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Abstract. Using a new inequality relating the heat kernel and the probability of survival,
we prove asymptotic ratio limit theorems for the heat kernel (and survival probability) in
general Benedicks domains. In particular, the dimension of the cone of positive harmonic
measures with Dirichlet boundary conditions can be derived from the rate of convergence
to zero of the heat kernel (or the survival probability).

I. Introduction and main results

There exits an increasing literature devoted to the study of the killed Brownian
motion on unbounded domains and the associated survival probability, for instance
see [C.Z.], [K.], [L.], [P.]. Here, we consider the large time asymptotic of the heat
kernel in general Benedicks domains with Dirichlet boundary conditions. The case
of Benedicks domains with compact holes was treated in [C.M.SM.1]. Although
some cases with non compact holes can be studied using the same methods, it seems
hopeless to extend this approach to the general case. In the present paper we derive
a new inequality (of Nash type) which allows to control the general case of Bened-
icks domains. For these domains we answer positively a conjecture of Davies [D1.]
about limits of ratios. The case where there is only one positive harmonic function
vanishing on the boundary (up to a positive factor) was treated before for more
general domains in [C.M.SM.1] and for exterior domains in [C.M.SM.2]. See also
[B.J.]. The most interesting case is of course the case when the cone of non negative
harmonic functions with Dirichlet boundary conditions is of dimension larger than
one. We will see that for Benedicks domains, the asymptotic rate of convergence to
zero of the heat kernel (or of the survival probability) clearly reflects this property.

P. Collet: C.N.R.S. UMR 7644, Physique Théorique, Ecole Polytechnique, 91128 Palaiseau
Cedex, France. e-mail: collet@cpht.polytechnique.fr

S. Martı́nez, J. San Martı́n: Universidad de Chile, Facultad de Ciencias Fı́sicas y Matemát-
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We recall that a Benedicks domain � is the complement in Rd of a closed set
Dc ×{0} where D is an open non trivial subset of the hyperplane xd = 0 (see [B.]).
We also assume as in [B.] that each point of Dc × {0} is regular for the Dirichlet
problem in �. If x ∈ Rd we will sometimes write x = (�x, xd) with �x ∈ Rd−1. We
recall that for Benedicks domains the cone P� of non negative harmonic functions
with zero boundary condition is of dimension one or two (see [B.]). An integral test
for this dimension is given in [B.] (see also [A.]) while Theorem 1 below gives a
probabilistic characterization. In the case of dimension two, we denote by u1 the
extremal of the cone normalized by

lim
xd→+∞

u1(�x, xd)

xd

= 1 .

We recall that since u1 is an extremal we have

lim
xd→−∞

u1(�x, xd)

xd

= 0 .

We denote by u2 the symmetric function with respect to the hyperplane xd = 0,
namely

u2(�x, xd) = u1(�x, −xd).

It is another extremal function which satisfies

lim
xd→+∞

u2(�x, xd)

xd

= 0 and lim
xd→−∞

u2(�x, xd)

xd

= 1 .

Note that u1 and u2 generate P�. We also denote by vs the function

vs(�x, xd) = u1(�x, xd) + u2(�x, xd) ,

which is modulo a constant factor the unique symmetric element in P�.
We denote by pt (x, y) the heat kernel of � with Dirichlet boundary conditions.

For a Brownian motion Xt in � with absorption at the boundary, let T� denote
the exit time from �. We will denote this random variable by T when there is no
ambiguity on the domain. Px(T > t) will denote the probability of survival up to
time t starting at the point x ∈ �, namely

Px(T > t) =
∫

�

pt (x, y)dy .

We will also use the heat kernel of the half space xd > 0 denoted by pH
t (x, y). We

now formulate our result.

Theorem 1. For any Benedicks domain �, for each (x, y) ∈ � × �, the function
of time t1+d/2pt (x, y) has a limit when t tends to infinity.
If this limit is infinite for one pair (x, y), it is infinite for any pair (x′, y′) ∈ �×�,
the cone P� is of dimension one, and we have for any x1, · · · , x4 in �

lim
t→∞

pt (x1, x2)

pt (x3, x4)
= u(x1)u(x2)

u(x3)u(x4)

where u is any function in the cone.
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If the limit is finite for one pair (x, y) (and hence for all pairs of points), the
cone P� has dimension two and we have for any x and y in �

lim
t→∞ t1+d/2pt (x, y) = 2

(2π)d/2 (u1(x)u1(y) + u2(x)u2(y)) .

In the first case, the exact asymptotic rate in time of pt (x, y) differs according
to the domain. For example, in dimension two, for the exterior of a segment one gets
t−1(log t)−2, and for the complement of a half line one gets t−3/2 (see [C.M.SM.2]
and [B.S.]).

A result similar to Theorem 1 holds for the survival probability.

Theorem 2. For any Benedicks domain �, for each x ∈ �, the function of time
t1/2Px(T > t) has a limit when t tends to infinity.

If this limit is infinite for one point x ∈ �, it is infinite for any point y ∈ �. The
cone P� is of dimension one, and we have for any x, and y in �

lim
t→∞

Px(T > t)

Py(T > t)
= u(x)

u(y)

where u is any function in the cone.
If the limit is finite (for one point), the cone P� has dimension two and we have

for any x ∈ �

lim
t→∞ t1/2Px(T > t) =

√
2

π
vs(x) .

Here also, in the first case the asymptotic rate depends on the domain.
The rest of the paper is organized as follows. In section II we prove Theorem

1. The proof of Theorem 2 is given in section III. In the appendix we give a proof
of symmetry estimates needed in the proof of Lemma 2.

II. Asymptotic of the heat kernel

The proof of Theorem 1 will be a consequence of several results. We first es-
tablish a general estimate which may be of independent interest. This Lemma
follows by applying Nash inequality to the heat kernel. In fact, an analytic proof
is based on the inequality ‖φ‖4

2 ≤ C2‖∇φ‖2
2‖φ‖2

1, for φ(x) = pt (x, y). A di-
rect computation yields ‖pt (·, y)‖2

2 = p2t (y, y), ‖∇.pt (·, y)‖2
2 = −ṗ2t (y, y) and

‖pt (·, y)‖1 = Py(T > t), leading to an inequality of the type (1) below, with p4t

instead of p3t . In the sequel we give a direct and simpler probabilistic proof.

Lemma 1. For any x and y in � and any t > 0, we have

p3t (x, y) ≤ 1

(2πt)d/2 Px(T > t)Py(T > t) . (1)

Proof. By the semi group property we have

p3t (x, y) =
∫

�

dz1

∫
�

dz2 pt (x, z1)pt (z1, z2)pt (z2, y) .
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On the other hand from the Gaussian bound

pt (x, y) ≤ 1

(2πt)d/2 e−|x−y|2/2t

we obtain

pt (z1, z2) ≤ 1

(2πt)d/2 e−|z1−z2|2/2t ≤ 1

(2πt)d/2 .

The result follows from the above expression for Px(T > t). 	

By a direct computation, using the results of [B.S.] or [D2.], one can check that

for cones the following limit exists

lim
t→∞

(2πt)d/2pt (x1, x2)

Px1(T > t)Px2(T > t)
.

This limit also exists in the case of exterior domains as follows from the results
in [C.M.SM.2]. For the case of Benedicks domains with two extremal harmonic
functions this follows from Theorems 1 and 2.

Lemma 2. For any Benedicks domain � with a cone P� of dimension two, there
is a constant � > 1 such that for any t > 1 and any (x, y) ∈ � × � we have

pt (x, y) ≤ �

t1+d/2 (1 + vs(x))(1 + vs(y)) (2)

We also have for some finite constant K , for any t > 0 and any x ∈ � the bound

Px(T > t) ≤ K
1 + vs(x)√

t
.

Proof. We first observe that if � > 4/(2π)d/2, the first estimate is true for 1 ≤ t ≤ 4
due to the Gaussian bound and the non negativity of vs . We are now going to prove
recursively that if (2) holds on the time interval [1, 3n] (where n is a positive integer)
it also holds with the same constant on the time interval [3n, 3n+1].

We will assume that yd > 0, the case yd < 0 is similar, and yd = 0 is recovered
by continuity. We first prove an upper bound for Py(T > t), using the recursive
bound (2) (i.e. assuming t ∈ [1, 3n]). Let α = �−1/(2+d). We have

Py(T > t) = I1 + I2 ,

where

I1 =
∫

|zd |≤α
√

t

pt (z, y)dz and I2 =
∫

|zd |≥α
√

t

pt (z, y)dz .

We first estimate I2. Recall that (see [B.]) vs(z) ≥ |zd |. Therefore

I2 =
∫

|zd |≥α
√

t

1 + vs(z)

1 + vs(z)
pt (z, y)dz ≤ 1

1 + α
√

t

∫
|zd |≥α

√
t

(1 + vs(z))pt (z, y)dz

≤ 1

1 + α
√

t

∫
(1 + vs(z))pt (z, y)dz ≤ 1 + vs(y)

α
√

t
.
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In order to estimate I1 we will split this integral into two parts. Namely

I1 = J1 + J2

where

J1 =
∫

|zd |≤α
√

t , |�z−�y|≤α
√

d−1
√

t

pt (z, y)dz

and

J2 =
∫

|zd |≤α
√

t , |�z−�y|≥α
√

d−1
√

t

pt (z, y)dz .

We first estimate J2. We observe that

J2 ≤
d−1∑
l=1

J2,l with J2,l =
∫

|zd |≤α
√

t , |zl−yl |≥α
√

t

pt (z, y)dz .

We now estimate each J2,l in terms of I2. To this end we use the symmetry with
respect to the hyperplanes zd = ±(zl − yl) denoted by S±

l . Using Lemma A from
the appendix we get for zl − yl < −|zd |

pt (z, y) ≤ pt (S
+
l z, y) + pt (S

−
l z, y)

and a similar estimate if zl − yl > |zd |. Therefore

J2,l ≤ 4I2

and we get a bound by the previous estimate of I2.
We now estimate J1. We have

J1 =
∫

|zd |≤α
√

t , |�z−�y|≤α
√

d−1
√

t

pt (z, y)dz

=
∫

|zd |≤α
√

t , |�z−�y|≤α
√

d−1
√

t

pt (z, y)1/2(1 + vs(z))
1/2 pt (z, y)1/2

(1 + vs(z))1/2 dz ,

and using Schwartz inequality we get

J1 ≤
(∫

|zd |≤α
√

t , |�z−�y|≤α
√

d−1
√

t

pt (z, y)(1 + vs(z))dz

×
∫

|zd |≤α
√

t , |�z−�y|≤α
√

d−1
√

t

pt (z, y)

(1 + vs(z))
dz

)1/2

≤ (1 + vs(y))1/2
(∫

|zd |≤α
√

t , |�z−�y|≤α
√

d−1
√

t

pt (z, y)

(1 + vs(z))
dz

)1/2

.

In the last integral we use the recursive assumption (2) and get

J1 ≤ (1 + vs(y))�1/2t−(1/2+d/4)

(∫
|zd |≤α

√
t , |�z−�y|≤α

√
d−1

√
t

1 + vs(z)

(1 + vs(z))
dz

)1/2

≤ Cd(1 + vs(y))�1/2αd/2t−1/2 ,

where Cd is a constant depending only on the dimension d.
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Collecting the estimates and using the relation α = �−1/(2+d), we get for a
positive constant C4 (which can always be assumed larger than 1) independent of
�, x, y and t ∈ [1, 3n]

Py(T > t) ≤ C4(1 + vs(y))√
t

(
1

α
+ αd/2�1/2

)
≤ 2

C4(1 + vs(y))√
t

�1/(2+d) .

This is the second part of the Lemma for t ∈ [1, 3n] if we take

K = 2C4�
1/(2+d) .

For t ∈ [0, 1] the second part of the Lemma follows at once if we take K > 1 since
Py(T > t) ≤ 1. Using Lemma 1 we get for t ∈ [3n, 3n+1]

pt (x, y) ≤ 4

(2π)d/2 C2
4�2/(2+d)(1 + vs(x))(1 + vs(y))

1

t1+d/2 .

If we now chose

� >
(2C4)

(4+2d)/d

(2π)(2+d)/2

we obtain for t ∈ [3n, 3n+1] the required estimate, and we complete recursively
the proof of the first part of Lemma 2. 	


We now come to the proof of Theorem 1. First of all, we observe that if there is a
pair (x, y) ∈ �×� such that t (1+d/2)pt (x, y) has a finite accumulation point when
t tends to infinity, then using Harnack inequality we conclude that t (1+d/2)pt (x, x)

has also a finite accumulation point. This implies as in [C.M.SM.1] that we can
find a diverging sequence (tn) such that for any s > 0 and any (y, z) ∈ � × �,
the sequence (tn + s)(1+d/2)ptn+s(y, z) converges to a function ϕ(y, z) which is
harmonic in y and z (separately) and vanishes at the boundary of �. In the case of
manifolds, see [A.B.J.] for a different proof. Note that at this point of the argument,
ϕ may still depend on the sequence (tn). We will prove below that this is not the
case, and this implies convergence. We recall that the explicit formula for pH

t (x, y)

is

pH
t (x, y) = 2

(2π t)d/2 e−|�x−�y|2/2t e−(x2
d+y2

d

)
/2t sinh

(xdyd

t

)
. (3)

It follows immediately that

lim
t→∞ t1+d/2pH

t (x, y) = 2xdyd

(2π)d/2 . (4)

From the bound
pH

t (x, y) ≤ pt (x, y)

we conclude that

ϕ(y, z) ≥ 2ydzd

(2π)d/2 .

In particular, for fixed z we find that ϕ(y, z) is a non negative harmonic function
vanishing on the boundary and growing linearly with yd . This implies by the results
of [B.] that the cone P� is of dimension two.
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Using the various symmetries and the convexity of the cone P� we can say
more about the structure of the function ϕ(x, y). First of all since P� is of dimen-
sion two with u1 and u2 two extremals, and since ϕ(x, y) is harmonic in x at fixed
y, non negative and zero on the boundary, we can find two functions f1 and f2 of
y such that

ϕ(x, y) = f1(y)u1(x) + f2(y)u2(x) .

Since u1 and u2 are not proportional, we conclude that f1(y) and f2(y) are har-
monic, non negative and zero on the boundary of �. Therefore writing f1 and f2
as nonnegative combinations of u1 and u2, and using also the symmetry of ϕ in x

and y we obtain

ϕ(x, y) = au1(x)u1(y) + bu2(x)u2(y) + c (u1(x)u2(y) + u2(x)u1(y)) ,

where a, b and c are three nonnegative constants which may depend on the sequence
(tn). Using the symmetry with respect to the hyperplane xd = 0, we conclude that
a = b.

We now use the formula (see [C.M.SM.1]) for xdyd > 0

pt (x, y) = pH
t (x, y) − 1

2

∫ t

0
ds

∫
D

∂n�ξ p
H
t−s(x, (�ξ, 0))ps((�ξ, 0), y)d�ξ

= pH
t (x, y) + xd

(2π)d/2

∫ t

0

ds

(t − s)1+d/2

×
∫

D

e−x2
d /2(t−s)e−|�x−�ξ |2/2(t−s)ps((�ξ, 0), y)d�ξ . (5)

If xdyd < 0 the same identity without the term pH
t (x, y) holds. Notice that the func-

tion ps((�ξ, 0), y) is symmetric with respect to the hyperplane yd = 0. Therefore if
y∗ is the symmetric of y with respect to this hyperplane, we have for ydxd > 0

pt (x, y) = pH
t (x, y) + pt (x, y∗) .

Since u1(y
∗) = u2(y) and u2(y

∗) = u1(y) we conclude from (4) and our nor-
malization of u1 (and u2) that a = 2(2π)−d/2 − c. It now remains to show that
c = 0.

We now assume xd > 0 and split the integral

xd

∫ t

0

ds

(t − s)1+d/2

∫
D

e−x2
d /2(t−s)e−|�x−�ξ |2/2(t−s)ps((�ξ, 0), y)d�ξ = K1 + K2 ,

in two pieces given by

K1 = xd

∫ t/2

0

ds

(t − s)1+d/2

∫
D

e−x2
d /2(t−s)e−|�x−�ξ |2/2(t−s)ps((�ξ, 0), y)d�ξ ,

K2 = xd

∫ t

t/2

ds

(t − s)1+d/2

∫
D

e−x2
d /2(t−s)e−|�x−�ξ |2/2(t−s)ps((�ξ, 0), y)d�ξ .
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We now estimate each term separately starting with K2. Using Lemma 2 we have

K2 ≤ �(1 + vs(y))

∫ t

t/2

ds

s1+d/2(t − s)1+d/2

×
∫

D

e−x2
d /2(t−s)

(
1 + vs(�ξ, 0)

)
e−|�x−�ξ |2/2(t−s)d�ξ

≤ �21+d/2t−(1+d/2)(1 + vs(y))

∫ t

t/2

ds

(t − s)1+d/2

×
∫

D

e−x2
d /2(t−s)

(
1 + vs(�ξ, 0)

)
e−|�x−�ξ |2/2(t−s)d�ξ .

We integrate first over s and obtain

K2 ≤ O(1)t−(1+d/2)(1 + vs(y))xd

∫
D

1 + vs(�ξ, 0)(
x2
d + |�ξ − �x|2

)d/2 d�ξ .

Using the Herglotz representation for harmonic functions in a half hyperplane, we
obtain finally

K2 ≤ C(�x)t−(1+d/2)(1 + vs(y))(1 + o(xd)) ,

where C(�x) is bounded on compact sets in Rd−1.
We now estimate K1. We first observe that

t−(1+d/2)xd

∫ t/2

0
ds

∫
D

e−x2
d /t e−|�x−�ξ |2/tps((�ξ, 0), y)d�ξ

≤ K1 ≤ (2π)d/2pt (x, y) .

Therefore, multiplying by t1+d/2, taking t = tn and letting n tend to infinity, we
obtain by the monotone convergence Theorem

xd

∫ ∞

0
ds

∫
D

ps((�ξ, 0), y)d�ξ

≤ (2π)d/2(a (u1(x)u1(y) + u2(x)u2(y)) + c (u1(x)u2(y) + u2(x)u1(y))) .

Dividing by xd and then taking xd to infinity, we obtain

V (y) =
∫ ∞

0
ds

∫
D

ps((�ξ, 0), y)d�ξ ≤ (2π)d/2(a + c)vs(y) .

In particular, this function is zero on the boundary of �. We now derive a better
estimate on V .
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In equation (5) we take y = (�η, 0) and we integrate over �η and t . For any ε > 0,
we obtain

∫ ε−1

ε

dt

∫
D,|�η|≤ε−1

pt (x, (�η, 0))d �η

= xd

(2π)d/2

∫ ε−1

ε

dt

∫ t

0

ds

(t − s)1+d/2

∫
D

d�ξe
−
(
|�ξ−�x|2+x2

d

)
/2(t−s)

×
∫

D , |�η|≤ε−1
ps((�ξ, 0), (�η, 0))d �η .

We now interchange the integrations in s and t and obtain

∫ ε−1

ε

dt

∫
D , |�η|≤ε−1

pt (x, (�η, 0))d �η

= xd

(2π)d/2

∫ ε−1

0
ds

∫ ε−1

max{ε,s}
dt

(t − s)1+d/2

∫
D

d�ξe
−
(
|�ξ−�x|2+x2

d

)
/2(t−s)

×
∫

D,|�η|≤ε−1
ps((�ξ, 0), (�η, 0))d �η ,

≤ xd

(2π)d/2

∫ ε−1

0
ds

∫ ∞

0

dτ

τ 1+d/2

∫
D

d�ξe
−
(
|�ξ−�x|2+x2

d

)
/2τ

×
∫

D,|�η|≤ε−1
ps((�ξ, 0), (�η, 0))d �η

≤ O(1)xd

∫
D

d�ξ 1(
|�ξ − �x|2 + x2

d

)d/2

∫ ε−1

0
ds

∫
D,|�η|≤ε−1

ps((�ξ, 0), (�η, 0))d �η .

Since V (y) is a non negative function (in fact harmonic) in the upper half hyper-
plane, we can let ε tend to zero and using the monotone convergence Theorem we
obtain

V (x) ≤ O(1)xd

∫
D

d�ξ V (�ξ, 0)(
|�ξ − �x|2 + x2

d

)d/2 ≤ O(1)xd

∫
D

d�ξ vs(�ξ, 0)(
|�ξ − �x|2 + x2

d

)d/2 .

This is again the Herglotz representation and implies V (x) = C(�x) (1 + o(xd)),
where C(�x) is bounded on compact sets in Rd−1.

We now come back to the estimation of K1. We have

K1 ≤ 21+d/2t−(1+d/2)xd

∫ t/2

0
ds

∫
D

ps((�ξ, 0), y)d�ξ

≤ xdt−(1+d/2)O(1)V (y) ≤ xdt−(1+d/2)C(�y)(1 + o(yd)) .
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We now take yd = −xd < 0 large, �x = �y fixed. We have

lim
n→∞ t

1+d/2
n ptn(x, y) = ϕ(x, y)

= 2au1(x)u2(x) + c
(
u1(x)2 + u2(x)2

)

= cx2
d + o

(
1 + x2

d

)
≤ O(1)xd(1 + o(xd)) ,

which implies c=0. Therefore a = 2(2π)−d/2 for any accumulation point, which
implies convergence and finishes the proof of the last part of Theorem 1.

Finally, if t (1+d/2)pt (x, y) diverges for a pair of points (x, y) in �, by Harnack
inequality, it diverges for all pair of points. It follows from Lemma 2 that the cone
P� is of dimension one and the first part of Theorem 1 follows as in [C.M.SM.1].
This finishes the proof of Theorem 1. 	


III. Asymptotic of the survival probability

In this section we give a proof of Theorem 2 on the asymptotic of the survival
probability.

We first consider the case where for some x ∈ � the function of time
t1/2Px(T > t) has a finite accumulation point. In other words, there is a diverging
sequence (tn) such that t

1/2
n Px(T > tn) has a finite limit. Applying Lemma 1, we

conclude that t
1+d/2
n ptn(x, x) is bounded. Therefore we are in the second case of

Theorem 1, namely the cone P� is of dimension 2. Applying Lemma 2 we con-
clude that t1/2Px(T > t) is bounded uniformly in t . On the other hand, any accumu-
lation point is a non negative harmonic function which is symmetric with respect to
the hyperplane xd = 0 and zero on the boundary of �. This last statement follows
(for t > 1) from Lemma 2 by the estimate

√
tPx(T > t) = ∫

�
p1(x, y)

√
tPy(T > t − 1) dy

≤ K
√

t
t−1

∫
�

p1(x, y) (1 + vs(y)) dy ≤ K
√

t
t−1 (Px(T ≥ 1) + vs(x)) .

Therefore, any accumulation point is of the form Avs(x) where the constant A may
depend on the accumulation point. We now show that this is not the case. Assuming
xd > 0 and integrating relation (5) with respect to y ∈ � we obtain the following
relation for Px(T > t)

Px(TH > t) + xd

(2π)d/2

∫ t

0

ds

(t − s)1+d/2

×
∫

D

e
−
(
|�x−�ξ |2+x2

d

)
/2(t−s)

P(�ξ,0)(T > s)d�ξ .

We also have easily from (3)

Px(TH > t) = 1√
2πt

∫ xd

−xd

e−z2/2t dz = 2xd√
2πt

+ O((xd/
√

t)3) .
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We now split the integral in the above expression of Px(T > t) in two parts,
namely

xd

(2π)d/2

∫ t

0

ds

(t − s)1+d/2

∫
D

e−|�x−�ξ |2/2(t−s)e−x2
d /2(t−s)P(�ξ,0)(T > s)d�ξ = M1+M2

with

M1 = xd

(2π)d/2

∫ t/2

0

ds

(t − s)1+d/2

∫
D

e−|�x−�ξ |2/2(t−s)e−x2
d /2(t−s)P(�ξ,0)(T > s)d�ξ ,

and

M2 = xd

(2π)d/2

∫ t

t/2

ds

(t − s)1+d/2

∫
D

e−|�x−�ξ |2/2(t−s)e−x2
d /2(t−s)P(�ξ,0)(T > s)d�ξ .

We first estimate M1. We have, using Lemma 2, that M1 is bounded above by

O(1)xd

∫ t/2

0

ds√
s(t − s)

∫
D

e
−
(
|�x−�ξ |2+x2

d

)
/2(t−s)

(
|�x − �ξ |2 + x2

d

2(t − s)

)d/2

× 1 + vs(�ξ, 0)(
|�x − �ξ |2 + x2

d

)d/2 d�ξ

≤ O(1)xd

∫ t/2

0

ds√
s(t − s)

∫
D

1 + vs(�ξ, 0)(
|�x − �ξ |2 + x2

d

)d/2 d�ξ ≤ O(1)xd t−1/2

×
∫

D

1 + vs(�ξ, 0)(
|�x − �ξ |2 + x2

d

)d/2 ,

and since this last integral is proportional to the Herglotz integral, we obtain
again

M1 ≤ t−1/2C(�x)(1 + o(xd)) ,

where C(�x) is bounded on compact sets in Rd−1. For M2 we have using again
Lemma 2

M2 ≤ O(1)t−1/2xd

∫ t

t/2

ds

(t − s)1+d/2

∫
D

e
−
(
|�x−�ξ |2+x2

d

)
/2(t−s)

(1 + vs(�ξ, 0))d�ξ .

Integrating first over s, we obtain again the Herglotz integral and conclude as before
that

M2 ≤ O(1)t−1/2C(�x)(1 + o(xd)) .
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Finally we obtain for fixed �x

Px(T > t) = 2xdt−1/2

√
2π

+ O((xd/
√

t)3) + O(1)C(�x)t−1/2(1 + o(xd)) ,

which implies A = √
2/π .

Assume now that t1/2Px(T > t) tends to infinity for some x ∈ �. By Harnack
inequality, this also holds for any y ∈ �. Moreover from Lemma 2 we are in the
case where the cone P� is of dimension one.

We now show that for any s ∈ R and any x ∈ �, we have

lim
t→∞

Px(T > t + s)

Px(T > t)
= 1 .

It is enough to consider s > 0 since the case s < 0 is obtained by taking the
inverse of the above expression and replacing t by t + s. By the Gaussian bound
and integrating first over �y we have

∫
|yd |≤t1/4Px(T >t)1/2

pt (x, y)dy ≤ 1

(2πt)1/2

∫
|yd |≤t1/4Px(T >t)1/2

dyd

=
√

2

π

Px(T > t)1/2

t1/4 .

This implies

P
(
|Xd

t | ≤ t1/4Px(T > t)1/2
∣∣ T > t

)
≤
√

2

π

1(√
tPx(T > t)

)1/2 ,

which tends to zero when t tends to infinity by our previous assumption.
For s > 0 the previous estimate implies

Px(T > t + s)

Px(T > t)
= Ex

(
PXt (T > s)

∣∣ T > t
)

≥ Ex

(
PXt (T > s)

∣∣ |Xd
t | ≥ t1/4Px(T > t)1/2 , T > t

)

× Px

(
|Xd

t | ≥ t1/4Px(T > t)1/2
∣∣ T > t

)

≥ Ex

(
PXt (TH > s)

∣∣ |Xd
t | ≥ t1/4Px(T > t)1/2 , T > t

)

×
(

1 −
√

2

π

1(√
tPx(T > t)1/2

)
)

.

From (3) we have

Px(TH > s) = 1√
2πs

∫ ∞

0
e−(xd−yd )2/2s − e−(xd+yd )2/2sdyd

= 1 − 2√
2π

∫ ∞

xd/
√

s

e−u2/2du ≥ 1 − 2√
2π

√
s

xd

e−x2
d /2s .
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Therefore

1 ≥ Px(T > t + s)

Px(T > t)

≥
(

1 − 2√
2π

√
s(√

tPx(T > t)
)1/2 e−√

tPx(T >t)/2s

)

×
(

1 −
√

2

π

1(√
tPx(T > t)

)1/2

)
,

which tends to 1 when t tends to infinity.
For a fixed y ∈ �, using reflection arguments, Harnack inequality and mono-

tonicity in t to get away from the boundary, one can now show as in [C.M.SM.1]
that as a function of x, any accumulation point of Px(T > t)/Py(T > t) is a non
negative harmonic function which is zero at the boundary and equal to one for
x = y. The conclusion of Theorem 2 follows in that case since the cone P� is one
dimensional.

Appendix: a symmetry estimate.

Let �n be a unit vector in Rd−1. Let y ∈ � with yd �= 0, we will assume for def-
initeness yd > 0, the argument is the same for yd < 0. Several quantities below
will depend on y and �n, but since we will not vary these two objects we will not
mention this dependence explicitly. We define a domain �+ by

�+ = {
x = (�x, xd) ∈ �

∣∣ |xd | ≤ (�x − �y) • �n} .

We also define two symmetry operators S± by

S+(x) = (�x + (xd − (�x − �y) • �n) �n, (�x − �y) • �n) ,

and

S−(x) = (�x − (xd + (�x − �y) • �n) �n, −(�x − �y) • �n) ,

Finally, we define the function qt (x, y) by

qt (x, y) = pt (S
+(x), y) + pt (S

−(x), y) − pt (x, y) .

The following Lemma gives an estimate on pt (x, y).

Lemma A. For any x ∈ �+ and any t > 0, we have qt (x, y) ≥ 0, hence

pt (x, y) ≤ pt (S
+(x), y) + pt (S

−(x), y)

A similar result holds for the domain

�− = {
x ∈ �

∣∣ − |xd | ≥ (�x − �y) • �n} .
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The proof is based on the maximum principle. We first observe that as a function
of t and x, qt (x, y) is a solution of the heat equation. Moreover since yd > 0 we
have

q0(x, y) = δ(S+(x) − y) = δ(x − S+(y)) .

The boundary of �+ can be decomposed in three pieces. There is first the piece
corresponding to xd = (�x − �y) • �n, where we have S+(x) = x, and therefore

qt (x, y) = pt (S
−(x), y) > 0 .

The second piece corresponds to xd = −(�x − �y) • �n, and on this hyperplane we
have S−(x) = x, therefore

qt (x, y) = pt (S
+(x), y) > 0 .

the last piece corresponds to

D × {xd = 0} ∩ {|xd | ≤ (�x − �y) • �n} .

On this set we have pt (x, y) = 0, and therefore

qt (x, y) = pt (S
+(x), y) + pt (S

−(x), y) > 0 .

We now conclude the proof using the Phragmén-Lindelöf version of the maximum
principle (see [P.W.]).
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