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Abstract. The Belavkin equation, describing the continuous measurement of the position
of a quantum particle, is studied. A rigorous representation of its solution by means of an
infinite dimensional oscillatory integral (Feynman path integral) defined on the complex
Cameron-Martin space is given.

1. Introduction

In the traditional formulation of quantum mechanics, the state of a non relativistic
d-dimensional quantum particle is described by a vector ψ in the Hilbert space
L2(Rd), with ‖ψ‖ = 1, while its time evolution is described by the Schrödinger
equation:

ψ̇ = − i

�
Hψ.

Here H is the Hamiltonian of the system, which is the self-adjoint1 operator in
L2(Rd) given on smooth functions by:

Hψ(x) = − �
2

2m
�ψ(x)+ V (x)ψ(x);

where m is the mass of the particle , � is the (reduced) Planck costant.
The Schrödinger equation is valid if the particle is “undisturbed”, but if it inter-

acts with the outer world, namely if it is submitted to the measurements of one of its
physical properties and interacts with the measuring apparatus, the evolution is no
longer continuous. Indeed the state of the system in the process of the measurement
is the result of a random and discontinuous change and the ordinary Schrödinger
equation is no longer valid.
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G. Guatteri, S. Mazzucchi: Dipartimento di Matematica, Università di Trento, 38050 Povo,
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1 under suitable assumptions on the potential V , see, e.g., [12]
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In 1989 V.P. Belavkin [6] proposed a stochastic partial differential equation
giving a mathematical description of this situation. According to this proposal the
following stochastic Schrödinger equation describes the dynamics of a quantum
particle, whose position is continuously observed:{

dψ = − i
�
Hψdt − λ|x|2

2 ψdt + √
λxψ dW(t)

ψ(0, x) = ψ0(x) t ≥ 0, x ∈ R
d

(1)

where W is an d dimensional Brownian motion defined on a probability space
(�,F,P) and dW(t) denotes the Ito stochastic differential; for each ω ∈ �,
ψ(ω) ∈ C([0, T ],H), H = L2(R

d) and λ > 0 is a coupling constant. We denote
the R

d norm with | | and the scalar product by a · b = ∑d
i=1 aibi .

Equation (1) can also be written in the Stratonovich equivalent form:{
dψ = − i

�
Hψdt − λ|x|2ψdt + √

λxψ ◦ dW(t)
ψ(0, x) = ψ0(x) t ≥ 0, x ∈ R

d (2)

The aim of this paper is to find a representation of the solution of equation (2)
by means of an infinite dimensional oscillatory integral, a rigorous version of a
Feynman path integral.

The mathematical theory of Feynman path integrals, used to represent the so-
lution of the deterministic Schrödinger equation, can be considered already as a
classical topic, we refer to [3, 8, 1, 2, 11, 10] and the bibliography therein.

The representation of the Belavkin equation via a “Feynman Map” has been
announced in [4], see also [5]. In the present paper we show that the Feynman path
integral corresponds to a stochastic Mehler Kernel, see [13–15]: in those papers an
analogous result is obtained for a similar equation.

This approach turns out to be useful in order to show that the function defined
pointwise by the Feynman path integral is in fact the solution of the Belavkin
equation.

The paper is organized as follows: in section 2 we recall the notion of oscillatory
integral in finite and infinite dimension and the Cameron Martin formula. In section
3 we extend, in a suitable way, the definitions given in the previous section to the
space of paths in complex spaces and in theorem 1 we compute the Feynman path
integral that we will use to represent the solution of (2).

Finally in section 4 we give the proof of theorem 3.

2. Oscillatory integrals and the Cameron Martin formula

In this section we recall for later use some known results, for more details we refer
to [3, 8, 1]

2.1. Finite dimensional oscillatory integrals

Let us consider the finite dimensional real Hilbert space R
n, whose elements are

denoted by x, y ∈ R
n and the scalar product with 〈x, y〉. Let Q : R

n → R
n be an

invertible and symmetric operator.
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Definition 1. A function f : R
n → C is Fresnel integrable with respect toQ if for

each φ ∈ S(Rn) such that φ(0) = 1 the limit

lim
ε→0

∫
ei〈x,Qx〉f (x)φ(εx) dx (3)

exists and is independent of φ. In this case the limit is called the Fresnel integral
of f with respect to Q and denoted by∫

ei〈x,Qx〉f (x) dx (4)

There is an important class, F(Rn), of Fresnel integrable functions: those which
are Fourier transforms of complex bounded variation measures on R

n, i.e. elements
of M(Rn):

f ∈ F(Rn) ⇔ f (x) =
∫
ei〈x,α〉µf (dα), µf ∈ M(Rn).

In this case the Parseval equality gives us the following expression for the
limit (3):

(2πi)−n/2
∫
e
i
2 〈x,Qx〉f (x)dx = (detQ)−1/2

∫
e

−i
2 〈α,Q−1α〉µf (dα).

where det denotes the determinant.

2.2. Infinite dimensional oscillatory integrals

Let us consider an infinite dimensional real Hilbert space of paths H whose elements
are denoted by γ, η ∈ H and the scalar product by 〈γ, η〉. Let Pn be a sequence of
projectors onto n-dimensional subspaces of H, such that Pn ≤ Pn+1 and Pn → 1
strongly as n → ∞ (1 being the identity operator in H). Let f : H → C be a
function on H and Q : D(Q) ⊆ H → H be an invertible, densely defined and
self-adjoint operator.

Definition 2. A function f : H → C is Fresnel integrable with respect to Q if
and only if the finite dimensional approximations of the Fresnel integral of f with
respect to Q

(2πi)−n/2
∫
PnH

e
i
2 〈Pnγ,QPnγ 〉f (Pnγ )d(Pnγ ),

are well defined and the limit

lim
n→∞(2πi)

−n/2
∫
PnH

e
i
2 〈Pnγ,QPnγ 〉f (Pnγ )d(Pnγ ) (5)

exists and is independent on the sequence {Pn}.
In this case the limit is precisely called the Fresnel integral of f with respect

to Q and is denoted by ∫̃
e
i
2 〈γ,Qγ 〉f (γ ) dγ
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One can prove that if f ∈ F(H) then f ◦ Pn ∈ F(Pn(H)) and f is Fresnel
integrable. Moreover, if Q− I is trace class, the Cameron Martin formula holds:∫̃

e
i
2 〈γ,Qγ 〉f (γ ) dγ = (detQ)−1/2

∫
H
e−

i
2 〈α,Q−1α〉µf (dα) (6)

where detQ = | detQ|e−πi Ind Q is the Fredholm determinant of the operator Q
and Ind(Q) is the number of negative eigenvalues of the operator Q, counted with
their multiplicity.

3. The “analytic continuation” of oscillatory integrals

Let H be the Cameron-Martin space, i.e. the space of absolutely continuous func-
tions γ : [0, t] → R

d , γ (t) = 0, such that
∫ t

0 |γ̇ (s)|2ds < ∞. H is endowed with
the following scalar product

〈γ1, γ2〉 =
∫ t

0
γ̇1(s) · γ̇2(s) ds.

Let us denote by M(H) the Banach space of the complex bounded variation mea-
sures on H , endowed with the total variation norm, that is:

µ ∈ M(H), ‖µ‖ = sup
∑
i

|µ(Ei)|,

where the supremum is taken over all sequences {Ei} of pairwise disjoint Borel
subsets of H , such that ∪iEi = H . M(H) is a Banach algebra, where the product
of two measures µ ∗ ν is by definition their convolution:

µ ∗ ν(E) =
∫
H

µ(E − γ )ν(dγ ), µ, ν ∈ M(H)

and the unit element is the vector δ0.
Let F(H) be the space of complex functions on H which are Fourier transforms
of measures belonging to M(H), that is:

f : H → C f (γ ) =
∫
H

ei〈γ,β〉µf (dβ) ≡ µ̂f (γ ).

F(H) is a Banach algebra of functions, where the product is the pointwise one;
the unit element is the function 1, i.e. 1(γ ) = 1 ∀γ ∈ H and the norm is given by
‖f ‖ = ‖µf ‖.

We shall now define a linear functional on F(H), which can be interpreted as
the analytic continuation of a “Feynman path integral” to be defined below. Let
us consider for this a symmetric trace class operator L1 in H , such that I + L1
is invertible, and any function g : H → C, which is the Fourier transform of a
corresponding complex bounded variation measure µg on H :

g(γ ) = µ̂g(γ )
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Then one can apply the theory of the previous section and compute the Fresnel
integral of the function g by the Cameron Martin formula:∫̃

H

e
i

2�
〈γ,(I+L1)γ 〉g(γ ) dγ = det(I + L1)

−1/2
∫
H

e
−i�

2 〈α,(I+L1)
−1α〉µg(dα).

We shall interpret this as the “Feynman path integral” of the function g. Thus our
rigorous definition of the Feynman path integral for the function g ∈ F(H) is as
the Fresnel integral of Def. 2 (with respect to the operator Q = (I + L1)/�) and
with the normalization factor (2πi)−n/2 replaced by (2πi�)−n/2.

The following theorem considers the case of function g of a particular form,
relevant for the applications we have in mind.

Theorem 1. Let L1 and L2 be two commuting symmetric trace class operators in
H , such that I + L1 is invertible and L2 is nonnegative. Let f : H → C be the
Fourier transform of a complex bounded variation measure µf on H :

f (γ ) = µ̂f (γ ), f (γ ) =
∫
H

ei〈γ,β〉µf (dβ).

Then the Fresnel integral (or Feynman path integral) of the function g(γ ) :=
e−

1
2�

〈γ,L2γ 〉f (γ ) exists and is given by:∫̃
H

e
i

2�
〈γ,(I+L1)γ 〉− 1

2�
〈γ,L2γ 〉f (γ ) dγ

= det(I + L1)
−1/2

∫
H

∫
H

e
−i�

2 〈α+β,(I+L1)
−1(α+β)〉µL2(dβ)µf (dα) (7)

where µL2 is the Gaussian measure on H with covariance operator L2/�.

Remark.
• The left hand side of equation 7 is just an heuristic expression, which is defined

by the right hand side, which has a well defined mathematical meaning.
• We remark that the quadratic form on H : ( , ) : H ×H → C:

(γ1, γ2) = 〈γ1, (I + L1)γ2〉 + i〈γ1, L2γ2〉,
can be seen as the restriction to the real Cameron Martin space of the quadratic
form acting on the complex Cameron Martin space HC and defined by

(γ1, γ2) =
∫ t

0

dγ1

ds
(s) · d

ds
((I + L)γ2)(s) ds, (8)

where γ1 and γ2 are complex paths and L is the operator onHC of the following
form:

L : HC → HC L = L1 + iL2.

A complex path γ can be seen as a couple of real-valued paths (η, ξ), i.e. γ (s) =
η(s)+ iξ(s). A linear operatorA : D(A) ⊆ H → H can be extended to a linear
operator denoted again by A on HC:

A : D(A) ⊆ HC → HC, D(A) = D(A)+ iD(A),

Aγ = A(η, ξ) = (Aη,Aξ).
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Moreover one can easily prove that (I+L) : HC → HC is invertible, if (I+L1)

is invertible (2).
With this notation the relation (7) assumes the following form:

∫̃
H

e
i

2�
〈γ,(I+L)γ 〉f (γ )dγ = det(I + L)−1/2

∫
H

e
−i�

2 〈α,(I+L)−1α〉µf (dα)

This can be proved by taking a finite dimensional approximation of both the right
and the left hand sides and passing to the limit.
The previous result admits the following generalization, which can be applied in

the computation of the representation of a particular type of Schrödinger equations
with complex potentials, including equation (2).

Theorem 2. Let us consider the function f : H → C

f (γ ) = e−
1

2�
〈γ,L2γ 〉e〈l,γ 〉g(γ )

where l ∈ H and g ∈ F(H), g(η) = µ̂g(η), µg ∈ M(H).
Then f is the Fourier transform of a complex bounded variation measure µf

on H , f = µ̂f , where µf is the convolution of µg and the measure ν, with

ν(dγ ) = e
�

2 〈l,L−1
2 l〉−i�〈l,L−1

2 γ 〉µL2(dγ ), where µL2 is the Gaussian measure on H
with covariance operator L2/�. Moreover the Fresnel (or Feynman path) integral
of f with respect to the operator Q = (I + L1)/� is well defined and it is given
by:

∫̃
H
e
i

2�
〈γ,(I+L1)γ 〉f (γ )dγ = ∫̃

H
e
i

2�
〈γ,(I+L1)γ 〉e−

1
2�

〈γ,L2γ 〉e〈l,γ 〉g(γ ) dγ

= det(I + L1)
−1/2

∫
H
e

−i�
2 〈γ,(I+L1)

−1γ 〉µg ∗ ν(dγ )
= det(I + L1)

−1/2
∫
H

∫
H
e

−i�
2 〈γ+η,(I+L1)

−1(γ+η)〉µg(dη)ν(dγ )

= det(I + L1)
−1/2

∫
H

∫
H
e

−i�
2 〈γ+η,(I+L1)

−1(γ+η)〉

× e
�

2 〈l,L−1
2 l〉−i�〈l,L−1

2 γ 〉µL2(dγ )µg(dη) (9)

Remark. Again the previous expression admits an “analytic continuation”:

e
i

2�
〈γ,(I+L1)γ 〉e−

1
2�

〈γ,L2γ 〉e〈l,γ 〉 can be seen as the restriction to the real Cameron
Martin space of the function on HC given by γ → e(γ,γ )+〈l,γ 〉 where ( , ) is
the quadratic form (8) and 〈l, 〉 denotes the linear functional on HC given by
γ → 〈l, γ 〉 = ∫ t

0 l̇(s) · γ̇ (s)ds.
With these notations expression (9) assumes the following form:

∫̃
H

e
i

2�
〈γ,(I+L)γ 〉e〈l,γ 〉g(γ )dγ = det(I+L)−1/2

∫
H

e
−i�

2 〈α−il,(I+L)−1(α−il)〉µg(dα)
(10)

2 Notice that det(I + L) exists as L is trace class
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Proof. The first statement is a straightforward calculation. The second can be
proved by taking the finite dimensional approximation of both sides of equation (9)
and passing to the limit.

As L1 and L2 are two commuting symmetric trace class operators on H , they
have a common spectral decomposition. Thus there exists a complete orthonormal
system {en} ⊂ H such that

(I + L1)γ =
∑
n

an〈en, γ 〉en, L2(γ ) =
∑
n

bn〈en, γ 〉en, γ ∈ H,

with an, bn ∈ R.
Let {Pm} be the family of projectors onto the span of the first m eigenvectors

e1, . . . , em, namely:

Pm(γ ) =
m∑
n=1

〈en, γ 〉en

One can easily see thatPm → I asm → ∞ andL1Pm(H) ⊆ Pm(H),L2Pm(H) ⊆
Pm(H). Moreover the Feynman path integral∫̃

H

e
i

2�
〈γ,(I+L1)γ 〉e−

1
2�

〈γ,L2γ 〉e〈l,γ 〉g(γ )dγ

can be computed as

lim
m→∞(2πi�)

−m/2
∫
PmH

e
i

2�
〈Pmγ,(I+L1)Pmγ 〉e−

1
2�

〈Pmγ,L2Pmγ 〉e〈l,Pmγ 〉g(Pmγ )d(Pmγ )

which, from the Cameron Martin formula can be seen to be equal to

(

m∏
n=1

anbn)
−1/2

(
2π

�

)−m/2 ∫
PmH

∫
PmH

e−i�/2
∑m
n=1 a

−1
n (γn+ηn)2−�/2

∑m
n=1 b

−1
n γ 2

n

· e+�/2
∑m
n=1 b

−1
n l2n−i�

∑m
n=1 b

−1
n lnγnd(Pmγ )(µg ◦ Pm)(dη) (11)

where γn = 〈γ, en〉, ηn = 〈η, en〉, ln = 〈l, en〉, d(Pmγ ) being the m−dimensional
Lebesgue measure on PmH .

The finite dimensional approximation of the right hand side of equation (10)
assumes the following form:

( m∏
n=1

(an + ibn)
)−1/2

∫
PmH

e−i�/2
∑m
n=1(an+ibn)−1(γn−iln)2(µg ◦ Pm)(dγ ) (12)

By direct computation one can verify that expressions (12) and (11) coincide. Now
we can pass to the limit and from Lebesgue’s dominated convergence theorem we
have ∫̃

H

e
i

2�
〈γ,(I+L1)γ 〉e−

1
2�

〈γ,L2γ 〉e〈l,γ 〉g(γ )dγ

= det(I + L)−1/2
∫
H

e
−i�

2 〈α−il,(I+L)−1(α−il)〉µg(dα) (13)

��
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4. Application to the stochastic Schrödinger equation

In this section we prove the existence of a strong solution for the Stratonovich
stochastic differential equation (2). First we give the definition of strong solution
in the case of a Schrödinger equation:

Definition 3. A strong solution for the stochastic equation (2) is a predictable
process with values in H = L2(Rd), such thatψ(t) ∈ D(−i/�H −λ|x|2) P-a.s.

P
( ∫ T

0 (‖ψ(t)‖2 + ‖(−i/�H − λ|x|2)ψ‖2) dt < ∞
)

= 1

P
( ∫ T

0 ‖|x|ψ(t) dt‖2 < ∞
)

= 1 and

P a.s. for all t ∈ [0, T ]:{
dψ = − i

�
Hψdt − λ|x|2ψdt + √

λx · ψ ◦ dW(t) t ≥ 0, x ∈ R
d

ψ(0, x) = ψ0(x)
(14)

Let us consider again the real Cameron-Martin spaceH and its complexification
HC. Let L : HC → HC be the operator on HC given by the formula

〈γ1, Lγ2〉 = −�2
∫ t

0
γ1(s) · γ2(s)ds;

where �2 = −2iλ�. The j−th component of Lγ = (Lγ1, . . . , Lγd), is given by

(Lγ )j (s) = 2iλ�
∫ t

s

ds′
∫ s′

0
γj (s

′′)ds′′ j = 1, . . . , d (15)

One can verify that iL : H → H is self-adjoint with respect to the H inner prod-
uct. Moreover one can compute its eigenvalues and eigenvectors and verify that the

operator is of trace class if t �=
(
n+ 1

2

)
π/�, n ∈ Z, which is always fulfilled here

since �2 = −2iλ� has a nonvanishing imaginary part. Moreover the Fredholm
determinant of L is given by:

det(I + L) = cos(�t).

For the proof of these results we refer to [8] (the calculations in [8] are still valid
even if � is complex). In particular we have:

[(I + L)−1γ ]j (s) = γj (s)−�

∫ t

s

sin[�(s′ − s)]γj (s
′)ds′

+ sin[�(t − s)]
∫ t

0
[cos�t]−1� cos(�s′)γj (s′)ds′ j = 1, . . . , d.

Let l ∈ H be the vector defined by

〈l, γ 〉 = −
√
λ

∫ t

0
ω(s) · γ̇ (s)ds =

√
λ

∫ t

0
γ (s) · dW(s), (16)

which is given by

l(s) =
√
λ

∫ t

s

ω(τ )dτ.

The following result holds:
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Theorem 3. Let V and ψ0 be Fourier transforms of complex bounded variation
measures on R

d . Then there exist a (strong) solution to the Stratonovich stochastic
differential equation (2) and it is given by:

ψ(t, x) = e
−i�2 |x|2 t

2�
+√

λx·ω(t)
∫̃
H

e
i

2�
〈γ,(I+L)γ 〉e〈l,γ 〉e−i

∫ t
0 �

2x·γ (s)ds

·e− i
�

∫ t
0 V (x+γ (s))dsψ0(γ (0)+ x)dγ (17)

Remark.

1. The result can be extended to general initial vectors ψ0 ∈ L2(Rd), using the
fact that F(Rd) is dense in L2(Rd).

2. Formula (17) can also be written in the following form:

ψ(t, x) =
∫̃
e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse−
i
�

∫ t
0 V (γ (s)+x)ds

× e
∫ t

0

√
λ(γ (s)+x)·dW(s)ψo(γ (0)+ x)dγ. (18)

The symbol on the right hand side should be understood as the right hand
side of (17). The representation of the heuristic integrand in (18) in the form
(17) uses the fact that the integrand exp( i2�

�), where�(γ ) ≡ ∫ t
0 |γ̇ (s)|2ds +

2i�λ
∫ t

0 |γ (s)+ x|2ds − 2i�
∫ t

0

√
λ(γ (s)+ x) · dW(s) can be rigorously de-

fined as the functional on the Cameron Martin space H given by �(γ ) =
〈γ, (I +L)γ 〉 − 2i�〈l, γ 〉 − 2�

∫ t
0 �

2x · γ (s)ds −�2|x|2t − 2i�
√
λx ·ω(t),

where L is the operator (15) and l is the vector (16). We shall call “Feynman
path integral” the expression on the right of (18).

Proof. The proof in divided into 3 steps: in the first two we consider the caseV ≡ 0.
First of all we deal with an approximated problem and we find a representation for
its solution via a Fresnel (or Feynman path) integral, then we show that the sequence
of approximated solutions converges in a suitable sense to the solution of problem
(2). In the final step we introduce the potential V and show that the right hand side
of (17) is in fact the solution of the equation (2).

1. The solution of the approximated problem. We approximate the trajectory
t → ω(t) of the Wiener process by a sequence of smooth curves. More precisely
we consider the sequence of functions 3

n

∫ t

t− 1
n

ω(s)d s ≡ ωn(t), n ∈ N.

We have ωn → ω uniformly on [0, T ], indeed

sups∈[0,T ] |ωn(s)− ω(s)| → 0 as n → ∞ P a.s.

3 Here we denote, as usual, the trajectory of the Wiener process W(t) as ω(t).
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Let us consider the sequence of approximated problems:{
dψn = − i

�
Hψndt − λ|x|2ψndt +

√
λx · ψndWn(t)

ψn(0, x) = ψ0(x)
(19)

where dWn(t) is an ordinary differential, i.e. dWn(t) = ω̇n(t)dt , and we can also
write: {

ψ̇n = − i
�
Hψn − λ|x|2ψn + √

λx · ψnω̇n(t)
ψn(0, x) = ψ0(x)

(20)

which can be recognized as a family of Schrödinger equations, with a complex
potential, labelled by the random parameter ω ∈ �.

Now we compute a representation of the solution of (20) by means of a Fresnel
integral, under suitable assumptions on the (real) potential V and on the initial data
ψn(0, x, ω) = ψ0(x).

This tecnique has been developed by several authors, for instance [3] and [8].
We can write equation (20) in the following form:{

ψ̇n = − i
�
(−�2�

2m − iλ�|x|2)ψn − i
�
Vψn + √

λx · ψnω̇n(t)
ψn(0, x) = ψ0(x)

(21)

so that we can recognize in it the Schrödinger equation for an anharmonic oscillator
with a complex potential, i.e.{

ψ̇n = − i
�
(−�2�

2m + �2

2 |x|2)ψn − i
�
Uψn

ψn(0, x) = ψ0(x)
(22)

where �2 = −2iλ� and U = U(t, x, ω) = V (x)+ i�
√
λx · ω̇n(t).

We introduce the sequence of vectors ln ∈ H defined by

〈ln, γ 〉 =
√
λ

∫ t

0
γ (s) · ω̇n(s)ds = −

√
λ

∫ t

o

ωn(s) · γ̇ (s)ds,

which is given by

ln(s) =
√
λ

∫ t

s

ωn(τ )dτ. (23)

First of all let us consider equation (2) with H replaced by the free Hamiltonian
H = −�

2�/2. The following result holds:

Lemma 1. Let ψ0 ∈ S(Rd). Then the solution of the Cauchy problem:{
ψ̇n(t, x) = i�

2 �ψn(t, x)− λ|x|2ψn(t, x)+ √
λx · ω̇n(t)ψn(t, x)

ψn(0, x) = ψ0(x)
(24)

is given by:

ψn(t, x) =
∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse
√
λ

∫ t
0 (γ (s)+x)·ω̇n(s)dsψ0(γ (0)+ x)dγ

(where the right hand side is interpreted as the Fresnel integral of ψ0(γ (0) +
x)e〈ln,γ 〉 relative to Q = (I + L)/�, with H the Cameron Martin space, ln the
vector defined by (23) and L the operator defined by (15)).
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Proof. We have, by the definition 2 of the Fresnel integral

∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse
√
λ

∫ t
0 (γ (s)+x)·ω̇n(s)dsψo(γ (0)+ x)dγ

= e
−i�2 |x|2 t

2�
+√

λx·ωn(t)
∫̃
H

e
i

2�
〈γ,(I+L)γ 〉e〈ln,γ 〉

∫
Rd
eiα·xei〈b(α,x),γ 〉ψ̃0(α)dαdγ

where b(α, x) ∈ H , precisely:

b(α, x)(s) = α(t − s)− x�2

2�
(t2 − s2).

One can directly verify that the function f (γ ) ≡ ∫
Rd
eiα·xei〈b(α,x),γ 〉ψ̃0(α)dα is

the Fourier transform of a measure µ ∈ M(H), that is:

µ(dγ ) =
∫

Rd
eiα·xψ̃0(α)δb(α,x)(dγ )dα

so we can apply theorem 2 and have:

ψ(t,λ)n = e
−i�2 |x|2 t

2�
+√

λ·ωn(t)

×
∫

Rd
eiα·x det(I + L)−1/2e

−i�
2 〈b(α,x)−iln,(I+L)−1(b(α,x)−iln)〉ψ̃0(α)dα

By simple calculations we get the final result:

ψn(t, x) =
∫

Rd
Gn(t, x, y)ψ0(y)dy

where Gn(t, x, y) is given by:

Gn(t, x, y) ≡ 1√
2πi�

√
�

sin(�t)
e

√
λx·ωn(t)−

√
λ�x

sin(�t) ·
∫ t

0 ωn(s) cos(�s)ds

e
i�λ

2

∫ t
0 |ωn(s)|2dse

i�λ
2 (−� ∫ t

0 ωn(s)·
∫ t
s ωn(s

′) sin[�(s′−s)]ds′ds)

·e i�λ2 (−� ∫ t
0 sin(�s)ωn(s)ds·

∫ t
0 cos(�s)ωn(s)ds−� cot(�t)| ∫ t0 cos(�s)ωn(s)ds|2)

e
i

2�
(cot(�t)(|x|2+|y|2)− 2x·y

sin(�t) ) · e�
√
λy·(cot(�t)

∫ t
0 cos(�s)ωn(s)ds+

∫ t
0 sin(�s)ωn(s)ds)

(25)

which is, as one can easily directly verify, the foundamental solution to the approx-
imate Cauchy problem (19).

Remark. The result can be extended to general initial dataψ0 ∈ L2(Rd), using the
density of S(Rd) ⊂ F(Rd) in L2(Rd).
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2. The convergence of the sequence of approximated solutions. We will prove
the following result:

Lemma 2. The following equation{
dψ = − i

�
Hψdt − λ|x|2ψdt + √

λx · ψ ◦ dW(t) t > 0
ψ(0, x) = ψ0(x), ψ0 ∈ S(Rd) (26)

has a unique strong solution given by the Feynman path integral (in the sense
explained in connection with (18)):

ψ(t, x) =
∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse
√
λ

∫ t
0 (γ (s)+x)·dW(s)ψ0(γ (0)+ x)dγ

Moreover it can be represented by the process

ψ(t, x) =
∫

Rd
G(t, x, y)ψ0(y)dy

where

G(t, x, y) = 1√
2πi�

√
�

sin(�t)
e

√
λx·ω(t)−

√
λ�x

sin(�t) ·
∫ t

0 cos(�s)ω(s)ds

e
i�λ

2 (−� ∫ t
0 ω(s)·

∫ t
s ω(s

′) sin[�(s′−s)]ds′ds)e
i�λ

2

t∫
0

|ω(s)|2ds

·e i�λ2 (−� ∫ t
0 sin(�s)ω(s)ds·∫ t0 cos(�s)ω(s)ds−� cot(�t)| ∫ t0 cos(�s)ω(s)ds|2)

e
i

2�

(
cot(�t)(|x|2+|y|2)− 2x·y

sin(�t)

)
e
�

√
λy· 1

sin(�t) (
∫ t

0 cos[�(s−t)]ω(s)ds)

Proof. As first we consider the sequence ψn(t, x) = ∫
Rd
Gn(t, x, y)ψ0(y)dy.

Using the dominated convergence theorem we have that:

P
(

lim
n→∞

∫
Rd

|ψn(t, x)− ψ̃(t, x)|2dx → 0

)
= 1 (27)

with ψ̃(t, x) = ∫
R
G(t, x, y)ψ0(y)dy, as:

lim
n→∞ |Gn(t, x, y)−G(t, x, y)| → 0

for all t ∈ [0, T ] and x, y ∈ R
d . Moreover, one can see by a direct computation

that � = √−2iλ� can be chosen is such a way that:

|
∫

Rd
Gn(t, x, y)ψ0(y)dy|2 ≤ C(t)eP (t,x)‖ψ0(y)‖2, (28)

where P(t, x) is a second order polynomial with negative leading coefficient and
C(t) and P(t, x) are continuous functions of the variable t ∈ [0, T ]. Applying the
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Itô formula to the limit process ψ̃(t) we see that it verifies equation (26) for every
(t, x, y). Since the kernel G(t, x, y) is Ft adapted by construction it follows that
the solution is predictable. By direct computation and using estimates analogous
to (28) one can verify that ψ̃ is a strong solution. On the other hand every ψn(t, x)
is equal to∫̃

H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse
√
λ

∫ t
0 (γ (s)+x)·ω̇n(s)dsψ0(γ (0)+ x)dγ

= e
−i�2 |x|2 t

2�
+√

λx·ωn(t)
∫̃
H

e
i

2�
〈γ,(I+L)γ 〉e〈ln,γ 〉e−i

∫ t
0 �

2x·γ (s)dsψ0(γ (0)+ x)dγ

= e
−i�2 |x|2 t

2�
+√

λx·ωn(t) det(I + L)−1/2
∫
H

e
−i�

2 〈γ−iln,(I+L)−1(γ−iln)〉µ(dγ )

where µ is the measure on H whose Fourier transform is the function γ →
e−i

∫ t
0 �

2x·γ (s)dsψ0(γ (0)+ x).
We have ||ln−l||2H → 0 as n → ∞, where l(s) = √

λ
∫ t
s
ω(r)dr . Therefore, by

the Lebesgue’s dominated convergence theorem, we have that, for every x ∈ R
d :

lim
n→∞ e

−i�2 |x|2 t
2�

+√
λx·ωn(t) det(I + L)−1/2

∫
H

e
−i�

2 〈γ−iln,(I+L)−1(γ−iln)〉µ(dγ )

= e
−i�2 |x|2 t

2�
+√

λxω(t) det(I + L)−1/2
∫
H

e
−i�

2 〈γ−il,(I+L)−1(γ−il)〉µ(dγ ) (29)

Therefore, taking into account the uniqueness of the pointwise limit, we have shown
that:

ψ(t, x) =
∫

R

G(t, x, y)ψ0(y)dy

=
∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse
∫ t

0 (γ (s)+x)·dW(s)ψ0(γ (0)+ x)dγ. (30)

Now the result can be extended to more general ψ0 ∈ L2(Rd), using the density of
S(Rd) in L2(Rd). ��

3. The proof of Feynman-Kac-Ito formula by means of Dyson expansion. In
this subsection we generalize our previous results to the case H = −�

2�/2 + V

and complete the proof of theorem 3. We follow here the technique of Elworthy
and Truman [8].
We set

�(t, 0)ψ0(x) =
∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse−
i
�

∫ t
0 V (γ (s)+x)ds

·e
√
λ

∫ t
0 (γ (s)+x)·dW(s)ψ0(γ (0)+ x)dγ (31)

and

�0(t, 0)ψ0(x) =
∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse
√
λ

∫ t
0 (γ (s)+x)·dW(s)

ψ0(γ (0)+ x)dγ (32)
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then we have:

�(t, 0)ψ0(x) = e
−i�2 |x|2 t

2�
+√

λx·ω(t)
∫̃
H

e
i

2�
〈γ,(I+L)γ 〉e〈l,γ 〉e−i

∫ t
0 �

2x·γ (s)ds

·e− i
�

∫ t
0 V (x+γ (s))dsψ0(γ (0)+ x)dγ (33)

Let µ0(ψ) be the measure on H such that its Fourier transform evaluated in
γ ∈ H is ψ0(γ (0)+ x).

For 0 ≤ u ≤ t let µu(V, x), νtu(V , x) and ηtu(x) be the measures on H ,
whose Fourier transforms when evaluated at γ ∈ H are respectively V (x+ γ (u)),
exp

(
− i

∫ t
u
V (x + γ (s))ds

)
, and exp

(
− i

∫ t
u
�2xγ (s)ds

)
. We shall often write

µu ≡ µu(V, x), ν
t
u ≡ νtu(V , x) and ηtu ≡ ηtu(x) If {µu : a ≤ u ≤ b} is a family

in M(H), we shall let
∫ b
a
µudu denote the measure on H given by:

f →
∫ b

a

∫
H

f (γ )µu(dγ )du

whenever it exists.
Then, since for any continuous path γ

exp

(
− i

�

∫ t

0
V (γ (s))ds

)

= 1 − i

�

∫ t

0
V (γ (u)) exp

(
− i

�

∫ t

u

V (γ (s))ds

)
du,

(34)

we have

νt0 = δ0 − i

�

∫ t

0
(µu ∗ νtu)du (35)

where δ0 is the Dirac measure at 0 ∈ H .
By the Cameron-Martin formula:

�(t, 0)ψ0(x) = e
−i�2 |x|2 t

2�
+√

λx·ω(t) det(I + L)−1/2

·
∫
H

e
−i�

2 〈α−il,(I+L)−1(α−il)〉(ηt0 ∗ νt0 ∗ µ0(ψ))(dα) (36)

Applying to this equality (35) we obtain:

�(t, 0)ψ0(x)

= e
−i�2 |x|2 t

2�
+√

λx·ω(t) det(I+ L)−1/2
∫
H

e
−i�

2 〈α−il,(I+L)−1(α−il)〉(ηt0 ∗ µ0(ψ))(dα)

− i

�

∫ t

0
e

−i�2 |x|2 t
2�

+√
λx·ω(t) det(I + L)−1/2

·
∫
H

e
−i�

2 〈α−il,(I+L)−1(α−il)〉(ηt0 ∗ µu(V, x) ∗ νtu ∗ µ0(ψ))(dα)du

= �0(t, 0)ψ0(x)− i

�

∫ t

0

∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse−
i
�

∫ t
u V (γ (s)+x)ds

e
√
λ

∫ t
0 (γ (s)+x)·dW(s)V (γ (u)+ x)ψ0(γ (0)+ x)dγ du
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By Fubini theorem for oscillatory integrals (see [3, 1]), we get that∫̃
H

e
i

2�

∫ t
0 |γ̇ (s)|2ds−λ ∫ t

0 |γ (s)+x|2dse−
i
�

∫ t
u V (γ (s)+x)dse

√
λ

∫ t
0 (γ (s)+x)·dW(s)V (γ (u)+x)·

ψ0(γ (0)+ x)dγ = ∫̃
Hu,t

e
i

2�

∫ t
u |γ̇2(s)|2ds−λ

∫ t
u |γ2(s)+x|2dse−

i
�

∫ tu
u V (γ 2(s)+x)ds ·

e
√
λ

∫ t
u (γ2(s)+x)·dW(s)V (γ2(u)+ x)

∫̃
H0,u

e
i

2�

∫ u
0 |γ̇1(s)|2ds−λ

∫ u
0 |γ1(s)+γ 2(u)+x|2ds ·

e
√
λ

∫ u
0 (γ1(s)+γ2(u)+x)·dW(s)ψ0(γ1(0)+ γ2(u)+ x)dγ1dγ2.

Here γ1 ∈ H0,u and γ2 ∈ Hu,t are the integration variables. We denote by Hr,s the
Cameron-Martin space of paths γ : [r, s] → R

d .
Finally we have:

�(t, 0)ψ0(x) = �0(t, 0)ψ0(x)− i

�

∫ t

0
�(t, u)(V�0(u, 0)ψ0)(x)du (37)

Now the iterative solution of the latter integral equation is the Dyson series for
�(t, 0), which coincides with the corresponding power series expansion of the
solution of the stochastic Schrödinger equation, which converges strongly inL2(Rd).
The equality holds pointwise. On the other hand, following [9], it is possible to
prove that the problem (26) has a strong solution that verifies (37) in the L2 sense,
therefore �(t, 0)ψ0 coincides with the solution ψ(t). This concludes the proof of
theorem 3. ��
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