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Abstract
It remains challenging to translate the findings from genome-wide association studies (GWAS) of autoimmune diseases 
(AIDs) into interventional targets, presumably due to the lack of knowledge on how the GWAS risk variants contribute to 
AIDs. In addition, current immunomodulatory drugs for AIDs are broad in action rather than disease-specific. We performed 
a comprehensive protein-centric omics integration analysis to identify AIDs-associated plasma proteins through integrat-
ing protein quantitative trait loci datasets of plasma protein (1348 proteins and 7213 individuals) and totally ten large-scale 
GWAS summary statistics of AIDs under a cutting-edge systematic analytic framework. Specifically, we initially screened out 
the protein-AID associations using proteome-wide association study (PWAS), followed by enrichment analysis to reveal the 
underlying biological processes and pathways. Then, we performed both Mendelian randomization (MR) and colocalization 
analyses to further identify protein-AID pairs with putatively causal relationships. We finally prioritized the potential drug 
targets for AIDs. A total of 174 protein-AID associations were identified by PWAS. AIDs-associated plasma proteins were 
significantly enriched in immune-related biological process and pathways, such as inflammatory response (P = 3.96 ×  10–10). 
MR analysis further identified 97 protein-AID pairs with potential causal relationships, among which 21 pairs were highly 
supported by colocalization analysis (PP.H4 > 0.75), 10 of 21 were the newly discovered pairs and not reported in previous 
GWAS analyses. Further explorations showed that four proteins (TLR3, FCGR2A, IL23R, TCN1) have corresponding drugs, 
and 17 proteins have druggability. These findings will help us to further understand the biological mechanism of AIDs and 
highlight the potential of these proteins to develop as therapeutic targets for AIDs.

Keywords Autoimmune disease · Plasma protein · Proteome-wide association study · Mendelian randomization · 
Colocalization · Therapeutic target

Introduction

Autoimmune diseases (AIDs) are a group of diseases charac-
terized with the immune system being misdirected to attack 
the host itself and cause damage to its own tissues (Rosen-
blum et al. 2015; Wang et al. 2015). AIDs have become 
one of the leading causes of death, especially in young and 
middle-aged women (Cooper and Stroehla 2003; Rogers 
et al. 2020; Walsh and Rau 2000). Genome-wide associa-
tion studies (GWAS) have identified hundreds of thousands 
of genetic variants that are associated with AIDs (Buniello 
et al. 2019; Kochi 2016; Lettre and Rioux 2008). However, 
it is still in the infancy to clinically translate GWAS find-
ings into intervention targets, which may be presumably due 
to the lack of knowledge on how the GWAS risk variants 
contribute to AIDs (Miller 2023; Orozco 2022). So far, the 
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treatment for AIDs is either to alleviate the consequences 
caused by the pathological changes and tissue damage, or 
to block the disease process by modulating the immune 
response (Chandrashekara 2012). In addition, current immu-
nomodulatory drugs for AIDs are broad in action rather than 
disease-specific, it is desirable to further elucidate the func-
tional interpretation of GWAS risk variants, perhaps through 
comprehensive omics integration analysis, so as to expect-
edly provide some clues for the potential disease-specific 
intervention targets.

Human immune processes are closely related to proteins, 
which are the product of translated DNA and functional 
elements that could bridge the genetic variants codes and 
disease. The plasma proteins originate from various organ 
tissues and can play significant roles in the development 
of AIDs (Brzezicka and Paulson 2022; Gupta and Hawkins 
2015; Virtanen et al. 2019; Yin et al. 2018). More impor-
tantly, plasma proteins are well known as effective thera-
peutic targets, with most approved drugs targeting specific 
proteins (Fugger et al. 2020). On the other hand, the recent 
proliferation of publicly available GWAS of AIDs as well 
as the protein quantitative trait loci (pQTL) studies provide 
a rich resource of large-scale summary data without the pri-
vacy and ethical issue and promote the omics-integration 
analysis to combine GWAS with pQTL studies, which are 
expected to provide novel insights into the pathophysiology 
of AIDs and to benefit the targeted therapy (Jiang et al. 2020; 
Patterson et al. 2014).

Several statistical genetics methods have been developed 
to integrate GWAS and pQTL summary statistics, aiming to 
identify potential disease-related proteins. In particular, pro-
teome-wide association study (PWAS) is able to detect the pro-
tein-coding genes associated with phenotypes through protein 
function alterations (Wingo et al. 2021a, 2021c). Mendelian 
randomization (MR) analysis can evaluate the causal effect 
of an exposure (e.g., protein) on an outcome of interest (e.g., 
AID) via instrumental variables (IVs). Since genetic variants 
were randomly allocated from parents to offspring at concep-
tion and would not be modified, MR can be thought of a “natu-
rally” randomized controlled trials (Haycock et al. 2016) and is 
well acknowledged to be an efficient and cost-effective method 
to investigate the causal relationships among molecular traits 
and disease (Liu et al. 2021; Yuan et al. 2020). In addition, 
colocalization analysis is able to examine and identify the 
shared causal variants between proteins and diseases. Some 
previous studies have applied MR analysis and colocalization 
to identify the potentially causal plasma proteins for AIDs, 
such as MS (A. Staley 2020), hypothyroidism (Yang et al. 
2023), inflammatory bowel disease (IBD) (Chen et al. 2023; 
Mi et al. 2022), and type 1 diabetes (T1D) (Yazdanpanah et al. 
2022). However, these studies mainly rely on MR analysis and 
lack comprehensive analysis. Only conducting MR analysis 
will be vulnerable to model misspecification of a univariate 

method, insufficient to systematically evaluate the findings. 
Indeed, different analysis techniques, though with different 
focus, could complement each other. For example, PWAS 
analysis could be readily adopted prior to MR causal analysis 
to initially screen out the plausible protein-disease associa-
tions, while colocalization analysis can be used to examine 
the bias from MR analysis due to the linkage disequilibrium 
(LD) (Zuber et al. 2022). Thus, joint analysis using different 
methods can provide a better understanding of the relationship 
between proteins and AIDs.

In this study, we aimed to integrate the publicly available 
large pQTL datasets of plasma proteins and ten large-scale 
GWAS summary statistics of AIDs, including ankylosing 
spondylitis (AS), celiac disease (CD), hypothyroidism, IBD, 
multiple sclerosis (MS), myasthenia gravis (MG), pernicious 
anemia (PA), rheumatoid arthritis (RA), systemic lupus ery-
thematosus (SLE) and T1D, to identify disease-associated 
plasma proteins under a cutting-edge analytic framework by 
sequentially using PWAS, MR, and colocalization. Specifi-
cally, we first performed PWAS analysis to initially identify 
the protein-disease associations, followed by enrichment 
analysis and protein–protein interaction (PPI) network 
analysis to explore the underlying biological processes and 
pathways. Targeting on PWAS significant proteins, we then 
used two-sample MR analysis (Hemani et al. 2018) paral-
lelized with colocalization analysis to screen out potentially 
causal proteins. We finally investigated the protein function 
for multiple AIDs and explored the potential drug targets 
using the Drug-Gene Interaction Database (DGIdb).

Materials and methods

Study design

The study design overview is presented in Fig. 1. By com-
bining protein quantitative trait loci datasets of plasma 
protein and a total of 10 large-scale GWAS summary sta-
tistics of AIDs, we performed comprehensively protein-
centric omics integration analysis through sequentially 
using PWAS, MR and colocalization analyses to identify 
the plasma proteins that are associated with AIDs. All these 
analyses, paired with enrichment analysis and drug explora-
tion analysis, further help investigate the homogeneity and 
heterogeneity across multiple AIDs as well as to prioritize 
the potential drug targets.

Data source

GWAS summary data

We collected publicly available GWAS summary statis-
tics with European ancestry for AIDs. To ensure statistical 
power, we screened GWAS with sample sizes larger than 
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10,000 and the number of cases larger than 1000 and finally 
included 10 GWAS summary statistics. Specifically, nine 
GWASs were obtained from the GWAS catalog, includ-
ing AS (1344 cases and 324,074 controls), CD (2364 cases 
and 324,074 controls), hypothyroidism (23,497 cases and 
461,101 controls), MS (1683 cases and 324,074 controls), 
MG (1873 cases and 36,370 controls), PA (1555 cases and 
324,074 controls), RA (6360 cases and 324,074 controls), 
SLE (5201 cases and 9066 controls), and T1D (18,942 cases 
and 501,638 controls). GWAS summary statistics for IBD 
were obtained from the UK Biobank (Wu et al. 2021). All 
GWASs were approved by relevant ethics committees, with 
more details provided in Table S1.

Human plasma pQTL data and imputation model

The pQTL studies aim to investigate the association between 
genetic variants and protein expression levels, which have 
recently been used to combine with GWASs to illuminate 
the underlying mechanisms of complex diseases. Here, we 

used the plasma pQTL data from 7213 European Ameri-
cans in the Atherosclerosis Risk in Communities (Zhang 
et al. 2022a), including 4657 plasma proteins measured by 
Slow Off-Rate Modified Aptamers (SOMAmers) assay on 
the SomaLogic version-4 platform, where plasma proteins 
were first adjusted for covariates in a linear regression and 
then associated the rank-inverse normalized residuals with 
genetic variants. The detailed quality control and analysis 
procedure were described in the original publications. In 
PWAS analysis, we mainly focused on the 1348 significant 
cis-heritable plasma proteins (i.e. the nonzero cis-heritabil-
ity with P < 0.01) with available imputation weights, which 
were derived using the Elastic Net algorithm.

Statistical analysis

Proteome‑wide association studies

PWAS aims to explore the association between protein 
and disease by integrating the genetic imputation model 

Fig. 1  Study design. PWAS proteome-wide association study, pQTL protein quantitative trait loci, SNP single nucleotide polymorphism, MR 
Mendelian Randomization, KEGG Kyoto Encyclopedia of Genes and Genomes, GO Gene Ontology, PPI protein–protein interaction
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of protein expression with GWASs. We conducted PWAS 
analysis using the FUSION pipeline with the available 
imputation weights of 1348 significant cis-heritable plasma 
proteins (Gusev et al. 2016). Once inputting the GWAS sum-
mary data and SNP-protein imputation weights, FUSION 
typically predicts each protein's abundance in the GWAS and 
then perform an association analysis between the predicted 
protein abundance and AIDs. We used the 1000 Genomes 
European panel as LD reference data. Here, we mainly 
focus on the association between plasma proteins and AIDs, 
thus the multiple tests for the protein-AID pairs are often 
non-independent. In such case, the traditional Bonferroni 
correction for these multiple correlated tests is often too 
stringent. We, therefore, adopted the False Discovery Rate 
(FDR) (Benjamini-Hochberg method) corrections for the 
multiple testing and declared the significant proteins with 
FDR < 0.05, which have been commonly used in the previ-
ous literature (Bouras et al. 2022; Gong et al. 2023; Zhang 
et al. 2021). Furthermore, to verify whether the identified 
targets are unique to PWAS, we performed Transcriptome-
Wide Association Studies (TWAS) analysis in whole blood 
and further examined whether the PWAS signals could be 
explained by cis-genetic regulation of the expression of 
nearby (1 Mb region around) genes by performing condi-
tional analysis(Zhang et al. 2022b). Specifically, we per-
formed TWAS analysis using FUSION with the SNP effect 
size on gene expression obtained from Elastic-net models. 
Then, for each significant PWAS loci, we searched all TWAS 
genes nearby (± 500 kb around) whose transcription start 
site (TSS) locate within 500 kb of the TSS of its sentinel 
PWAS gene, and selected the one with the smallest TWAS 
P value for conditional analysis. That is, to examine whether 
the PWAS signals still remained conditioning on imputed 
expression values of the gene with the smallest TWAS P 
value. In addition, for genes encoded the PWAS significant 
proteins, we also searched them in TWAS and performed 
conditional analysis to determine whether these PWAS sig-
nals still remained given the same genes in TWAS analysis.

Enrichment analysis and PPI network

To explore the possible biological mechanisms involved 
in AID-associated proteins identified by PWAS, we per-
formed the enrichment analysis using Metascape. Metascape 
computes pairwise similarities between any two enriched 
terms based on a Kappa test score, automatically clusters 
enriched terms into non-redundant groups. P values were 
produced using a hypergeometric test and corrected by 
the Benjamini–Hochberg FDR method (Zhou et al. 2019). 
The parameters of Min Overlap, P Value Cutoff, and Min 
Enrichment are set as the default values. Here, we selected 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) databases to carry out enrichment 

analysis, respectively. In addition, we used the STRING 
database to infer enriched protein clusters and generate the 
PPI network to explore the interrelationships among the 
significant proteins identified by PWAS (Szklarczyk et al. 
2019).

Mendelian randomization analysis

For the significant protein-AID pairs from PWAS analysis, 
we further performed two-sample MR analysis, together 
with a series of sensitivity analyses, to assess the potential 
causal effect of protein on AIDs using the R package Two-
SampleMR. The MR analysis conforms to the STROBE-
MR Statement (Skrivankova et al. 2021), mainly involving 
instrumental variable selection, instrumental variable assess-
ment, primary MR analysis as well as sensitivity analysis.

We first selected instrumental variables for plasma pro-
teins from its cis-pQTLs. Taking the different number of cis-
SNPs within the cis-region of different proteins into account, 
we adopted a protein-specific Bonferroni-corrected P-value 
threshold (0.05/the number of SNPs in the cis-region) to 
declare significant pQTLs and obtained the protein-specific 
independent cis-pQTLs. Specifically, we selected the pro-
tein-specific independent cis-pQTLs by performing link-
age-disequilibrium (LD) clumping, with the threshold of 
r2 < 0.01 in the 1 Mb cis-region. LD calculation was based 
on the European LD reference panel in the 1000 Genomes. 
After harmonizing the effect alleles of IVs in pQTLs data 
and that in outcome GWAS data, the retained SNPs were 
used for MR analysis. It should be noted that the appropri-
ateness of IVs is a prerequisite for MR analysis. Thus, we 
assessed the strength of IVs by the F statistic and removed 
the weak IVs with the F-statistic less than 10 (Bottigliengo 
et al. 2022; Burgess et al. 2011; Palmer et al. 2012; Wang 
et al. 2021). To further remove potential pleiotropic genetic 
variants, we used the Phenoscanner (Kamat et al. 2019), to 
identify SNPs associated with the AIDs and removed them 
from the analysis. In addition, to infer the causal effect of 
proteins on AIDs risk, we expected IVs to affect protein 
expression first and then the AIDs risk. Therefore, we fur-
ther conducted the MR Steiger directionality test to assess 
whether the MR analysis was biased by reverse causation. 
The MR analysis is unlikely to be substantially influenced 
by the reverse causation with P value from the MR steiger 
directionality test less than 0.05.

For primary MR analysis, we used the Wald Ratio method 
for proteins with only one IV, the fixed-effect inverse-var-
iance weighted (IVW) method (Bowden et al. 2017) for 
proteins with two or three IVs, and the random-effect IVW 
method for proteins with four or more IVs. Of note, the 
random effects model is able to account for heterogeneity 
across IVs by allowing for over-dispersion of the regression 
model. All causal estimates of plasma proteins on AIDs are 
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reported to be odds ratio, indicating the change of AIDs risk 
per one SD change in protein abundance. To further strength 
the validity of the MR results, we performed MR-Egger 
and weighted Median MR analyses. Briefly, MR-Egger 
can allow for the detection and correction of horizontal 
pleiotropy, where the intercept can be used to identify the 
existence of horizontal pleiotropy (Burgess and Thompson 
2017). While the weighted median method can provide a 
consistent estimator even when up to 50% of the information 
comes from invalid genetic instruments (GIs), and is robust 
to some degree of heterogeneity among GIs (Bowden et al. 
2016). On top of IVW results, we further assessed the issue 
of heterogeneity and horizontal pleiotropy, and integrated 
the results of MR-Egger and Weighted median to determine 
the final MR results. Again, we used FDR (Benjamini-Hoch-
berg method) to perform multiple testing corrections in MR 
analysis.

For sensitivity analysis, we first fitted the MR-Egger 
model (Bowden et al. 2015) and considered a significant 
intercept term (P < 0.05) as an indicator of horizontal plei-
otropy. Then, we calculated Cochran’s Q statistic to assess 
heterogeneity for proteins with more than one IV. We finally 
applied the leave-one-out approach to test whether the MR 
estimates were dominantly driven by one IV and removed 
those results when removing one SNP yielded an IVW esti-
mate that differed from the overall IVW estimate.

Bayesian colocalization analysis

For the potential causal protein-AID pairs identified by MR 
analysis, we further performed the colocalization analysis 
using the R package coloc with default parameter setting 
(Wallace 2021). Bayesian colocalization was able to assess 
the probability that AIDs risk loci and proteins share the 
same variant, rather than the variant shared coincidentally 
due to LD correlation (Giambartolomei et al. 2014), which 
would help to examine the bias in MR analysis due to LD. 
Typically, the colocalization provides five assumptions: H0, 
no association with either AID or protein (PP0); H1, asso-
ciation with AID, not with protein (PP1); H2, association 
with protein, not with AID (PP2); H3, association with AID 
and protein, two independent SNPs (PP3); and H4, asso-
ciation with AID and protein, only one shared SNP (PP4) 
(Giambartolomei et al. 2014). We mainly focus on H4 and 
considered a strong evidence of colocalization when PP.H4 
is larger than 0.75.

Druggable targets exploration

To explore if the proteins identified above can serve as 
targets of the existing drugs or druggable gene targets, we 
explored the interactions between these proteins (or genes) 
and drugs using Drug-Gene Interaction Database (DGIdb) 

(version 4.0) (https:// www. dgidb. org/), DGIdb provides 
search and filtering of drug-gene interactions and drug 
genomic information. The database integrates more than 
30 trusted sources, such as DrugBank, pharmkb, Chembl, 
Drug Target Commons, Therapeutic Target Database (TTD), 
etc., containing more than 40,000 genes and 10,000 drugs, 
involving more than 100,000 drug-gene interactions or 
belongs to one of 42 potential drug-gene classes, which has 
been widely used to prioritize the potential drug targets for 
diseases (Freshour et al. 2021; Griffith et al. 2013). Using 
DGIdb, we can not only search the established interactions 
between genes and drugs but also explore whether the genes 
are ‘potentially’ druggable according to their membership in 
gene categories associated with druggability (e.g., kinases).

Results

PWAS identified 174 protein‑AID pairs

By integrating GWASs of ten AIDs with the imputation 
models of 1348 cis-heritable proteins from the pQTL data, 
we identified a total of 174 significant protein-AID pairs 
with FDR adjusted P-value less than 0.05 (Fig. 2), includ-
ing 9 for AS, 16 for CD, 45 for hypothyroidism, 16 for IBD, 
10 for MS, 5 for MG, 6 for PA, 11 for RA, 16 for SLE, and 
40 for T1D, with details provided in Table S2. Among the 
174 PWAS significant signals, a total of 143 PWAS sig-
nals still remained through the conditional analysis and 
only 31 PWAS signals can be explained by TWAS analysis 
(Table S3). We also searched the genes that encoded the 
PWAS significant proteins in TWAS and finally found 70 
TWAS genes. The results illustrated that, among the 70 
TWAS genes, there are 62 PWAS signals remained through 
the conditional analysis and only 8 PWAS signals can be 
explained by TWAS genes (Table S4). All these findings 
indicated that the identified targets are unique to PWAS and 
not simply genes in close proximity or results from TWAS. 
We further performed enrichment analysis on these proteins 
and mapped the PPI network. For GO enrichment analysis, 
we identified 20 significant GO terms (Fig. 3, Table S5), 
such as adaptive immune response based on somatic recom-
bination of immune receptors built from immunoglobulin 
superfamily domains (P = 9.24 ×  10–18), regulation of leu-
kocyte mediated immunity (P = 1.94 ×  10–12), and inflam-
matory response (P = 3.96 ×  10–10). For KEGG enrichment 
analysis, we totally found 13 significant KEGG pathways 
(Fig. 3, Table S6), such as JAK-STAT signaling pathway 
(P = 1.36 ×  10–6), natural killer cell-mediated cytotoxicity 
(P = 5.72 ×  10–6), and antigen processing and presentation 
(P = 1.45 ×  10–4). The PPI network illustrates the detailed 
interaction across significant proteins identified from PWAS 
analysis (Fig S1).

https://www.dgidb.org/
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MR retained 97 protein‑AID pairs

For 174 protein-AID pairs identified by PWAS, we further 
performed MR analysis to estimate the causal effects of 
proteins on AIDs (Tables S7–S12). 4 pairs were removed 
from the MR analysis due to the absence of suitable IVs. 

Overall, 955 valid IVs for 170 proteins were extracted. 
All F-statistics were greater than 10, indicating less weak 
instrument issue. For a total of 109 protein-AID pairs that 
are significantly reported from the IVW method, we per-
formed MR-Egger analysis to test the pleiotropy as well as 
calculated Cochran’s Q statistic to test heterogeneity. For 74 
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protein-AID pairs without horizontal pleiotropy and hetero-
geneity, we retained the results from MR-IVW analysis as 
the final MR results. For 3 protein-AID pairs with signifi-
cant pleiotropy but without heterogeneity, we retained the 
results from MR-Egger analysis as the final MR results. For 
the remaining 32 protein-AID pairs, we retained the results 
from a weighted median method as the final MR results. 
MR-steiger tests also suggested no reverse causality issue. 
Finally, we obtained 97 protein-AID pairs that were signifi-
cant from MR analysis after FDR correction (Fig. 4), among 
which the P values from the Cochran Q statistic of 21 pairs 
were less than 0.05, with that of 11 pairs being in the range 
of 0.01–0.05. In addition, we assessed the robustness of the 
MR estimates by leave-one-out analyses (Fig S2). These 
pairs had consistent effect directions in both MR analysis 
and PWAS analysis, with 54 pairs showing positive associa-
tions and 43 pairs showing negative associations.

Colocalization highly supported causal roles of 21 
protein‑AID pairs

Spurious MR findings might be existed when protein and 
diseases were driven by distinct variants with LD. There-
fore, we implemented colocalization for 97 protein-disease 
pairs identified from MR analysis to further remove those 

pairs that were more likely to be biased by LD. We finally 
identified 21 protein-AID pairs showing strong evidence of 
colocalization (PP.H4 > 0.75) in six AIDs (3 for hypothy-
roidism, 5 for IBD, 2 for MG, 1 for PA, 2 for SLE, and 8 for 
T1D), among which protein encoded by CTSH is associated 
with both T1D and MG, with details provided in Table S13 
and Fig S3. Table 1 summarized the details of the final 21 
protein-AID pairs, among which 11 were confirmed in previ-
ous GWAS studies, 10 were our newly discovered potential 
candidate proteins. More importantly, these 20 proteins are 
distributed on 20 approximately independent LD blocks/
regions across the whole genome partitioned by LDetect 
(Berisa and Pickrell 2016), indicating that these proteins 
are not affected by LD and may become therapeutic targets, 
at least among these six AIDs.

Candidate druggable targets

As most drugs exert their therapeutic effects through target-
ing proteins, we finally explored whether the 20 proteins 
identified through the comprehensive analysis can serve as 
potential therapeutic targets. In DGIdb, through drug-gene 
interactions, we identified 13 interactions between four pro-
tein-coding genes (TLR3, FCGR2A, IL23R, TCN1) and 13 
drugs (Table S14). Through druggability explorations, we 
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Fig. 3  Bubble chart for enrichment analysis of PWAS results. a Bubble chart for KEGG enrichment analysis; b Bubble chart for GO enrichment 
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identified 17 protein-coding genes, which are the potential 
targets for drug therapy intervention (Table S15). These 
findings are expected to promote and facilitate the develop-
ment of specific drugs for AIDs.

Discussion

In this study, we performed comprehensively protein-centric 
omics integration analysis by sequentially using PWAS, MR 
and colocalization analyses to identify the plasma proteins 
that are associated with multiple AIDs. A total of 174 pro-
tein-AID associations were identified by PWAS, which had 
been demonstrated to be unique to PWAS and not simply 
genes in close proximity or results from TWAS by perform-
ing conditional analysis. Enrichment analysis illustrated that 
AIDs-associated plasma proteins were significantly enriched 
immune-related biological process and pathways, such as 
regulation of lymphocyte activation (P = 2.63 ×  10–17), regu-
lation of leukocyte mediated immunity (P = 1.94 ×  10–12), 
and inflammatory response (P = 3.96 ×  10–10). Further MR 
and colocalization analysis screened out 21 protein-disease 
pairs in six AIDs, among which protein encoded by CTSH 
is associated with both T1D and MG. Of note, the 20 pro-
teins are distributed on 20 approximately independent LD 
blocks across the whole genome and are more likely to be 
biologically plausible. Further explorations showed that four 

proteins have corresponding drugs, and 17 proteins have 
druggability. Our findings can advance the understanding of 
different genetic basis of AIDs and indicate potential specific 
drug targets for AIDs.

Our findings are more likely to be biologically plausible, 
including 11 protein-AID pairs also identified in previous 
GWAS studies and 10 novel protein-AID pairs identified 
in this study. Take T1D as an example, the protein encoded 
by CTSH is a lysosomal cysteine proteinase, which plays 
an important role in the overall degradation of lysosomal 
proteins, which in turn is closely related to the immune reg-
ulation of humans (Roberts 2005). SIRPG encodes mem-
bers of the signal-regulatory protein (SIRP) family, which 
also belongs to the immunoglobulin superfamily, and plays 
a key role in the transendothelial migration of T-cells and 
promotes the proliferation and activation of antigen-specific 
T-cell (Dehmani et al. 2021; Piccio et al. 2005; Stefanidakis 
et al. 2008). The pancreas of people with T1D produces little 
or no insulin. Insulin is secreted by pancreatic β-cell, with-
out insulin, blood sugar cannot enter cells and accumulate 
in the blood (Barnett 2018). Studies have shown that the 
products of CCL25 bind to the chemokine receptor CCR9 
and promote cytokine-induced apoptosis by inhibiting insu-
lin secretion, thereby impacting pancreatic β-cell function 
(Atanes et al. 2020), which may be a way that CCL25 protein 
plays a role in the development of T1D. RHOC encodes a 
member of the Rho family of small GTPases (Bishop and 
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Hall 2000), it was be found to be a strong inducer of ROCK 
(Okin and Medzhitov 2016; Wheeler and Ridley 2004), 
which is involved in the pathogenesis of diabetic complica-
tions, and its inhibitors are considered to be a promising 
target for the treatment of diabetic complications (Tian et al. 
2021; Zhou and Li 2010). Take hypothyroidism as another 
example, the protein encoded by TLR3 is a member of the 
Toll-like receptor (TLR) family and plays a fundamental 
role in pathogen recognition and activation of innate immu-
nity (Chen et al. 2021). The protein encoded by IL7R is a 
receptor for interleukin-7 (IL7), which has been shown to 
play a key role in V (D) J recombination during lymphocyte 
development (Barata et al. 2019). IL7R deficiency may be 
associated with severe combined immunodeficiency (SCID) 
(Puel et al. 1998). Hypothyroidism occurs when the thyroid 
gland does not produce enough thyroid hormone. IGHG1|
IGHG2|IGHG3|IGHG4|IGK@|IGL@ is a group of genes 
encoding immunoglobulin G (IgG) subtypes. IgG is one of 
the most abundant proteins in human serum and plays a piv-
otal role in human immune function (Vidarsson et al. 2014). 
Studies have shown that the levels of IgG1 and IgG4 are 
higher in patients with hypothyroidism, and IgG is likely to 
inhibit the binding of thyroid-stimulating hormone (TSH) to 
its receptors by competing with TSH for receptors, resulting 
in decreased thyroxine secretion, thereby causing hypothy-
roidism (Jansson et al. 1986; Kraiem et al. 1992; Mckenzie 
and Zakarija 1992; Silva et al. 2003). Take MG as a final 
example, MG is caused by disruption of normal communica-
tion between nerves and muscles and is characterized by any 
muscle weakness and rapid fatigue under voluntary control 
(Gwathmey and Burns 2015). PRSS8 stimulates epithelial 
sodium channel (ENaC) activity by activating cleavage of 
the gamma subunits (SCNN1G) (Shipway et al. 2004), and 
the protein it encodes may influence MG through this pro-
cess. Our results suggest that reducing plasma PRSS8 levels 
has a protective effect on MG, which may warrant future 
research.

The druggability exploration analysis showed that 4 
proteins have corresponding drugs, such as FCGR2A and 
IL23R, which are associated with IBD. The protein encoded 
by FCGR2A is a cell surface receptor present on phagocytes 
such as macrophages and neutrophils, and is involved in the 
process of phagocytosis and clearance of immune com-
plexes. A study has shown FCGR2A is one of the key driver 
genes of IBD (Peters et al. 2017) and that drugs related to 
FCGR2A such as adalimumab, etanercept, and infliximab 
are available for the treatment of IBD. These drugs can also 
be used to treat RA, AS, and other AIDs. Infliximab, for 
example, is a TNF inhibitor that is routinely used to treat 
patients with rheumatic diseases, psoriasis, and IBD. How-
ever, recent studies have shown that some IBD patients do 
not respond well to TNF inhibitors. For instance, in IBD, 
disturbances in the gut microbial network that produce 

short-chain fatty acids as carbon sources for intestinal epi-
thelial cells and induction of regulatory T cells are associ-
ated with poor responsiveness to TNF inhibitors (Yilmaz 
et al. 2019). Overexpression of the IL-7 receptor (IL-7R) 
signaling pathways in the colon have also been found in a 
mouse models to be associated with no response to IBD 
anti-TNF therapy (Belarif et al. 2019). Single-cell analysis 
of inflammatory tissues from patients with Crohn's disease 
has revealed a unique cellular module associated with the 
ineffectiveness of TNF inhibitors (Martin et al. 2019). All of 
this suggested that, due to different pathogenic mechanisms, 
drugs used to treat a variety of diseases have some limita-
tions in treating a specific disease. Other proteins, mean-
while, have shown advantages in treating specific diseases. 
Both our results and GWAS showed that multiple variants of 
IL23R were significantly associated with IBD and suggested 
that blocking the IL-23 signaling pathway may be a reason-
able treatment strategy for IBD (Duerr et al. 2006). This has 
also been shown in biopharmaceuticals studies targeting the 
IL-23/IL-17 axis. Experimental studies related to IBD have 
shown that IL-23 drives local intestinal inflammation, and 
blockade of IL-23 or its receptor IL23R is associated with 
impaired activation of IL-23 target cells (such as TH17 cells, 
ILC3s, granulocytes, and natural killer cells) and reduced 
production of pro-inflammatory cytokines (Neurath 2019; 
Uhlig et al. 2006). This mechanism can be used for drug 
treatment of IBD. Clinical trials of monoclonal antibodies 
against interleukin-23, such as Ustekinumab and risanki-
zumab, have shown efficacy and safety in IBD patients (Fea-
gan et al. 2017, 2016; Sandborn et al. 2012; Sands et al. 
2017). Disease mechanism studies have also shown that 
IL-23 is a key cytokine for effective drug treatment of IBD 
compared with IL-12 and IL-17 (Cua et al. 2003; Yen et al. 
2006). All the results suggest that the druggable proteins 
identified in this study have the potential to be effective 
specific target proteins for AID, which can benefit to drug 
development of AIDs.

Our study is not without limitations. First, it is inad-
equate to only consider protein levels in peripheral blood 
without involving protein levels in other tissues and 
organs. We have searched the publicly available pQTL 
datasets in other tissues or organs, and only 2 pQTL data-
sets in brain tissue can be found to be available (Beach 
et al. 2015; Wingo et al. 2021b). However, the maximum 
sample size for these brain pQTL data is 376 (Wingo et al. 
2021b), which could restrict the power for the omics inte-
gration analysis. Second, the limitations regarding the MR 
sensitivity analysis should be well documented. Although 
MR-Egger allows for the detection and correction of direc-
tional pleiotropy, it requires the strict Egger assumption 
that all SNPs have the same horizontal pleiotropy effects. 
Besides, MR results with only one IV should be interpreted 
with caution due to lack of sensitivity analysis. Cochran's 
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Q statistic tends to be sensitive and often requires a large 
sample size. In addition, the investigation of heterogeneity 
of causal estimates as an assessment of the instrumental 
variable assumptions relies on the assumption that all valid 
instrumental variables identify the same causal parameter. 
If not, then the heterogeneity test may over-reject the null 
(Burgess et al. 2017). Third, we only focused on European 
ancestry due to the large-scale pQTL data and GWASs 
of AIDs were only available for the European popula-
tion and the findings cannot be directly extended to other 
populations.

In summary, we identified several plasma proteins 
that are associated with AIDs from comprehensive omics 
integration analysis and highlighted the potential of these 
proteins to develop as therapeutic targets for AIDs, indi-
cating the drug development for AIDs could be developed 
in a disease-specific manner. Further experimental studies 
should be conducted to validate these findings.
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