We can again use Lem-

ma 2.8 with c = 2d + 1 and r = D. Take x as 1
2n(2−α)++δ . This gives

Pr(Sdir
N ≥ 2x) ≤ 2 exp

(
− x

8(2d + 1)2D

)
,

and it follows that with very high probability, Sdir
N ≤ n(2−α)++δ as required. ��

Proof of Theorem 1.1. (a) First we consider upper bounds. Let p1 = Pr(Po(1) ≥
D), so p1 = n−α+o(1). We consider three cases, when d = 0, d = 1 and d ≥ 2.

Firstly, let d = 0. Let α > 2. Then by Lemma 2.5, E(Sdir
N ) ≤ 2Np1 =

n2−α+o(1) = o(1), and so

Pr(some call fails) ≤ Pr(Sdir
N > 0) ≤ E(Sdir

N ) = o(1).

Next let d = 1. Let α > 1 and let 0 < δ < min {1/2, (α − 1)/2}. Let �t =
maxv{Sdir

t (at v)}. Then by (12)

Pr(Xt fails |φt−1) ≤ 2

Nn

∑

v

Sdir
t−1(at v)2

≤ 2

Nn

∑

v

�t−1S
dir
t−1(at v)

= 4�t−1S
dir
t−1

Nn
.

Let A1
t be the event that Sdir

t ≤ n(2−α)++δ and �t ≤ nδ . Then A1
N holds with very

high probability, by the last lemma. But by the above

Pr(Xt fails |A1
t−1) ≤ 4

N
n(2−α)+−1+2δ.

Hence

Pr(some call fails ∧ A1
N) ≤

∑

t

Pr(Xt fails |A1
t−1) ≤ 4n(2−α)+−1+2δ = o(1).

Now let d ≥ 2. Let α > 2
d+1 , and let β = min{1, α}. Let δ > 0 be such that

(β − δ)(d + 1) > 2. Let A2
t be the event that Sdir

t (at v) ≤ n1−β+δ for each v, that
is, �t ≤ n1−β+δ . By the last lemma, A2

N holds with very high probability. By (12),

Pr(Xt fails |A2
t−1) ≤ 2d

Nnd
n(n1−β+δ)d+1 = 2d

N
n2−(β−δ)(d+1).

Hence

Pr(some call fails ∧ A2
N) ≤

∑

t

Pr(Xt fails |A2
t−1) ≤ 2dn2−(β−δ)(d+1) = o(1).

(b) Finally consider lower bounds. Let α(d+1) < 2, and let 0 < δ < 2−α(d+
1). Let A3 be the event that Sdir

N/2 ≥ Np2/2, where p2 = Pr(Po(1/2) ≥ D) =
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n−α+o(1). Note that Np2/2 = n2−α+o(1). By Lemma 2.5 and by inequality (8) in
Lemma 2.7, A3 holds with very high probability – just consider the calls themselves
and ignore alternative routes.

If d = 0, then for N/2 < t ≤ N , on A3

Pr(Xt fails |φt−1) = Sdir
t−1/N ≥ p2/2 ≥ 5n−2+δ,

for n sufficiently large. Now let d ≥ 1, so α < 1. For N/2 < t ≤ N , by (13), on
A3

Pr(Xt fails |φt−1) ≥ n−α(d+1)+o(1) ≥ 5n−2+δ,

for n sufficiently large. Hence, for each integer d ≥ 0, by Lemma 2.3,

Pr(< nδ calls fail) ≤ Pr(B(N/2, 5n−2+δ) < nδ) + Pr(A3),

and the first inequality of Lemma 2.7 completes the proof. ��

5. Proof of Theorem 1.2

The rough plan of the proof is as follows.
(a) First we consider the upper bound. With very high probability, for each node

v at most m calls for v need to seek an alternative route, where m is about nD
−D1
1 .

Even if we allow each such call to grab d alternative routes, then still not too many
indirect links get saturated. Hence we can show that the probability that a given
call fails is very small.

(b) For the lower bound, we consider separately the first N/3 calls, the next
N/3 and the final N/3. By time N/3, with very high probability, for each node v at
least 1

2m direct links incident with v are saturated, where again m is about nD
−D1
1 .

Between times N/3 and 2N/3, with very high probability, for each node v at least
m calls for v need to seek an alternative route. Next we show something that may
seem at first sight as if we were still trying to prove an upper bound: we show that
at time 2N/3, with very high probability not too many indirect links are saturated.
Hence when N/3 < t ≤ 2N/3 and we focus on a given indirect link vx, if an
alternative route via x is tried for a call Xt = {u, v}, then there is little chance that
the route fails because the ‘partner’ indirect link ux is saturated. This allows us to
show that at time 2N/3, with very high probability in total at least m′ indirect links
are saturated, where m′ is about n2− α1α2

2 . Finally, the probability that a given call

in the last N/3 fails is at least about 1
2 (m/n)(m′/N)d , which is about 1

2n− α1α2d

2 .
We start by stating and proving two lemmas which we shall need in the proof

of Theorem 1.2.

Lemma 5.1. Consider any GDAR algorithm. Focus on a particular indirect link
vx. For each time t ,

Pr(vx is selected at time t |φt−1) ≤ Sdir
t−1(at v)

N

d

n − 2
, (15)

and (assuming n ≥ 3)
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Pr(Xt fails |φt−1) ≤ 2d

N(n − 2)d−1

∑

v

S ind
t−1(at v)

d
. (16)

Proof. For (15), note that, conditional on the history before time t and given that
the call Xt is for a pair {u, v} ∈ Sdir

t−1, at each of the d trials for an intermediate
node, the probability that the indirect link vx is considered is at most 1

n−2 .
Now consider (16). We have

Pr(Xt fails |φt−1) ≤ 1

N

∑

{u,v}∈Sdir
t−1

(
S ind

t−1(at u) + S ind
t−1(at v)

n − 2

)d

≤ 2d−1

N(n − 2)d

∑

{u,v}∈Sdir
t−1

(
S ind

t−1(at u)d + S ind
t−1(at v)d

)

≤ 2d−1

N(n − 2)d

(
max

u
Sdir

t−1(at u)
)∑

v

S ind
t−1(at v)d

≤ 2d

N(n − 2)d−1

∑

v

S ind
t−1(at v)d

assuming n ≥ 3, since then n−1
n−2 ≤ 2. ��

Lemma 5.2. Consider the FDAR algorithm. For each time t and each pair of dis-
tinct nodes u and v, on the event vx �∈ S ind

t−1

Pr(vx is selected |φt−1) ≥ 2n−3(Sdir
t−1(at v) − S ind

t−1(via x) − 1). (17)

When d ≥ 2, then for each time t ,

Pr(Xt fails |φt−1) ≥ n−(2d+1)(min
u

Sdir
t−1(at u))((S ind

t−1 − n)+)d . (18)

When d = 1, then for each time t ,

Pr(Xt fails |φt−1) ≥ n−3(min
u

Sdir
t−1(at u) − 1)S ind

t−1. (19)

Proof. Pick an ordered triple U1, U2, U3 of distinct nodes uniformly at random.
Then on the event vx �∈ S ind

t−1

Pr(vx is selected at the first attempt |φt−1)

= 2 Pr(U1 = v, {U1, U2} ∈ Sdir
t−1, U3 = x, U2U3 �∈ S ind

t−1|φt−1)

= 2

n(n − 1)
Pr({v, U2} ∈ Sdir

t−1, U2x �∈ S ind
t−1|φt−1)

= 2

n(n − 1)(n − 2)
|{u ∈ V \ {v, x} : {v, u} ∈ Sdir

t−1, ux �∈ S ind
t−1}|,

and (17) follows.
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Now we prove (18). Temporarily, let dv denote S ind
t−1(at v), and let W denote

the set of nodes v such that dv ≥ 1. We may assume that W is non-empty. Note
that

|W |−1
∑

v∈W

(dv − 1)d ≥
(

|W |−1
∑

v∈W

(dv − 1)

)d

=
(
|W |−1(S ind

t−1 − |W |)
)d

.

Thus

Pr(Xt fails|φt−1) ≥ 1

N

∑

{u,v}∈Sdir
t−1

(
max {du − 1, dv − 1, 0}

n

)d

≥ 1

2Nnd

∑

{u,v}∈Sdir
t−1

(
((du − 1)+)d + ((dv − 1)+)d

)

≥ 1

2Nnd

(
min

u
Sdir

t−1(at u)
)∑

v∈W

(dv − 1)d

≥ 1

2Nnd

(
min

u
Sdir

t−1(at u)
)

|W |
(

S ind
t−1 − |W |

|W |

)d

≥
(

minu Sdir
t−1(at u)

n

)(
S ind

t−1 − |W |
n2

)d

.

The above holds for any positive integer d , but we need to consider the case d = 1
separately. In this case,

Pr(Xt fails|φt−1) ≥ 1

N

∑

{u,v}∈Sdir
t−1

max {du − I
uv∈S ind

t−1
, dv − I

vu∈S ind
t−1

}
n

≥ 1

2Nn

∑

{u,v}∈Sdir
t−1

(
(du − I

uv∈S ind
t−1

) + (dv − I
vu∈S ind

t−1
)
)

≥ 1

2Nn

∑

v

(Sdir
t−1(at v) − 1)dv

≥ 1

2Nn
(min

u
Sdir

t−1(at u) − 1)
∑

v

dv

= 1

2Nn
(min

u
Sdir

t−1(at u) − 1)S ind
t−1,

which proves (19). ��

Proof of Theorem 1.2. Let p1 = p1(n) = Pr(Po(1) ≥ D1), so p1 =
e−(1+o(1))D1 log D1 . Let m = m(n) be an integer with m ∼ 2np1, so that m =
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n1+o(1). Let A1
t be the event that Sdir

t (at v) ≤ m for each node v. Then A1
N holds

with very high probability, since

Pr(A1
N) ≤ 2n Pr(B(n − 1, p1) > m) = e−�(m) (20)

by Lemmas 2.4 and 2.7.
(a) Let α1α2d > 4. Consider any GDAR algorithm. We want to show that with

high probability no calls fail. We first show that for each v, not too many indirect
links vx ever get saturated. In fact we bound E[S ind

N (at v)d ], so that we can use (16)
in Lemma 5.1. The first task is to obtain a good upper bound for Pr(S ind

N (at v) ≥ k).
Suppose that we throw 2md balls uniformly at random into n−1 bins, and let Y

be the number of bins receiving at least D2 balls. Let p2 = p2(n) = Pr(Po( 2md
n−1 ) ≥

D2), so that p2 = n− α1α2
2 +o(1). By Lemma 2.5, for all k

Pr(Y ≥ k) ≤ 2 Pr(B(n − 1, p2) ≥ k). (21)

Consider a fixed node v. Think of the n−1 indirect links vx for x ∈ V −v as bins. Let
Zt = vx if vx is selected by the call Xt at time t . Let p3 = p3(n) = (n− 1) m

N
d

n−2 .
Note that Np3 ∼ md, so by inequality (8) in Lemma 2.7,

Pr(B(N, p3) > 2md) = e−�(m). (22)

By Lemma 5.1,

Pr(Zt = vx|φt−1) ≤ p3

n − 1
on A1

t−1

for each time t and each x ∈ V −v. Hence by Lemma 2.6(a) and the inequality (21),
for any k

Pr(S ind
N (at v) ≥ k) ≤ Pr(Y ≥ k) + εn ≤ 2 Pr(B(n − 1, p2) ≥ k) + εn,

where

εn = Pr(A1
N) + Pr(B(N, p3) > 2md) = e−�(m),

and where the last equality comes from (20) and (22).
We have now completed the first task. By Lemma 2.1,

E[S ind
N (at v)d ] =

(n−1)d∑

k=1

Pr(S ind
N (at v)d ≥ k)

≤ 2
(n−1)d∑

k=1

Pr(B(n − 1, p2)
d ≥ k) + (n − 1)dεn

= 2 E(B(n − 1, p2)
d) + (n − 1)dεn

≤ 2dd max{(n − 1)p2, ((n − 1)p2)
d} + (n − 1)dεn.
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So by Lemma 5.1,

Pr(Xt fails) ≤ 2d

N(n − 2)d−1

∑

v

E[S ind
t−1(at v)

d
]

≤ 2d

N(n − 2)d−2

(
2dd max{np2, (np2)

d} + ndεn

)

≤ 2d+2dd

Nnd−2 max{np2, (np2)
d} + 2d+2εn

for n sufficiently large. Hence

Pr(some call fails) ≤
∑

t

Pr(Xt fails)

≤ 2d+2ddn2−d max{np2, (np2)
d} + ε′

n

where ε′
n = N2d+2εn = e−�(m). Now α1α2d > 4 and so both 3 − d − α1α2

2 < 0

and 2 − α1α2d
2 < 0. Recall also that p2 = n− α1α2

2 +o(1). Hence

Pr(some call fails) ≤ 2d+2ddn2−d max{np2, (np2)
d} + ε′

n

≤ 2d+2dd max{n3−d− α1α2
2 +o(1), n2− α1α2d

2 +o(1)} + ε′
n

= o(1).

(b) Now let α1α2d < 4, and consider the d-FDAR algorithm. We shall show
that with high probability many calls get blocked.

Let p4 = p4(n) = Pr(Po(1/3) ≥ D1), so that p4 = e−(1+o(1))D1 log D1 . Let
m̃ = m̃(n) be a positive integer, with m̃ ∼ 1

2np4, so that m̃ = n1+o(1). Let A2 be
the event that for each node v we have Sdir

N/3(at v) ≥ m̃. Then A2 holds with very
high probability, since by Lemmas 2.4 and 2.7,

Pr(A2) ≤ 2n Pr(B(n − 1, p4) < m̃) = e−�(m̃).

Next we shall show that with very high probability, each value S ind
N (via x) is

not too big. As we noted in the introductory comments in this section, it may seem
here at first sight as if we were still trying to prove an upper bound as in part (a).
But we need to argue in this way in order to show that when we consider an indirect
link vx, it is rare for an alternative route which seeks to use the indirect link vx

to find that it is blocked by the ‘partner’ indirect link being saturated. Let δ satisfy
0 < δ < 1 and δ > 1 − α1α2/2. [We may have 1 − α1α2/2 < 0 if d = 1, but
this does not matter.] Note that nδ ≤ m̃/2 − 1 for n sufficiently large. Let A3

t be
the event that S ind

t (via x) ≤ nδ for each node x. We shall show that A3
N holds with

very high probability.
Fix a node x. Think of the n−1 indirect links vx as bins, as v runs through V \{x}.

Consider an indirect link vx and a time t . As before, let p3 = p3(n) = md(n−1)
N(n−2)

.

Then p3 = n−1+o(1) and Np3 ∼ md. By Lemma 5.1, if A1
t−1 holds then whatever

else has happened before time t , the probability that vx is used at time t (so we put
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a ‘ball’ in the ‘bin’ vx) is at most p3/(n − 1). Let m′ = m′(n) be a positive integer
with m′ ∼ 2Np3, so that m′ ∼ 2md and m′/(n − 1) = e−(1+o(1))D1 log D1 . Also,
let, p5 = p5(n) = Pr(Po(m′/(n − 1)) ≥ D2), so that p5 = n− α1α2

2 +o(1). Note
that np5 = o(nδ). Suppose that we throw m′ balls uniformly at random into n − 1
bins: let Y be the number of bins with load at least D2. Then by Lemma 2.5,

Pr(Y > nδ) ≤ 2 Pr(B(n − 1, p5) > nδ),

and by Lemma 2.6,

Pr(S ind
N (via x) > nδ) ≤ Pr(Y > nδ) + Pr(A1

N) + Pr(B(N, p3) > m′).

But

Pr(A3
N) ≤

∑

x

Pr(S ind
N (via x) > nδ).

The above estimates, together with the first inequality in Lemma 2.7, show that the
event A3

N holds with very high probability, as desired.
We shall use the fact that for each time t > N/3 and each pair v, x of distinct

nodes, we have

Sdir
t−1(at v) − S ind

t−1(via x) − 1 ≥ m̃/2 on A2 ∧ A3
t−1

(for n sufficiently large). So, for each time t > N/3, by Lemma 5.2,

Pr(vx is selected at time t |φt−1) ≥ m̃

n3 on A2 ∧ A3
t−1 ∧ (vx �∈ S ind

t−1). (23)

This is the point at which we use the fact that it is the FDAR algorithm.
Consider times from N/3 + 1 to 2N/3. Take n(n − 1) bins corresponding to

the indirect links. Throw N/3 balls into these bins as follows: whenever an alter-
native route is taken, we select uniformly at random one of the two indirect links
used, and put a ball in the corresponding bin, independently of the past. We are
interested in lower bounds here, so we may indeed select only one ball as above.
The non-selected indirect link corresponds to a ‘bonus’ ball. By (23), for each bin
vx, conditional on A2 ∧ A3

t−1 ∧ (Lt−1(vx) < D2) and anything else before time
t , the probability that at time t a ball is put in that bin is at least m̃/(2n3). We shall
use Lemma 2.6(b) to show that by time 2N/3, many bins have load at least D2,
and hence many indirect links are saturated.

Let p6 = p6(n) = n(n − 1) m̃/(2n3). Note that (N/3)p6 ∼ m̃n/12. Let
m̂ = m̂(n) = �m̃n/13�. Then Pr(B(N/3, p6) < m̂) = e−�(n). Let p7 = p7(n) =
Pr(Po( m̂

n(n−1)
) ≥ D2), so that p7 = n− α1α2

2 +o(1). If we throw m̂ balls uniformly at
random into n(n− 1) bins each of capacity D2, then by Lemma 2.5 the probability
that less than k bins are full is at most 2 Pr(B(n(n − 1), p7) < k).

Let η > 0 be such that 2 − α1α2d
2 − (d + 2)η > 0. Let A4 be the event that

S ind
2N/3 ≥ n2− α1α2

2 −η. Then by Lemma 2.6,

Pr(A4) ≤ 2 Pr(B(n(n − 1), p7) < n2− α1α2
2 −η)

+ Pr(A2 ∧ A3
N) + Pr(B(N/3, p6) < m̂).

Thus by the first inequality in Lemma 2.7, A4 holds with very high probability.
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Let d ≥ 2. Then 2 − α1α2
2 − η > 1. Hence by Lemma 5.2, for each time

t > 2N/3, on the event A2 ∧ A4,

Pr(Xt fails|φt−1) ≥ n−2d−1m̃ (n2− α1α2
2 −η − n)d ≥ n− α1α2d

2 −(d+1)η,

assuming that n is sufficiently large.
Let d = 1. Then by Lemma 5.2, for each time t > 2N/3, on the event A2 ∧A4,

Pr(Xt fails|φt−1) ≥ n−3(m̃ − 1) (n2− α1α2
2 −η) ≥ n−α1α2−2η,

Then, by Lemma 2.3(b), for any k,

Pr(≤ k calls fail) ≤ Pr(B(N/3, n− α1α2d

2 −(d+1)η) ≤ k) + Pr(A2 ∧ A4).

Hence

Pr(< n2− α1α2d

2 −(d+2)η calls fail) = e−�(nη). ��

6. Proof of Theorem 1.3

As mentioned earlier, the proof is based on ideas in [4], though there are extra com-
plications to be handled. We defined Lt(vx) as the load (the number of channels
used) in the indirect link vx at time t . Let Lt(v, = h) be the number of indirect
links vx with Lt(vx) = h, and similarly let Lt(v, ≥ h) be the number of indirect
links vx at v with Lt(vx) ≥ h. If the call Xt is for v and takes an alternative route
via x, we call Lt(vx) the height Ht(v) of the call at v. If the call is not for v or it
does not take an alternative route, we let Ht(v) = 0.

Lemma 6.1. Let v ∈ V and let h be a non-negative integer at most D2 − 1. Then

Pr(Ht (v) ≥ h + 1|φt−1) ≤ Sdir
t−1(at v)

N

(
2 maxw Lt−1(w, ≥ h)

n − 2

)d

. (24)

Further, let A be the event that S ind
t−1(via x) ≤ 1

2Sdir
t−1(at v) − 1 for each x. Then

Pr(Ht (v) = h + 1|φt−1) ≥ Sdir
t−1(at v)

2N

(
Lt−1(v, = h)

n − 2

)d

on A. (25)

Proof. Suppose that the call Xt is for {u, v}, and the d choices of possible inter-
mediate node are x1, . . . , xd . If Ht(v) ≥ h + 1, then for each i = 1, . . . , d there
must be at least one of uxi or vxi with load at least h. Hence,

Pr(Ht (v) ≥ h + 1|φt−1)

≤ 1

N

∑

u∈V −v

I{u,v}∈Sdir
t−1(at v)

(
Lt−1(u, ≥ h) + Lt−1(v, ≥ h)

n − 2

)d

≤ Sdir
t−1(at v)

N

(
2 maxw Lt−1(w, ≥ h)

n − 2

)d

,

and (24) follows.
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Now consider (25). If the call Xt = {u, v} ∈ Sdir
t−1(at v), Lt−1(vxi) = h for

each of the d choices of possible intermediate node xi ∈ V \{u, v}, and ux1 �∈ S ind
t−1,

then Ht(v) = h + 1. In order to keep the expressions below reasonably compact,
let Ju be the indicator of the event that the direct link {u, v} ∈ Sdir

t−1(at v). Then

Pr(Ht (v) = h + 1|φt−1)

≥ 1

N

∑

u∈V −v

Ju



 1

n − 2

∑

x1∈V −u,v

I
ux1 �∈S ind

t−1
ILt−1(vx1)=h




(

Lt−1(v, = h)

n − 2

)d−1

= Lt−1(v, = h)d−1

N(n − 2)d

∑

x1∈V −v

ILt−1(vx1)=h

∑

u∈V −v,x1

JuI
ux1 �∈S ind

t−1

≥ Lt−1(v, = h)d−1

N(n − 2)d

∑

x1∈V −v

ILt−1(vx1)=h

(
Sdir

t−1(at v) − S ind
t−1(via x1) − 1

)

≥ Sdir
t−1(at v)Lt−1(v, = h)d

2N(n − 2)d

on the event A. ��
Proof of Theorem 1.3. (a) (upper bound) Let the constant c be as in (29) below,
and let

D2 = D2(n) ≥ 1

log d
(log log n − log(3) n − log(4) n) + c + 1.

We shall show that with high probability no calls fail.
Let Mt(≥ h, ≤ b) denote the event that Lt(v, ≥ h) ≤ b for each v. Given

numbers bh, let Bh denote the event MN(≥ h, ≤ bh). The idea of the proof is to
choose numbers b1, b2, . . . tending to zero quickly; show that B1 holds with high
probability, and if Bh holds with high probability then so does Bh+1; and deduce
that with high probability Bh holds for some h ≤ D2 with bh = 0. Thus with high
probability no indirect link gets saturated, and so no call can fail.

Let p = p(n) = Pr(Po(1) ≥ D1), so that p = e−(1+o(1))D1 log D1 . Let a =
a(n) be an integer with a ∼ 4np. Let A0

t be the event that Sdir
t (at v) ≤ a/2 for

each node v. Then A0
N holds with very high probability, by Lemmas 2.5 and 2.7.

Let A1 be the event that for each node v, at most a calls for v find their direct link
saturated and thus seek an alternative route. Consider a fixed node v, and let Zt be
the indicator of the event Xt ∈ Sdir

t−1(at v). Then Pr(Zt = 1|φt−1) ≤ a
2N

on the
event A0

t−1. Hence by Lemma 2.3 (a),

Pr(
N∑

t=1

Zt ≥ a) ≤ Pr(A0
N) + Pr(B(N,

a

2N
) > a).

But Pr(A1) ≤ nPr(
∑N

t=1 Zt ≥ a), and so A1 holds with high probability by
Lemma 2.7.
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We may assume that all calls arrive before any alternative routes are generated,
say they arrive by time 0. Let us condition on the entire history of the call pro-
cess, subject to event A1 holding. It will suffice for us now to show that, when we
consider the alternate routing process, with high probability no indirect link gets
saturated.

Now 1
n−2 ≤ 2

n
for n ≥ 4 (which we assume in what follows). So by Lemma 6.1,

given that the call at time t is for v and is alternative,

Pr(Ht (v) ≥ h + 1|φt−1) ≤
(

4b

n

)d

on Mt−1(≥ h, ≤ b). (26)

[Of course, Ht(v) = 0 if the call at time t is not for v or is direct.] Suppose that we

have chosen 0 ≤ bh ≤ n/4, and let ph =
(

4bh

n

)d

for h = 0, 1, . . . . Recall that Bh

denotes the event MN(≥ h, ≤ bh), that LN(v, ≥ h) ≤ bh for each v. Then

Pr( (LN(v, ≥ h + 1) > bh+1) ∧ Bh)

≤ Pr( (|{t : Ht(v) ≥ h + 1}| > bh+1) ∧ Bh)

≤ Pr(B(a, ph) > bh+1),

by (26) and Lemma 2.3(a). Thus,

Pr(Bh+1 ∧ Bh) ≤ n Pr(B(a, ph) > bh+1),

and so

Pr(Bh+1) ≤ Pr(Bh) + n Pr(B(a, ph) > bh+1). (27)

Let ρ = ρ(n) = 4ea/n. Then ρ = (1 + o(1))16ep = e−(1+o(1))D1 log D1 . Thus
ρ ≤ 1 for n sufficiently large, which we assume. We now choose b1, b2, . . . by

setting p0 = 1 and for h = 0, 1, . . . setting bh+1 = eaph and ph+1 =
(

4bh+1
n

)d =
(ρph)

d . Note that ph+1 ≤ ρdh
for each h. By (27) and the inequality (10), for

h = 1, 2, . . .

Pr(Bh+1) ≤ Pr(Bh) + n−1, (28)

as long as bh ≥ 2e log n.
Let h∗ = h∗(n) be the least positive integer h such that bh < 2e log n. We claim

that if the constant c is sufficiently large, then

h∗ ≤ (log d)−1(log(2) n − log(3) n − log(4) n) + c. (29)

We may check this as follows. To start, note that

bh+2 = eaph+1 ≤ nph+1 ≤ nρdh

,

and hence bh+2 < 2e log n if nρdh ≤ 1. Taking logs twice we see that this holds
if h log d + log log 1

ρ
≥ log log n. But log log 1

ρ
= log D1 + log log D1 + o(1),

and (29) follows.
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By our choice of c we have D2 ≥ h∗ + 1. Since Pr(B1) = 0 ( conditional on
A1), by summing the inequality (28) over h = 1 to h∗ − 2 we obtain

Pr(Bh∗−1) ≤ h∗

n
.

Now increase bh∗ to 2e log n and let bh∗+1 = 0. Then by (27) and by inequality (9)
in Lemma 2.7,

Pr(Bh∗) ≤ Pr(Bh∗−1) + nPr(B(a, ph∗−1) > 2e log n) ≤ h∗ + 1

n
.

Also, by (27),

Pr(Bh∗+1) ≤ Pr(Bh∗) + nPr

(

B(a,

(
8e log n

n

)d

) ≥ 1

)

,

and since d ≥ 2 the last term is at most na(
8e log n

n
)2 = o(1). Hence with high

probability there is no indirect link with load at least h∗ + 1, and so no indirect link
ever gets saturated. This completes the proof of part (a).

(b) (lower bound) Let p̃ = p̃(n) = Pr(Po( 1
3 ) ≥ D1), so that p̃ =

e−(1+o(1))D1 log D1 . Let ã = ã(n) be an integer with ã ∼ np̃/2, so that ã = n1+o(1).
Let A2 be the event that for each node v, Sdir

N/3(at v) ≥ ã. Then A2 holds with very

high probability, by Lemmas 2.5 and 2.7. We condition on A2 throughout the rest
of the argument.

Let A3
t be the event that S ind

t (via x) ≤ ã/2 − 1 for each x ∈ V . Then arguing
as in the proof of Theorem 1.2 , or using Lemma 2.8, we see that A3

N holds with
very high probability.

Consider times t with N/3 < t ≤ 2N/3. We split these times into j equal
periods, where j = j (n) = �log log n/ log d�. We shall choose D2 shortly, and it
will be less than j . Let s = � N

3j
�. Let nh = �N/3� + hs for h = 0, 1, . . . , j . Note

that nj ≤ 2N/3. We shall consider the j time periods Ti = {ni−1 + 1, . . . , ni} for
i = 1, . . . , j .

Let ρ = ρ(n) = ãs
8(n−1)N

, so that ρ = e−(1+o(1))D1 log D1 . Let 0 < δ < 2/d. It
is straightforward to check that if the constant c is sufficiently large, then

D2 = D2(n) ≤ 1

log d
(log log n − log(3) n − log(4) n) − c,

and then we have ρdD2 ≥ (n − 1)−δ . We shall show that with D2 as above, with
high probability many calls fail, more specifically, at least n2−δd+o(1) calls fail.

Let Mt(≥ h, ≥ b) denote the event that for each v we have Lt(v, ≥ h) ≥ b,
that is, there are at least b indirect links vx which have load at least h at time t .
We shall choose positive numbers b1, b2, . . . below, which decrease rapidly. These
will satisfy bh+1 ≤ bh(1 − 2−1/d), and so (bh − bh+1)

d ≥ bd
h/2. Let Fh be the

event Mnh
(≥ h, ≥ bh). We want to show that Fh holds with high probability. The

first task is to obtain an upper bound on Pr(Fh+1 ∧ Fh).
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By Lemma 6.1, for each time t ∈ Th+1, on the event Fh ∧ A3
t−1 ∧ (Lt−1(v, ≥

h + 1) < bh+1) we have Lt−1(v, = h)d > (bh − bh+1)
d ≥ bd

h/2, and so

Pr(Ht (v) = h + 1|φt−1) ≥ ã

2N

(
bh − bh+1

n − 2

)d

≥ qh

where qh = ã
4N

(
bh

n−1 )d . Now if Ht(v) = h + 1 for at least bh+1 values t ∈ Th+1,
and this holds for each node v, then the event Fh+1 holds. Hence by Lemma 2.3,

Pr(Fh+1 ∧ Fh ∧ A3
N) ≤ nPr(B(s, qh) < bh+1),

and so

Pr(Fh+1 ∧ A3
N) ≤ Pr(Fh ∧ A3

N) + nPr(B(s, qh) < bh+1). (30)

We now choose the values bh. We let b0 = n − 1, and bh+1 = sqh/2 for
h = 0, 1, . . . . Let βh = bh

n−1 . Then β0 = 1, and for h = 0, 1, . . .

βh+1 = s

2(n − 1)

ã

4N
βd

h = ρβd
h .

Hence for h ≤ D2,

βh = ρ1+d+···+dh−1 ≥ ρdh ≥ (n − 1)−δ,

and so

bD2 = (n − 1)βD2 ≥ (n − 1)1−δ.

Also, for n sufficiently large, bh+1 ≤ bh(1 − 2−1/d) as required.
Since (n − 1)1−δ ≤ bh+1 = sqh/2 for each h = 0, 1, . . . , D2 − 1, each cor-

responding value Pr(B(s, qh) < bh+1) in (30) is very small. Since the event F0
must hold, it follows from (30) and the fact that A3

N holds with high probability
that FD2 holds with high probability. We condition on the event FD2 holding from
now on.

Finally consider the calls Xt with 2N/3 < t ≤ N . Then

Pr(Xt fails|φt−1) ≥ n−δd .

Hence by Lemma 2.3, with high probability at least n2−δd+o(1) calls fail, which
completes the proof. ��
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7. Concluding remarks

In this final section, we describe some results related to those above, which may be
proved by very similar methods.

(a) Theorems 1.2 and 1.3 above still hold, with only minor alterations to the
proofs, if instead of having exactly N = (

n
2

)
calls we allow M = �(n2) calls.

(b) There may be some interest in balanced routing without using direct links,
in particular see note (c) below. By Theorem 1.2, for the first fit method FDAR both
the direct link capacity D1 and the indirect link capacity D2 are important. This is
not the case with the balanced method BDAR. If we set D1 = 0 then the threshold
in Theorem 1.3 moves, but only very slightly. Let us state this as a theorem.

Theorem 7.1. Let d ≥ 2 be an integer. Let D1 = 0, so that we do not use direct
links. Suppose that there is a random sequence of M = �(n2) calls.

(a) There is a constant c such that if D2 ≥ log log n/ log d+c and we use the BDAR
algorithm, then with high probability all the calls are routed successfully.

(b) Let δ > 0. There is a constant c such that if D2 ≤ log log n/ log d − c and we
use any GDAR algorithm, then with high probability at least n2−δ calls fail.

(c) Let us consider a more general network model. For simplicity we shall ig-
nore direct links. Let G1, G2, . . . be a sequence of graphs, where Gn has n nodes.
Suppose that for each edge {u, v} in Gn, there are indirect links uv and vu each with
capacity D2 = D2(n). A call specifies an unordered pair of distinct nodes of Gn. If
the call at time t is for {u, v}, we pick d possible intermediate nodes uniformly at
random from the common neighbours of u and v, and proceed as before. We call
the number of common neighbours the co-degree of u and v. Some of our earlier
results transfer easily to this more general case. In particular, there is a version
of Theorem 1.3 (a) for this case, with essentially the same proof, as long as the
co-degrees grow linearly with n. Let us state it as a theorem.

Theorem 7.2. Let d ≥ 2 be an integer. Let G1, G2, . . . be a sequence of graphs,
where Gn has n nodes and the minimum co-degree is �(n). Suppose that in Gn

there is a random sequence of M = O(n2) calls, and we use the BDAR algorithm.
Then there is a constant c such that the following holds: if D2 ≥ log log n/ log d+c,
then with high probability all the calls are routed successfully.

Note that co-degrees grow linearly with n with high probability if Gn starts as the
complete graph Kn, and links fail independently with some fixed probability q < 1.
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