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Abstract
Identifying disease-causing variants in Rare Disease patients’ genome is a challenging problem. To accomplish this task, we 
describe a machine learning framework, that we called “Suggested Diagnosis”, whose aim is to prioritize genetic variants 
in an exome/genome based on the probability of being disease-causing. To do so, our method leverages standard guidelines 
for germline variant interpretation as defined by the American College of Human Genomics (ACMG) and the Association 
for Molecular Pathology (AMP), inheritance information, phenotypic similarity, and variant quality. Starting from (1) the 
VCF file containing proband’s variants, (2) the list of proband’s phenotypes encoded in Human Phenotype Ontology terms, 
and optionally (3) the information about family members (if available), the “Suggested Diagnosis” ranks all the variants 
according to their machine learning prediction. This method significantly reduces the number of variants that need to be 
evaluated by geneticists by pinpointing causative variants in the very first positions of the prioritized list. Most importantly, 
our approach proved to be among the top performers within the CAGI6 Rare Genome Project Challenge, where it was able 
to rank the true causative variant among the first positions and, uniquely among all the challenge participants, increased the 
diagnostic yield of 12.5% by solving 2 undiagnosed cases.

Introduction

Genomic variant interpretation is a complex process whose 
aim is to identify pathogenic events. Genetic diagnosis is 
pivotal for the treatment of Rare Diseases, a heterogeneous 
set of disorders that affect approximately 6% of the West-
ern population and in which 80% of cases are estimated to 
be caused by inherited variants (Genomes Pilot on Rare-
Disease Diagnosis in Health Care — Preliminary Report 
2021). Even with the technological advances introduced 
by Next Generation Sequencing (NGS) technologies, as of 
today Rare Diseases diagnostic yield greatly varies from 35 
to 55%, depending on the disorder (Genomes Pilot on Rare-
Disease Diagnosis in Health Care — Preliminary Report 

2021), leaving about 200,000 million patients without a clear 
diagnosis (Vinkšel et al. 2021).

In 2015, the American College of Medical Genetics 
and Genomics (ACMG) together with the Association for 
Molecular Pathology (AMP) have defined a set of crite-
ria and rules to interpret germline variants in a five-tier 
system (Richards et al. 2015). These standard guidelines 
consider different information related to germline vari-
ants, such as family segregation, in silico prediction of 
damaging impact, and past interpretation from reliable 
sources, to eventually classify a genomic variant into one 
of the following classes: Pathogenic, Likely pathogenic, 
Benign, Likely benign and Variant of Uncertain Signifi-
cance (VUS). Over the years, the ACMG/AMP guidelines 
have become the standard for germline variants interpre-
tation worldwide, and several computational approaches, 
both commercial or not, have been proposed to automati-
cally implement this complex set of rules (Li and Wang 
2017; Scott et al. 2019; Nicora et al. 2018; Whiffin et al. 
2018; Xavier et al. 2019; Ravichandran et al. 2019; Peng 
et al. 2021; Kopanos et al. 2019), thus supporting clini-
cians in variant interpretation. Despite the great impor-
tance of the ACMG/AMP guidelines, class-based systems 
may not be effective in clinical settings, when thousands of 
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variants per proband need to be examined to identify few 
causatives. Additionally, these guidelines are intended to 
determine variant pathogenicity, an assessment that should 
be independent of interpreting the cause of the disease 
for a given patient (Richards et al. 2015). In this context, 
variants should be evaluated not only given their potential 
pathogenicity but also in light of a patient’s phenotypes 
and family information. The assessment of variant patho-
genicity is indeed distinct from interpreting the cause of a 
disease in individual patients. According to the study by 
Shen et al., the response of patients to specific therapies 
targeted at presumed genetic diseases can serve as a valu-
able criterion for clarifying the pathogenicity of genomic 
variants. This approach underscores the importance of 
evaluating variant pathogenicity independently, without 
conflating it with the overall diagnosis of the disease’s 
cause in patients (Shen et al. 2021). Variant filtering and 
variant prioritization can extremely reduce clinicians’ bur-
den, by reducing the number of variants that need to be 
evaluated and pinpointing the most interesting variants in 
the top positions after prioritization. Few attempts have 
been made to translate the ACMG/AMP five-tier system 
into a score-based system (Nicora et al. 2018; Tavtigian 
et al. 2018; Tavtigian et al. 2020), but, to the best of our 
knowledge, they have not been extensively evaluated in 
the context of variant prioritization (VP). On the contrary, 
many computational tools performing a phenotype-based 
variant (or gene) prioritization have been developed. These 
approaches rank variants based on the likelihood that they 
can impact their gene’s function and that the mutated gene 
can cause the phenotype(s) observed in the patient. To 
represent patient’s phenotypes in a standardized way, most 
VP tools encode phenotypes in terms of Human Phenotype 
Ontology (HPO) terms (Köhler et al. 2021). The HPO is a 
standardized vocabulary containing thousands of pheno-
typic abnormalities associated with diseases. HPO expan-
sion and optimization have been a key driver for the devel-
opment of VP tools (Yuan, et al. 2022), most of which are 
machine learning based. Most of these tools incorporate 
both HPO terms and in silico prediction of variant dam-
aging impact, such as CADD (Rentzsch et al. 2021) cadd 
of REVEL (Ioannidis et al. 2016), while ACMG/AMP 
criteria are exploited as features for the machine learn-
ing model by XRare (Li et al. 2019). Several studies have 
performed a comparison of VP tools in terms of prioritiza-
tion ability. Solved cases from large studies, such as the 
1000 Genomes Project (Auton et al. 2015) or the Deci-
phering Developmental Disorders (DDD) project (Firth 
2011), have been exploited in different benchmark analysis 
(Yuan et al. 2022; Jacobsen et al. 2022). Others have used 
data from smaller set of real patients (Kelly et al. 2022; 
Pengelly et al. 2017; Tosco-Herrera et al. 2022), or from 

simulated patients (Smedley et al. 2015) to assess VP tools 
prioritization ability.

In this context, the Critical Assessment of Genome Inter-
pretation (CAGI) plays an important role in assessing per-
formance and defining the state-of-the-art of computational 
tools for genomic variant interpretation. Within the CAGI 
challenges, participants (both academic and industry) are 
provided with genomics data to develop their approaches 
for variant interpretation, which are subsequently evaluated 
by the CAGI consortium (TCA 2022). In 2021, the CAGI 
consortium proposed a challenge to identify diagnostic 
variants in Rare Diseases from the Rare Genome Project 
(RGP). Challenge participants were given a set of families 
and proband-only cases, along with the Human Pheno-
type Ontology (HPO) terms associated with the affected 
probands. The aim of the challenge is to rank the predicted 
disease-causing variants according to the probability of 
causation so that a molecular diagnosis can be established, 
and optionally provide a measure of uncertainty of the pre-
diction. The dataset consists of both solved and unsolved 
cases, as determined by a team from the Broad Institute, 
and, when possible, confirmed by clinicians. The solved 
cases were used to evaluate participants’ performance, while 
the unsolved cases were included to identify new potential 
causal variants. Participants were invited to submit up to six 
different predictions for each case.

Recently, the results of the CAGI6-RGP challenge have 
been published as a pre-print by Stenton et al. (Stenton et al. 
2023). According to this manuscript, 5 different groups have 
been disclosed as participants in this challenge. They all 
applied a different solution for phenotype-driven variant 
prioritization.

The commercial solution developed by Invitae Moon 
is based on the automated prioritization of variants based 
on clinical and genetic data. This system is based on an 
internally curated and up-to-date gene-phenotype associa-
tion database (Apollo). Katsonis et al. proposed a solution 
based on the Evolutionary Action method that predicted 
the functional consequences of missense variants (Katsonis 
and Lichtarge 2014). This solution was combined with a 
phenotype-driven approach and accounts also for variant’s 
quality and frequency in population databases, even if the 
full method has not been published yet. The TCS group used 
in-house tools for variant prioritization (VPR) and gene pri-
oritization (PRIORI-T (Rao et al. 2020) and GPrio). Another 
popular tool used within this context for phenotype-driven 
variant prioritization is the open-source Exomiser (Bone 
et al. 2016).

We have participated in the CAGI6 RGP challenge 
submitting four different predictions, both integrating 
ACMG/AMP guidelines for variant interpretation, pheno-
typic similarity, family segregation, and expected inherit-
ance for the condition. Our best model was recognized as 
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a best-performing approach in variant prioritization for 
the diagnosed samples in the test set, among 52 submitted 
models. Moreover, it was able to uniquely identify a deep 
intronic ASNS variant in an unsolved case. This variant was 
subsequently evaluated to be the causative variant for that 
patient. Additionally, a new causative near splice variant 
was identified in TCF4. Both diagnoses were returned to 
the patients, thus increasing the diagnostic yield by 12.5%.

Materials and methods

Dataset preprocessing

CAGI6 RGP organizers shared with all participants 35 
solved cases for training (6 cases proband-only, the remain-
ing trios, duos, and quartets). For each subject, the VCF file 
was provided. HPO terms and the known causative variant 
for each proband were also shared. A detailed description of 
proband’s phenotypes, causative variants and family com-
position is reported in Challenge datasets in Stenton et al. 
(Stenton et al. 2023).

As a preprocessing step, we filtered out variants with 
high allele frequency in gnomAD (common variants in 
populations with allele frequency greater than 0.05 accord-
ing to gnomAD v3.0) and sequencing artifacts, i.e. variants 
detected in more than 13 alleles in the whole dataset pro-
vided within the challenge.

Ethical considerations

All RGP participants engage in a consent video or video 
call with a trained research coordinator. During this interac-
tion, participants review the study protocol, which includes 
provisions for sharing de-identified data, and they provide 
signed informed consent (Mass General Brigham IRB 
protocol 2016P001422). The RGP organizers executed an 
institutionally signed (Broad-Northeastern) data transfer 
agreement. As predictors in the CAGI 6 challenge, we were 
required to sign and adhere to a registered access model and 
the CAGI Data Use Agreement (genomeinterpretation.org/
data-useagreement.html). All details are provided in Stenton 
et al. (Stenton et al. 2023).

Features engineering

We developed our model to emulate the reasoning process 
of a geneticist overseeing the Variant Interpretation process, 
aimed at solving undiagnosed cases. During the machine 
learning model’s feature engineering phase, each feature was 
meticulously designed to ensure independence from both the 
disease and the associated phenotypic characteristics of the 
patient. To accurately mimic the real diagnostic workflow, 

we identified four essential levels of information neces-
sary to determine whether a specific variant constitutes the 
molecular diagnosis for the patient.

The first level involves assessing the pathogenicity of the 
variant (as an example, according to the ACMG/AMP guide-
lines). This question can be addressed by determining the 
variant’s pathogenicity through a quantitative pathogenicity 
score.

The second level revolves around determining whether 
the variant explains the observed phenotypes in the patient. 
Quantitative measures of phenotypic similarity between 
the variant and the proband’s phenotypes are employed to 
answer this question.

The third level focuses on evaluating whether the variant 
segregates in the family based on a complete penetrance 
model. Additionally, it examines whether the observed seg-
regation aligns with the inheritance pattern associated with 
the condition. In this case, it is essential to verify the actual 
or inferred segregation pattern and the expected inheritance 
patterns for the disease.

Finally, the variant must be reliable and not be a result 
of sequencing artifacts or a common variant in the stud-
ied population. Variant quality metrics can be leveraged to 
address this aspect.

This set of information will serve as features for our 
model.

By considering these four levels of information, our 
model emulates the reasoning process of a geneticist, aid-
ing in the interpretation of variants and potentially leading 
to the identification of the molecular diagnosis for undiag-
nosed cases.

The list of features used in the model is reported in 
Table 1.

Variant pathogenicity

To assess variant pathogenicity, we analyzed the VCFs 
with eVai, the enGenome proprietary software that imple-
ments the ACMG/AMP guidelines. eVai assigns one of 
the five ACMG/AMP classes to each variant according to 
the implementation previously shared (Nicora et al. 2018). 
Additionally, eVai associates to each variant a pathogenic-
ity score, which is predicted by a ML classifier based on the 
ACMG/AMP criteria triggered by each variant. We have 
previously developed a logistic regression model to predict 
variant pathogenicity based on ACMG/AMP standard guide-
lines (Nicora et al. 2022a), where the model was trained on 
bona-fide pathogenic and benign variants from the Clinvitae 
database. Hence, we assign the logistic regression predicted 
probability of pathogenicity (named pathogenicity score) to 
each variant. The ACMG/AMP classification is computed 
for all the variants on disease-associated genes, according 
to the principal databases, such as MedGen (https:// www. 

https://www.ncbi.nlm.nih.gov/medgen/
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ncbi. nlm. nih. gov/ medgen/), Disease Ontology (https:// disea 
se- ontol ogy. org/), and Orphanet (https:// www. orpha. net/).

In our previous work, we showed that the eVai patho-
genicity score had better performance in comparison with 
CADD, VVP, and a Bayesian approach on data from Clinvi-
tae and the ICR639 project (Nicora et al. 2022a).

Phenotypic similarity

For each variant in a given gene, we calculated the Pheno-
typic Similarity between that gene and the proband’s phe-
notype. Computational analysis of phenotypes can greatly 
enhance the prioritization of variants. By computing meas-
ures of similarity between a patient’s clinical manifestations 
(provided as a set of HPO terms) and disease descriptions 
associated with genes, phenotype-based prioritization tools 
utilize standards and quantitative similarity measures to 
cluster and compare phenotype sets.

Phenotypic similarity scores are based on Human Phe-
notype Ontology information. Starting from standard phe-
notypic similarity indexes (e.g.: HPOSim package (Deng 
et al. 2015)) and exploiting the terms distance in the Direct 
Acyclic Graph (DAG) of the ontology, we developed a set 
of phenotypic similarity scores that take into account both 
the frequency of HPO terms in diseases and the specificity 
of the mutated genes in explaining sample’s phenotypes. 
More in detail, we firstly defined the HPO term sets associ-
ated with the gene and with the condition related to the gene 
as reported in Human Phenotype Ontology resources. We 
then exploited Resnik similarity between each HPO term 
of the patient and each term associated with the gene (or 
condition). Finally, we computed the phenotypic similarity 
between the two HPO sets, using the best-match average 
strategy (BMA), which calculates the average of all maxi-
mum similarities on each row and column of the similarity 
matrix S, as described in Eq. 1.

(1)SimBMA(g1, g2) =

∑m

i=1
max1≤j≤nsij +

∑n

j=1
max1≤i≤msij

m + n

Equation 1: best-match average strategy to compute the simi-
larity between 2 sets of HPO terms. g1 of size m includes 
HPO terms provided to describe the patient; g2 of size n 
includes HPO terms associated with the gene (or with the 
condition). sij is the Resnik similarity between i-th HPO term 
of g1 and j-th HPO term of g2.

The frequency of each HPO term in the condition (if 
reported in HPO resource) is used to weight each HPO term 
contribution in g2, when combining Resnik similarities in 
Eq. 1.

The final phenotypic score is a combination of the gene-
based and condition-based phenotypic similarities computed 
as described above.

We performed a preliminary analysis on 35 training set 
samples to evaluate the phenotype-based prioritization capa-
bilities of our phenotypic score against other common solu-
tions. We evaluated the prioritization performance of various 
tools (Phen2Gene (Zhao et al. 2020), Amelie (Birgmeier 
et al. 2020), Phrank (Jagadeesh et al. 2019) and Phenolyzer 
(Yang et al. 2015)) by examining the ranking of the causative 
gene based on its phenotypic similarity with the clinical phe-
notypes presented by the patient. A list of all mutated genes 
and HPO terms was given as input to each of the tools. The 
computation of the phenotypic similarity score is limited to 
genes with known associations with phenotypes, according 
to the HPO database.

Inheritance information

To encode inheritance information for each variant, we 
consider three key factors: the genotype of the variant, the 
expected inheritance mode of the disorder (e.g.: as reported 
in MedGen for the gene where the variant is located), and 
any available family segregation data (Licata 2023). Briefly, 
the expected mode of inheritance for each variant (such as 
autosomal dominant or recessive, X-linked, or de novo), is 
assigned based on the family segregation pattern (if avail-
able) and the variant’s genotype (Table 2). Secondly, we 
evaluate the expected inheritance mode of the condition 
associated with the gene where the variant is located. This 
evaluation is based on the inheritance mode reported in 

Table 1  Summary of the features exploited by the Suggested Diagnosis model

Feature Description Type

Variant pathogenicity ML-based eVai pathogenicity score, described by Nicora et al. (Nicora et al. 2022a) Probability of 
pathogenicity 
between 0 and 1

Phenotypic similarity Similarity between a patient’s clinical manifestations and disease descriptions associated with 
genes (based on the Human Phenotype Ontology)

Continuous

Inheritance information Match between the variant segregation pattern in the family and the expected inheritance for the 
associated condition

Boolean

Variant quality Whether the variant has good quality or not Boolean

https://www.ncbi.nlm.nih.gov/medgen/
https://disease-ontology.org/
https://disease-ontology.org/
https://www.orpha.net/
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MedGen for the gene. If these two values match, this infor-
mation is used to trigger a binary feature indicating whether 
the variant is inherited or not.

Variant quality

Lastly, the quality of each variant is assessed and encoded. 
Higher-quality variants (as an example, in terms of filter, 
genotype quality, allelic balance, and coverage), are gener-
ally more reliable and carry stronger implications for disease 
association and inheritance.

According to this description, in the dataset built for the 
CAGI challenge, each instance represents a possible genetic 
diagnosis (a single variant or a combination of candidate 
compound heterozygous variants) and the features cover 
the four described levels of information. This feature had 
a dichotomous value (0/1), computed based on the value of 
the filter field reported for each variant. Specifically, a filter 
field value of “Pass” was indicated as Quality = 1, while any 
value other than “Pass” was indicated as Quality = 0 (Fig. 1).

Training and evaluation strategy

The labeled dataset provided by the organizers consists of 35 
solved cases (training set). Each training sample contains a 

median of 7700 variants, which were included in the training 
set, totaling approximately 269,000 variants overall. Among 
all these instances, the causative variants indicated by the 
data providers were labeled as pathogenic, while the remain-
ing variants were labeled as benign. A detailed description 
of the 35 cases is reported in the CGI6 RGP Challenge pub-
lication (Stenton et al. 2023).

The decision to solely utilize the training set provided by 
the CAGI organizers as a source of information during the 
training phase is driven by the aim to maintain homogeneity 
between the training and test sets. These two provided data-
sets exhibit homogeneity in terms of experimental factors 
such as sequencing platforms and genomic targets. Addition-
ally, they show similar overall variant numbers and distribu-
tions, including coding/non-coding variants proportion. The 
phenotypic descriptions are consistent and performed by the 
same pool of clinicians, eliminating any phenotype selec-
tion bias between the training and test sets. Furthermore, 
the distribution of features, such as pathogenicity scores and 
quality measures, is similar, as shown by the reliability anal-
ysis that we performed (described in the following section). 
However, to exclude the possibility that the model overfits 
the CAGI data, we assess the generalization capabilities of 
the model on an additional independent test set (the DDD 
dataset), described in the next paragraphs.

Table 2  Inheritance pattern description and assignment’s rules when family analysis is available

Inheritance pattern description Triggering rule

Autosomal/ X-linked/ Y-linked de novo variants Heterozygous variants in the proband(s), but not present in the healthy parents
Autosomal/X-linked recessive compound heterozygous variants At least two heterozygous variants in the proband(s) in the same gene, inher-

ited from healthy parents (or de novo)
Autosomal/X-linked homozygous recessive variants Homozygous (or Hemizygous in case of chrX for males) variants in the 

proband(s), inherited from healthy parents
Autosomal/X-linked isodisomy Homozygous variants in the proband(s), inherited from only one healthy par-

ent, having the same variant in heterozygous
Y linked ChrY variant in the male proband(s) inherited from the affected father

Fig. 1  Workflow of the “Suggested Diagnosis” model
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For the solved test cases, the true causative was not made 
available, to compare the performance of different teams 
in an unbiased way. Therefore, to perform model selection 
and to preliminary understand whether our approaches work 
well, we set up a Leave-One-Proband-Out Cross Validation 
(LOPO CV) on the training set. In detail, for each of the 
35 training probands, we retained that proband for test-
ing (LOPO test proband, containing a median of approxi-
mately 7700 variants), and we trained different models on 
the remaining 34 probands (training set with a median of 
approximately 261,800 variants). We evaluated the rank-
ing performance on the LOPO test proband that was not 
included in the training. This procedure was repeated for 
each training probands, thus resulting in 35 trained mod-
els for each different machine learning classifier and 35 
evaluated cases. Given the phenotypic heterogeneity char-
acterizing the 35 probands, the LOPO strategy allows the 
assessment of the generalization capabilities of the machine 
learning models.

We compared the performance of different machine learn-
ing classifiers, all implemented in the scikit-learn package 
(Pedregosa et al. 2011), such as Bayesian classifier, linear 
models, ensemble models, and Multilayer perceptron. The 
best models were then trained on the complete training set 
and were used to predict the 30 test cases provided by the 
CAGI organizers.

Predictive uncertainty and reliability analysis

In addition to predicting the probability that each variant is 
disease-causing, CAGI organizers admit that also a standard 
deviation of the prediction can be submitted. Some classi-
fiers, such as Bayesian classifiers, already embed a notion of 
uncertainty, while to calculate the uncertainty of the predic-
tion for the ensemble models we exploited the framework 
suggested by Shaker et al. (Shaker and Hüllermeier 2020): 
we computed the uncertainty as Shannon entropy of the 
“weak” classifiers’ predicted probabilities, where the “weak” 
classifiers are the classifiers in the ensemble.

We’ve addressed this task by computing the uncertainty 
of predictions through the analysis of its reliability.

Machine learning generalization ability represents the 
ability of the classifier to maintain good performance not 
only on train/development data but also on different data-
sets that can be provided during deployment over time. 
Poor generalization ability of machine learning models in 
time and across different datasets has been widely reported, 
especially in healthcare, and it can hamper trust in machine 
learning prediction (Kelly et al. 2019). A possible cause for 
a decrease in performance is dataset shift when the vari-
able distributions greatly differ from training. In the context 
of variant interpretation, it has been shown that the perfor-
mance of in silico tools to predict variants’ damaging impact 

greatly varies and is affected by circularity and error propa-
gation, when the same genes exploited to train the models 
are also used to evaluate them during tests (Grimm et al. 
2015). Consequently, machine learning performance can 
decrease on new data. To understand if the prediction of 
a model trained on a particular set of data can be consid-
ered reliable, i.e. if we can trust such prediction, a reliability 
assessment can be performed. With the term “pointwise reli-
ability” we refer to the degree of trust that a single prediction 
is correct. A simple criterion to determine whether a predic-
tion may be reliable is the so-called “density principle”, that 
checks if the classified instance is similar to the training 
set. If so, we are more willing to trust the prediction in this 
instance, because the model may have successfully learned 
to classify data in the same features space and distribution 
of the training set (Nicora and Bellazzi 2020). This approach 
remains completely independent of the ground truth class of 
the tested instance, which is unknown in a real deployment 
case, as well as in the context of the CAGI 6 RGP challenge. 
Instead, it relies only on feature distributions. To ensure the 
trustworthiness of our models’ predictions, we implemented 
a reliability assessment framework capable of establishing 
if the test cases originate from a population similar to the 
training cases, and therefore if we could trust the predictions 
of our models. Specifically, we compare the feature distribu-
tions of the training set with those of the test set, employ-
ing a previously developed reliability assessment approach 
(Nicora and Bellazzi 2020; Nicora et al. 2022b). Briefly, for 
each feature, we calculated the “borders” in the training set 
(Olvera-López et al. 2010). Borders are defined as training 
instances in a class that exhibit the closest proximity to an 
example of the opposite class, for a given attribute, or that 
have the minimum/maximum value for that feature. For each 
variant in a test case, we compare its attributes with the 
corresponding training borders, and we record the number 
of attributes for which that variant would become a border 
if included in the training set. The higher this number, the 
more information this case would add to the training, and 
therefore the less it is similar to the current training. The 
reliability score is calculated as the following formula:

where mx is the number of attributes for which the instance 
would become a border and m is the total number of attrib-
utes. Therefore, for each variant in each test case, we assign 
a reliability score from 0 to 1 according to the above for-
mula. Scores closer to 1 indicate a higher degree of reliabil-
ity. For each test proband, we calculated various statistics, 
such as the median and standard deviation of the reliability 
score, the minimum reliability score, and the percentage of 
variants that have a reliability score equal to 1.

rel(x) = 1 −
mx

m
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Results

Phenotype‑based gene prioritization

The phenotypic score exploited in our model was compared 
with other published phenotypic similarity metrics. On the 
testes dataset, it showed a better performance in terms of 
ranking of the causative gene compared to Phrank, Phen-
2Gene, Phenolyzer and Amelie (Zhao et al. 2020; Birgmeier 
et al. 2020; Jagadeesh et al. 2019; Yang et al. 2015). How-
ever, as highlighted by the Cumulative Distribution Func-
tion in Fig. 2, even if our phenotypic similarity measure 
performs slightly better than the others, it cannot be solely 
exploited to consistently rank the causative gene in the top-
most positions, since the causative gene is prioritized in the 
top 100 positions only in 58% of cases. At least the contribu-
tion of the variant impact needs to be taken into account to 
achieve decent prioritization performances. A comprehen-
sive approach able to integrate variant pathogenicity, family 
inheritance, and variant quality metrics might highly con-
tribute to enhancing the prioritization performances.

Dataset preprocessing and features selection

We analyzed the causative variants provided in the training 
set in light of the ACMG/AMP guidelines (Fig. 3). Most 
causative variants (75%) are either Likely pathogenic or 
Pathogenic. The remaining are interpreted as VUS.

Figure 4 shows the distribution of two features (patho-
genicity score and phenotypic scores) on training variants. 
As we can see, causative variants have higher values both 
of pathogenicity and phenotypic scores, indicating that 
these two features can be highly informative to distinguish 
between causative and non-causative variants.

Training and evaluation strategy

The best-performing models resulted to be an ensemble 
classifier (ML model 1) and a linear classifier (ML model 
2). Figure 5 shows the Cumulative Distribution Function 
(CDF), which encodes the fraction of cases for which 
the causative variant is ranked at the top K positions, 
calculated on the 35 training cases in the LOPO CV. 
Not surprisingly, the eVai pathogenicity score, which is 
only based on the ACMG/AMP guidelines and is not a 
data-driven model, shows lower prioritization ability in 
comparison with the machine learning models that inte-
grate both ACMG/AMP standard guidelines, phenotypic 

Fig. 2  Cumulative distribution function (CDF) of phenotype-based prioritization performances on 35 training set samples. PhenoScore repre-
sents the implementation of the Phenotypic Similarity score described in the Methods section
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Fig. 3  Percentage of causa-
tive variants in the training set 
(n = 35 solved patients) with 
their interpretation according to 
the ACMG/AMP guidelines as 
implemented in the eVai soft-
ware (enGenome srl, Pavia)

Fig. 4  Distribution of pathogenicity score and phenotypic similarity score for causative and non-causative variants in training
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similarity, inheritance hypothesis, and variant quality 
information. In particular, the ML model 1 ranks the caus-
ative in the very first position in 27/35 (77%) of cases, 
while the ML model 2 ranks the causative in the first posi-
tion in 26/35 cases (74%). 100% of the causative variants 

are ranked within the first 10 positions for ML model 2, 
while in one case the ML model 1 ranks the causative 
variant in the 12th position.

Fig. 5  Cumulative Distribution 
Function (CDF) calculated with 
the LOPO CV on the training 
set

Fig. 6  Histogram showing the 
percentage of variants in each 
test proband with reliability 
equal to 1. Both solved and 
unsolved test cases show high 
similarity with the training set 
in terms of our built-in features
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Predictive uncertainty and reliability analysis

Figure 6 indicates the distribution of the percentage of 
variants that have a reliability of 1 in each test case. In 
all the test cases the percentage of variants with maxi-
mum reliability is really high, above 99%. In five Test 
probands, all the variants have a reliability of 1. This 
result shows that our features set is consistent between 
train and test and that the train and test populations do not 
come from highly heterogeneous populations. Therefore, 
we could expect good performances from our machine 
learning models.

Performance on the neurodevelopmental disorders

We further assess the validity of our approach on an 
additional dataset, which is a subset of 85 samples of 
the “Deciphering Developmental Disorder” (DDD) study 
(Firth 2011; Deciphering Developmental Disorders Study 
2015). We selected 35 challenging cases for which the 
causative variant has a low eVai pathogenicity score (0.88 
mean pathogenicity score, with a minimum value of 0 
and a maximum of 0.99, while the mean pathogenicity 
score in training causative is 0.99, spanning from 0.9955 
to 0.9999) and 50 cases selected randomly. The Model 
1, trained on the CAGI training cases, was used to rank 
DDD variants. In Fig. 7, the number of causative variants 
ranked at different positions is reported. For most cases 
(65/85 = 76%), the causative variant was ranked in the 
top 5th positions.

Furthermore, we compared the prioritization capabili-
ties of our model with the ones based on the phenotypic 
score only (Fig. 8). Exploiting the phenotype-based pri-
oritization, the causative gene was ranked in the top 5th 
positions in 19% of the cases (16/85) compared to the 
76% of the Model 1 prioritization.

Discussion

Suggesting the causative variant for a Rare Disease patient 
is a compelling task and many data-driven approaches have 
been developed to fulfill it (Li and Wang 2017; Scott et al. 
2019; Nicora et al. 2018; Whiffin et al. 2018; Xavier et al. 
2019; Ravichandran et al. 2019; Peng et al. 2021; Kopanos 
et al. 2019). We have developed machine learning models 
that leverage standard guidelines for variant interpretation, 
phenotypic similarity, family information, and variant qual-
ity, to rank all the variants in a VCF file according to their 
predicted probability of being causative. This approach, 
named “Suggested Diagnosis”, has been benchmarked in the 
public CAGI6 challenge on real data from the Rare Genome 
Project (Stenton et al. 2023). Sixteen different teams par-
ticipated in this challenge with 52 different models. Five of 
these teams were disclosed in a recent publication as par-
ticipants in this challenge and their performance was pub-
licly divulgated: Invitae Moon, Katsonis et al. (Katsonis and 
Lichtarge 2014), enGenome team, TCS group (Rao et al. 
2020), and the Exomiser group (Smedley et al. 2015).

The enGenome team resulted in being a best performing 
predictor within the CAGI6 RGP challenge. Unlike other 
benchmarked tools, we included both coding and non-cod-
ing variants, even deep intronic ones, utilizing the entire 
dataset from Whole Genome Sequencing. In contrast, other 
groups limited their analysis to coding or near-splice vari-
ants. Among all the diagnosed patients analyzed in the chal-
lenge, the Suggested Diagnosis identified the causative vari-
ant as the top prioritized choice in 50% of cases and within 
the top 5 positions in 71% of cases. This demonstrates that 
prioritization performance remained consistent despite the 
increased number of variants in the analysis.

Regarding the four “difficult-to-predict” causative vari-
ants described by Stenton et al. the Suggested Diagnosis 
could not prioritize two of them as, at the time of the chal-
lenge, they had no known disease associations according 
to OMIM, MedGen, Disease Ontology, and Orphanet. 

Fig. 7  Number of causative variants in the DDD dataset ranked at different positions
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However, the remaining two difficult-to-predict variants, 
which were associated with disease-associated genes, 
were correctly predicted and prioritized by the Suggested 
Diagnosis.

On the cohort of undiagnosed patients, the Suggested 
Diagnosis was the only predictor of the challenge able to 
identify the causative variants in two unsolved test cases, 
that were later validated as the true causatives and returned 
to the patients. In more detail, one of these cases involved 
compound heterozygosity with a frameshift variant and a 
deep intronic variant on the ASNS gene. Our model was 
the only one capable of identifying the deep intronic vari-
ant, while a few other models were able to predict only the 
frameshift variant as the first hit. In the second undiagnosed 
case, a de novo splicing variant on the TCF4 gene was iden-
tified by a total of 8 models, 4 of them based on our Sug-
gested Diagnosis.

The “Suggested Diagnosis” model implemented by enGe-
nome mimics the reasoning process of a geneticist during 
the variant evaluation process: variants’ pathogenicity, phe-
notypic overlap, inheritance fit and variant quality. Variant’s 
pathogenicity is based on the enGenome pathogenicity score 
(Nicora et al. 2018, 2022a).

The phenotypic overlap metric was compared with avail-
able solutions published in recent years 34–37. Although 
our score outperforms other tools in phenotype-based 

prioritization, this approach alone is insufficient to consist-
ently rank the causative gene in the topmost position. Dur-
ing the development phase, we defined and carried out a 
“Leave-One-Proband-Out” cross-validation, that allowed us 
to use the training samples with known causative variants 
to unbiasedly select the best models for submission and to 
assess the generalization capabilities of the designed features 
for patients affected by heterogeneous disease and different 
phenotypic spectrum. Additionally, we performed a reliabil-
ity assessment to preliminary understand whether we could 
trust the predictions on the CAGI test set. Subsequently, we 
further validated our approach to cases with neurodevelop-
mental disorders from the DDD study (Firth 2011). Further-
more, the comparison conducted on these 85 independent 
samples demonstrates that our hypothesis-driven approach, 
incorporating all four levels of information (variant patho-
genicity, inheritance information, phenotype similarity, and 
quality of the variant), is substantially more effective than 
relying solely on phenotype-based prioritization. In sum-
mary, the training phase leverages 269,00 variants from 
35 WGS proband data, with known causative variant. This 
approach was demonstrated to be reliable even with a train-
ing set containing a limited number of high-quality causative 
variants (35 in this case) and proved to have good gener-
alization performance, thanks to the analysis of the DDD 
dataset. After the challenge was concluded, the “Suggested 

Fig. 8  Cumulative Distribution Function (CDF) calculated on 85 DDD samples comparing Model to, eVai pathogenicity score and to pheno-
type-based only prioritization
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Diagnosis” has been retrained on in house data and is now 
available within the eVai software.
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