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Abstract. In the bootstrap percolation model, sites in an L by L square are initially indepen-
dently declared active with probability p. At each time step, an inactive site becomes active if
at least two of its four neighbours are active. We study the behaviour as p → 0 and L → ∞
simultaneously of the probability I (L, p) that the entire square is eventually active. We prove
that I (L, p) → 1 if lim inf p log L > λ, and I (L, p) → 0 if lim sup p log L < λ, where
λ = π2/18. We prove the same behaviour, with the same threshold λ, for the probability
J (L, p) that a site is active by time L in the process on the infinite lattice. The same results
hold for the so-called modified bootstrap percolation model, but with threshold λ′ = π 2/6.
The existence of the thresholds λ, λ′ settles a conjecture of Aizenman and Lebowitz [3],
while the determination of their values corrects numerical predictions of Adler, Stauffer and
Aharony [2].

1. Introduction

We consider the bootstrap percolation process in two dimensions. Let Z
2 = {x =

(x1, x2) : x1, x2 ∈ Z} be the set of all 2-vectors of integers. Elements of Z
2 are

called sites. The neighbourhood N(x) of a site is

N(x) = {y ∈ Z
2 : ‖x − y‖ = 1},

where ‖ · ‖ is Euclidean distance. So |N(x)| = 4 for all x. Let K be a subset of Z
2.

Define B(K) by

B(K) = K ∪ {x ∈ Z
2 : |N(x) ∩ K| ≥ 2},

and 〈K〉 by
〈K〉 = lim

t→∞Bt (K),

where Bt denotes the t-th iterate. (If K is the active set at time 0, then Bt is the
active set at time t and 〈K〉 is the active set at time ∞).
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Now fix p ∈ [0, 1] and let X be a random subset of Z
2 in which each site is

independently included with probability p. More formally, denote by Pp the prod-

uct probability measure with parameter p on the product σ -algebra of {0, 1}Z2
, and

define the random variable X by X(ω) = {x ∈ Z
2 : ω(x) = 1} for ω ∈ {0, 1}Z2

.
A site x ∈ Z

2 is said to be occupied if x ∈ X.
We say that a set K ⊆ Z

2 is internally spanned if 〈X ∩ K〉 = K . A rectangle
is a set of sites of the form

R(a, b; c, d) := {a, . . . , c} × {b, . . . , d},

where a ≤ c, b ≤ d are integers. We also write R(c, d) = R(1, 1; c, d). Define the
function

I (L, p) = Pp

(
R(L, L) is internally spanned

)
.

Our main result is the following.

Theorem 1. Let Ln, pn be sequences such that Ln → ∞ and pn → 0. Then:

(i) if lim inf
n→∞ pn log Ln > λ then lim

n→∞ I (Ln, pn) = 1;

(ii) if lim sup
n→∞

pn log Ln < λ then lim
n→∞ I (Ln, pn) = 0;

where

λ = π2

18
.

The main step in the proof of Theorem 1 will be Theorem 2 below, concerning the
probability of much smaller squares being internally spanned.

Theorem 2.

(i) lim sup
p→0

sup
m≥1

−p log I (m, p) ≤ 2λ.

(ii) lim inf
B→∞

lim inf
p→0

−p log I (B/p�, p) ≥ 2λ.

(Here ·� denotes the integer part).
We also establish the following result about the time-evolution of the process

on Z
2. Define

J (t, p) = Pp

(
(0, 0) ∈ Bt (X)

)
,

(the probability the origin is active by time t).

Theorem 3. Let tn, pn be sequences such that tn → ∞ and pn → 0. Then:

(i) if lim inf
n→∞ pn log tn > λ then lim

n→∞ J (tn, pn) = 1;

(ii) if lim sup
n→∞

pn log tn < λ then lim
n→∞ J (tn, pn) = 0.
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The modified bootstrap model is a variant of the above model, in which the
definition of B is replaced with

B′(K) = K ∪
{
x ∈ Z

2 : |{x + ei, x − ei} ∩ K| ≥ 1 for each of i = 1, 2

}
,

where e1 = (1, 0) and e2 = (0, 1). We define I ′(·, ·) and J ′(·, ·) accordingly. The
arguments in this article can be used to prove the following.

Theorem 4. For the modified bootstrap model, the analogues of Theorems 1,2,3
hold, with λ replaced by

λ′ = π2

6
.

Our results answer the main question posed in [3] in the case of two-dimension-
al bootstrap percolation. In that paper is was proved (for a wider class of models)
that for p → 0 and L → ∞, we have I (L, p) → 1 if lim inf p log L > c1 and
I (L, p) → 0 if lim sup p log L < c2, for different constants c1, c2, and similarly
for J (L, p). Other aspects of the model have been subsequently studied in detail
(see [4], [5], [12], [13], [14], [17] and the references therein, for example), but the
natural question of whether c1, c2 could be replaced with a single sharp threshold
remained open. Our results answer this affirmatively, as well as establishing the
precise value of the threshold.

Predictions for the thresholds λ, λ′ based on simulation are not in good agree-
ment with our rigorous result. In [1], [2], the estimates 0.245 ± 0.015 for λ and
0.47 ± 0.02 for λ′ are reported, whereas λ = π2/18 = 0.548311 · · · and λ′ =
π2/6 = 1.644934 · · ·. The likely reason for this discrepancy is that it is necessary
to take L extremely large in order to “see” the true limiting behaviour. (These sim-
ulations used values of L up to 28, 800). Similar phenomena have been noted for
several other variants of bootstrap percolation; for details see [1], [10], [18], [19],
[22], [23].

Bootstrap percolation in three and higher dimensions presents a new set of chal-
lenges; for details see [7], [8], [19]. In particular for the three-dimensional model
in which a site becomes active if at least three of its six neighbours are active, it was
established in [7] that the form of the threshold regime is different: I (L, p) → 1
if lim inf p log log L > c1 and I (L, p) → 0 if lim sup p log log L < c2; the ex-
tension to other dimensions is treated in [8]. The arguments required for these
results are more sophisticated than those in [3], and it seems that the problem of
establishing a sharp threshold here is likely to be correspondingly harder.

Aside from their intrinsic mathematical interest, bootstrap percolation mod-
els find numerous applications, both directly and as tools in the analysis of more
complicated systems. See for example [1], [9], [10], [16], [24].

In [3] it was also conjectured that stochastic Ising models show similar metasta-
bility behaviour.An analogue of the result in [3] was proved (in arbitrary dimension)
in [20], and an analogue of our result was proved in [21].

We omit the proof of Theorem 4 regarding the modified bootstrap model. The
proof is almost identical to those given for the earlier theorems, and in fact a few
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simplifications are possible. The main difference is that the definition of a rectan-
gle being “horizontally (respectively vertically) traversable” in Section 3 should be
replaced with the statement that all the columns (respectively rows) are occupied,
and the function g (see Sections 2, 3, 4) should be replaced with f .

The article is organized as follows. In Section 2 we introduce and solve a def-
inite integral which gives rise to the constant λ = π2/18. In Section 3 we give
notation and basic results. In Section 4 we prove Theorem 2 (i), and in Section 5 we
deduce Theorems 1 and 3 from Theorem 2. These proofs are relatively standard;
the rest of the article is devoted to the much harder task of proving Theorem 2 (ii).
In Sections 6, 7, 8 and 9 we assemble the tools needed for this; the reader may
prefer to skip the proofs in these sections on a first reading. Finally in Section 10
we complete the proof of Theorem 2 (ii).

We now present a sketch of the ideas behind the proofs in this article. Theorem 1
may be deduced from Theorem 2 as follows. Roughly speaking, Theorem 2 states
that if we take B large and then let p → 0, then I (B/p, p) behaves roughly as
e−2λB/p, where λB → λ as B → ∞. Now suppose L ≈ ec/p for some c. It may
be shown that the event that R(L, L) is internally spanned is roughly equivalent to
the event that it contains some internally spanned square of side length B/p. This
is because for B large, most intervals of length B/p contain an occupied site, so
when a growing active cluster reaches approximately this size it is almost certain
to grow to fill the whole square (such a growing cluster is sometimes referred to
as a “critical droplet” in the literature). The expected number of internally spanned
squares of side B/p in R(L, L) is approximately L2e−2λB/p ≈ e2(c−λB)/p, which
is � 1 if c > λB and � 1 if c < λB . Moreover, we may choose B so that λB is as
close to λ as desired. A more careful application of these ideas proves Theorem 1,
and a similar approach gives Theorem 3.

We now turn to the proof of Theorem 2. The lower bound on I in (i) is relatively
straightforward; the upper bound in (ii) is much harder. For (i), assume m = B/p

and consider one way in which R(m, m) can be internally spanned. Suppose that
(1, 1) is occupied, and that for each k = 2, . . . , m, the column with horizontal
coordinate k and height k − 1 contains at least one occupied site, and similarly
the row with vertical coordinate k and width k − 1. Then it is easily seen that
each square with bottom-left corner (1, 1) is internally spanned, so the active set
grows to fill whole of R(m, m). This picture gives the correct lower bound for the
modified bootstrap model, but for the bootstrap model one can do better. Since a
site becomes active if it has active neighbours on two opposite sides, we can allow
some of the rows and columns described above to be vacant. Roughly speaking, the
growth will still take place provided there are never two adjacent vacant rows or
columns (actually, a little more care is needed, see Section 4). A calculation shows

that the probability of this event behaves roughly as e−(2/p)
∫ B

0 g where g is a certain
function which satisfies

∫ ∞
0 g(z) dz = λ = π2/18. This proves Theorem 2 (i), and

also shows that in some sense the “natural” length unit for the problem is 1/p.
For the upper bound, Theorem 2 (ii), the basic idea is to consider all other possi-

ble ways in which R = R(B/p, B/p) could be internally spanned, and find upper
bounds on the number of ways and the probability of each one. One way in which
R could be internally spanned is for the growth described above to start from the
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center of the square R (say), and for an active square to grow in all four directions
rather than just two. It turns out that the probability of this is essentially the same,

e−(2/p)
∫ B

0 g , roughly because growth by one unit each to the left and to the right is
equivalent to growth by two units to the right. Hence there is in some sense no loss
of generality in assuming that growth starts from the corner. However, there are
many other ways in which growth could occur. For example two adjacent rows as
described above might be vacant, in which case the active region could still continue
to grow horizontally for a while, until it encounters an occupied site in the vertical
direction, at which point vertical growth can resume. It can be shown that such a
possibility has much smaller probability than the one considered earlier. Indeed,
each such growth history corresponds to an oriented path γ in [0,∞)2 (where the
length is rescaled by a factor 1/p), and it may be shown that the probability of such
a history is roughly e−w(γ )/p where w is a certain functional on paths defined as a
path integral involving the function g. By the convexity of g, it can be shown (see
Section 6) that this functional is minimized along the main diagonal x1 = x2, with
minimum 2

∫ B

0 g, which corresponds to growth as a square as described above.
At this point it is natural to try to get an upper bound on the probability of

R being internally spanned by summing the above probability over all possible
paths. However, the number of such paths is large, roughly 2B/p, so this does not
give the correct bound. The solution is to introduce a new “coarse-graining” length
scale T/p, which is small compared with B/p but large compared with the lattice
spacing 1. It may be shown that the probability of seeing some path which coin-
cides with γ at a set of points of spacing T is also approximately e−w(γ )/p. This is
because all such paths require roughly the same occupied sites. Actually, for this
argument to work, we must assume that the growth starts not from the point (1, 1)
but from a larger rectangle, of size A/p, where T � A � 1 � B; the details are
in Section 7. The number of possible choices of a set of points at spacing T/p is
much less than before, so now summing over all possibilities gives an upper bound

of approximately e−(2/p)
∫ B
A g (and the integral here is close to

∫ ∞
0 g for A small

and B large, since the latter integral converges).
However, there is another difficulty. There are other ways for R to be internal-

ly spanned which do not involve only growth starting from a single “seed”. For
example, the growing square described above might encounter another internally
spanned rectangle S within R, and the two would combine to give a larger internal-
ly spanned rectangle without any of the intervening growth taking place. It seems
unlikely that such an event could have higher probability, since the probability of
a small internally spanned rectangle S should be much less than the probability of
finding at least one occupied site in each of the corresponding rows and columns
required for growth as described previously. In fact, most of the work in the proof
is to rule out possibilities such as this.

The idea is as follows. Suppose R is internally spanned. Then we expect to
be able to find a sequence of successively slightly smaller internally spanned rect-
angles inside R (corresponding to the growth picture above). However, at some
point there may be a “split” into two separate internally spanned rectangles. Now
we apply the same reasoning to each of these, and so on. In this way we obtain



200 A.E. Holroyd

a “hierarchy” – a tree structure of nested rectangles each of which is internally
spanned. We can arrange that when there is no splitting, the sizes of consecutive
rectangles differ by approximately the coarse-graining scale T/p; when there is a
split, the two offspring rectangles might be much smaller than the parent, but they
should have the property that they “span” the parent, in the sense that bootstrap
percolation starting with the two offspring rectangles completely filled results in the
parent being completely filled. Also, for the coarse-graining argument to work, we
should stop whenever the rectangles in a line of descent become too small (perhaps
smaller than A/p), and declare such a rectangle to be a seed.

Now, another difficulty arises. Since there may be many splits, there may also
be many seeds; indeed R could be “almost all seeds” in which case there is no room
left for the growth estimates used previously. The solution is to use the fact that
seeds are small, together with an a priori bound on the probability a small rectangle
is internally spanned, to show that there are “not too many” seeds. More precisely,
we introduce yet another length Z/p � A/p, and declare a rectangle a seed if
its size is less than Z/p (the exact meaning of “size” turns out to be a delicate
issue here). We show that the probability that the total perimeter of all the seeds is
more than A/p is very small. Then, provided the total perimeter is less than A/p, a
geometrical argument together with a variational principle can be used to show that

the probability of the whole hierarchy is approximately at most e−(2/p)
∫ B
A g. The

order of choosing the constants is important here: they must be chosen in the order
B, A, Z, T , then finally p → 0. The total number of hierarchies is large, but it can
be shown to be at most p−K where K depends on B but not p. Hence summing
gives a bound of the correct form.

At the heart of any such proof must be a (deterministic) result giving rigorous
necessary conditions for a rectangle to be internally spanned. In [3], this role was
played by a result which we shall also make use of, Lemma 10. For the construc-
tion of hierarchies, the required condition is provided by an apparently new result,
Proposition 30, which roughly speaking states that any internally spanned rectangle
must be spanned by a pair of smaller rectangles which are themselves internally
spanned disjointly (in the sense of the Van den Berg-Kesten inequality).

2. Integrals

We define the functions f : (0,∞) → (0,∞), β : (0, 1) → (0, 1), and g : (0,∞)

→ (0,∞) by
f (z) = − log(1 − e−z),

β(u) = u + √
u(4 − 3u)

2
,

g(z) = − log β(1 − e−z).

Note that f and g are continuously differentiable, positive, decreasing and convex.
To see the latter for g note that the function z �→ −g(z) is the composition of the
increasing concave functions z �→ 1 − e−z, β and log. Observe also that β(u) > u

so f (z) > g(z) for z ∈ (0,∞). Finally note that f (z), g(z) → ∞ as z → 0, and
f (z), g(z), zf (z), zg(z) → 0 as z → ∞.
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Proposition 5.

(i) ∫ ∞

0
f (z) dz = π2

6
;

(ii) ∫ ∞

0
g(z) dz = π2

18
.

We define λ to equal the second integral.
Proposition 5 (ii) is somewhat remarkable; the integral does not appear in stan-

dard tables such as [11], and seems not to be directly solvable by computer programs
such as Mathematica. The proof which we shall give is mysterious, and uses many
special features of the function g.

Proof of Proposition 5. In (i) we substitute x = e−z to obtain
∫ ∞

0
− log(1 − e−z) dz =

∫ 1

0
− log(1 − x)

dx

x
= π2

6
,

by [11], number 4.291.2.
The integral in (ii) converges because g ≤ f . Substituting y = e−z and then

taking out a factor 1 − y, we have
∫ ∞

0
g(z) dz

=
∫ ∞

0
− log

1 − e−z +
√

(1 − e−z)(1 + 3e−z)

2
dz

=
∫ 1

0
− log

1 − y + √
(1 − y)(1 + 3y)

2

dy

y

=
∫ 1

0
− log(1 − y)

dy

y
+

∫ 1

0
− log

1 +
√

1+3y
1−y

2

dy

y
.

Note that the first of these two integrals converges by the above, hence the second
must also.

In the first integral we make the substitution x = 1− y. In the second we make
the substitution

x = 2

1 +
√

1+3y
1−y

which yields

y = 1 − x

1 − x + x2

and
dy

y
= (2 − x)x

(x − 1)(1 − x + x2)
dx,
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and also interchanges the limits 0 and 1. Thus we obtain
∫ ∞

0
g(z) dz

=
∫ 1

0
− log x

dx

1 − x
+

∫ 1

0
− log x

(2 − x)x

(x − 1)(1 − x + x2)
dx

=
∫ 1

0
log x

(
− 1

1 − x
− (2 − x)x

(x − 1)(1 − x + x2)

)
dx

=
∫ 1

0
log x

2x − 1

1 − x + x2 dx

=
[

log x log(1 − x + x2)

]1

0
−

∫ 1

0
log(1 − x + x2)

dx

x
(by parts)

= 0 −
∫ 1

0
log

(
1 + x3

1 + x

)
dx

x

=
∫ 1

0
log(1 + x)

dx

x
−

∫ 1

0
log(1 + x3)

dx

x

=
∫ 1

0
log(1 + x)

dx

x
−

∫ 1

0
log(1 + u)

du

3u
(substituting u = x3)

= 2

3

∫ 1

0
log(1 + x)

dx

x

= 2

3

π2

12
(by [11], 4.291.1)

= π2

18
.

��

3. Basic notation and results

In this section we introduce basic tools which will be used throughout. The fol-
lowing elementary properties of 〈·〉 will be fundamental: 〈K〉 ⊇ K; 〈〈K〉〉 = 〈K〉;
if K ⊆ K ′ then 〈K〉 ⊆ 〈K ′〉. These have the important consequence that if K ⊆
K ′ ⊆ 〈K〉 then 〈K ′〉 = 〈K〉.

Let R = R(a, b; c, d) be a rectangle. By the dimensions of R we mean the
2-vector

dim(R) = (c − a + 1, d − b + 1).

If dim(R) = (m, n) we define the short side short(R) = min{m, n}, the long side
long(R) = max{m, n} and the semi-perimeter φ(R) = m + n of R.

A site x ∈ Z
2 is occupied if x ∈ X. A set of sites K ⊆ Z

2 is full if every
site in K is occupied, and occupied if at least one site in K is occupied. It will be
convenient to write

q = − log(1 − p).
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Note that q ≥ p and q ∼ p (that is, q/p → 1) as p → 0. The advantage of this
notation is that

Pp(K is occupied) = 1 − e−|K|q = e−f (|K|q) (6)

(where f was defined in Section 2).
We say that a sequence of events (Aj ) has a double gap if there is an adjacent

pair Ai, Ai+1 neither of which occurs.

Lemma 7. In a sequence of k independent events each with probability u ∈ (0, 1),
the probability ak(u) that there are no double gaps satisfies

β(u)k ≤ ak(u) ≤ β(u)k−1

where

β(u) = u + √
u(4 − 3u)

2
.

Proof. By induction on k, on noting that a0 = a1 = 1, ak+2 = uak+1+(1−u)uak ,
0 < β < 1, and β2 = uβ + (1 − u)u. ��

Let R = R(a, b; c, d). For a ≤ i ≤ c (respectively b ≤ j ≤ d), column i

(respectively row j ) of R is the rectangle R(i, b; i, d) (respectively R(a, j ; c, j)).
We say that R is horizontally (respectively vertically) traversable if the sequence
(column i is occupied)ci=a (respectively (row j is occupied)dj=b) has no double
gaps. The following definitions will also be convenient. The rectangle R is East-
traversable (respectively North-traversable) if it is horizontally (respectively ver-
tically) traversable and in addition column c (respectively row d) is occupied.

Recall the definitions of f and g from Section 2.

Lemma 8. If R is a rectangle with dimensions (m, n) then

(i)
e−mg(nq) ≤ Pp(R is horizontally traversable) ≤ e−(m−1)g(nq);

(ii)

e−mf (nq) ≤ e−(m−1)g(nq)−f (nq) ≤ Pp(R is East-traversable) ≤ e−mg(nq).

And similar inequalities hold for vertical and North-traversability, with m and n

interchanged.

Proof. Part (i) follows immediately from (6), Lemma 7 and the definition of g. For
the upper bound in (ii), note that if R(a, b; c, d) is East-traversable then R(a, b; c+
1, d) is horizontally traversable, and use (i). The second inequality in (ii) is straight-
forward, and the first follows because f ≥ g. ��

To see the usefulness of the above concepts note the following.

Lemma 9.

(i) If R is internally spanned then R is East- and North-traversable.
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(ii) If R1 = (a, b; c, d) is internally spanned and R2 = (c + 1, b; e, d) is East-
traversable then R1 ∪ R2 is internally spanned. And a similar statement holds
for North-traversability.

Proof. For (i), note that if two adjacent columns or the East-most column of R

contains no occupied sites, then no site in such column(s) can be in 〈R ∩ X〉. A
similar remark applies to rows. For (ii), it is easy to see that each successive column
in R2 (moving in the East direction) is in 〈R ∩ X〉. ��

An event A of {0, 1}Z2
is called increasing if whenever ω ∈ A and ω′ ≥ ω we

have ω′ ∈ A. The FKG inequality states that for increasing events A, B we have
Pp(A ∩ B) ≥ Pp(A)Pp(B) (see [15] p34 for example).

4. Lower bound

Proof of Theorem 2 (i). Let r = p−1/2�, and let A = A(m, p) be the event that
all the following occur:

R(1, 1; 1, r) and R(1, 1; r, 1) are full,

the sites (m, 1) and (1, m) are occupied,

and for all integers k ≥ 1:

R(kr + 1, 1; kr + r, kr) is East-traversable,

R(1, kr + 1; kr, kr + r) is North-traversable.

See Figure 1.
Using Lemma 9 (ii), it is easily seen that if A occurs then R(m, m) is internally

spanned, hence using Lemma 8 (ii) and the FKG inequality,

I (m, p) ≥ Pp(A) ≥ p2r+1
∞∏

k=1

(
e−(r−1)g(krq)−f (krq)

)2

,

for all m. Hence,

sup
m≥1

−p log I (m, p)

≤ −(2r + 1)p log p + 2(r − 1)p

rq

∞∑
k=1

g(krq)rq + 2p

rq

∞∑
k=1

f (krq)rq

≤ −3rp log p + 2p

q

∫ ∞

0
g(z) dz + 2p

rq

∫ ∞

0
f (z) dz

where in the last step we have use the fact that f and g are decreasing. Now,
recalling that q ∼ p, r = p−1/2�, and

∫ ∞
0 f (z) dz < ∞, we see that as p → 0

the above expression converges to 0 + 2
∫ ∞

0 g(z) dz + 0 = 2λ, as required. ��
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Fig. 1. An illustration of the event A. The arrows indicate East- and North-traversability.

5. Metastability

In this section we deduce the (i) parts of Theorems 1 and 3 from the (i) part of
Theorem 2, and similarly for the (ii) parts.

Proof of Theorem 1 (i). It is clearly sufficient to prove that for any ε > 0, if pn → 0
and Ln → ∞ are such that pn log Ln ≥ λ + ε then I (Ln, pn) → 1.

Suppose p log L ≥ λ+ε and p < 1/2. Let m = p−3�, and let S = S(L, p) be
the event that R(L, L) contains at least one internally spanned rectangle of dimen-
sions (m, m). By dividing R(L, L) into disjoint rectangles of dimensions (m, m)

we see that

Pp(S) ≥ 1 −
(

1 − I (m, p)

)L/m�2

,

so
− log(1 − Pp(S)) ≥ L2p6

2
I (m, p).

Therefore

p log

[
− log(1 − Pp(S))

]
≥ 2p log L + 6p log p − p log 2 + p log I (m, p).

Hence, by Theorem 2 (i) we have

lim inf
n→∞ pn log

[
− log(1 − Ppn(Sn))

]
≥ 2(λ + ε) + 0 − 0 − 2λ = 2ε,

where Sn = S(Ln, pn), so in particular Ppn(Sn) → 1.
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The following is proved in [3]. There exists a sequence of increasing events Hn

defined in terms of the states of sites in R(Ln, Ln) such that Ppn(Hn) → 1, and
if Sn and Hn occur then R(Ln, Ln) is internally spanned. This proves the result,
since by the FKG inequality,

I (Ln, pn) ≥ Ppn(Sn)Ppn(Hn) → 1.

Here is a sketch of the construction of Hn. If pn log Ln → a > λ then we
may take Hn to be the event that every rectangle of dimensions (m, 1) or (1, m) in
R(Ln, Ln) is occupied. If Ln grows faster than this then we must also use a renor-
malization argument, dividing R(Ln, Ln) into disjoint squares of size e(λ+δ)/pn , so
that the probability each one is internally spanned exceeds the critical probability
for site percolation on Z

2. ��
Proof of Theorem 3 (i). Note that, in contrast with I , J (t, p) is clearly increasing
in t , so we may assume that pn log tn → λ+ ε, where ε > 0. Let mn = p−3

n � and
Ln = tn/(3mn)�; then pn log Ln → λ + ε. It is easily seen that the events Hn in
the proof of Theorem 1 (i) above may be chosen in such a way that if Sn and Hn

occur then the whole of R(Ln, Ln) becomes active in time at most

|R(mn, mn)| + 2mnLn ≤ tn

(The inequality holds if pn is sufficiently small). Hence,

Pn

(
(1, 1) ∈ Btn (X ∩ R(Ln, Ln))

)
→ 1,

therefore J (tn, pn) → 1. ��
To prove Theorem 1 (ii) we need the following result from [3].

Lemma 10. Let k be a positive integer and let R be a rectangle with long(R)

≥ 2k. If R is internally spanned then there exists an internally spanned rectangle
T ⊆ R with long(T ) ∈ [k, 2k].

The idea of the proof of Lemma 10 is to construct the bootstrap percolation process
by an algorithm which sequentially replaces a pair of internally spanned rectangles
with a larger internally spanned rectangle; the result then follows because at each
step the long side of the longest rectangle increases at most as n �→ 2n+ 1. For the
details see [3]. We shall use a similar argument in Section 8 to prove Proposition
30.

Proof of Theorem 1 (ii). It is clearly sufficient to show that for any ε > 0, if
pn → 0 and Ln → ∞ with pn log Ln ≤ λ − ε then I (Ln, pn) → 0. We write
λB = 1

2 infB ′≥B lim infp→0 −p log I (B ′/p�, p), so that Theorem 2 (ii) states
limB→∞ λB ≥ λ.

Fix ε > 0 and B > 0, and suppose that p log L ≤ λ−ε. We write R = R(L, L)

and let K = B/p� and k = B/(2p)�, so that k ≤ 2k ≤ K . Assume that p is
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T
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Fig. 2. The rectangles T , S1, S2. The arrows indicate North- and East-traversability.

sufficiently small that 1 < k < K < L. We claim first that if T is any rectangle
satisfying long(T ) ∈ [k, 2k] then

Pp(T is internally spanned) ≤ e2Kf (kq)I (K, p). (11)

To prove this, suppose without loss of generality that T is of the form T = R(a, b)

where a ∈ [k, 2k] and b ≤ K . Let S1 = R(1, b + 1; a, K) and S2 = R(a +
1, 1;K, K); see Figure 2. By Lemma 9 (ii), if T is internally spanned, and S1 is
North-traversable, and S2 is East-traversable, then R(K, K) is internally spanned.
Hence by Lemma 8 (ii) we have

I (K, p) ≥ Pp(T is internally spanned)e−(K−b)f (aq)−(K−a)f (Kq)

which yields (11) since f is decreasing.
Hence using Lemma 10 and (11) we have

I (L, p) ≤ L2K2e2Kf (kq)I (K, p).

Here L2K2 is an upper bound on the number of possible choices for the rectangle
T . Hence

p log I (L, p) ≤ 2p log L + 2p log K + 2Kpf (kq) + p log I (K, p).

Therefore, recalling that pn log Ln ≤ λ − ε, and the definitions of k, K, λB , we
have

lim sup
n→∞

pn log I (Ln, pn) ≤ 2(λ − ε) + 0 + 2Bf (B/2) − 2λB.

Since limB→∞ Bf (B/2) = 0 and limB→∞ λB ≥ λ, we may choose B sufficient-
ly large (depending on ε) that the above expression is negative, so in particular
I (Ln, pn) → 0. ��
Proof of Theorem 3 (ii). In consequence of the results (5.4),(5.5) of [3], if p → 0
and I (L, p) → 0 then J (L, p) → 0. Hence the result follows from Theorem 1
(ii). ��
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6. Variational principles

We write R
2+ = (0,∞)2 = {a = (a1, a2) : a1, a2 ∈ (0,∞)} for the set of all

2-vectors of positive reals. Boldface letters will denote elements of R
2+ unless stat-

ed otherwise. We write a ≤ b if a1 ≤ b1 and a2 ≤ b2. Let g be a continuously
differentiable, positive, decreasing, convex function from (0,∞) to (0,∞) (g is
otherwise arbitrary for the purposes of this section). A (piecewise-linear, oriented)
path γ from a to b is a subset of R

2+ consisting of the union of a finite sequence
of points a = u0 ≤ u1 ≤ · · · ≤ uk = b (called the vertices of the path) together
with the line segments {αui + (1 − α)ui+1 : α ∈ (0, 1)} joining the vertices in
order. A path γ may be parameterized as γ = {(x(t), y(t)) : t ∈ [a, b]} where
t = x(t) + y(t) say. We define the functional w(γ ) as the path integral

w(γ ) =
∫

γ

(
g(y)dx + g(x)dy

)
=

∫ b

a

(
g(y)

dx

dt
+ g(x)

dy

dt

)
dt,

and for a ≤ b we define
W(a, b) = inf

γ :a→b
w(γ )

where infγ :a→b denotes the infimum over all paths γ from a to b.
The purpose of this self-contained section is to prove the following four prop-

erties of W . Propositions 12, 13 and 14 are fairly natural; Proposition 15 is tailored
to a specific application in Section 10.

Proposition 12. If a ≤ b ≤ c then W(a, b) + W(b, c) ≥ W(a, c).

Proposition 13. W(a, b) ≤ (b1 − a1)g(a2) + (b2 − a2)g(a1).

Proposition 14. If a1 + a2 = A and b = (B, B) where A ≤ B then

W(a, b) ≥ 2
∫ B

A

g(z) dz.

Proposition 15. Suppose that a ≤ b; c ≤ d; r ≥ b; r ≥ d; r ≤ b + d + (q, q)

and r ≥ (2Z, 2Z) where q ≤ Z. Then there exists s satisfying s ≤ r and s ≤ a + c
such that

W(a, b) + W(c, d) ≥ W(s, r) − 2qg(Z).

Indeed we may take s = a ∨ [(a + c) ∧ (a + c + r − b − d)].

In the above,∨ and∧ denote coordinate-wise maximum and minimum respectively.

Proof of Proposition 12. We have

W(a, c) = inf
γ :a→c

w(γ )

≤ inf
γ :a→b→c

w(γ )

= inf
γ1:a→b

w(γ1) + inf
γ2:b→c

w(γ2)

= W(a, b) + W(b, c),

where infγ :a→b→c denotes the infimum over all paths from a to c containing b. ��
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Proof of Proposition 13. For any path γ from a to b, since g is decreasing and
u ≥ a for all u ∈ γ , we have

w(γ ) =
∫

γ

(
g(y)dx + g(x)dy

)

≤
∫

γ

(
g(a2)dx + g(a1)dy

)

= (b1 − a1)g(a2) + (b2 − a2)g(a1).

��
In order to prove Proposition 14 we need Lemma 16 below. For sets A, B ⊆ R

2+
we say A lies Northwest of B and write A � B if for any a ∈ A and b ∈ B

satisfying a1 + a2 = b1 + b2, we have a2 ≥ b2. Let � be the “main diagonal” of
R

2+:
� := {u ∈ R

2
+ : u1 = u2}.

Lemma 16. If γ1, γ2 are paths from a to b, and either γ1 � γ2 � � or � � γ2 �
γ1, then w(γ1) ≥ w(γ2).

Proof. Without loss of generality (since the definition of w is symmetric in the two
coordinates), we may assume γ1 � γ2 � �. Let H be the region between γ1 and
γ2:

H = {u : a ≤ u ≤ b and γ1 � {u} � γ2}.
By Green’s theorem in the plane ([6] p268) we have

w(γ1) − w(γ2) =
∫∫

H

(
g′(y) − g′(x)

)
dx dy,

Now since γ1 � γ2 � �, we have H � �, and hence y ≥ x for (x, y) ∈ H ,
and since g is convex this implies that g′(y) − g′(x) ≥ 0 on H , so w(γ1) − w(γ2)

≥ 0. ��
Proof of Proposition 14. Let γ be a path from a to b. We claim that

w(γ ) ≥ w(γ0)

where γ0 is the path with vertices a, u, b, where u1 = u2 = max{a1, a2} (see
Figure 3). Thus W(a, b) = w(γ0). To check the above claim, split γ into sections
separated by the intersections of γ and γ0, and observe that by Lemma 16, each
section of γ has a value of w at least as large as the corresponding section of γ0.

Now since g is positive, w(γ0) ≥ w(γ ′
0) where γ ′

0 is the straight path with
vertices u and b. From the definition of w we have

w(γ ′
0) = 2

∫ B

u1

g(z) dz ≥ 2
∫ B

A

g(z) dz.

��
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a

u

�b

γ

γ0

Fig. 3. A path γ from a to b, and the optimizing path γ0.

To prove Proposition 15 we need Lemmas 17, 18 below.

Lemma 17. If a ≤ b and k ∈ [0,∞)2 then W(a, b) ≥ W(a + k, b + k).

(Note that here k might not be an element of R
2+).

Proof. We have

W(a + k, b + k) = inf
γ :a+k→b+k

w(γ )

= inf
γ :a→b

w(γ + k)

≤ inf
γ :a→b

w(γ ) since g is decreasing

= W(a, b),

where γ + k denotes the shifted path obtained by adding k to each point in γ . ��
Lemma 18. If a ≤ b ≤ c then W(a, c) ≥ W(b, c).

We prove Lemma 18 via the following.

Lemma 19. If a ≤ c and either b = (a1, c2) or b = (c1, a2) then W(a, c) ≥
W(b, c).

Proof. Without loss of generality suppose that b = (a1, c2). Let γ be any path
from a to c, and let δ be the unique (straight, horizontal) path from b to c. Since g

is decreasing and positive we have

W(b, c) = w(δ) =
∫

δ

g(y)dx ≤
∫

γ

g(y)dx ≤ w(γ ).

��
Proof of Lemma 18. Let γ be any path from a to c. Without loss of generality
suppose that {b} � γ . Let u = (a1, b2) and v = (v1, b2) where

v1 = inf{t : (t, b2) ∈ γ }.
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cb vu

γ1

γ2
δ1 δ2

Fig. 4. Illustration of the proof of Lemma 18.

Write γ = γ1 ∪ γ2 where γ1 is a path a to v and γ2 is a path v to c (both of which
are thus uniquely defined). Let δ = δ1 ∪ δ2 where δ1 is the unique path from u to
b and δ2 is the unique path from b to v. See Figure 4. Now

w(γ ) = w(γ1) + w(γ2)

≥ w(δ) + w(γ2) by Lemma 19

≥ w(δ2) + w(γ2)

= w(δ2 ∪ γ2)

≥ W(b, c) since δ2 ∪ γ2 is a path from b to c.

��
We are now ready to prove Proposition 15; we start with a version without the

“error term”.

Lemma 20. Suppose that a ≤ b; c ≤ d; r ≥ b; r ≥ d and r ≤ b + d. Then there
exists s satisfying s ≤ r and s ≤ a + c such that

W(a, b) + W(c, d) ≥ W(s, r).

Indeed we may take s = a ∨ (a − b + c − d + r).

Proof. Define s as indicated, and note that s ≥ a; s ≤ a + c; and s ≤ r. Then we
have

W(a, b) + W(c, d)

≥ W(s, s − a + b) + W(r + c − d, r) by Lemma 17 twice

≥ W(s, s − a + b) + W(s − a + b, r) by Lemma 18

≥ W(s, r) by Proposition 12.

In the first inequality we have used the facts that s− a ≥ (0, 0) and r −d ≥ (0, 0).
For the second (and third) we must check that r + c − d ≤ s − a + b ≤ r, which
is achieved as follows:

r − (s − a + b) = (r + a − b) − s = (r − b) ∧ (d − c) ≥ (0, 0),
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and

(s−a+b)−(r+c−d) = s−(a−b+c−d+r) = (0, 0)∨(b−c+d−r) ≥ (0, 0).

��
Proof of Proposition 15. Let r′ = r ∧ (b + d), and note that r′ ≥ b; r′ ≥ d;
r′ ≤ b + d; r′ ≤ r and r′ ≥ r − (q, q) ≥ (2Z − q, 2Z − q) ≥ (Z, Z). Hence we
may apply Lemma 20 to obtain

W(a, b) + W(c, d) ≥ W(s, r′)
≥ W(s, r) − W(r′, r) by Proposition 12

≥ W(s, r) − 2qg(Z) by Proposition 13,

where s = a ∨ (a − b + c − d + r′) = a ∨ [(a + c) ∧ (a + c + r − b − d)], and
s ≤ r′ ≤ r and s ≤ a + c. ��

7. Border events

Let R, R′ be two rectangles satisfying R ⊆ R′. Define rectangles R1, . . . , R8 (some
of which may be empty) according to Figure 5, so that R′ is the disjoint union of
R, R1, . . . , R8. Define D(R, R′) to be the event that each of the two rectangles
R1 ∪ R8 ∪ R7 and R3 ∪ R4 ∪ R5 is horizontally traversable, and each of the two
rectangles R1 ∪R2 ∪R3 and R7 ∪R6 ∪R5 is vertically traversable. One may think
of D(R, R′) as a necessary condition for the “border” between R and R′ to be
“traversable” from R to R′. More precisely, the event has the following properties.

(i) If R′ is internally spanned then D(R, R′) occurs.
(ii) D(R, R′) is defined in terms of the states of sites in R′\R.

Property (i) holds because if R′ is internally spanned then it must be horizontally
and vertically traversable (Lemma 9 (i)). The purpose of this section is to prove the
following upper bound on the probability of D(R, R′).

Proposition 21. For any Z > 0 and c ∈ (0, 1/2), there exist Q = Q(c, Z) < ∞
and T = T (c, Z) ∈ (0, Z/2) such that for any rectangles R ⊆ R′ with dimensions

R R4

R5R6

R8

R7

R′

R2R1 R3

Fig. 5. The rectangles R1, . . . , R8.
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(m, n) and (m + s, n + t) respectively, and any q > 0, provided m, n ≥ Z/q and
s, t ≤ T/q we have

Pp

(
D(R, R′)

)
≤ Q exp

(
− (1 − 2c) [g(nq)s + g(mq)t]

)
.

In the applications of Proposition 21, it will be essential that Q, T do not depend
on q.

Proof. Let H be the “corner region”, H = R1 ∪ R3 ∪ R5 ∪ R7, and let Y be the
number of occupied sites in H , Y = |X∩H |. The idea of the proof is as follows: if
the four events in the definition of D were independent, the proof would be easy. If
Y is small, then the events are nearly independent, and if s, t are sufficiently small
compared with m, n, the probability Y is large can be made smaller than the bound
we are trying to obtain for Pp(D).

Without loss of generality suppose that s ≤ t . We have

P(D) = P(D | Y ≤ cs)P (Y ≤ cs) + P(D | cs < Y ≤ ct)P (cs < Y ≤ ct)

+P(D | Y > ct)P (Y > ct)

≤ P(D | Y ≤ cs) + P(D | cs < Y ≤ ct)P (Y > cs) + P(Y > ct) (22)

We claim that the terms appearing on the right side of (22) may be bounded as
follows

P(D | Y ≤ cs) ≤ e4g(Z) exp−(1 − 2c)[g(nq)s + g(mq)t] (23)

P(D | cs < Y ≤ ct) ≤ e2g(Z) exp−(1 − 2c)g(mq)t (24)

P(Y > cs) ≤ exp−cs(log c − log T − 1) (25)

P(Y > ct) ≤ exp−ct (log c − log T − 1) (26)

for a suitable choice of T .
The inequality (25) is an instance of the Chernoff bound, as follows. Assume

that tp < c. The random variable Y is binomial with parameters st and p, so

P(Y > cs) = P(ea(Y−cs) > 1) for any a > 0

≤ E(ea(Y−cs))

= exp[−csa + st log(1 − p + pea)]

≤ exp[−csa + stpea]

= exp[−cs log(c/(tp)) + cs] taking ea = c/(tp) (> 1)

≤ exp−cs(log c − log T − 1),

provided tp ≤ tq ≤ T < c. (T will be a function of Z and c to be chosen later).
The bound (26) follows similarly provided sp ≤ sq ≤ T < c.

To prove (24), we condition further on which sites in H are occupied. If for
each choice of this set of sites (satisfying cs < Y ≤ ct) the conditional probability
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of D is bounded above by the right side of (24), the desired bound will follow. For
simplicity, suppose first that Y = ct , and also that the ct occupied sites in H all
lie in different horizontal rows. These sites (together with R) split R2 ∪ R6 into
ct + 2 “horizontal strips”, some of which may be empty. (More precisely, if we
remove from R2 ∪ R6 every row which contains an occupied site in H , we are left
with ct + 2 rectangles of width m, some of which may be empty). In order for D

to occur, a necessary condition is that each of these strips is vertically traversable.
By Lemma 8 (i), the probability of this is at most

exp−[t − ct − (ct + 2)]g(mq)

(since the sum of the vertical heights of the strips is t − ct , hence the sum of their
heights minus one is t − ct − (ct + 2)). Provided mq ≥ Z, the above expression
is at most

e2g(Z) exp−(1 − 2c)g(mq)t, (27)

since g is decreasing. Now, if Y < ct , or if some of the occupied sites in H lie
in the same horizontal rows, clearly the conditional probability of D will be even
smaller, hence we have proved (24).

The bound (23) is proved similarly. If Y ≤ cs then Y ≤ ct also, and by con-
ditioning on the occupied sites in H we obtain a collection of horizontal strips in
R2 ∪ R6 together with a collection of vertical strips in R4 ∪ R8. For D to occur,
each of horizontal strips must be vertically traversable, and each of vertical strips
must be horizontally traversable, but these two events are independent (conditional
on the set of occupied sites in H ), so the two bounds corresponding to (27) are
multiplied, to obtain the right side of (23).

Now choose T > 0 sufficiently small that

c(log c − log T − 1) ≥ 2(1 − 2c)g(Z)

(and also T < Z/2 and T < c). Since g is decreasing this ensures that

exp−cs(log c − log T − 1) ≤ exp−(1 − 2c)g(nq)s (28)

and also

exp−ct (log c − log T − 1) ≤ exp−(1 − 2c)[g(nq)s + g(mq)t]. (29)

In the latter we have used the fact that s ≤ t so 2g(Z)t ≥ g(Z)s + g(Z)t .
Now substituting (23)–(26) into (22) and using (28), (29) we obtain

P(D) ≤ 3e4g(Z) exp−(1 − 2c)[g(nq)s + g(mq)t].

��
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8. Disjoint spanning

For a collection of increasing events A1, . . . , Ak on {0, 1}Z2
, the event A1 ◦· · ·◦Ak

that A1, . . . , Ak occur disjointly is defined as the event that there exist pairwise dis-
joint full sets of sites K1, . . . , Kk such that for each i, Ai occurs whenever Ki is
full. The BK inequality states that if A1, . . . , Ak are defined in terms the states of
a finite set of sites then

Pp(A1 ◦ · · · ◦ Ak) ≤ Pp(A1) · · ·Pp(Ak).

For more details see for example [15] p37.

Proposition 30. Let R be a rectangle with |R| ≥ 2. If R is internally spanned then
there exist two distinct non-empty rectangles R′, R′′ such that

(i) the strict inclusions R′ ⊂ R, R′′ ⊂ R hold,
(ii) 〈R′ ∪ R′′〉 = R,
(iii) {R′ is internally spanned} ◦ {R′′ is internally spanned} occurs.

To see the subtlety of Proposition 30, note that we cannot in general take the two
rectangles R′, R′′ to be disjoint; in Figure 6 for example, the whole square R is
internally spanned, but the only possible choice for R′, R′′ is the pair of 6 by 6
squares indicated. It is for this reason that the concept of disjoint occurrence is
important. The idea of the proof of Proposition 30 is simple: we run an algorithm
which produces successively larger internally spanned rectangles, combining two
rectangles into one at each step and eventually obtaining R; then we consider the
last step. The details of the proof require a little more care.

Proof of Proposition 30. If K is any finite set of sites, we may construct 〈K〉 via the
following algorithm. For each time step t = 0, 1, . . . , τ , we shall construct a col-
lection of mt rectangles Rt

1, . . . , R
t
mt

, and corresponding sets of sites Kt
1, . . . , K

t
mt

,
with the following properties:

(i) Kt
1, . . . , K

t
mt

are pairwise disjoint;
(ii) Kt

i ⊆ K;
(iii) Rt

i = 〈Kt
i 〉;

Fig. 6. In this example the rectangles R′, R′′ must overlap.
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(iv) if i �= j then Rt
i �⊆ Rt

j ;
(v) K ⊆ Rt ⊆ 〈K〉, where

Rt :=
mt⋃
i=1

Rt
i .

Initially, the rectangles and sets of sites are just the individual sites of K . That is,
let K be enumerated as K = {x1, . . . , xk}, and set m0 = k and R0

i = K0
i = {xi},

so that in particular
R0 = K.

The final set of rectangles Rτ
1 , . . . Rτ

mτ
will have the property that

Rτ = 〈K〉. (31)

Before describing the algorithm we make the following observation. Let R1, R2
be two distinct rectangles neither of which is a subset of the other, and consider
〈R1 ∪ R2〉. The following three possibilities exist.

(a) 〈R1 ∪ R2〉 = R1 ∪ R2, and 〈R1 ∪ R2〉 is not connected.
(b) 〈R1 ∪ R2〉 = R1 ∪ R2, and 〈R1 ∪ R2〉 is a rectangle.
(c) 〈R1 ∪ R2〉 ⊃ R1 ∪ R2, and 〈R1 ∪ R2〉 is a rectangle.

(As usual, a set of sites is said to be connected if any two sites can be joined via a
sequence of sites at Euclidean distances 1).

The algorithm proceeds as follows. Suppose Rt
1, . . . , R

t
mt

and Kt
1, . . . , K

t
mt

have already been constructed.

Step (I). If there do not exist a pair of rectangles Rt
i , R

t
j with i �= j such that

〈Rt
i ∪Rt

j 〉 is a rectangle (that is, if case (a) above holds for all pairs), then STOP,
and set τ = t .

Step (II). If there do exist Rt
i , R

t
j with i �= j such that 〈Rt

i ∪ Rt
j 〉 is a rectangle

(case (b) or (c) above), then choose one such pair of rectangles. Denote the
rectangle 〈Rt

i ∪ Rt
j 〉 by R′. Also let K ′ = Kt

i ∪ Kt
j .

Step (III). Construct the state (Rt+1
1 , Kt+1

1 ), . . . , (Rt+1
mt+1

, Kt+1
mt+1

) at time t + 1
as follows. From the list (Rt

1, K
t
1), . . . , (R

t
mt

, Kt
mt

) at time t , delete every pair
(Rt

l , K
t
l ) for which Rt

l ⊆ R′. This includes (Rt
i , K

t
i ) and (Rt

j , K
t
j ), and may

include others. Then add (R′, K ′) to the list.
Step (IV). Increase t by 1 and return to Step (I).

It is straightforward to see that properties (i)–(v) are preserved by this proce-
dure. Also mt is strictly decreasing with t , so the algorithm must stop eventually.
To check that (31) is satisfied, observe that if there exists a site x ∈ 〈K〉 \Rτ , then
there must exist a site y ∈ 〈K〉\Rτ having at least two neighbours in Rτ , but these
neighbours must lie in distinct rectangles Rτ

i , Rτ
j , and hence the algorithm should

not have stopped at time τ .
Furthermore, observe that if 〈K〉 is a single rectangle R, then we must have

mτ = 1 and Rτ
1 = R. If not, since Rτ = R, there must exist two distinct rectangles

Rτ
i , Rτ

j whose union is connected, and again this means that the algorithm should
not have stopped.
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Finally, to prove the proposition, note that if R is internally spanned then run-
ning the algorithm on the set of sites K = R ∩ X results in mτ = 1 and Rτ

1 = R.
If |R| ≥ 2 then there must have been at least one step, τ ≥ 1. Now considering
the last time step of the algorithm (from time τ − 1 to time τ ) we obtain the two
rectangles R′ = Rτ−1

i , R′′ = Rτ−1
j with all the required properties. ��

9. Hierarchies

A directed graph is a set of vertices V together with a set of ordered pairs of vertices
E. If (u, v) ∈ E then we say there is an edge from u to v and write u � v. The
children of a vertex u are all the vertices v such that u � v.

A hierarchy H is a finite directed graph in which every vertex v is labeled
with a non-empty rectangle Rv (where the rectangles corresponding to different
vertices are not necessarily distinct), with the following properties. The graph is
a tree. There is a special vertex r called the root, and all edges are directed away
from the root. (So for any vertex v there is a unique directed chain of vertices
r = u0 � u1 � · · · � uk = v). If u � v then we have the strict inclusion
Ru ⊃ Rv . Every vertex has 0, 1 or 2 children. A vertex with no children is called
a seed. If u has exactly one child v, we call u normal and write u ⇒ v. If u has
two children v, w we call u a splitter and write u ⇒ (v, w). If u ⇒ (v, w) then we
have 〈Rv ∪ Rw〉 = Ru. See Figure 7 for an example of a hierarchy.

We say that the hierarchy H occurs if all the following events occur disjointly:

D(Rv, Ru) for each pair u, v such that u ⇒ v,

and
{Rw is internally spanned} for each seed w.

(Note in particular that if for example Rv = Rw for two distinct seeds v, w then
we require that the event {Rv is internally spanned} occurs twice disjointly; that is,
there are two disjoint sets of occupied sites each of which internally spans Rv).

Fix q, T , Z satisfying 0 < 4q ≤ 2T ≤ Z ≤ 1/2 (in fact we shall be concerned
with the case 0 < q � T � Z � 1). We call a hierarchy H good if it satisfies all
the following.

R4

R5

R3

R6

R1

R2

Rr

r

1

2 3

4 5

6

Fig. 7. An example of a hierarchy.
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(i) If w is a seed then
short(Rw) < 2Z/q;

(ii) if u is normal or a splitter then

short(Ru) ≥ 2Z/q;
(iii) if u ⇒ v and v is a seed or a normal vertex then

φ(Ru) − φ(Rv) ∈ [T/(2q), T /q];
(iv) if u ⇒ v and v is a splitter then

φ(Ru) − φ(Rv) ≤ T/q;
(v) if u ⇒ (v, w) then

φ(Ru) − φ(Rv) ≥ T/(2q) and φ(Ru) − φ(Rw) ≥ T/(2q).

Proposition 32. Let q, T , Z satisfy 0 < 4q ≤ 2T ≤ Z ≤ 1/2, and let R be a
non-empty rectangle. If R is internally spanned then some good hierarchy with
root-label Rr = R occurs.

Proof. The proof is by induction on the size of the rectangle. Let R be a rectangle
and suppose the proposition holds for all rectangles with semi-perimeter less than
φ(R).

If short(R) < 2Z/q, then the good hierarchy having only one vertex r (which
is the root and a seed), and Rr = R, occurs.

If short(R) ≥ 2Z/q then we construct a sequence of non-empty internally
spanned rectangles R = S0 ⊃ S1 ⊃ · · · ⊃ Sm by an algorithm as follows. The idea
is that S1, . . . , Sm are successive attempts to find a rectangle S such that φ(R)−φ(S)

is in the range [T/(2q), T /q]; the attempt may succeed in which case the root will
be a normal vertex, or we may “overshoot” in which case we need to introduce a
splitter. Here are the details. Given Si , apply Proposition 30 to obtain two rectangles
S′

i , S
′′
i . Let Si+1 be the one of S′

i , S
′′
i with the larger semi-perimeter φ (choosing

according to an arbitrary rule if they are equal). Stop, after m ≥ 1 steps, the first
time φ(R) − φ(Sm) ≥ T/(2q). (This must occur eventually because the sequence
of rectangles is strictly decreasing, and φ(R) ≥ 4Z/q > T/(2q) + 2, so that a
rectangle S containing only one site does satisfy φ(R) − φ(S) ≥ T/(2q); and we
must have m ≥ 1 because T/(2q) > 0).

Now consider the following three possible cases.

(i) If φ(R) − φ(Sm) ≤ T/q,
then we have that φ(R)−φ(Sm) ∈ [T/(2q), T /q], Sm ⊂ R, and R and Sm are
internally spanned. By the inductive hypothesis, there exists a good hierarchy
H′ with root r ′ and root-label Rr ′ = Sm. Furthermore, the events D(Sm, R)

and {H′ occurs} occur disjointly, since they are defined in terms of disjoint sets
of sites. We construct a hierarchy H as follows: start with H′, and add a new
vertex r , with Rr = R, and an edge from r to r ′ so that r ⇒ r ′. It follows from
the above observations that H is good and occurs.



Sharp metastability threshold for two-dimensional bootstrap percolation 219

(ii) If φ(R) − φ(Rm) > T/q and m = 1,
then there exist disjointly internally spanned rectangles S′

0, S
′′
0 such that 〈S′

0 ∪
S′′

0 〉 = R, and φ(R)−φ(S′
0), φ(R)−φ(S′′

0 ) > T/q > T/(2q). By Proposition
30 and the inductive hypothesis there exist disjointly occuring good hierarchies
H′, H′′ with roots r ′, r ′′ and root-labels Rr ′ = S′

0, Rr ′′ = S′′
0 , and we may take

the vertex sets of H′, H′′ to be disjoint. Now we construct H from H′ ∪ H′′
(this last object being a labeled directed graph defined in the obvious way) by
adding a new vertex r , with Rr = R, and edges so that r ⇒ (r ′, r ′′). It is easily
seen that H is a good hierarchy and occurs.

(iii) If φ(R) − φ(Rm) > T/q and m ≥ 2,
then we have internally spanned rectangles Sm−1, S

′
m−1, S

′′
m−1 satisfying R ⊃

Sm−1 and Sm−1 = 〈S′
m−1 ∪ S′′

m−1〉, where φ(R) − φ(Sm−1) < T/(2q) and
φ(R)−φ(S′

m−1), φ(R)−φ(S′′
m−1) > T/q, and therefore we have φ(Sm−1)−

φ(S′
m−1), φ(Sm−1)−φ(S′′

m−1) ≥ T/(2q). By Proposition 30 and the inductive
hypothesis there exist disjointly occuring good hierarchies H′, H′′ with roots
r ′, r ′′ and root-labels Rr ′ = S′

m−1, Rr ′′ = S′′
m−1, and we may take the vertex

sets of H′, H′′ to be disjoint. Now we construct H from H′ ∪ H′′ by adding
new vertices r, y with Rr = R, Ry = Sm−1, and new edges so that r ⇒ y and
y ⇒ (r ′, r ′′). Then it is easily seen that H is a good hierarchy and occurs.

��

10. Upper bound

We are now ready to prove Theorem 2 (ii). Fix B > 2, and let A = c = 1/B. We
shall prove that

lim inf
p→0

−p log I (B/p�, p) ≥ 2(1 − 2c)

∫ B

A

g(z) dz,

from which Theorem 2 (ii) follows. The approach is to use Proposition 32, and
obtain upper bounds on the number of possible good hierarchies, and on the prob-
ability that each one occurs.

Choose Z > 0 sufficiently small that Z < A/2 and

g(2Z) ≥ 4λ

A
(33)

where λ = π2/18. Recall that g(z) → ∞ as z → 0, so this is indeed possible;
the reason for this particular choice of Z will become clear later. Finally choose
T = T (c, Z), Q = Q(c, Z) according to Proposition 21. It will also be convenient
to assume that q < T/2. Thus we have

16q < 8T < 4Z < 2A < 1 < B/2.

We shall be concerned with “large” B and “very small” q, in which case we have

q � T � Z � A � 1 � B.
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Later we will let q → 0 while keeping B fixed. It will be important to distinguish
between quantities which depend only on B (such as A, c, Z, T , Q) and those
which also depend on q.

If R is a rectangle we define

V (R) = q long(R) g

(
q short(R)

)
,

and for rectangles R ⊆ R′ we define

U(R, R′) = W

(
q dim(R), q dim(R′)

)
,

where W is defined as in Section 6. We claim that for any R we have

Pp(R is internally spanned) ≤ exp−q−1V (R), (34)

while for any R ⊆ R′ such that short(R′) ≥ 2Z/q and φ(R′) − φ(R) ≤ T/q we
have

Pp(D(R, R′)) ≤ Q exp−q−1(1 − 2c)U(R, R′). (35)

Inequality (34) follows from Lemma 8 (ii) and Lemma 9 (i) (using whichever
of East- and North-traversability gives the better bound). For (35), note that
dim(R′) − dim(R) ≤ (T /q, T /q), and short(R) ≥ 2Z/q − T/q ≥ Z/q, so
R, R′ satisfy the conditions of Proposition 21. Combining this with Proposition 13
and the definition of U above yields (35).

Now if H is any good hierarchy, by the BK inequality and the definition of H
occuring, we have

Pp(H occurs)

≤
∏
u⇒v

Pp

(
D(Rv, Ru)

) ∏
w seed

Pp(Rw is internally spanned)

≤ QNnorm exp−q−1

[
(1 − 2c)

∑
u⇒v

U(Rv, Ru) +
∑

w seed

V (Rw)

]
, (36)

where the first product and sum are over all pairs of vertices u, v such that u ⇒ v,
the second product and sum are over all seeds w, and Nnorm is the number of normal
vertices of H. The second inequality in (36) follows from (34), (35) above and from
properties (ii), (iii), (iv) of a good hierarchy.

Next we derive lower bounds for the two sums in (36).

Lemma 37. For any good hierarchy H with root-label Rr = R, there exists a
rectangle S = S(H) ⊆ R satisfying

dim(S) ≤
∑

w seed

dim(Rw)

such that ∑
u⇒v

U(Rv, Ru) ≥ U(S, R) − Nsplit2qg(Z),

where Nsplit is the number of splitters of H.
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We call S as above the pod of H. The idea is that, if the total size of the seeds is not
too big, then the pod is not too big, and therefore the first sum in (36) is large enough
to give a good bound. Note that the location of the pod is actually immaterial –
only its dimensions are ever used. It is defined to be a rectangle rather than just a
2-vector as a notational convenience only. The pod is function of the hierarchy H
only, not of B or q (even though the definitions of a good hierarchy and of U(·, ·)
do depend on B and q).

The following will be needed in the proof of Lemma 37.

Lemma 38. If 〈R′ ∪ R′′〉 = R then dim(R′) + dim(R′′) ≥ dim(R) − (1, 1).

Proof. This is proved in a similar manner to Lemma 9 (i). If the sum of the widths
of R′, R′′ is less than the width of R minus one, then either R has two adjacent
columns which do not intersect R′ ∪R′′, or the East-most or West-most column of
R does not intersect R′ ∪ R′′. In either case, no site in such column(s) can be in
〈R′ ∪ R′′〉. ��
Proof of Lemma 37. The proof is by induction on the number of vertices of H. Sup-
pose the lemma holds for all hierarchies with fewer vertices than H. We consider
three cases according to whether the root r is a seed, normal, or a splitter.

If r is a seed (so it is the only vertex), then we take S = R, and the result holds
trivially.

If r is normal, so that r ⇒ y say, then we apply the inductive hypothesis to the
sub-hierarchy H′ rooted at y (that is, the hierarchy obtained by taking all vertices
and edges in directed chains y = v0 � v1 � v2 � · · · away from y, together with
the associated rectangles). Let S = S(H) = S(H′), and note that H′ has the same
number of splitters as H, to obtain∑

u⇒v

U(Rv, Ru) ≥ U(Ry, R) + U(S, Ry) − Nsplit2qg(Z)

≥ U(S, R) − Nsplit2qg(Z),

by Proposition 12 and the definition of U(·, ·).
If r is a splitter, so that r ⇒ (y1, y2) say, we apply the inductive hypothesis to the

sub-hierarchies H1, H2 rooted at y1, y2, and denote their pods S1 = S(H1), S2 =
S(H2). We also write R1 = Ry1 , R2 = Ry2 . Since the total number of splitters of
H1 and H2 is one less than Nsplit, we obtain

∑
u⇒v

U(Rv, Ru) ≥ U(S1, R1) + U(S2, R2) − (Nsplit − 1)2qg(Z). (39)

Now we apply Proposition 15 with

a = q dim(S1),

b = q dim(R1),

c = q dim(S2),

d = q dim(R2),

r = q dim(R).
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We choose the pod S = S(H) to be a rectangle satisfying S ⊆ R and

s = q dim(S),

where s is as in Proposition 15. The formula for s ensures that the dimensions of S

are indeed integers and that S depends only on H. Furthermore, since s ≤ a + c
we have

dim(S) ≤ dim(S1) + dim(S2) ≤
∑

w seed

dim(Rw),

by the inductive hypothesis, since the set of seeds of H is the disjoint union of the
sets of seeds of H′ and H′′. It is easy to check that the conditions of Proposition 15
are met, by Lemma 38 and property (ii) of a good hierarchy, so we obtain

U(S1, R1) + U(S2, R2) ≥ U(S, R) − 2qg(Z).

Combining this with (39) gives the required bound. ��
Now we derive a lower bound on the second sum in (36). If w is a seed then

V (Rw)

qφ(Rw)
= long(Rw) g(q short(Rw))

long(Rw) + short(Rw)
≥ g(2Z)

2
,

by property (i) of a good hierarchy. Hence

∑
w seed

V (Rw) ≥ g(2Z)

2

∑
w seed

qφ(Rw) ≥ g(2Z)

2
qφ(S), (40)

since the pod S satisfies dim(S) ≤ ∑
w seed dim(Rw) by Lemma 37.

Substituting from Lemma 37 and (40) into (36), for any good hierarchy H we
have

Pp(H occurs)

≤ QNnormQ
Nsplit
1 exp−q−1

[
(1 − 2c)U(S, R) + g(2Z)

2
qφ(S)

]
, (41)

where Q1 = e2g(Z).
Now suppose that H is a good hierarchy with root-label Rr = R = R( B/q!,

 B/q!). Let us find an upper bound on the number of vertices of H. By prop-
erties (iii), (v) of a good hierarchy, in any directed chain of vertices r = v0 �

v1 � · · · � vk away from the root, at least half the edges have φ decreasing by at
least T/(2q), so the number of vertices in such a chain is at most

2
2 B/q!
T/(2q)

+ 1 ≤ 20B

T
.

Hence, since the graph underlying H is a binary tree, the total number of vertices
of H is at most

M := 220B/T .

All that matters is that this number depends only on B, not on q.
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We now divide hierarchies into two different types according to the semi-pe-
rimeter of the pod. If qφ(S) ≤ A then by Proposition 14 we have

U(S, R) ≥ 2
∫ q B/q!

qφ(S)

g(z) dz ≥ 2
∫ B

A

g(z) dz.

On the other hand, if qφ(S) > A then by the choice of Z, (33), we have that

g(2Z)

2
qφ(S) ≥ g(2Z)A

2
≥ 2λ ≥ 2(1 − 2c)

∫ B

A

g(z) dz,

since λ = ∫ ∞
0 g(z) dz. In both cases we obtain from (41) that

Pp(H occurs) ≤ QM
2 exp−q−12(1 − 2c)

∫ B

A

g(z) dz, (42)

where Q2 = max{Q, Q1}.
We now bound the total number of possible good hierarchies with root-label R.

The number of abstract directed graphs with at most M vertices is at most M2M2
,

and the number of different rectangles in R is at most (B/q + 1)4, so the number
of possible good hierarchies is at most

M2M2
(2B/q)4M. (43)

From Proposition 32 and (42), (43) we deduce the existence of constants
K1, K2 ∈ (0,∞) depending only on B, such that when q is sufficiently small,

Pp(R is internally spanned) ≤ K1q
−K2 exp−q−12λB,

where

λB = (1 − 2c)

∫ B

A

g(z) dz. (44)

Hence, recalling that q ∼ p, we have

lim inf
p→0

−p log I ( B/q!, p) ≥ 2λB.

This implies that
lim inf
p→0

−p log I (B/p�, p) ≥ 2λB. (45)

To check this note that for any ε > 0 we may write B/p� =  (B + ε)/q ′!, where
q ′ = − log(1 − p′) and p′ ∼ p(B + ε)/B as p → 0; since I (L, p) is increasing
in p this implies that the left side of (45) is at least 2λB+εB/(B + ε), establishing
(45). Finally, since A = c = 1/B we have from (44) that

λB →
∫ ∞

0
g(z) dz = λ as B → ∞.

Hence we have proved Theorem 2 (ii).
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Statist., 31(1), 13–25 (1995)

[5] Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. To appear
[6] Boas, M.L.: Mathematical Methods in the Physical Sciences. Wiley, second edition,

1983
[7] Cerf, R., Cirillo, E.N.M.: Finite size scaling in three-dimensional bootstrap percolation.

Ann. Probab., 27(4), 1837–1850 (1999)
[8] Cerf, R., Manzo, F.: The threshold regime of finite volume bootstrap percolation. To

appear
[9] Fontes, L.R., Sidoravicius, V., Schonmann, R.H.: Stretched exponential fixation in sto-

chastic Ising models at zero temperature. Communications in Mathematical Physics.
To appear
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